
Mechanized semantics for compiler verification
or: CompCert’s tortuous path through semantics land

Xavier Leroy

INRIA Paris-Rocquencourt

APLAS & CPP, 2012-12-13

The CompCert project
(X. Leroy, S. Blazy, et al)

Goal: develop and prove correct a realistic compiler

• from (a very large subset of) the C language

• to assembly code for popular processors (PowerPC, ARM,
x86)

• producing reasonably efficient code (→ some optimizations).

Verifying a compiler

Using Coq, we prove the following semantic preservation property:

The observable behavior of the generated assembly code
is one of the possible behaviors of the source program
according to the C semantics, or improves on one of
these possible behaviors.

Behaviors =
termination / divergence / undefined (“going wrong”)

+ trace of I/O operations performed.

“Improving” = replacing undefined behaviors by more defined
behaviors.

The formally verified part of CompCert

CompCert C Clight C#minor

CminorCminorSelRTL

LTL LTLin Linear

MachAsm

side-effects out

of expressions

type elimination

loop simplifications

stack allocation

of “&” variables

instruction

selection

CFG construction

expr. decomp.

register allocation (IRC)

linearization

of the CFG

spilling, reloading

calling conventions

layout of stack frames

asm code

generation

Optimizations: constant prop., CSE, tail calls,

inlining, (LCM), (scheduling)

A breakdown of the verification effort

Components Size Evolutions during the project
(lines)

Compilation algorithms 8000 Minor extensions with new features
(the compilation passes) Adding new compilation passes

Syntax of languages 2000 Minor extensions with new features

Semantics of languages 5000 Major changes of semantic styles
At least one full rewrite per language

Proofs of 40000 Minor extensions for new features
semantic preservation Major changes to accommodate

changes in semantics

CompCert semantics as a function of time

Languages V1 V2 V3 V4

Clight

(1)
... Big-step Big-step Coinductive Small-step

Cminor w/traces big-step w/continuations

RTL

(2)
... Mixed-step LTS LTS LTS

Mach

Asm Trans. Syst. LTS LTS LTS

(1) High-level languages with structured control.

(2) Intermediate languages with unstructured control (CFG).

This talk

A “post-mortem” analysis of the evolutions of CompCert,
trying to better understand:

• Why so much back-and-forth on the semantics of the source,
intermediate and target CompCert languages?

• What is so difficult in the engineering of formal semantics and
their mechanization?

• What are good styles of mechanized semantics?
(as a function of what needs to be proved using them).

What is a formal semantics?

Associates a mathematically-precise meaning to a piece of syntax.

Example

Syntax: x = x + 1

Semantics:

ML: λe. false
Pascal-like: λs. s[x← s(x) + 1]
C-like: λe.λs. s[e(x)← (s(e(x)) + 1) mod 232]

Many different styles of semantics

Useful dividing lines:

• Operational vs.
Denotational

• Syntactic vs.
Higher Mathematics

• Compositional vs.
Global

This talk: operational styles.

How to choose a style?

“It looks good!”

“It handles the language features I need.”

“It lets me prove the properties I’m interested in.”

“It fits my proof assistant.”

First investigations:
big-step vs. small-step
on a toy language (IMP)

The IMP language

The prototypical imperative language with structured control.

Expressions:
a ::= cst | x | a1 + a2 | a1 ≤ a2 | . . .

Commands:
c ::= skip | x := a | c1; c2
| if a then c1 else c2 | while a do c

Reduction (small-step) semantics

Rewriting (command, state) configurations: c/s → c ′/s ′

(x := a)/s → skip/s[x ← v] if s ` a⇒ v

(skip; c)/s → c/s

(if a then c1 else c2)/s →

{
c1/s if s ` a⇒ true

c2/s if s ` a⇒ false

(while a do c)/s → if a then (c ; while a do c)

else skip

c1/s → c2/s ′

(c1; c)/s → (c2; c)/s ′

Executions = sequences of reductions, e.g. c/s
∗→ skip/s ′.

Natural (big-step) semantics

s ` c ⇒ s ′: started in state s, command c terminates with state s ′.

s ` skip⇒ s
s ` a⇒ v

s ` (x := a)⇒ s[x ← v]

s ` c1 ⇒ s ′ s ′ ` c2 ⇒ s ′′

s ` (c1; c2)⇒ s ′′

s ` a⇒ true s ` c1 ⇒ s ′

s ` (if a then c1 else c2)⇒ s ′

s ` a⇒ false s ` c1 ⇒ s ′

s ` (if a then c1 else c2)⇒ s ′

s ` a⇒ false

s ` (while a do c)⇒ s

s ` a⇒ true s ` c ⇒ s ′ s ′ ` (while a do c)⇒ s ′′

s ` (while a do c)⇒ s ′′

Comparing the two styles

Describe the same terminating executions:

s ` c ⇒ s ′ iff c/s
∗→ skip/s ′

Small-step semantics also capture

• divergence: infinite sequences of reductions

• “going wrong”: c/s
∗→ c ′/s ′ 6 ∗→ with c ′ 6= skip.

Big-step semantics make it easier to

• grow the language

• prove certain program equivalences

Proving program equivalences

Example: if c modifies no free variable of e, show

if e then c ; c1 else c ; c2 ≡ c ; if e then c1 else c2

Big-step semantics: easy inversion on one evaluation derivation
and construction of the other derivation.

Small-step semantics: need to invent a bisimulation ∼ containing
the two commands above:

cs1 cs2

cs ′1 cs ′2

∼

∼

*

cs1 cs2

cs ′1 cs ′2

∼

∼

*

(Here, the bisimulation “only” has 4 cases, but it can get much worse.)

Growing the language

Let’s add functions to IMP.

Commands: c ::= . . . | x := fn(a)

Function definitions: def ::= fn(x){c}

In big-step style: add another relation ` fn(v)⇒ v ′ for the
evaluation of function calls.

s ` a⇒ v ` fn(v)⇒ v ′

s ` x := fn(a)⇒ s[x ← v ′]

fn(x){c} ∈ Fundefs [x ← v] ` c ⇒ s

` fn(v)⇒ s(fn)

Functions in small-step style

In small-step, we need to extend the syntax of commands with a
special form representing function calls being executed:

Commands: c ::= . . . | x := fn(a) | x := call(fn, c , s)

Additional reduction rules:

(res := fn(a))/s → (res := call(fn, c , [arg ← v])/s

if s ` a⇒ v and fn(arg){c} ∈ Fundefs

(res := call(fn, skip, s ′)/s → skip/s[res ← s ′(fn)]

c1/s1 → c2/s2

(res := call(fn, c1, s1))/s → (res := call(fn, c2, s2))/s

Functions in small-step style

Commands: c ::= . . . | x := fn(a) | x := call(fn, c , s)

Note that the syntax of the language must be extended with
constructs that do not appear in the source language, but are here
just for the purposes of the reduction rules.

Moreover, this call construct injects a semantic element, the
store s, into the syntax.

Impact on compiler verification

Two (pairs of) languages ⇒ two compilers: one for code
generation, the other for proving semantic preservation.

source

subset
language

target

subset
language

Compiler pass
(executable function)

extended languages for reduction semantics

Compiler specification
(relation involving semantic elements)

Impact on compiler verification

Two (pairs of) languages ⇒ two compilers: one for code
generation, the other for proving semantic preservation.

source

subset
language

target

subset
language

Compiler pass
(executable function)

extended languages for reduction semantics

Compiler specification
(relation involving semantic elements)

Impact on compiler verification

Two (pairs of) languages ⇒ two compilers: one for code
generation, the other for proving semantic preservation.

source

subset
language

target

subset
language

Compiler pass
(executable function)

extended languages for reduction semantics

Compiler specification
(relation involving semantic elements)

Episode 1:
The early days of CompCert

CompCert V1
2005–2006

Languages Semantics, V1

Clight

(1)
... Big-step semantics

Cminor

RTL

(2)
... “Mixed-step” semantics (*)

Mach

Asm Transition system

(1) High-level languages, structured control.
(2) Intermediate languages, unstructured control (CFG).
(*) Small-step transitions for all instructions, except function calls

treated in big-step style.

Assessment

Semantics: a bit verbose, but easy to write and understand.
(“Natural semantics” lived up to its name.)

Proofs of compiler passes: by forward simulations, big-step style

mem1, cmd

mem2, result

mem′1, cmd ′

mem′2, result ′

Precondition

Execution

Postcondition

Execution

The compositional nature of big-step semantics is a good match
for the compositional nature of compilation functions.

Big-step gives powerful induction principles
(but: mutual inductions painful in Coq).

Extension 1: tail calls

Initially: “mixed-steps” semantics:

• Big-step function calls fn, args,mem⇒ res,mem′

• Intra-function transitions localstate,mem→ localstate ′,mem′.

The call stack is implicit in the evaluation derivation.

To support tail function calls in the back-end:
make the call stack explicit in semantics of intermediate languages.
→ small-step transition systems.

localstate, callstack ,mem→ localstate ′, callstack ′,mem′

Extension 1: tail calls

Impact on proofs: become standard simulation diagrams

config1

config2

config ′1

config ′2

Invariant

1 step

Invariant

0, 1, several steps

The invariants are more subtle than precondition ∧ postcondition.

Extension 2: traces

Original compiler correctness theorem quite weak:

If the source Clight program terminates, the generated
Asm program terminates and has no other behavior.

Strengthening this result to show preservation of I/O operations
performed by the program:

If the source Clight program terminates and performs
observable effects t, the generated Asm program
terminates and performs the same effects t, and has no
other behavior.

Observable effects = calls to external functions (system calls)
+ (later) reading and writing volatile global variables.

Extension 2: traces

Instrumenting the semantics to collect traces of observables:

transition systems: c1 → c2 becomes c1
t→ c2 (LTS)

big-step predicates: cmd ⇒ res becomes cmd
t⇒ res

An invasive but fairly systematic change. E.g. for IMP:

s ` c1
t⇒ s ′ s ′ ` c2

t′⇒ s ′′

s ` (c1; c2)
t.t′⇒ s ′′

CompCert V2
2006–2007

Languages V1 V2

Clight

(1)
... Big-step Big-step + traces

Cminor

RTL

(2)
... Mixed-step Labeled transition systems

Mach

Asm Transition system Labeled transition system

(1) High-level languages, structured control.
(2) Intermediate languages, unstructured control (CFG).

Episode 2:
non-termination,
non-termination,
non-termination,
non-termination,
non-termination,
non-termination,
non-termination,

non-termination,

. . .

Non-termination

The original compiler correctness theorem applies only to
terminating source programs:

If the source Clight program terminates and performs
observable effects t, the generated Asm program
terminates and performs the same effects, and has no
other behavior.

If the source runs forever (without going wrong), we expect the
generated code to do the same, but we have no proof.

Reality check

Mr. Aircraft Manufacturer:

Sir! Our flight control software does not terminate by
itself! It keeps running flawlessly until the pilot parks the
plane and turns power off.

Semantics for divergence

In small-step style: obvious!

• Termination: S → S1 → · · · → Sn 6→
• Divergence: S → · · · → Sn → · · · (infinite sequence)

In big-step style: problematic!

Milner & Tofte: a negative characterization

a diverges ⇐⇒ a 6⇒ wrong ∧ ∀v , a 6⇒ v

More desirable: a positive characterization of divergence, so that
we do not have to give rules for “going wrong” behaviors.

Towards a big-step view of divergence

Big-step semantics ≈ adding structure to terminating sequences of
reductions. Consider such a sequence for c ; c ′:

(c ; c ′)/s → (c1; c ′)/s1 → · · · → (skip; c ′)/s2 → c ′/s2 → · · · → skip/s3

It contains a terminating reduction sequence for c :
(c , s)

∗→ (skip, s2) followed by another for c ′.

The big-step semantics reflects this structure in its rule for
sequences:

s ` c1 ⇒ s1 s1 ` c2 ⇒ s2

s ` c1; c2 ⇒ s2

Towards a big-step view of divergence

Let’s play the same game for infinite sequences of reductions!

Consider an infinite reduction sequence for c ; c ′. It must be of one
of the following two forms:

(c ; c ′)/s
∗→ (ci ; c ′)/si → · · ·

(c ; c ′)/s
∗→ (skip; c ′)/si → c ′/si

∗→ c ′j/sj → · · ·

I.e. either c diverges, or it terminates normally and c ′ diverges.

Idea: write inference rules that follow this structure and define a
predicate s ` c ⇒∞, meaning “in initial state s, the command c
diverges”.

Big-step rules for divergence

s ` c1 ⇒∞

s ` c1; c2 ⇒∞

s ` c1 ⇒ s1 s1 ` c2 ⇒∞

s ` c1; c2 ⇒∞

s ` c1 ⇒∞ if s ` a⇒ true

s ` c2 ⇒∞ if s ` a⇒ false

s ` if a then c1 else c2 ⇒∞

s ` a⇒ true s ` c ⇒∞

s ` while a do c ⇒∞

s ` a⇒ true s ` c ⇒ s1 s1 ` while a do c ⇒∞

s ` while a do c ⇒∞

Problem: there are no axioms! So, isn’t it the case that these rules
define a predicate s ` c ⇒∞ that is always false?

Induction vs. coinduction in a nutshell

A set of axioms and inference rules can be interpreted in two ways:

Inductive interpretation:

• In set theory: the least defined predicate that satisfies the
axioms and rules (smallest fixpoint).

• In proof theory: conclusions of finite derivation trees.

Coinductive interpretation:

• In set theory: the most defined predicate that satisfies the
axioms and rules (greatest fixpoint).

• In proof theory: conclusions of finite or infinite derivation
trees.

Example of divergence

Let’s interpret coinductively the inference rules defining
s ` c ⇒∞.

We can easily show that classic examples of divergence are
captured. Consider c = while true do skip. We can build the
following infinite derivation of s ` c ⇒∞:

s ` true⇒ true

s ` skip⇒ s

s ` true ⇒ true

s ` skip ⇒ s

s ` true ⇒ true

s ` skip ⇒ s

s ` true ⇒ true
s ` skip ⇒ s

.

.

.

.

.

.

s ` c ⇒ ∞

s ` c ⇒ ∞

s ` c ⇒ ∞

s ` c ⇒∞

Coinductive big-step semantics
X. Leroy and H. Grall, Inf. & Comp. 207(2), 2009

A paper that studies the coinductive big-step approach on a simple
language (CBV λ-calculus with constants):

• Equivalence with the existence of infinite reduction sequences
(and other established characterizations of divergence).

• Use for a type soundness proof.

• Use for a compiler correctness proof
(compilation to a SECD-like abstract machine)

• Extension with traces.

It all seems to work! Time to scale this approach to CompCert. . .

CompCert V3
2007–2009

Languages V2 V3

Clight
... Big-step Coinductive big-step

Cminor (w/ traces) (w/ traces)

RTL
... LTS LTS

Mach

Asm LTS LTS

Assessment

With some elbow grease, could extend the proof of semantic
preservation to diverging source programs:

If the source Clight program diverges, producing trace T
of observables, the generated Asm program diverges with
the same trace T .

Proof: using simulation diagrams of the form

mem, cmd

∞

mem′, cmd ′

∞

Precondition

Diverging

execution

Diverging

execution

Assessment

The costs are relatively high:

• Separate semantic definitions for termination & divergence
→ size of semantics × 1.7

• Separate proofs of simulation for termination & divergence
→ size of proofs × 1.20
(The crucial invariants and lemmas are shared, though).

• Coq’s support for coinductive proofs is temperamental.
(The very syntactic “guard condition”.)

Episode 3:
trouble ahead!

Time to reconsider. . .

Next on the list of features to support in CompCert C:

• General goto (unstructured control);

• Partially-unspecified evaluation order for expressions
(e.g. in f() + g() + h(), the 3 functions can be called in
any of the 6 possible orders fgh, fhg, gfh, ghf, hfg, hgf).

This rings the death knell for big-step semantics. . .

Big-step semantics for goto

A proposal by Hendrik Tews, Verifying Duff’s device: A simple
compositional denotational semantics for Goto and computed
jumps, 2004, unpublished. The execution relation becomes:

sinit , cmd , income ⇒ outcome, sfinal

income = how the command is entered
(normally or while searching for label `)

outcome = how the command terminates
(normally or by goto `)

Incredibly clever, but causes an explosion in the number of rules,
esp. in conjuction with coinductive divergence.

Big-step for unspecified evaluation orders

Scheme-style: OK!
(each operator has one evaluation order, which is not specified).

s ` a1 ⇒ n1, s
′ s ′ ` a2 ⇒ n2, s

′′

s ` a1 + a2 ⇒ n1 + n2, s ′′

s ` a2 ⇒ n2, s
′ s ′ ` a1 ⇒ n1, s

′′

s ` a1 + a2 ⇒ n1 + n2, s ′′

C-style: not enough!
Must be able to reduce arbitrarily deep subexpressions in almost
arbitrary order, like in the pure λ-calculus.

(Michael Norrish, C formalized in HOL, PhD, 1998.)

CompCert V4
2009–2012

Languages V3 V4

Clight Coinductive Small-step:... big-step – reductions for expressions
Cminor (w/ traces) – LTS for statements

RTL
... LTS LTS

Mach

Asm LTS LTS

Biting the bullet: no more big-step semantics!

• For C expressions: reductions under context (Wright-Felleisen)

• For statements and function calls: a transition system based
on focused statements and continuation terms.

Small-step semantics with continuations
A. Appel and S. Blazy, 2007

A variant of standard small-step semantics that avoids extending
the syntax of command with forms useful only during reductions.

Idea: instead of rewriting whole commands:

c/s → c ′/s ′

rewrite pairs of (subcommand under focus, remainder of
command):

c/k/s → c ′/k ′/s ′

(Related to focusing in proof theory.)

Standard small-step semantics

Rewrite whole commands, even though only a sub-command (the
redex) changes.

Context C

c = C [redex]

redex

Context C

c ′ = C [reduct]

reduct

reduction

head
reduction

Focusing the small-step semantics

Rewrite pairs (subcommand, context in which it occurs).

x ::= a , → SKIP ,

The sub-command is not always the redex: add explicit focusing
and resumption rules to move nodes between subcommand and
context.

(c1; c2) , → c1 ,

; c2

SKIP , → c2 ,

; c2

Focusing on the left of a sequence Resuming a sequence

Representing contexts “upside-down”
G. Huet, The Zipper, 1997

Inductive ctx := Inductive cont :=

| CThole: ctx | Kstop: cont

| CTseq: com -> ctx -> ctx. | Kseq: com -> cont -> cont.

CTseq

CTseq

CTseq

CThole

z

y

x

Kseq

Kseq

Kseq

z

y

x

Kstop

CTseq (CTseq (CTseq CThole x) y) z
Kseq x (Kseq y (Kseq z Kstop))

Upside-down context ≈ a continuation.
(“Eventually, do x , then do y , then do z , then stop.”)

Transition rules for IMP

x := a/k/s → skip/k/s[x ← v] if s ` a⇒ v

(c1; c2)/k/s → c1/Kseq c2 k/s

if a then c1 else c2/k/s → c1/k/s if s ` a⇒ true

if a then c1 else c2/k/s → c2/k/s if s ` a⇒ false

while a do c/k/s → c/Kseq (while a do c) k/s
if s ` a⇒ true

while a do c/k/s → skip/c/k if s ` a⇒ false

skip/Kseq c k/s → c/k/s

Adding functions

To add functions, we need a new form of continuations
representing pending function calls (≈ the call stack), but no
ad-hoc extension to the syntax of commands.

Commands: c ::= . . . | x := fn(a)

Continuations: k ::= Kstop | Kseq c k | Kcall s res fn k

New rules:

res := fn(a)/k/s → c/Kcall s res fn k/[arg ← v]

if s ` a⇒ v and fn(arg){c} ∈ Fundefs

skip/Kcall s ′ res fn k/s → skip/k/s ′[res ← s(fn)]

Handling goto
by zipper surgery

A search function that finds a subcommand labeled lbl while
manufacturing the corresponding continuation:

goto lbl

continuation 1

call continuation

function body
continuation 2

lbl :

Implements the transition goto lbl/k1/s → lbl : c/k2/s.

Impact on compiler verification

To prove semantic preservation, reason over the normal
compilation function for source terms, complemented with a
compilation relation (nonexecutable) for continuations.

source

language

target

language
Compiler pass

(executable function)

source

cont.

target

cont.

Compilation of continuations
(relation involving

semantic elements)

Epilogue:
Some lessons learned

Looking back. . .

CompCert’s path through the landscape of operational semantics
has been tortuous indeed!

Languages V1 V2 V3 V4

Clight
... Big-step Big-step Coinductive Small-step

Cminor w/traces big-step w/continuations

RTL
... Mixed-step LTS LTS LTS

Mach

Asm Trans. Syst. LTS LTS LTS

Some lessons learned

Semantics engineering is like software engineering:

Plan to throw one away; you will, anyhow. (F. Brooks)

Exploration on toy languages (IMP, STLC) is essential, but don’t
expect the results to scale to big languages.

The detour through big-step was costly, but helped find the correct
proof invariants and get the project off the ground.

In the end, Labeled Transition Systems (in one form or other) win,
despite leading to semantics that look more like abstract machines
than like high-level specifications.

The sensitivity is disturbingly high: add one language feature, redo
the whole semantics.

Are we there yet?

No! Some features yet to be accommodated in CompCert:

Shared-memory concurrency:

• Verified Software Toolchain (A. Appel et al, Princeton):
coarse interleaving, for race-free programs

• CompCertTSO (P. Sewell et al, Cambridge):
fine-grained interleaving, data races, relaxed TSO memory.

Separate compilation and linking:

• based on operational semantics with interleaving (at Yale)

• or using some form of logical relations to explicate contracts
between compilation units (N. Benton, C.K. Hur, A. Amal)

Mechanized semantics

A need shared by many verification efforts, not just verified
compilers.

A difficult task, especially for realistic programming languages
(i.e. Java and the JVM; C; ongoing efforts on Javascript).

A great opportunity to challenge the state of the art and invent
new approaches and mechanization techniques!

