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Outline

1. What makes strongly typed programs more secure?

2. Enforcing strong typing (bytecode verification).

3. Static analyses beyond strong typing.
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Part 1

The role of strong typing
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Context

O.S.

Appl.1

Appl.2

Appl.3

Appl.4

A secure system running multiple applications, possibly

untrusted:

• Workstation: OS kernel + users’ applications.

• Web browser: browser + Web applets + Web scripts.

• Java Card: OS + applications + cardlets.

Must ensure isolation between the applications (integrity,

confidentiality), as well as controlled communications between

them.
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Enforcing isolation between applications

Hardware protection mechanisms: (classic OS model)

• Hardware access control on memory pages and devices.

• Forces dangerous operations to go through the OS.

• Not always available; sometimes too coarse.

Software-only isolation: (the Java model)

• Execute applications via a software isolation layer (sandbox):

virtual machine + native APIs performing access control.

• How to ensure that the isolation layer is not bypassed?
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Strong typing to the rescue

Strong typing in programming languages imposes a discipline on

the use of data and code:

• a reference cannot be forged by casting from an integer;

• one cannot jump in the middle of the code of a function;

• etc.

This discipline is good for program reliability in general.

(Avoid “undefined behaviors”, e.g. crashes.)

But it can also be exploited to ensure that a software isolation

layer cannot be bypassed.

(Avoid “undefined behaviors”, e.g. attacks.)
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Strong typing and virtual machine integrity

Consider a malicious cardlet such as the “memory dump”

cardlet:

class MaliciousCardlet {
public void process(APDU a) {

for (short i = -0x8000; i <= 0x7FFC; i += 2) {
byte [] b = (byte []) i;

send_byte((byte) (b.length >> 8));

send_byte((byte) (b.length & 0xFF));

}
}

}
A typing violation (the cast in red) translates to a security

attack.

7



Strong typing and virtual machine integrity

There are many other ways by which type-unsafe code can

cause the virtual machine to malfunction and break isolation:

• Pointer forging:

via casts of well-chosen integers (byte []) 0x1000

or via pointer arithmetic (byte [])((int)a + 2).

Infix pointers obtained by pointer arithmetic can falsify the

firewall determination of the owner of an object.

• Illegal cast:

casting from class C { int x; } to class D { byte[] a; }

causes pointer a to be forged from integer x.
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Strong typing and virtual machine integrity

• Out-of-bounds access:

if a.length == 10, referencing a[20] accesses another object.

Buffer overflows in general.

• Stack smashing:

read or modify the caller’s local variables;

overwrite return address.

• Context switch prevention:

replace obj.meth(arg) (virtual method call, context switch)

by meth(obj, arg) (static method call, no context switch).

• Explicit deallocation:

free an object, keep its reference around, wait until memory

manager reallocates the space.

• . . . and more.
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Strong typing and basic resource confinement

In addition to VM integrity, strong typing implies basic

confinement properties between applications:

• Memory reachability guarantees.

• “Procedural encapsulation”

• “Type abstraction”

The latter two rely on enforcement of Java’s visibility

modifiers as part of strong typing.

(Even though violation of visibility does not endanger VM integrity.)
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Reachability-based guarantees

API exports Objects unreachable by client code

The only objects that the client code can access are those that

are exported by the API, those reachable from the latter by

following pointers, and those allocated by the client code itself.
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“Procedural encapsulation”

public class Crypto {
static private SecretKey key;

static public void encrypt(...) { ... key ... }
static public void decrypt(...) { ... key ... }

}
Although formally reachable from an instance of Crypto, the field

key can only be accessed by the methods of the Crypto class,

but not by client code.

The encrypt and decrypt methods encapsulate the resource key.

They can additionally perform access control.
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“Type abstraction”

public class Capability {
private Capability(...) { ... }
private boolean check(...) { ... }

}
Other applications cannot construct instances of class

Capability.

All they can do is pass capabilities provided by the current

application back to that application, unchanged.
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Leveraging basic confinement

Secure APIs can be written in a way that leverages these basic

confinement properties implied by strong typing.

→ “Design patterns” for APIs?

The Java APIs rely strongly on these properties. In Java Card,

they are partially redundant with the firewall checks.
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Part 2

Enforcing strong typing

15



Enforcing strong typing

Strong typing guarantees can be achieved in two ways:

• Dynamic enforcement during execution

→ defensive virtual machine.

• Static enforcement during applet loading

→ bytecode verification.

16



Dynamic enforcement

A defensive virtual machine:

• Attaches type information to values manipulated by the VM.

• Checks type constraints on instruction operands before

executing the instruction.

• Also checked dynamically: stack overflows and underflows,

array bound checks, . . .

Simple and robust, but additional costs in execution speed and

memory space (for storing type information).
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Efficient representation of type information

Class identifier

Public integer fields

Public reference fields

Private reference fields

Private integer fields

Reference

In Java: all objects carry their type (for checked downcasts).

In Java Card: instance fields are partitioned into reference /

integers and public / package-private.

→ The only additional run-time type information needed is on

local variables and stack slots.

→ That information is just “reference” or “integer” or “return

address”.
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Static enforcement: bytecode verification

Bytecode verification is a static analysis performed on compiled

bytecode that establishes that it is type-safe.

Allows faster execution by a non-defensive VM.

untrusted

bytecode

Bytecode

verifier

type-safe

bytecode

Non-defensive

virtual machine

Loading time Run time
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Properties statically established by bytecode verification

Well-formedness of the code.

E.g. no branch to the middle of another method.

Instructions receive arguments of the expected types.

E.g. getfield C.f receives a reference to an object of class C or a subclass.

The expression stack does not overflow or underflow.

Within one method; dynamic check at method invocation.

Local variables (registers) are initialized before being used.

E.g. cannot use random data from uninitialized register.

Objects (class instances) are initialized before being used.

I.e. new C, then call to a constructor of C, then use instance.

Caveat: other checks remain to be done at run-time (array bounds checks,

firewall access rules). The purpose of bytecode verification is to move some,

not all, checks from run-time to load-time.
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Verifying straight-line code

“Execute” the code with a type-level abstract interpretation of

a defensive virtual machine.

• Manipulates a stack of types and a register set holding types.

• For each instruction, check types of arguments and compute

types of results.

Example:

class C {
short x;
void move(short delta) {

short oldx = x;
x += delta;
D.draw(oldx, x);

}
}
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r0: C, r1: short, r2: > [ ]
ALOAD 0

r0: C, r1: short, r2: > [ C ]
DUP

r0: C, r1: short, r2: > [ C; C ]
GETFIELD C.x : short

r0: C, r1: short, r2: > [ C; short ]
DUP

r0: C, r1: short, r2: > [ C; short ; short ]
SSTORE 2

r0: C, r1: short, r2: short [ C; short ]
SLOAD 1

r0: C, r1: short, r2: short [ C; short ; short ]
SADD

r0: C, r1: short, r2: short [ C; short ]
SETFIELD C.x : short

r0: C, r1: short, r2: short [ ]
SLOAD 2

r0: C, r1: short, r2: short [ short ]
ALOAD 0

r0: C, r1: short, r2: short [ short ; C ]
GETFIELD C.x : short

r0: C, r1: short, r2: short [ short ; short ]
INVOKESTATIC D.draw : void(short,short)

r0: C, r1: short, r2: short [ ]
RETURN
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Handling forks and join in the control flow

Branches are handled as usual

in data flow analysis:

Fork points: propagate types

to all successors.

Join points: take least upper

bound of types from all

predecessors.

Iterative analysis: repeat until

types are stable.

A

B

B B

C D

C ∧D
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More formally . . .

Model the type-level VM as a transition relation:

instr : (τregs, τstack) → (τ ′regs, τ ′stack)

e.g. sadd : (r, short.short.s) → (r, short.s)

Set up dataflow equations:

i : in(i) → out(i)

in(i) = lub{out(j) | j predecessor of i}
in(istart) = ((P0, . . . , Pn−1,>, . . . ,>), ε)

Solve them using standard fixpoint iteration.
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The devil is in the details

Several aspects of bytecode verification go beyond classic

dataflow analysis:

• Interfaces:

The subtype relation is not a semi-lattice.

• Object initialization protocol:

Requires some must-alias analysis during verification.

• Subroutines:

A code sharing device, requires polymorphic or polyvariant

analysis (several types per program point).

(See the book Java and the Java virtual machine and my survey in Journal of

Automated Reasoning 2003.)

25



On-card bytecode verification

The bytecode verifier is part of the Trusted Computing Base

→ better to perform it on-card.

However, bytecode verification on a smart card is challenging:

Time: complex process, e.g. fixpoint iteration.

Space: memory requirements of the standard algorithm are

3× (Mstack + Mregs)×Nbranch

(to store the inferred types at each branch target point).

E.g. Mstack = 5, Mregs = 15, Nbranch = 50 ⇒ 3450 bytes.

This is too large to fit in card RAM. Fits barely in NVM.

(See Deville & Grimaud, WIESS 2002).
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Solution 1: lightweight bytecode verification

(Rose & Rose; an application of Proof Carrying Code; Facade.)

Transmit the stack and register types at branch target points

along with the code (certificate).

The verifier checks this information rather than inferring it.

Benefits:

– Fixpoint iteration is avoided; one pass suffices.

– Certificates are read-only and can be stored in EEPROM.

Limitations:

– Certificates are large (50% of code size).
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Solution 2: restricted verification + code transformation

(Leroy, Trusted Logic.)

The on-card verifier puts two additional requirements on

verifiable code:

– R1: The expression stack is empty at all branches.

– R2: Each register has the same type throughout a method.

Requires only one global stack type and one global set of

register types ⇒ low memory 3× (Mstack + Mregs).

An off-card code transformer rewrites any legal bytecode into

equivalent bytecode meeting these requirements.

standard

bytecode

Off-card

transformer

R1,R2-conforming

bytecode

Simplified

verifier

Applet producer Smart card

28



Solution 3: off-card verification

Bytecode

verifier

signed, typed

bytecode

Signature

checker

Non-defensive

virtual machine

Trusted 3rd-party Loading time Run time

Bytecode verification can also be performed off-card and

attested by a digital signature.

The off-card verifier can run on an Hardware Security Module.

Issues of trust and key management.
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Part 3

Beyond strong typing
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Enforcing functional properties beyond type safety

Strong typing + secured APIs enforce a number of desirable,

basic security and reliability properties.

Can we find similar combinations of static analyses and run-time

checks that enforce finer properties?

• Security properties:
(semi-)static enforcement of firewall rules;

richer access control policies (security automata);

information flow and non-interference properties.

• Reliability properties:
absence of unhandled run-time errors (security or otherwise);

proper utilization of API functions (e.g. transactions).

• Controlling resource utilization:

memory consumption, reactiveness, . . .
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Why use static analysis?

Often, dynamic enforcement of the properties is sufficient from

a security standpoint, and much easier to implement than static

enforcement.

Static enforcement via program analysis is nevertheless desirable

in some cases:

• For security properties that are too difficult to check at

run-time.

Example: information flow.

• For static debugging and validation: tell the programmer or

the reviewer about possible coding errors.

The concern here is both reliability and security.
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Example 1: type systems for information flow analysis

The confidentiality properties enforced by access control are

weak:

CEO: access(secret), access(trashcan)

Janitor: access(trashcan)

To prevent such breaches of confidentiality, attach information

levels to every variable (or more generally to every piece of input

and output data).
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Information levels

Classic model (Bell & La Padula, Denning):

level = H (secret) or L (public), with H > L.

Allow information to flow from x to y only if level(x) ≤ level(y).

Non-interference property: varying the values of secret inputs

does not cause the values of public output to change.

JFlow model (A. Myers):

level = set of (owner, set of allowed readers).

Allow read only if reader is allowed by all owners.

Permit explicit declassification by owners.
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Why dynamic enforcement of confidentiality is difficult

Idea: replace each data by pairs (data, level). Check levels

dynamically at every operation.

Works fine for catching direct information flows:

if (x.level <= y.level)
y = x; ----> y.value = x.value;

else
throw (new SecurityException());

Difficult to extend to indirect information flows:

if (x) {
y = true;

} else {
y = false;

}

Revert to static analysis: approximate conservatively the levels

attached to data, and check them statically.
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Type systems for information flow

(Volpano & Smith; Heintze & Riecke; Myers; Pottier & Simonet; . . . )

Take an existing type system and annotate every type

constructor with an information level, e.g.

intH arrayL(intH)

Typing rules for expressions propagate levels in the natural way:

Γ ` e1 : intα Γ ` e2 : intβ δ = max(α, β)

Γ ` e1 + e2 : intδ
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Catching direct and indirect flows

To capture indirect flows, the typing judgement for statements

Γ ` S secure at δ is parameterized by an information level δ for

the context.

Γ ` x : τα Γ ` e : τβ β ≤ α δ ≤ α

Γ ` (x = e) secure at δ

Γ ` S1 secure at δ Γ ` S2 secure at δ

Γ ` (S1;S2) secure at δ

Γ ` e : booleanα Γ ` S secure at max(α, δ)

Γ ` (if (e) S) secure at δ

(Green: direct flow avoidance; Red: indirect flow avoidance.)

37



Example 2: model-checking of control-flow properties

(Jensen et al; Chugunov, Fredlund and Gurov, CARDIS’02)

An instance of D. Schmidt’s slogan:

“Data flow analysis is model checking of abstract interpretations”

Concretely:

• Abstract the flow of control as a method call graph.

• Express control properties of interest in temporal logic.

Example: “method m2 is always called after having called method m1”

• Check these properties on the abstraction using model

checking.
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Method call graphs

Nodes: program points + annotation seq, call, return

Edges: intra-method branches or cross-method calls.

(Due to virtual dispatch, can have several target methods for a call node.)

call

seq

return

Method 1

seq

return

Method 2

seq

call

return

Method 3

(Semantics given in terms of pushdown systems.)
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Expressing control properties

Atomic propositions: “we are at program point pc”

Connectives: those of temporal logic ∨, ∧, ¬, ⇒, next, until,

eventually, never, . . .

Examples of derived specification patterns:

“we are in method m”, “in package p”, “in API”

“m2 can only be called after a call to m1”

“m2 can only be called from m1”

“a call to m1 never triggers a call to m2”

“if m1 is called, m2 will eventually be called later”

“method m cannot be directly called from package p”

These formulae can be checked against a method call graph

using standard model checkers.
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Examples of properties that can be checked automatically

Basic coding conventions:

• No recursion

“method m never triggers method m”

• No allocation during process

“method process never triggers a call to a constructor”

• Absence of nested transactions

“between two calls to beginTransaction there is always a call

to endTransaction or to abortTransaction”

• Transactions are matched

“a call to beginTransaction is eventually followed by a call to

endTransaction or to abortTransaction”
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More properties

Avoidance of unportable or dangerous constructs:

• No allocation within a transaction.

Conformance with high-level application policies:

• grantLoyaltyPoints is only called from debitPurse.

• cashLoyaltyPoints never triggers grantLoyaltyPoints.
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Conclusions
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The “success story” of strong typing

Strong typing as embodied by the Java Card virtual machine has

been relatively successful security-wise:

• VM integrity without hardware protection.

• Basic confinement properties. APIs can take advantage of

them.

• On-card enforcement is relatively easy and inexpensive.
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Can we repeat this success for other properties?

Other static analyses could be applied to increase security and

reliability of Java Card code.

Some practical issues to keep in mind:

• No consensus on the properties of interest.

• Complex static analyses, often specialized.

• Too expensive to be performed on-card or in a HSM.

• Not obvious how to apply them to bytecode.

• Not obvious how to generate checkable certificates.
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