
Compiling functional languages

Xavier Leroy

INRIA Rocquencourt

Spring school “Semantics of programming languages”

Agay, 24-29 March 2002

1

Introduction

Goal of this lecture: survey implementation techniques for

functional languages, and show some of the (syntactic) theories

explaining these techniques.

What is a functional language?

• Examples: Caml, Haskell, Scheme, SML, . . .

• “A language where functions are taken seriously”.

• A language that supports the manipulation of functions as

first-class values, roughly as predicted by the λ-calculus.

2

Functional languages = applied λ-calculus

Recipe for a functional language:

• Fix an evaluation strategy on the λ-calculus.

– Weak evaluation (no reductions under λ).

– Call-by-name or call-by-value.

• Add constants and primitive operations

– Integers and arithmetic operations.

– Booleans, strings, characters, input/output, . . .

• Add primitive data structures

– Predefined: tuples, lists, vectors, . . .

– User-defined: records, sums, recursive data types.

3

Outline

1. Representing functions as values: closures and environments.

2. Abstract machines for functional languages.

3. Optimizing functions: control-flow analysis.

4. Optimizing data representations.

4

Part 1

Function closures

5

Functions as values in the presence of free variables

let scale = λn. λx. n * x

let scale_by_2 = scale 2

let scale_by_10 = scale 10

scale 2 should return a function computationally equivalent to

λx. x * 2, in accordance with the β-reduction rule:

(λx.a) b → a{x ← b}

6

Textual substitution is the problem, not the solution

(λx.a) b → a{x ← b}

Naive substitution involves a full copy of the term a, replacing

occurrences of x by b.

(If b has free variables, a copy of b may also be necessary to avoid variable

captures. However, with head reductions, b is guaranteed to be closed.)

a

x x

a

b b

a{x ← b}

7

The problem gets worse in a compiled setting

In a compiled setting, the standard representation for a function

value is a pointer to a piece of compiled code that:

• expects its argument x in a register arg;

• computes the function body a;

• leaves the result of a in a register res;

• returns to caller.

If we naively apply this “function as code pointer” model to a

functional language, functions that return functions should

dynamically generate a piece of compiled code representing the

returned function.

8

Example:

let scale = λn. λx. n * x

scale 2 returns scale 10 returns

mov res, arg mov res, arg

mul res, 2 mul res, 10

return return

Problem: this requires run-time code generation, which is

complex and expensive (in time and in space for the generated

code blocks).

9

Towards a better solution

Remark: the generated blocks of code share the same “shape”:

they differ only in the value of the variable n that is free in the

returned function λx. x * n.

mov res, arg

mul res, <the value of n passed to scale>

return

Idea: share the common code and put the varying parts (i.e. the

values of free variables) in some separate data structure called

an environment.

The same idea applies to term-level substitution: to represent

a{x ← b}, just keep a unchanged and record separately the

binding of x to b in an environment.

10

Closures (P. J. Landin, 1964)

All functional values are represented by closures.

Closures are dynamically-allocated data structures containing:

• a code pointer, pointing to a fixed piece of code computing

the function result;

• an environment: a record providing values for the free

variables of the function.

To apply a closure, move the environment part in a conventional

register env and call the code pointer.

11

•
10

mov res, arg

load n, env[1]

mul res, n

return

return value of scale 10

(heap-allocated block)

(fixed code block)

12

Closures in an interpreted, term-based setting

Closures can also be viewed as terms

(λx.a)[e]

where λx.a is a function with free variables y, z, . . . , and the

environment e is an explicit substitution binding terms b, c, . . .

to y, z, . . .

This is the key to efficient interpreters for functional languages,

as we shall now see via the following route:

• Standard semantics: small-step (reduction-based), classical

substitutions.

• Big-step semantics with classical substitutions.

• Big-step semantics with environments.

• Small-step semantics with environments / explicit

substitutions.

13

Small-step semantics with classical substitutions

Terms: a ::= x | λx.a | a1 a2 | cst | op(a1, . . . , an)

Constants: c ::= 0 | 1 | . . .
Operators: op ::= + | pair | fst | snd | . . .
Values: v ::= λx.a | cst

Reduction rules:

(λx.a) v → a{x ← v} (βv)
op(v1, . . . , vn) → v if v = op(v1, . . . , vn) (δ)

Strategy: head reductions, call-by-value, left-to-right

a → a′

a b → a′ b

b → b′

v b → v b′

a → a′

op(v1, . . . , vk−1, a, bk+1, . . . , bn) → op(v1, . . . , vk−1, a′, bk+1, . . . , bn)

14

Big-step semantics with classical substitutions

Rather than chain elementary reductions a → a1 → . . . → v,

define a “big step” evaluation relation a ⇒ v that “jumps” from

a to its value v. (a must be closed.)

(λx.a) ⇒ (λx.a) cst ⇒ cst

a ⇒ (λx.c) b ⇒ v c{x ← a} ⇒ v′

a b ⇒ v′

a1 ⇒ v1 . . . an ⇒ vn v = op(v1, . . . , vn)

op(a1, . . . , an) ⇒ v

Theorem: if a is closed, a
∗→ v if and only if a ⇒ v.

15

Big-step semantics with environments

Function values are closures (λx.a)[e].

Terms: a ::= x | λx.a | a1 a2 | cst | op(a1, . . . , an)

Values: v ::= (λx.a)[e] | cst
Environments: e ::= {x1 ← v1, . . . , xn ← vn}

The evaluation relation becomes e ` a ⇒ v.

a may now contain free variables, but those must be bound by

the environment e.

e ` x ⇒ e(x) e ` (λx.a) ⇒ (λx.a)[e] e ` cst ⇒ cst

e ` a ⇒ (λx.c)[e′] e ` b ⇒ v e′ + {x ← v} ` c ⇒ v′

e ` a b ⇒ v′

e ` a1 ⇒ v1 . . . e ` an ⇒ vn v = op(v1, . . . , vn)

e ` op(a1, . . . , an) ⇒ v

16

Reformulation with de Bruijn indices

De Bruijn notation: rather than identify variables by names,

identify them by position.

λx. (λy. y x) x

| | |

λ (λ 1 2) 1

Environments become sequences of values v1 . . . vn.ε, accessed

by position: variable number n is bound to vn.

17

Reformulation with de Bruijn indices

Terms: a ::= n | λa | a1 a2 | cst | op(a1, . . . , an)

Values: v ::= (λa)[e] | cst
Environments: e ::= ε | v.e

e ` n ⇒ e(n) e ` (λa) ⇒ (λa)[e] e ` cst ⇒ cst

e ` a ⇒ (λc)[e′] e ` b ⇒ v v.e′ ` c ⇒ v′

e ` a b ⇒ v′

e ` a1 ⇒ v1 . . . e ` an ⇒ vn v = op(v1, . . . , vn)

e ` op(a1, . . . , an) ⇒ v

18

A straightforward yet efficient interpreter

All this leads to the canonical efficient interpreter for

call-by-value λ-calculus:

type term = Var of int | Lambda of term | App of term * term
| Constant of int | Primitive of primitive * term list

and value = Int of int | Closure of term * environment
and environment = value list
and primitive = value list -> value

let rec eval env term =
match term with

Var n -> List.nth env n
| Lambda a -> Closure(a, env)
| App(a, b) ->

let (Closure(c, env’)) = eval env a in
let v = eval env b in
eval (v :: env’) c

| Constant n ->
Int n

| Primitive(p, arguments) ->
p (List.map (eval env) arguments)

19

Small-step semantics with explicit substitutions

Big-step semantics are good for implementing interpreters, but

small-step semantics allow easier reasoning on non-terminating

or “stuck” evaluations.

The notion of environment can be internalized in a small-step,

reduction-based semantics: λ-calculus with explicit substitutions.

Terms: a ::= n | λa | a1 a2 | a[e]
Environments: e ::= ε | a.e

Basic reduction rules:

1[a.e] → a (FVar)
(n + 1)[a.e] → n[e] (RVar)

(λa)[e] b → a[b.e] (Beta)
(λa) b → a[b.ε] (Beta1)

(a b)[e] → a[e] b[e] (App)

20

More complete calculi of explicit substitutions

The previous rules are the minimal rules we need to describe

weak call-by-value reduction.

To describe other strategies, including strong reduction, richer

calculi of explicit substitutions are needed:

Explicit substitutions, M. Abadi, L. Cardelli, P.L. Curien, J.J. Lévy, Journal of
Functional Programming 6(2), 1996.

Confluence properties of weak and strong calculi of explicit substitutions,
P.L. Curien, T. Hardin, J.J. Lévy, Journal of the ACM 43(2), 1996.

21

Closure representation strategies

• When compiling an application, nothing is known about the
closure being called (this can be the closure of any function
in the program).

→ The code pointer must be at a fixed, predictable position
in the closure block.

• The environment part of a closure is not accessed during
application. Its structure matters only to the code that
builds the closure and the code for the function body.

→ Considerable flexibility in choosing the layout for the
environment part.

• The environment used for evaluation (e in e ` a ⇒ v) need
not have the same structure as the environment put in
closures (e′ in (λa)[e′]).
→ Even more flexibility in putting part of the evaluation
environment e in registers or on the stack rather than in a
heap-allocated block.

22

Examples of closure representations

One-block closure

code

v1
...

vn

Two-block closures

(with environnent sharing)

v1
...

vn

•
code 1

•
code 2

Linked closures

code 3

v1
...

vn

•

code 2

vn+1
...

vp

•

code 1

vp+1
...

vq

23

Choosing a closure representation

Time trade-off:

• One-block closures: slower to build; faster access to

variables.

• Linked closures: faster to build; slower access to variables.

Space trade-off:

• Minimal environments: (bind only the free variables)

fewer opportunities for sharing; avoid space leaks.

• Larger environments: (may bind more variables)

more opportunities for sharing; may cause severe space leaks.

Modern implementations use one-block closures with minimal

environments.
24

Recursive functions

Recursive functions need access to their own closure:

let rec f x = ... List.map f l ...

(The body of f needs to pass the closure of f as first argument to the

higher-order function List.map.)

This can be done in several ways:

• Reconstruct the closure of f from the current environment.

• Treat f as a free variable of the function body: put a pointer

to the closure of f in the environment of that closure (cyclic

closures).

• In the one-block approach: the environment passed to f is

its own closure, just reuse it.

25

code

v1
...

vn

Closure Env.

One-block closure

code f

•
Closure

•
v1
...

vn

Environment

Cyclic two-block closure

26

Mutually recursive functions

Mutually recursive functions need access to the closures of all

functions in the mutual recursive definition:

let rec f x = ... List.map f l1 ... List.map g l2 ...

and g y = ... List.map f l3 ...

This can be done in two ways:

• The closure for f contains a pointer to that of g and

conversely (cyclic closures).

• Share a closure between f and g using infix pointers

(Compiling with Continuations, A. Appel, Cambridge U. Press, 1992.)

27

code f

•
v1
...

vn

code g

•
w1
...

wk

closure for f closure for g

Cyclic closures

code f

code g

v1
...

vn

w1
...

wk

closure for f

closure for g

Shared closure

28

Part 2

Abstract machines

29

Three execution models

• Interpretation:

control (the sequencing of computations) is represented by a

source-level, tree-shaped term. The interpreter walks this

tree at run-time.

• Native compilation:

control is compiled down to a sequence of machine

instructions. These instructions are those of a real

processor, and are executed by hardware.

• Compilation to abstract machine code:

control is compiled down to a sequence of abstract

instructions. These instructions are those of an abstract

machine: they do not match existing hardware, but are

chosen to match closely the operations of the source

language.

30

An abstract machine for arithmetic expressions

Arithmetic expressions: a ::= cst | op(a1, . . . , an)

The machine uses a stack to hold intermediate results.

Compilation is translation to “reverse Polish notation”.

C(cst) = CONST(cst)

C(op(a1, . . . , an)) = C(a1); C(a2); . . . ; C(an); I(op)

where I(+) = ADD, I(−) = SUB, etc.

31

Transitions of the abstract machine

The machine has two components:

• a code pointer c giving the next instruction to execute;
• a stack s holding intermediate results.

Notation for stacks: top of stack is on the left

push v on s: s −→ v.s pop v off s: v.s −→ s

Transitions of the machine:

State before State after

Code Stack Code Stack

CONST(cst); c s c cst.s

ADD; c n2.n1.s c (n1 + n2).s

SUB; c n2.n1.s c (n1 − n2).s

Halting state: code = ε and stack = v.s.
Result of computation is v.

32

An abstract machine for call-by-value

(Similar to Landin’s SECD and Cardelli’s FAM.)

Three components in this machine:

• a code pointer c giving the next instruction to execute;

• an environment e giving values to free variables;

• a stack s holding intermediate results and return frames.

Compilation scheme:

C(n) = ACCESS(n)

C(λa) = CLOSURE(C(a); RETURN)
C(a b) = C(a); C(b); APPLY

(Constants and arithmetic: as before.)

33

Transitions

State before State after

Code Env Stack Code Env Stack

ACCESS(n); c e s c e e(n).s

CLOSURE(c′); c e s c e [c′, e].s

APPLY; c e v.[c′, e′].s c′ v.e′ c.e.s

RETURN; c e v.c′.e′.s c′ e′ v.s

• ACCESS(n): push value of variable number n

• CLOSURE(c′): push closure [c, e] of c with current env.

• APPLY: pop argument, pop closure, push return frame, jump

to closure code.

• RETURN: restore saved code and environment from stack.

34

Executing abstract machine code

Code for a stack-based abstract machine can be executed either

• By expansion of abstract machine instructions to real

machine instructions, e.g.

CONST(i) ---> pushl $i

ADD ---> popl %eax

addl 0(%esp), %eax

• By efficient interpretation.

The interpreter is typically written in C as shown on the next

slide, and is about one order of magnitude faster than

term-level interpretation.

35

A typical abstract machine interpreter

value interpret(int * start_code)
{

register int * c = start_code;
register value * s = bottom_of_stack;
register environment e;

while(1) {
switch (*c++) {

case CONST: *s++ = *c++; break;
case ADD: s[-2] = s[-2] + s[-1]; s--; break;
case ACCESS: *s++ = Lookup(e, *c++); break;
case CLOSURE: *s++ = MakeClosure(*c++, e); break;
case APPLY: arg = *--sp; clos = *--sp;

*sp++ = (value) c; *sp++ = (value) e;
c = Code(clos);
e = AddEnv(arg, Environment(clos));
break;

case RETURN: res = *--sp; e = (environment) *--sp; c = (int *) *--sp;
*sp++ = res; break;

case STOP: return *--sp;
}

}
}

36

An abstract machine for call-by-name: Krivine’s machine

As before, three components in this machine:

code c, environment e, stack s.

However, the stack does not contain values, but thunks:

closures [c, e] representing expressions whose evaluation is

delayed until needed.

Compilation scheme:

C(n) = ACCESS(n)

C(λa) = GRAB; C(a)
C(a b) = PUSH(C(b)); C(a)

37

Transitions of Krivine’s machine

State before State after

Code Env Stack Code Env Stack

ACCESS(n); c e s c′ e′ s if e(n) = [c′, e′]

GRAB; c e [c′, e′].s c [c′, e′].e s

PUSH(c′); c e s c e [c′, e].s

• ACCESS(n): fetch thunk bound to variable number n, and

proceed evaluating it

• GRAB: pop the next argument provided off the stack, and add

it to the environment (β-reduction step)

• PUSH(c): build thunk for c and push it

38

Why does it work?

The stack maintains the current spine of applications.

The code is the leftmost outermost part of the spine.

@

@ a2[e2]

n[e] a1[e1]

StackCode

@

@ a2[e2]

(λa)[e′] a1[e1]

@

a[a1[e1].e
′] a2[e2]

ACCESS GRAB

39

Making call-by-name practical

Realistic abstract machines for call-by-name functional

languages are more complex than Krivine’s machine in two

aspects:

• Constants and strict primitive operations:

Operators such as integer addition are strict in their arguments. Extra

machinery is required to reduce sub-expressions to head normal form in a

strict way.

• Sharing of evaluations (lazy evaluation):

Call-by-name reduces an expression every time its head normal form is

needed. Lazy evaluation performs the reduction the first time it is

needed, then caches the result for further reference.

See e.g. Implementing lazy functional languages on stock hardware: the

Spineless Tagless G-machine, S.L. Peyton Jones, Journal of Functional

Programming 2(2), Apr 1992.

40

Proving the correctness of an abstract machine

At this point, we have two notions of evaluation for terms:

1. Source-level evaluation with environments:

a[e]
∗→ v or e ` a ⇒ v.

2. Compilation, then execution by the abstract machine:



c = C(a)
e = ε
s = ε


 ∗→




c = ε
e = . . .
s = v . . .




Do these two notions agree? Does the abstract machine

compute the right results?

41

Partial correctness w.r.t. the big-step semantics

The compilation scheme is compositional: each sub-term is

compiled to code that evaluates it and leaves its value on the

top of the stack.

This parallels exactly a derivation of e ` a ⇒ v in the big-step

semantics, which contains sub-derivations e′ ` a′ ⇒ v′ for each

sub-expression a′.

Theorem: if e ` a ⇒ v, then


C(a); k
C(e)
s


 ∗→




k
C(e)
C(v).s




42

The compilation scheme C(·) is extended to values and

environments as follows:

C(cst) = cst

C((λa)[e]) = [(C(a); RETURN), C(e)]

C(v1 . . . vn.ε) = C(v1) . . . C(vn).ε

The theorem is proved by induction on the derivation of

e ` a ⇒ v. We show the most interesting case: function

application.

e ` a ⇒ (λc)[e′] e ` b ⇒ v′ v′.e′ ` c ⇒ v

e ` a b ⇒ v

43

(C(a); C(b); APPLY; k | C(e) | s)

↓ ∗ ind. hyp. on first premise

(C(b); APPLY; k | C(e) | [(C(c); RETURN), C(e′)].s)

↓ ∗ ind. hyp. on second premise

(APPLY; k | C(e) | C(v′).[(C(c); RETURN), C(e′)].s)

↓ APPLY transition

(C(c); RETURN | C(v′.e′) | k.C(e).s)

↓ ∗ ind. hyp. on third premise

(RETURN | C(v′.e′) | C(v).k.C(e).s)

↓ RETURN transition

(k | C(e) | C(v).s)

44

Towards full correctness

The previous theorem shows the correctness of the abstract

machine for terminating terms. However, if the term a does not

terminate, e ` a ⇒ v does not hold, and we do not know

anything about the execution of the compiled code.

(It might loop, but it might just as well stop and reply “42”.)

To show correctness for all terms (terminating or not), we need

to establish a simulation between machine transitions and

source-level reductions:

Each transition of the machine corresponds to zero, one,

or several source-level reductions.

See Functional Runtimes within the Lambda-Sigma Calculus, T. Hardin, L.

Maranget, B. Pagano, J. Func. Prog 8(2), 1998.

45

The simulation

initial

state
state 1 state 2

term a term a1 term a2

transition transition

red * red *

compilation decompilation
decompilation decompilation

Problem: not all intermediate states of the machine correspond

to the compilation of a source term.

Solution: define a decompilation function D : States → Terms

that is defined on all intermediate states and is left inverse of

the compilation function.

46

The decompilation function

Idea: decompilation is a symbolic variant of the abstract

machine: it reconstructs source terms rather than performing

the computations.

Decompilation of values:

D(cst) = cst D([c, e]) = (λa)[D(e)] if c = C(a); RETURN
Decompilation of environments and stacks:

D(v1 . . . vn.ε) = D(v1) . . .D(vn).ε

D(. . . v . . . c.e . . .) = . . .D(v) . . . c.D(e) . . .

Decompilation of concrete states:

D(c | e | s) = D(c | D(e) | D(s))

47

Decompilation, continued

Decompilation of abstract states (E, S already decompiled):

D(ε | E | a.S) = a

D(CONST(cst); c | E | S) = D(c | E | cst.S)

D(ACCESS(n); c | E | S) = D(c | E | E(n).S)

D(CLOSURE(c′); c | E | S) = D(c | E | (λa)[E].S)

if c′ = C(a); RETURN
D(RETURN; c | E | a.c′.E′.S) = D(c′ | E′ | a.S)

D(APPLY; c | E | b.a.S) = D(c | E | (a b).S)

D(I(op); c | E | an . . . a1.S) = D(c | E | (op(a1, . . . , an)).S)

48

Correctness lemmas

Simulation: if D(S) is defined, and the machine performs a

transition from S to S′, then D(S′) is defined and D(S)
∗→ D(S′).

Progress: if S is not a final state, and D(S) is defined and

reduces, then the machine can perform a transition from S.

No stuttering: there exists a non-negative measure |S| on

machine states such that if the machine does a silent transition

from S to S′ (i.e. D(S) = D(S′)), then |S| > |S′|.

Initial states: D(C(a) | ε | ε) = a if a is closed.

Final states: D(ε | e | v.s) = D(v).

49

Correctness theorem

Theorem: Let a be a closed term and S = (C(a) | ε | ε).

• If a
∗→ v, then the abstract machine started in state S

terminates and returns the value C(v).

• If a reduces infinitely, the machine started in state S

performs an infinite number of transitions.

50

Part 3

Optimized compilation of functions:

flow analysis

51

Compilation to optimized machine code

Step 1: Replace functions by closures; make explicit the

construction, passing, and accessing of the environments.

This brings us to a conventional intermediate language that

manipulates code pointers (i.e. closed functions).

(Think of the intermediate language as a subset of C with support for

dynamic allocation and garbage collection.)

Step 2: Optimize and generate machine code from the

intermediate language.

• Write your own code generator using conventional compiler

technology (OCaml, SML/NJ)

• Or use a C compiler (GHC, Bigloo).

52

Replacement of functions by closures

[[x]] = x [[cst]] = cst

[[op(a1,...,an)]] = op([[a1]],...,[[an]])

[[a b]] = let clos = [[a]] in clos[0] (clos, [[b]])

[[λx. a]] =

let code_fn (clos, x) =

let v1 = clos[1] and ... and vn = clos[n] in [[a]]

in

makeblock(code_fn, v1, ..., vn)

where v1, . . . , vn are the variables free in λx.a.

Note: the function code_fn above has no free variables. The

occurrence of code_fn in makeblock(code_fn, \ldots) denotes a

pointer to its (fixed) code.

53

From intermediate language to machine code

Standard compiler technology applies largely unchanged.

Intermediate

language

Register transfer language

with virtual registers

Register transfer language

with real registers

and stack frames

Actual

assembly

code

order evaluations

instruction selection

register

allocation

final code

generation

optimizations

optimizations

See any good compiler textbook, e.g. Modern Compiler Implementation in

ML, Andrew W. Appel, Cambridge Univ. Press, 1998.

54

The overhead of closure invocation

[[a b]] = let clos = [[a]] in clos[0] (clos, [[b]])

Our translation scheme transforms every function application

into

• one load clos[0]

• one call to a computed address clos[0](...)

Calls to a computed address are expensive on modern

processors:

• the destination address is usually not predicted in advance;

• this stalls the pipeline (cannot fetch and start executing instructions

from the called function while earlier instructions complete).

Typically, a factor of 10 more expensive than a call to a

statically known address.

55

Opportunities for generating static calls

The overhead of calls to computed addresses can be avoided in

many practical situations:

let succ = λx. x + 1 in succ (succ 2)

The two applications of succ “obviously” call the code for λx.x+ 1, and no

other code.

let rec f = λx. ... f arg ...

The application of f always calls the code for the current function.

let sort_list = λordering. λlist. ... in

... sort_list (λx.λy. compare(x,y)) some_list ...

If there are no other calls to Sort.list in the program, all applications of

ordering in the body of sort_list call the code for λx.λy.compare(x, y).

56

Opportunities for generating static calls

In all of these cases:

• application of a function in the static scope of its definition

• recursive calls

• higher-order functions applied only once

we could (and should):

• Generate calls to statically-known code addresses.

• Or if the called function is small, perform inline expansion

(compile-time β-reduction) of its body, e.g.

succ (succ 2) ⇒ (2 + 1) + 1

57

Control-flow analyses (CFA)

A program analysis is needed to discover those opportunities for

closure optimization.

Control-flow analyses (Shivers, PLDI 1988) approximate at each

application point the set of functions that can be called here

(in other terms, the set of function values that can flow to this

application point).

If that set is a singleton {λx.a}, we can generate a direct call to

the code for a, or inline it if a is small enough.

In all cases, we also get an approximation of the call graph for

the program (who calls who?), required for later interprocedural

optimizations (e.g. global register allocation).

58

A high-level view of CFA

Since functions are first-class values, CFA is actually a data-flow

analysis that keeps track of the flow of functional values and

determines control-flow along the way.

CFA sets up a system of constraints of the form

V (`1) ⊆ V (`2)

meaning that all values at program point `1 can flow to point `2.

Solve that system into a flow graph:

producer point −→ consumer point

(constant, λx.a (function parameter,
result of operator, function part of appl.,
data constructor) argument to operator)

59

Example of constraint generation rules

For (if am then bn else cp)`: add the constraints

V (n) ⊆ V (`) (the then branch flows to the result)

V (p) ⊆ V (`) (the else branch flows to the result)

For (let x = am in bn)`: add

V (m) ⊆ V (x) V (n) ⊆ V (`)

For (am(bn))`:

for each function λx. cq in V (m), add the constraints

V (n) ⊆ V (x) (the argument flows to the parameter)

V (q) ⊆ V (`) (the function result flows to the application result)

Note: need to interlace constraint building and constraint

solving, and iterate till fixpoint is reached.

60

An example of CFA

let rec apply list = λl. λarg.

match l with

[] -> []

| hd :: tl -> hd(arg) :: apply list tl arg

apply list ((λx. x+1) :: (λx. x-1) :: []) 1

(Not all edges are shown.)

We have determined the two functions called from apply_list,

and also that they are always applied to 1.

61

Summary on CFA

Basic algorithm (0-CFA) is O(n3) (n is the size of the program).

Main applications:

• Optimize function calls in functional languages.

(As seen before.)

• Optimize method dispatch in object-oriented languages.

(Similar problems to that of closures. Roughly, an object is a closure

with multiple entry points.)

• Eliminate run-time type tests in dynamically-typed languages

such as Scheme.

(E.g. if all values flowing to + are integers, + does not need to check the

type of its arguments.)

• More applications later. . .

62

Variants of 0-CFA

More precise analyses:

• Polyvariant analyses (n-CFA, polymorphic splitting, . . .):

distinguish between different call sites of the same function.

• Finer approximation of values (Heintze’s set-based analysis):

capture the shapes of data structures using grammars.

Less precise (faster) analyses:

• Coarser representations of sets of values:

∅ or {v} (singletons) or > (all values).

• Do not iterate till fixpoint: (Ashley, ICFP 1997)

start with > on all variables and do 1 or 2 iterations.

• Use equality constraints (unification) in addition to inclusion

constraints.

63

Digression on inlining: why not compile-time β-reductions?

An analysis like CFA might seem overkill for function inlining:

the effect of inlining can also be achieved by β-reductions at

compile-time.

let succ = λx. x + 1 in succ (succ 2)
β→ (λx. x + 1) ((λx. x + 1) 2)
β→ (λx. x + 1) (2 + 1)
β→ (2 + 1) + 1

Unrestricted compile-time reductions may cause program size

explosion (or even execution of the whole program at

compile-time!); various size-based heuristics control when to

perform them.

64

The hardness of compile-time β-reductions

Problem 1: these heuristics are difficult to calibrate.

let p = (λx.small), (λy.HUGE) in fst(p)(1)
β→ fst((λx.small), (λy.HUGE))(1)
β→ (λx.small)(1)

β→ small{x←1}
An intermediate reduct can be huge, then collapse to a much smaller term;

shall the compiler lose the opportunity for inlining, or risk explosion?

Problem 2: β-reduction is not selective enough

let p = (λx.small), (λy.HUGE) in

fst(p)(1), snd(p)(2), snd(p)(3)
β∗→ small{x←1}, HUGE{y←2}, HUGE{y←3}
There is no way to inline small without duplicating HUGE.

CFA avoids both problems by simulating what β-reduction would

do without actually performing it.

65

Connections between CFA and type systems

CFA can be used as a type system if enriched with safety checks

(e.g. fail if an integer flows to an application site).

Conversely, many type systems (and type inference algorithms)

can be viewed as checking / approximating the flow of data in a

program.

Palsberg and O’Keefe (TOPLAS 1995) show equivalence

between:

• 0-CFA with safety checks;

• the Amadio-Cardelli type system (subtyping + recursive types).

Provides an efficient type inference algorithm for that system.

Also: type inference algorithms for type systems with subtyping

are based on inclusion constraints similar to those used by CFA.

(Aiken and Wimmers, FPCA 1993; Smith et al, MFPS 1995; Pottier, ICFP

1998.)

66

Part 4

Optimizing the representation of data

67

Representations for high-level data structures

High-level data structures (such as ML’s datatypes) leave

considerable flexibility to the compiler in deciding a data

representation.

→ clever representation tricks are feasible.

(Would be hard to do by hand in C, at least portably.)

Examples:

• For dynamically-typed languages (Scheme):

clever tagging scheme (to embed the type of an object in its bit

pattern).

• For ML’s datatypes: clever encodings of the constructor.

68

Example: representation of datatypes in Objective Caml

type expr = Const of int | Var

| Sum of expr * expr | Prod of expr * expr

Constant constructors are represented by odd integers 1, 3, . . .

(Bit pattern: . . . xxx1)

Constructors with arguments are represented by word-aligned

pointers to heap blocks.

(Bit pattern: . . . xx00)

The heap block contains one byte (the “tag” byte) representing

the number of the constructor.

(This byte is stored at no extra cost in the header word required by the

garbage collector.)

69

Example of datatype representation

type expr =

Const of int (* pointer to block with tag 0 *)

| Var (* integer 1 *)

| Sum of expr * expr (* pointer to block with tag 1 *)

| Prod of expr * expr (* pointer to block with tag 2 *)

Const(5)

5

0

Sum(e1, e2)

•
•

1

e1
e2

Prod(e1, e2)

•
•

2

e1
e2

70

Data representation and static typing

Without static typing (Scheme):

• Need tagging to implement run-time type tests.

• All data types must fit a common format (usually one word).

→ floats are boxed (heap-allocated);

→ records are boxed;

→ arrays are arrays of pointers to boxed elements.

• All functions must use the same calling conventions: e.g.

argument in R0; result in R0.

71

With monomorphic static typing (Pascal, C)

• No need to support run-time type tests.

• Different data types can have different sizes.
→ unboxed floats
→ unboxed records (if small enough)
→ flat arrays

The compiler determines the size from the static type:

|int| = 1 word |float| = 2 words |τ × σ| = |τ |+ |σ|

• Functions of different types can use different calling
conventions. E.g. use floating-point registers for float
arguments and results.

float→ float argument in FP0, result in FP0

int× int→ int argument in R0 and R1, result in R0

72

Example: an array of 2D points

In Scheme:

1.1 1.2 2.1 2.2

• • • •

• •

In C:

1.1 1.2 2.1 2.2

73

The problem with polymorphic typing

The type system guarantees type safety, but does not assign a

unique type to every value at compile-time:

Polymorphism:

fun x -> x : ∀α. α → α

Actual type of x: any

Size of x: variable

Calling conventions: variable

Type abstraction:

type t

val x : t

val f : t -> t

Actual type of x: unknown

Size of x: unknown

Calling conventions: unknown

74

Simple solutions

• Restrict polymorphism and type abstraction.

Modula: abstract types must be pointer types.

Java: cannot coerce integers and floats to/from type Object.

Problem: unnatural.

• Code replication.

Ada, C++: compile a specialized version of a generic function

for each type it is used with.

Problem: code size explosion; link-time code generation.

• Revert to Scheme-style representations.

Problem: inefficient; lots of boxing and unboxing.

75

More interesting solutions

• Use run-time type inspection:

pass type information at run-time to polymorphic code;

use this information to determine sizes and layouts at

run-time.

• Mix C-style representations for monomorphic code and

Scheme-style representations for polymorphic code.

• Combine Scheme-style representations with local unboxing,

partial inlining, and special treatment of arrays.

76

The type-passing interpretation of polymorphism

In order to reconstruct exact types of data structures at

run-time, polymorphic function must receive as extra arguments

the types to which they are specialized.

let f x = x let f α x = x

let g x = f (x, x) let g β x = f 〈β × β〉 (x, x)

g 5 g 〈int〉 5

In this example, this allows f to determine at run-time that its x

parameter has actual type int× int.

77

Type-dependent data layout

The TIL approach (Harper, Morrisett, et al, PLDI 1996):

• Use C-style, “flat”, multi-word representations of data

structures (just like in a monomorphic type system).

• In polymorphic code, compute size information, data layout,

and calling conventions from the run-time type information.

• (In monomorphic code, this information is computed at

compile-time.)

78

Example

Source code:

let assign_array a b i = b.(i) <- a.(i)

Generated code, Scheme style: Generated code, TIL style:

assign_array(a, b, i) { assign_array(α, a, b, i) {
load one word from a + i * 4; s = size_of_type(α);

store this word at b + i * 4; copy s bytes

} from a + i * s

to b + i * s;

}
Variant (Ohori, Lisp.Symb.Comp.1993): pass only the size of types

at run-time, not representations of whole type expressions.

79

Mixed data representations

(Leroy, POPL 1992; Shao and Appel, PLDI 1995; the SML/NJ compiler)

Use C-style representations for data whose exact type is known

at compile-time (i.e. inside monomorphic code).

Revert to Scheme-style representations for manipulating data

whose type is not completely known at compile-time (i.e. inside

polymorphic code).

Insert coercions between the two representations at interface

points.

80

•
R0

•
R0

•
R1

3.14159265

FP0

•
R1

3.14159265

FP0

2.71828182

R1

α

β × γ

float× γ

float× float

Static type Representation •
•

3.141

59265

2.718

28182

81

Source code:

let make_pair x = (x, x) in ... make_pair 3.41519

Coercion diagram:

R0 R0, R1

FP4 FP2,FP3

box

make pair

unbox unbox

Generated code:

let make_pair x = (x, x) in ...

let (fst, snd) = make_pair(box_float(3.14159)) in

(unbox_float(fst), unbox_float(snd))

82

Defining the coercions

[α ⇒ int] = identity [int⇒ α] = identity
[α ⇒ float] = unbox float [float⇒ α] = box float
[α ⇒ β × γ] = unbox pair [β × γ ⇒ α] = box pair

[(τ × σ) ⇒ (τ ′ × σ′)] = λ(x, y). ([τ ⇒ τ ′](x), [σ ⇒ σ′](y))

[(τ → σ) ⇒ (τ ′ → σ′)] = λf. [σ ⇒ σ′] ◦ f ◦ [τ ′ ⇒ τ]

When using a value v of type ∀α.τ with type τ ′ = τ{α ← σ},
insert the coercion [τ ⇒ τ ′](v).

When implementing an abstract type ∃α.τ by a value v of type

τ ′ = τ{α ← σ}, insert the coercion [τ ′ ⇒ τ](v).

83

Untyped unboxing techniques

(Objective Caml; Glasgow Haskell; Bigloo Scheme.)

Instead of basing the data representations on the types, use

Scheme-style representations by default, plus:

• Perform intra-function unboxing by standard dataflow

analysis:

let x = box(f) in ⇒ let x = f in

... unbox(x) ... unbox(x) x ... x ...

• Extend it to inter-function unboxing using control-flow

analysis or partial inlining.

• Use simple tagging schemes and tag testing to support

important special cases of generic data structures

(e.g. float arrays).

84

Partial inlining (a.k.a. the worker-wrapper technique)

(Peyton-Jones and Lauchbury, FPCA 1991; Goubault, SAS 1994.)

Split a function into:

• a worker function taking and returning unboxed data;

• a wrapper function performing the boxing and unboxing

around the worker.

At call sites, try to inline the wrapper function (typically small)

and hope its boxing and unboxing cancel out with those of the

call context.

85

Example

let worker_f a b =

(* a and b are unboxed floats *)

(* compute result *)

(* return unboxed float result *)

let f a b = box(worker_f (unbox a) (unbox b))

... unbox(f (box 3.14) (box 2.71)) ...

After inlining of f and simplifications:

... worker_f 3.14 2.71 ...

(Crucially depends on the availability of a good inlining pass in the compiler.)

86

Conclusions and perspectives

87

Other relevant topics not addressed here

Memory management and garbage collection.

Uniprocessor Garbage Collection Techniques, P. Wilson,

ftp://ftp.cs.utexas.edu/pub/garbage/bigsurv.ps.

Garbage collection support in intermediate code and code

generation.

The C-- intermediate language, N. Ramsey and S. Peyton Jones.

Optimized compilation of pattern-matching.

Two techniques for Compiling Lazy Pattern Matching, L. Maranget, INRIA

research report 2385.

Relevance and adaptation of classic compiler optimizations.

Automatic parallelization.

88

Conclusions from an engineering standpoint

Compilation technology for functional languages is relatively

mature:

• On comparable programs, achieve at least 50% of the

performance of optimizing C compilers.

• Match or exceed the performance of C on

allocation-intensive programs.

Still more work to do:

• Getting rid of the last factor of 2 is difficult.

• Truly efficient functional programs still require programmers

to be conscious of performance issues while writing their

code.

89

Conclusions from a research standpoint

Functional languages promote software reliability:

clean semantics ⇒ formal methods ⇒ reliable programs

But: proving the correctness of source code is useless if the

compiler is incorrect.

→ Certified compilers

Proof ` ∀Prog . Comp(Prog) ≡ Prog

→ Certifying compilers (proof-carrying code)

∀Prog . Certif (Prog) ` Comp(Prog) ≡ Prog

Today: we are able to certify realistic bytecode compilers and

abstract machines.

Tomorrow: certification of optimizing native-code compilers?

90

