
Smart card security
from a programming language

and static analysis perspective

Xavier Leroy

INRIA Rocquencourt & Trusted Logic

1

Smart cards

• A small embedded computer.
Shaped as a credit card or a SIM card.
Low processing power (8-bit CPU, 5 MHz clock).
Small memory (4 Kb RAM, 16 Kb EEPROM, 64 Kb ROM).

• Secure (tamper-resistant).

• Inexpensive (average 3 Euros).

2

Using smart cards as security tokens

• Authentication of the card holder:

To have (the card) and to know (a PIN code).

Credit cards; SIM cards for GSM; pay TV; electronic locks.

• Storing sensitive information:

Credit cards: number, expiration date, transaction log, . . .

Phone book in SIM cards.

Medical data.

3

Smart card software

Traditional smart cards:

• One card = one function.

• Software is in ROM, cannot be updated.

• Propietary software, developed by card manufacturer.

• Written in C or in assembly.

Modern smart cards: (Java Card, MultOS)

• Multiple applications, with controlled sharing of information.

• Post-issuance downloading of applications (cardlets).

• Software written in a subset of Java against a standard API.

• Often written by others than the card manufacturer.

4

Risks of applet-based architectures

Post-issuance downloading of cardlets brings a lot of flexibility,

but raises significant security issues.

A malicious cardlet can do a lot of harm:

• Destroy or modify important data (integrity).

• Leak sensitive information outside (confidentiality).

• Cause other card applications to malfunction (availability).

(Same problems with Web applets and mobile code in general.)

Digital signatures on cardlets is not a complete solution.

(The signature guarantees the origin of the cardlet, not that it is innocuous.)

5

An example of a malicious cardlet

The “memory dump” cardlet.

class MaliciousCardlet {
public void process(APDU a) {

for (short i = 0; i <= 0xFFF8; i += 2) {
byte [] b = (byte []) i;

send_byte((byte) (b.length >> 8));

send_byte((byte) (b.length & 0xFF));

}
}

}
Sends the whole contents of the card memory to the terminal.

6

The Java “sandbox” model for software isolation

Untrusted code is not executed directly on the hardware, but via

a software isolation layer (the sandbox):

1. Secured runtime execution environment (applet API).

Provides controlled access to system resources (files,

communication devices, etc).

2. Untrusted code is executed by a defensive virtual machine

that ensures type safety.

• Data integrity: no pointer forging; bounds checks on

arrays.

• Code integrity: no data → code conversions; no jumping

into the middle of an API function.

• Enforce visibility modifiers: no access to private API

methods or data.

7

Part 1

Securing the execution environment

8

Access control in full Java: the security manager

Each method has an associated set of privileges (capabilities).

Depends on the classloader used to load the code: system code has full

privileges, Web applets have low privileges.

Stack inspection: when a sensitive operation is attempted, take

the intersection of the privileges of all methods on the call stack.

(System code (API methods) called by an applet thus have applet privileges

only.)

Privilege amplification: a method can explicitly request to run

with its full privileges, even if called from less privileged code.

(Example: drawing text on screen may require reading font files.)

9

Access control in Java Card: the firewall

A simplified security model, without stack inspection, but with

stronger isolation guarantees.

Each object is owned by the principal (cardlet or system) that

created it.

Firewall rules in the virtual machine prevent a cardlet from

accessing an object that it does not own. . .

. . . except for explicitly-designated shareable objects, where

interface method invocation is allowed.

Interface and virtual method invocation causes a context switch:

the method code is executed with the privileges of the owner of

the object.

Static method invocation preserves the context: the code is

executed with the privileges of the caller.

10

Using these access control mechanisms

Both Java’s security manager and Java Card’s firewall are

low-level mechanisms to implement high-level security policies in

runtime environments and in applets, such as:

“Applets cannot open files and cannot make network connections

to any host other than their originating site.”

“The field balance of class ElectronicPurse cannot be affected by

the execution of any other cardlet.”

There is a semantic gap between the policies and the

mechanisms. For instance, stack inspection doesn’t always do

what the API programmer had in mind.

11

Example of an API security hole

Suddenly, you Netscape 4 browser turns into a Web server. . .

In the API:

class SocketServer {
protected final void implAccept(Socket socket) {

try {
// accept network connection and bind it to socket
securityManager.checkAccept(socket.getHostAddress(), socket.getPort());

} catch (SecurityException e) {
socket.close();

}
}

Malicious applet subclasses Socket so that the connection stays

open even after a security exception:

class EvilSocket extends Socket {
public void close() { // do nothing }

}

12

Semantics and static analysis to the rescue

Formal semantics and equational theory for stack inspection

(Gordon and Fournet),

Static analyses of the Java “stack inspection” security policy:

By abstract interpretation of call stacks + model checking (Jensen et al);

By constraint-based type-checking (Pottier, Skalka, Smith).

Static analysis of the JavaCard “firewall” security policy:

By abstract interpretation and model checking (Chugunov et al).

13

Part 2

Ensuring type safety

14

The need for type safety

There are many ways in which type-unsafe code can circumvent

the access control mechanisms implemented in the API and the

firewall:

• Pointer forging:

via casts of well-chosen integers (byte []) 0x1000

or via pointer arithmetic (byte [])((int)a + 2).

Infix pointers obtained by pointer arithmetic can falsify the

firewall determination of the owner of an object.

• Illegal cast:

casting from class C { int x; } to class D { byte[] a; }

causes pointer a to be forged from integer x.

15

The need for type safety

• Out-of-bounds access:

if a.length == 10, referencing a[20] accesses another object.

Buffer overflows in general.

• Explicit deallocation:

free an object a, keep its reference around, wait until

memory manager reallocates the space.

• Context switch prevention:

replace obj.meth(arg) (virtual method call, with context

switch)

by meth(obj, arg) (static method call, no context switch).

• and much more.

16

Type safety: defensive VM versus bytecode verification

Type safety in the VM can be achieved in two ways:

1. Defensive virtual machine:

Performs all type checks at run-time, along with bytecode

execution.

Slows down execution.

2. Bytecode verification at loading time:

A separate static code analysis establishes type safety.

Faster execution by a non-defensive VM.

untrusted

bytecode

Bytecode

verifier

type-safe

bytecode

Non-defensive

virtual machine

Loading time Run time

17

Properties statically established by bytecode verification

Well-formedness of the code.

E.g. no branch to the middle of another method.

Instructions receive arguments of the expected types.

E.g. getfield C.f receives a reference to an object of class C or a subclass.

The expression stack does not overflow or underflow.

Within one method; dynamic check at method invocation.

Local variables (registers) are initialized before being used.

E.g. cannot use random data from uninitialized register.

Objects (class instances) are initialized before being used.

I.e. new C, then call to a constructor of C, then use instance.

Caveat: other checks remain to be done at run-time (array

bounds checks, firewall access rules). The purpose of bytecode

verification is to move some, not all, checks from run-time to

load-time.
18

Verifying straight-line code

“Execute” the code with a type-level abstract interpretation of

a defensive virtual machine.

• Manipulates a stack of types and a register set holding types.

• For each instruction, check types of arguments and compute

types of results.

Example:

class C {
int x;
void move(int delta) {

int oldx = x;
x += delta;
D.draw(oldx, x);

}
}

19

r0: C, r1: int, r2: > []
ALOAD 0

r0: C, r1: int, r2: > [C]
GETFIELD C.x : int

r0: C, r1: int, r2: > [int]
DUP

r0: C, r1: int, r2: > [int ; int]
ISTORE 2

r0: C, r1: int, r2: int [int]
ILOAD 1

r0: C, r1: int, r2: int [int ; int]
IADD

r0: C, r1: int, r2: int [int]
ALOAD 0

r0: C, r1: int, r2: int [int ; C]
SETFIELD C.x : int

r0: C, r1: int, r2: int []
ILOAD 2

r0: C, r1: int, r2: int [int]
ALOAD 0

r0: C, r1: int, r2: int [int ; C]
GETFIELD C.x : int

r0: C, r1: int, r2: int [int ; int]
INVOKESTATIC D.draw : void(int,int)

r0: C, r1: int, r2: int []
RETURN

20

Handling forks and join in the control flow

Branches are handled as usual in

data flow analysis:

• Fork points: propagate types to

all successors.

• Join points: take least upper

bound of types from all prede-

cessors.

• Iterative analysis: repeat until

types are stable.

A

B

B B

C D

C ∧D

21

More formally . . .

Model the type-level VM as a transition relation:

instr : (τregs, τstack) → (τ ′regs, τ ′stack)

e.g. iadd : (r, int.int.s) → (r, int.s)

Set up dataflow equations:

i : in(i) → out(i)

in(i) = lub{out(j) | j predecessor of i}
in(istart) = ((P0, . . . , Pn−1,>, . . . ,>), ε)

Solve them using standard fixpoint iteration.

22

The devil is in the details

Several aspects of bytecode verification go beyond classic

dataflow analysis:

• Interfaces:

The subtype relation is not a semi-lattice.

• Object initialization protocol:

Requires a bit of must-alias analysis during verification.

• Subroutines:

A code sharing device, requires polymorphic / polyvariant

analysis (several types per program point).

In addition, bytecode verification is not 100% specified.

Informal description; one reference implementation; many after-the-fact

formalizations that don’t fully agree.

23

Bytecode verification on small devices

Bytecode verification on a smart card is challenging:

• Time: complex process, e.g. fixpoint iteration.

• Space: the memory requirements of the standard algorithm

are

3× (Mstack + Mregs)×Nbranch

(to store the inferred types at each branch target point).

E.g. Mstack = 5, Mregs = 15, Nbranch = 50 ⇒ 3450 bytes.

This is too large to fit in RAM.

24

Solution 1: lightweight bytecode verification

(Rose & Rose; an application of Proof Carrying Code.)

Transmit the stack and register types at branch target points

along with the code (certificate).

The verifier checks this information rather than inferring it.

Benefits:

– Fixpoint iteration is avoided; one pass suffices.

– Certificates are read-only and can be stored in EEPROM.

Limitations:

– Certificates are large (50% of code size).

25

Solution 2: restricted verification + code transformation

(Leroy, Trusted Logic.)

The on-card verifier puts two additional requirements on

verifiable code:

– R1: The expression stack is empty at all branches.

– R2: Each register has the same type throughout a method.

Requires only one global stack type and one global set of

register types ⇒ low memory 3× (Mstack + Mregs).

An off-card code transformer rewrites any legal bytecode into

equivalent bytecode meeting these requirements.

standard

bytecode

Off-card

transformer

R1,R2-conforming

bytecode

Simplified

verifier

Applet producer Smart card

26

Formal methods applied to Java bytecode verification

Specifications and (machine) proofs of type soundness.

(Nipkow; many others.)

bytecode verifier + non-defensive VM ≥ defensive VM

Systematic derivation of bytecode verifiers and non-defensive

VM from a defensive VM.

(Barthes et al.)

27

Beyond bytecode verification

Typed Assembly Language:

Static type-checking of x86 assembly code, including advanced idioms

(Morrisett et al).

Typing legacy C code:

static debugging of buffer overflows, illegal casts, memory management

errors.

Typing with dependent types:

Static checking of array bounds, and more (Xi, Shao, Crary, et al).

Proof-carrying code:

Replace type-checking by proof-checking. The code is accompanied by a

certificate that is a proof of correctness w.r.t. an arbitrary safety policy (Lee

and Necula).

28

Part 3

Physical attacks on smart cards

29

Physical attacks on smart cards

Unlike other secure computers, smart cards are physically in the

hands of the attacker.

• Observation: observe power consumption and

electromagnetic emissions as a function of time.

• Invasion: expose the chip and implant micro-electrodes on

data paths.

• Temporary perturbations: glitches on power supply or

external clock; flash it with high-energy radiations.

• Permanent modifications: destroy connections and

transistors; grow back fuses.

Effect of these attacks: sometimes, read directly secret

information; more often: cause the program to mal-function and

reveal a secret or grant a permission.

30

Examples of hardware attacks

if (permission_check) { do_privileged_action(); }

Invalidate the test on permission check, or modify its boolean

value.

for (p = buffer; p != buffer + length; p++) {
output_on_serial_port(*p);

}

Invalidate the stop condition, or modify the current value of p

→ dump the whole memory on the serial port.

r = 1
for each bit b in secret RSA key d {

r = r * r mod pq;
if (b is set) r = r * m mod pq;

}

By correlating the power consumption with the message m, it is

possible to reconstruct the bits of the key d.

31

Counter-measures

Hardware countermeasures against these attacks exist:

protection layers, obfuscation of the chip layout, encryption of

the memory bus, hardware memory access control, . . .

Amazingly, software can also be hardened (to some extent)

against hardware attacks.

• Destructive attacks: precise, but not reversible

→ periodic self-tests; redundant storing of data.

• Perturbation attacks: temporary, but imprecise

→ redundancy within data (checksums) and between data

and control.

• Observation attacks:

→ randomized execution.

32

Examples of software counter-measures

Redundancy between control and data:

trace = 0;

if (! condition1) goto error;

trace |= 1;

if (! condition2) goto error;

trace |= 2;

sign_transaction_certificate(cert, key + trace - 3);

Doubly-counted loops:

for (p = buffer, i = 0, j = length; p != buffer + length; p++) {
if (i >= length || j <= 0 || i + j != length) halt();

output_on_serial_port(*p);

}

33

Examples of software counter-measures

Randomized control:

if (random_bit()) {
do_something();
do_something_else();

} else {
do_something_else();
do_something();

}

Randomized data (RSA blinding):

blinding = random number relatively prime to d;
m = m * blinding;
r = 1
for each bit b in secret RSA key d {

r = r * r mod pq;
if (b is set) r = r * m mod pq;

}
r = r * blinding−e mod pq;

34

Reasoning about hardware attacks and counter-measures

Timing and power analysis attacks have been studied extensively
in the context of traditional security and of cryptography.

A lot of semantic and programming language work remains to
be done:

• Develop probabilistic semantics that reflect the
characteristics of hardware attacks

(precise + irreversible or imprecise + temporary).

• Use these semantics to reason about software
counter-measures.

(Is it the case that the hardened schemes outlined above increase the

probability of failing cleanly in the presence of an attack?)

• Systematize software hardening schemes and implement
them as (semi-)automatic program transformations.

(A form of aspect-oriented programming?)

35

Part 4

Conclusions

36

Building a secure computer application

Generalizing from the smart card examples, we see a three-part

process:

1. Design appropriate security policy.

Requires security experts and domain experts.

Not computer-specific.

2. Implement it as a correct program.

“Business as usual” for us software people:

specification, programming, testing, verification, . . .

3. Protect against every way in which the security mechanisms

could be circumvented.

Attackers do think out of the box.

“Programming Satan’s computer” (Anderson & Needham).

37

What I learned

Security is a “holistic” property that cannot be completely

reduced to independent sub-problems.

Still, software techniques are relevant to computer security:

• Programming languages and static analysis (this talk);

• Applied π-calculus for cryptographic protocols;

• Formal methods in general.

Hope: semantics can help gain a better understanding of the

security benefits and risks associated with various software

practices.

38

