Module Partiality

From Coq Require Import Arith ZArith Psatz Bool String List.
From CDF Require Import Sequences IMP.

6. Semantics of divergence, second part


6.5. The partiality monad


The type delay A represents computations that produce a result of type A if they terminate, but can also diverge.

CoInductive delay (A: Type) : Type :=
  | now: A -> delay A
  | later: delay A -> delay A.

Arguments now [A].
Arguments later [A].

The computation of type A that always diverges.

CoFixpoint omega (A: Type) : delay A := later (omega A).

A few technical definitions to prove equalities between computations.

Lemma u_delay:
  forall {A: Type} (x: delay A),
  x = match x with now v => now v | later y => later y end.
Proof.
destruct x; auto. Qed.

Ltac unroll_delay X := rewrite (u_delay X); simpl.

Ltac samedelay :=
  match goal with
  [ |- ?X = ?Y ] => rewrite (u_delay X); simpl; auto
  end.

Terminating on a value v is captured by an inductive predicate terminates x v. Diverging is captured by a coinductive predicate diverges x.

Inductive terminates {A: Type} : delay A -> A -> Prop :=
  | terminates_now: forall v, terminates (now v) v
  | terminates_later: forall x v, terminates x v -> terminates (later x) v.

CoInductive diverges {A: Type} : delay A -> Prop :=
  | diverges_later: forall x, diverges x -> diverges (later x).

Lemma terminates_unique: forall (A: Type) (x: delay A) (v1 v2: A),
  terminates x v1 -> terminates x v2 -> v1 = v2.
Proof.
  intros until v2; intros T; revert x v1 T v2. induction 1; intros.
- inversion H; subst; auto.
- inversion H; subst; auto.
Qed.

Lemma terminates_diverges_excl: forall (A: Type) (x: delay A) (v: A),
  terminates x v -> diverges x -> False.
Proof.
  induction 1; intros D; inversion D; auto.
Qed.

Example of use: computing the remainder of Euclidean division.

CoFixpoint remainder (a b: nat) : delay nat :=
  if a <? b then now a else later (remainder (a - b) b).

Lemma remainder_terminates:
  forall a b, b > 0 ->
  exists q r, terminates (remainder a b) r /\ r < b /\ a = b * q + r.
Proof.
  induction a using (well_founded_ind lt_wf). intros.
  unroll_delay (remainder a b). destruct (Nat.ltb_spec a b).
- exists 0, a. split. constructor. split. auto. lia.
- assert (LT: a - b < a) by lia.
  destruct (H _ LT b H0) as (q & r & P & Q & R).
  exists (S q), r. split. constructor; auto. split. auto. lia.
Qed.

Lemma remainder_diverges:
  forall a, diverges (remainder a 0).
Proof.
  cofix CIH; intros a. unroll_delay (remainder a 0). constructor. apply CIH.
Qed.

Equitermination of two computations.

Section EQUITERMINATION.

Context {A: Type}.

CoInductive equi: delay A -> delay A -> Prop :=
  | equi_terminates: forall x y v, terminates x v -> terminates y v -> equi x y
  | equi_later: forall x y, equi x y -> equi (later x) (later y).

Notation "x == y" := (equi x y) (at level 70, no associativity).

Lemma equi_refl: forall x, x == x.
Proof.
  cofix COINDHYP; intros; destruct x.
- apply equi_terminates with a; constructor.
- apply equi_later. apply COINDHYP.
Qed.

Lemma equi_refl': forall x y, x = y -> x == y.
Proof.
  intros; subst; apply equi_refl.
Qed.

Lemma equi_sym: forall x y, x == y -> y == x.
Proof.
  cofix COINDHYP; intros x y E; inversion E; subst.
- apply equi_terminates with v; auto.
- apply equi_later; apply COINDHYP; auto.
Qed.

Lemma terminates_equi:
  forall x v, terminates x v -> forall y, x == y -> terminates y v.
Proof.
  induction 1; intros y E; inversion E; subst.
- inversion H; auto.
- inversion H0; subst.
  assert (v0 = v) by (eapply terminates_unique; eauto). subst v0; auto.
- constructor; eauto.
Qed.

Lemma equi_trans: forall x y z, x == y -> y == z -> x == z.
Proof.
  cofix COINDHYP; intros x y z E1 E2; inversion E1; subst.
- apply equi_terminates with v. auto. apply terminates_equi with y; auto.
- inversion E2; subst.
+ inversion H0; subst. apply equi_terminates with v; auto. constructor.
  apply terminates_equi with y0; auto using equi_sym.
+ constructor. apply COINDHYP with y0; auto.
Qed.

Lemma eq_later: forall x, later x == x.
Proof.
  cofix COINDHYP; intros x. destruct x.
- apply equi_terminates with a; repeat constructor.
- apply equi_later. apply COINDHYP.
Qed.

Lemma diverges_equi: forall x y, x == y -> diverges x -> diverges y.
Proof.
  cofix COINDHYP; intros. inversion H; subst.
- elim (terminates_diverges_excl A x v); auto.
- inversion H0; subst. constructor. eauto.
Qed.

Weak bisimulation is another presentation of equitermination, with constructors bisim_left and bisim_right that enable us to "skip" a later constructor on one side but not on the other side. This simplifies many proofs. However, we must prevent bisim_left or bisim_right to be applied infinitely often, because this would make now v and bottom bisimilar. The extra argument of type nat limits the number of consecutive applications of the bisim_left and bisim_right rules. It is reset to an arbitrarily high value when bisim_both is applied.

CoInductive bisim: nat -> delay A -> delay A -> Prop :=
  | bisim_now: forall n v,
      bisim n (now v) (now v)
  | bisim_both: forall m n x y,
      bisim m x y -> bisim n (later x) (later y)
  | bisim_left: forall n x y,
      bisim n x y -> bisim (S n) (later x) y
  | bisim_right: forall n x y,
      bisim n x y -> bisim (S n) x (later y).

Lemma bisim_inv: forall n x y,
  bisim n x y ->
     (exists v, terminates x v /\ terminates y v)
  \/ (exists n' x' y', x = later x' /\ y = later y' /\ bisim n' x' y').
Proof.
  induction n using lt_wf_ind.
  intros x y B; inversion B; subst.
- left; exists v; split; constructor.
- right; exists m, x0, y0; auto.
- edestruct (H n0) as [(v & T1 & T2) | (n' & x' & y' & E1 & E2 & B')].
  lia. eauto.
  + left; exists v; auto using terminates_later.
  + right. exists (S n'), (later x'), y'; intuition auto.
    congruence. apply bisim_left; auto.
- edestruct (H n0) as [(v & T1 & T2) | (n' & x' & y' & E1 & E2 & B')].
  lia. eauto.
  + left; exists v; auto using terminates_later.
  + right. exists (S n'), x', (later y'); intuition auto.
    congruence. apply bisim_right; auto.
Qed.

Lemma bisim_equi: forall n x y,
  bisim n x y -> x == y.
Proof.
  cofix CIH; intros.
  destruct (bisim_inv _ _ _ H)
  as [(v & T1 & T2) | (n' & x' & y' & E1 & E2 & B')].
- apply equi_terminates with v; auto.
- subst. constructor. eauto.
Qed.

End EQUITERMINATION.

Notation "x == y" := (equi x y) (at level 70, no associativity).

The monad structure.

Definition ret := now.

CoFixpoint bind {A B: Type} (x: delay A) (f: A -> delay B) : delay B :=
  match x with
  | now v => later (f v)
  | later y => later (bind y f)
  end.

Remark bind_now: forall (A B: Type) (v: A) (f: A -> delay B),
  bind (now v) f = later (f v).
Proof.
intros; samedelay. Qed.

Remark bind_later: forall (A B: Type) (x: delay A) (f: A -> delay B),
  bind (later x) f = later (bind x f).
Proof.
intros; samedelay. Qed.

The three monadic laws hold up to equitermination.

Lemma mon_law_1: forall (A B: Type) (v: A) (f: A -> delay B),
  bind (now v) f == f v.
Proof.
  intros. rewrite bind_now. apply eq_later.
Qed.

Lemma mon_law_2: forall (A: Type) (m: delay A),
  bind m (@ret A) == m.
Proof.
  cofix CIH; intros. destruct m.
- rewrite bind_now. apply eq_later.
- rewrite bind_later. constructor. apply CIH.
Qed.

Lemma mon_law_3: forall (A B C: Type) (m: delay A) (f: A -> delay B) (g: B -> delay C),
  bind (bind m f) g == bind m (fun x => bind (f x) g).
Proof.
  cofix CIH. intros; destruct m.
- rewrite ! bind_now, bind_later. apply equi_refl.
- rewrite ! bind_later. constructor. apply CIH.
Qed.

bind is compatible with equitermination ==.

Lemma bind_terminates_l:
  forall (A: Type) (m: delay A) (v: A), terminates m v ->
  forall (B: Type) (f: A -> delay B), bind m f == f v.
Proof.
  induction 1; intros.
- apply mon_law_1.
- rewrite bind_later. eapply equi_trans. apply eq_later. apply IHterminates.
Qed.

Lemma bind_context:
  forall (A B: Type) (m1 m2: delay A) (f1 f2: A -> delay B),
  m1 == m2 ->
  (forall v, f1 v == f2 v) ->
  bind m1 f1 == bind m2 f2.
Proof.
  cofix CIH; intros. inversion H; subst.
- apply equi_trans with (f1 v). apply bind_terminates_l; auto.
  apply equi_trans with (f2 v). auto.
  apply equi_sym. apply bind_terminates_l; auto.
- rewrite ! bind_later. constructor. apply CIH; auto.
Qed.

6.6. The monadic metalanguage


Here is the (coinductive) abstract syntax that expresses computations in the partiality monad.

CoInductive mon (A: Type): Type :=
  | Ret: A -> mon A
  | Later: mon A -> mon A
  | Bind: forall {B: Type}, mon B -> (B -> mon A) -> mon A.

Arguments Ret [A].
Arguments Later [A].
Arguments Bind [A B].

Lemma u_mon:
  forall {A: Type} (x: mon A),
  x = match x with Ret v => Ret v | Bind y f => Bind y f | Later m => Later m end.
Proof.
destruct x; auto. Qed.

The semantics of an abstract syntax tree (of type mon A) is defined by translation to the computation (of type delay A) denoted by the syntax tree.

CoFixpoint run {A: Type} (m: mon A) : delay A :=
  match m with
  | Ret v => now v
  | Later m => later (run m)
  | Bind (Ret v) f => later (run (f v))
  | Bind (Later m) f => later (run (Bind m f))
  | Bind (Bind m f) g => later (run (Bind m (fun x => Bind (f x) g)))
  end.

Lemma run_Ret: forall (A: Type) (v: A), run (Ret v) = now v.
Proof.
intros; samedelay. Qed.

Lemma run_Later: forall (A: Type) (m: mon A), run (Later m) = later (run m).
Proof.
intros; samedelay. Qed.

Lemma run_Bind_Ret: forall (A B: Type) (v: A) (f: A -> mon B),
    run (Bind (Ret v) f) = later (run (f v)).
Proof.
intros; samedelay. Qed.

Lemma run_Bind_Later: forall (A B: Type) (m: mon A) (f: A -> mon B),
    run (Bind (Later m) f) = later (run (Bind m f)).
Proof.
intros; samedelay. Qed.

Lemma run_Bind_Bind: forall (A B C: Type) (m: mon A) (f: A -> mon B) (g: B -> mon C),
    run (Bind (Bind m f) g) = later (run (Bind m (fun x => Bind (f x) g))).
Proof.
intros; samedelay. Qed.

Some of our proofs use continuations, which can also be viewed as contexts. A context is a list of functions A -> mon B that can be composed using the "bind" operator.

Inductive cont: Type -> Type -> Type :=
  | K0: forall (A: Type), cont A A
  | Kbind: forall {A B C: Type} (f: A -> mon B) (k: cont B C), cont A C.

Fixpoint insert_cont {A B: Type} (k: cont A B):
    forall {C: Type}, (B -> mon C) -> (A -> mon C) :=
  match k in cont A B
  return forall {C: Type}, (B -> mon C) -> (A -> mon C) with
  | K0 A => fun C g => g
  | Kbind f k => fun D g a => Bind (f a) (insert_cont k g)
  end.

The three monadic laws.

Lemma Mon_law_1: forall (A B: Type) (v: A) (f: A -> mon B),
  run (Bind (Ret v) f) == run (f v).
Proof.
  intros. rewrite run_Bind_Ret; apply eq_later.
Qed.

Lemma Mon_law_3: forall (A B C: Type) (m: mon A) (f: A -> mon B) (g: B -> mon C),
  run (Bind (Bind m f) g) == run (Bind m (fun x => Bind (f x) g)).
Proof.
  intros. rewrite run_Bind_Bind; apply eq_later.
Qed.

The second monadic law is difficult to prove. We use a bisimulation approach based on the following relation.

Inductive eta_match: forall {A: Type}, nat -> mon A -> mon A -> Prop :=
| eta_match_1: forall {A: Type} (m: mon A),
    eta_match 1%nat (Bind m (@Ret _)) m
| eta_match_2: forall {A B C: Type} (m: mon A) (k: cont A B) (g: B -> mon C),
    eta_match 0%nat (Bind m (insert_cont k (fun x => Bind (g x) (@Ret _))))
                    (Bind m (insert_cont k g)).

Lemma Mon_law_2_aux:
  forall (A: Type) n (x y: mon A),
  eta_match n x y -> bisim n (run x) (run y).
Proof.
  cofix CIH; destruct 1.
  - destruct m.
    + rewrite run_Bind_Ret, run_Ret.
      apply bisim_left. apply bisim_now.
    + rewrite run_Bind_Later, run_Later.
      eapply bisim_both. apply CIH. apply eta_match_1.
    + rewrite run_Bind_Bind.
      apply bisim_left. apply CIH.
      apply eta_match_2 with (k := K0 _).
  - destruct m.
    + rewrite ! run_Bind_Ret. destruct k; simpl.
      * eapply bisim_both. apply CIH. apply eta_match_1.
      * eapply bisim_both. apply CIH. apply eta_match_2.
    + rewrite ! run_Bind_Later.
      eapply bisim_both. apply CIH. apply eta_match_2.
    + rewrite ! run_Bind_Bind.
      eapply bisim_both. apply CIH.
      apply (eta_match_2 m (Kbind m0 k)).
Qed.

Lemma Mon_law_2:
  forall (A: Type) (m: mon A), run (Bind m (@Ret A)) == run m.
Proof.
  intros. eapply bisim_equi. apply Mon_law_2_aux. apply eta_match_1.
Qed.

It follows that the denotation of a Bind is the bind of the denotations.

Lemma run_Bind_aux:
  forall (A B C: Type) (m: mon A) (k: cont A B) (f: B -> mon C),
  run (Bind m (insert_cont k f)) ==
  bind (run (Bind m (insert_cont k (@Ret _)))) (fun x => run (f x)).
Proof.
  cofix CIH; intros.
  destruct m.
  - rewrite ! run_Bind_Ret. destruct k; cbn.
    + rewrite run_Ret, bind_later, bind_now.
      constructor. apply equi_sym; apply eq_later.
    + rewrite bind_later. apply equi_later. apply CIH.
  - rewrite ! run_Bind_Later, bind_later.
    apply equi_later. apply CIH.
  - rewrite ! run_Bind_Bind, bind_later.
    apply equi_later. apply CIH with (k := Kbind m0 k).
Qed.

Theorem run_Bind:
  forall (A B: Type) (m: mon A) (f: A -> mon B),
  run (Bind m f) == bind (run m) (fun x => run (f x)).
Proof.
  intros.
  change (Bind m f) with (Bind m (insert_cont (K0 _) f)).
  eapply equi_trans. apply run_Bind_aux. apply bind_context.
  apply Mon_law_2.
  intros; apply equi_refl.
Qed.

6.7. Application: an interpreter / denotational semantics for IMP


CoFixpoint cinterp (c: com) (s: store) : mon store :=
  match c with
  | SKIP => Ret s
  | ASSIGN x a => Ret (update x (aeval a s) s)
  | SEQ c1 c2 => Bind (cinterp c1 s) (cinterp c2)
  | IFTHENELSE b c1 c2 =>
      Later (cinterp (if beval b s then c1 else c2) s)
  | WHILE b c =>
      if beval b s then Bind (cinterp c s) (cinterp (WHILE b c))
                   else Ret s
  end.

The denotation of a command is the execution of its interpretation.

Definition denot (c: com) (s: store) : delay store := run (cinterp c s).

The denotational equations for IMP are satisfied, up to equitermination.

Lemma denot_skip: forall s,
  denot SKIP s == now s.
Proof.
  intros. unroll_delay (denot SKIP s). apply equi_refl.
Qed.

Lemma denot_assign: forall x a s,
  denot (ASSIGN x a) s == now (update x (aeval a s) s).
Proof.
  intros. unroll_delay (denot (ASSIGN x a) s). apply equi_refl.
Qed.

Lemma denot_seq: forall c1 c2 s,
  denot (SEQ c1 c2) s == bind (denot c1 s) (denot c2).
Proof.
  unfold denot; intros. rewrite (u_mon (cinterp (c1;;c2) s)); cbn.
  apply run_Bind.
Qed.

Lemma denot_ifthenelse: forall b c1 c2 s,
  denot (IFTHENELSE b c1 c2) s == if beval b s then denot c1 s else denot c2 s.
Proof.
  unfold denot; intros. rewrite (u_mon (cinterp (IFTHENELSE b c1 c2) s)); cbn.
  rewrite run_Later. destruct (beval b s); apply eq_later.
Qed.

Lemma denot_while: forall b c s,
  denot (WHILE b c) s ==
  if beval b s then bind (denot c s) (denot (WHILE b c)) else now s.
Proof.
  unfold denot; intros. rewrite (u_mon (cinterp (WHILE b c) s)); cbn.
  destruct (beval b s).
- apply run_Bind.
- rewrite run_Ret. apply equi_refl.
Qed.