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The compilation process

General definition: any automatic translation from a computer language to
another.

Restricted definition: efficient (“optimizing”) translation from a source
language (understandable by programmers) to a machine language
(executable in hardware).

A mature area of computer science:

Already 50 years old! (Fortran I: 1957)

Huge corpus of code generation and optimization algorithms.

Many industrial-strength compilers that perform subtle
transformations.
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An example of optimizing compilation

double dotproduct(int n, double * a, double * b)
{

double dp = 0.0;
int i;
for (i = 0; i < n; i++) dp += a[i] * b[i];
return dp;

}

Compiled for the Alpha processor and manually decompiled back to C. . .
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double dotproduct(int n, double a[], double b[]) {
dp = 0.0;

if (n <= 0) goto L5;

r2 = n - 3; f1 = 0.0; r1 = 0; f10 = 0.0; f11 = 0.0;

if (r2 > n || r2 <= 0) goto L19;

prefetch(a[16]); prefetch(b[16]);

if (4 >= r2) goto L14;

prefetch(a[20]); prefetch(b[20]);

f12 = a[0]; f13 = b[0]; f14 = a[1]; f15 = b[1];

r1 = 8; if (8 >= r2) goto L16;

L17: f16 = b[2]; f18 = a[2]; f17 = f12 * f13;

f19 = b[3]; f20 = a[3]; f15 = f14 * f15;

f12 = a[4]; f16 = f18 * f16;

f19 = f29 * f19; f13 = b[4]; a += 4; f14 = a[1];

f11 += f17; r1 += 4; f10 += f15;

f15 = b[5]; prefetch(a[20]); prefetch(b[24]);

f1 += f16; dp += f19; b += 4;

if (r1 < r2) goto L17;

L16: f15 = f14 * f15; f21 = b[2]; f23 = a[2]; f22 = f12 * f13;

f24 = b[3]; f25 = a[3]; f21 = f23 * f21;

f12 = a[4]; f13 = b[4]; f24 = f25 * f24; f10 = f10 + f15;

a += 4; b += 4; f14 = a[8]; f15 = b[8];

f11 += f22; f1 += f21; dp += f24;

L18: f26 = b[2]; f27 = a[2]; f14 = f14 * f15;

f28 = b[3]; f29 = a[3]; f12 = f12 * f13; f26 = f27 * f26;

a += 4; f28 = f29 * f28; b += 4;

f10 += f14; f11 += f12; f1 += f26;

dp += f28; dp += f1; dp += f10; dp += f11;

if (r1 >= n) goto L5;

L19: f30 = a[0]; f18 = b[0]; r1 += 1; a += 8; f18 = f30 * f18; b += 8;

dp += f18;

if (r1 < n) goto L19;

L5: return dp;

L14: f12 = a[0]; f13 = b[0]; f14 = a[1]; f15 = b[1]; goto L18;

}
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Can you trust your compiler?

Executable
machine code

Source
program

Compiler?

Bugs in the compiler can lead to incorrect machine code being generated
from a correct source program.
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Can you trust your compiler?

Executable
machine code

Source
program

Compiler?

Non-critical sofware:
Compiler bugs are negligible compared with those of the program itself.
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Can you trust your compiler?

Executable
machine code

Source
program

Compiler?

Test

Critical software certified by systematic testing:
What is tested: the executable code generated by the compiler.
Compiler bugs are detected along with those of the program.
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Can you trust your compiler?

Executable
machine code

Source
program

Compiler?

Formal verification

Critical software certified by formal methods::
What is formally verified: the source code, not the executable code.
Compiler bugs can invalidate the guarantees obtained by formal methods.
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Can you trust your compiler?

Executable
machine code

Source
program

Compiler
observational
equivalence

Formal verification

Formally verified compiler:
Guarantees that the generated executable code behaves as prescribed by the
semantics of the source program.
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Outline

1 Introduction: Can you trust your compiler?

2 Formally verified compilers

3 The Compcert experiment

4 Technical zoom: the register allocation pass

5 Perspectives
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Formal verification of compilers

Apply formal methods to the compiler itself to prove that it preserves the
property of interest Prop of the source code:

Theorem

For all source codes S,
if the compiler generates machine code C from source S,
without reporting a compilation error,
and if S satisfies Prop,
then C satisfies Prop.

Note: compilers are allowed to fail (ill-formed source code, or capacity
exceeded).
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Some properties of interest

Among the properties of programs we’d like to see preserved:

1 Observable behaviour, including “going wrong”.

2 Observable behaviour if the source code does not go wrong.
Compilers are allowed to replace undefined behaviours by more specific

behaviours.

3 Satisfaction of the functional specifications for the application.
Implied by (2) if these specs are couched in terms of observable behaviour.

4 Type- and memory-safety.
Implied by (2).
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Approach 1: proving the compiler

Model the compiler as a function

Comp : Source → Code + Error

and prove that

∀S ,C , Comp(S) = C ⇒ S ≡ C (observational equivalence)

using a proof assistant.

It then follows that for any property P of the observable behaviour,

∀S ,C , Comp(S) = C ∧ S |= P ⇒ C |= P

Note: complex data structures + recursive algorithms ⇒ interactive
program proof is a necessity.
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Approach 2: translation validation
(A. Pnueli et al; G. Necula; X. Rival)

Validate a posteriori the results of compilation:

Comp : Source → Code + Error

Validator : Source × Code → bool

If Comp(S) = C and Validator(S ,C ) = true, success.
Otherwise, error.

It suffices to prove that the validator is correct:

∀S ,C , Validator(S ,C ) = true⇒ S ≡ C

The compiler itself need not be proved.
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Approach 3: proof-carrying code
(G. Necula and P. Lee)

Comp : Source × Prop → Code × Certificate + Error

Checker : Prop × Code × Certificate → bool

If Comp(S ,P) = (C , π) and Validator(P,C , π) = true, success.
Otherwise, error.

Assume that the checker is proved correct:

∀P,C , π, Checker(P,C , π) = true⇒ C |= P

Enables the code consumer to check the validity of the compiled code
without trusting the code producer and without having access to the
source code. (Think mobile code.)
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Decomposition in multiple compiler passes

Transl 1

Optim 1

Transl 2

Optim 2

Transl 3

Assembl.

Source

Intermediate 1

Intermediate 2

Assembly

Machine code
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Decomposition in multiple compiler passes

If every compiler pass preserves semantics, so does their composition!

A compiler pass can generally be proved correct independently of other
passes.

However, formal semantics must be given to every intermediate language
(not just source and target languages).

For each pass, we can either

prove it correct directly, or

use validation a posteriori and just prove the correctness of the
validator.

X. Leroy (INRIA) Formal compiler verification RTA 2007 15 / 58



Outline

1 Introduction: Can you trust your compiler?

2 Formally verified compilers

3 The Compcert experiment

4 Technical zoom: the register allocation pass

5 Perspectives
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The Compcert experiment

(X.Leroy, Y.Bertot, S.Blazy, Z.Dargaye, P.Letouzey, T.Moniot, L.Rideau, B.Serpette)

Develop and prove correct a realistic compiler, usable for critical embedded
software.

Source language: a subset of C.

Target language: PowerPC assembly.

Generates reasonably compact and fast code
⇒ some optimizations.

This is “software-proof codesign” (as opposed to proving an existing
compiler).

The proof of semantic preservation is mechanized using the Coq proof
assistant.
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The subset of C supported

Supported:

Types: integers, floats, arrays, pointers, struct, union.

Operators: arithmetic, pointer arithmetic.

Structured control: if/then/else, loops, simple switch.

Functions, recursive functions, function pointers.

Not supported:

The long long and long double types.

Dynamic memory allocation malloc/free.

goto, unstructured switch, longjmp/setjmp.

Variable-arity functions.
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The formally verified part of the compiler

Clight C#minor Cminor

RTLLTLLTLin

Linear Mach PPC

initial

translation

stack allocation

instruction selection

CFG construction

decomposition of expressions

register

allocation

linearization

of the CFG

spilling, reloading

calling conventions

layout of

of stack frames

PowerPC

code generation

Optimizations:

constant propagation,

common subexpressions
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The whole Compcert compiler

AST Clight

AST PPC

C source AST C

AssemblyExecutable

parsing

construct AST

type-checking

(CIL)

simplifications

printing of

asm syntax

assembling

linking

Type reconstruction

Graph coloring

Proved in CoqNot proved
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Formally verified using Coq

The correctness proof (semantic preservation) for the compiler is entirely
machine-checked, using the Coq proof assistant.

Theorem transf_c_program_correct:
forall prog tprog trace n,
transf_c_program prog = Some tprog ->
Csem.exec_program prog trace (Vint n) ->
PPC.exec_program tprog trace (Vint n).
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What does the semantic preservation theorem says?

The formal semantics for the source and target languages associate to
programs:

a trace of input-output events (system calls);

the integer returned by the main function (exit code).

The theorem guarantees that if the source program terminates and does
not go wrong,

the compiled code terminates and does not go wrong,

performs exactly the same system calls,

and returns the same exit code

as the source program.

Currently says nothing about source programs that do not terminate (work
in progress).
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The Coq proof

Approximately 2 man.years and 40000 lines of Coq:

13%

Code

8%

Sem.

22%

Statements

50%

Proof scripts

7%

Misc
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Programmed in Coq

All verified parts of the compiler are programmed directly within Coq’s
specification language, in pure functional style.

Uses monads to deal with errors and state.

Purely functional (persistent) data structures.

(4500 lines of Coq + 1500 lines of non-verified Caml code.)

Coq’s extraction mechanism produces executable Caml code from these
specifications.

Probably the biggest program ever extracted from a Coq development.
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Performances of the generated code
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Plan

1 Introduction: Can you trust your compiler?

2 Formally verified compilers

3 The Compcert experiment

4 Technical zoom: the register allocation pass

5 Perspectives
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The RTL intermediate language

Register Transfer Language, a.k.a. 3-address code.

The code of a function is represented by a control-flow graph:

Nodes = instructions corresponding roughly to that of the processor,
operating over variables (temporaries).

z = x +f y float addition
i = i + 1 integer immediate addition
if (x > y) test and conditional branch

Edge from I to J = J is a successor of I
(J can execute just after I ).
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Example: the C source code

double average(int * tbl, int size)
{

double s = 0;
int i;

for (i = 0; i < size; i++) s += tbl[i];
return s / size;

}
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Example: the corresponding RTL graph

s = 0.0

i = 0

if (i >= size)

a = i << 2

b = load(tbl, a)

c = float(b)

s = s +f c

i = i + 1

d = float(size)

e = s /f d

return(e)
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Register allocation

Purpose: refine the notion of variables used as arguments and results of
RTL operations.

RTL (before register allocation):
an unbounded quantity of variables.

LTL (after register allocation):
a fixed number of hardware registers;
an unbounded number of stack slots.

Accessing registers is faster than accessing stack slots
→ maximize the use of registers.
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Approaches to register allocation

Naive approach:
Assign the N hardware registers to the N most used variables; assign stack
slots to the other variables.

Finer approach:
Notice that the same hardware register can be assigned to several distinct
variables, provided they are never used simultaneously.
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Liveness analysis

A variable x is live at point p if an instruction reachable from p uses x ,
and x is not redefined in between.

In straight-line code, a variable becomes live at each definition and dies at
its last uses.

def x use x use x def x use x

live live

If x is dead (not live) at a given point, the value of x at this point has no
effect on the results of the computation.
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Liveness analysis

Define

V (p) the set of variables live “before” the point p

V ′(p) the set of variables live “after” the point p

Assume the instruction at p is

(r1, . . . , rn) = instr(a1, . . . , am)→ s1, . . . , sk

We have the following inequations over the V and V ′:

V (p) = (V ′(p) \ {r1, . . . , rn}) ∪ {a1, . . . , am}
V ′(p) ⊇ V (s1) ∪ . . . ∪ V (sk)

These inequations define a backward dataflow analysis.

They can be solved easily by fixpoint iteration (Kildall’s worklist
algorithm).
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Example of liveness analysis

s = 0.0

i = 0

if (i >= size)

a = i << 2

b = load(tbl, a)

c = float(b)

s = s +f c

i = i + 1

d = float(size)

e = s /f d

return(e)

[tbl size s]

[tbl size i s]

[tbl size i s]

[tbl size i s a]

[tbl size i s b]

[tbl size i s c]

[tbl size i s]

[tbl size i s]

[s d]

[e]
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Using liveness information for register allocation

Two variables x and y interfere if they are both live at one point in the
program.

If x and y do not interfere, they can share the same register or stack slot.

def x use x def y use y def x use x

x live x livey live

→ Determine the minimal number of registers needed by coloring of the
graph representing the interference relation.

→ If this number is ≤ number of hardware registers, we obtain a perfect
register allocation.

→ Otherwise, the coloring is a good starting point to determine which
variables go into registers.
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Example of an interference graph

tbl

size
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b

c
d

e
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The algorithm for register allocation by graph coloring

1 Liveness analysis: compute the sets of live variables “before” V (p)
and “after” V ′(p) each program point p.

2 Construct the graph of the interference relation.

3 Coloring of this graph: construct a function

φ : Variable → Register + Stackslot

so that φ(x) 6= φ(y) if x and y interfere.
(NP-hard, but good linear-time heuristics are known.)

4 Code transformation: replace each instruction

r := instr(a1, . . . , an)→ s1, . . . , sk

by
φ(r) := instr(φ(a1), . . . , φ(an))→ s1, . . . , sk
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The correctness proof of this algorithm

1 Liveness analysis: prove that the V (p) and V ′(p) are indeed solutions
of the dataflow inequations.

2 Interference graph construction: prove that for every instruction

p : r := instr(a1, . . . , an)→ s1, . . . , sk

the graph contains edges between r and each of the x ∈ V ′(p) \ {r}.
3 Graph coloring: prove that φ(x) 6= φ(y) if x and y interfere,

either by proving directly the coloring heuristic,
or by verifying a posteriori this property by edge enumeration.

4 Code transformation: next slides.
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An overview of the semantics of RTL

A transition system code ` (p,E ,M)→ (p′,E ′,M ′).

p,E ,M: initial program point, values of variables, and memory state.

p′,E ′,M ′: program point, values of variables, and memory state after
executing the instruction at p.

These transitions are defined by inference rules such as

code(p) = (z := add(x , y)→ p′) v = E (x) + E (y) (mod 232)

code ` (p,E ,M)→ (p′,E{z ← v},M)
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Proving that the code transformation preserves semantics

Prove simulation diagrams of the form

p,E ,M
p ` E ≈ R

p,R,M

p′,E ′,M ′
?

........................................
p′ ` E ′ ≈ R ′

p′,R ′,M ′

∗

?

................

Hypotheses: left, a transition in the original code; top, the invariant before the transition.

Conclusions: right, some transitions in the transformed code; bottom, the invariant after the

transition.

The invariant p ` E ≈ R is defined by

E (x) = R(φ(x)) for all x live before point p
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Preliminary conclusions

At this stage of the Compcert experiment, the initial goal – proving
correct a realistic compiler – appears feasible.

Moreover, proof assistants such as Coq are adequate (but barely) for this
task.

What next?
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Enhancements to Compcert

Much remains to be done on the Compcert compiler:

Handle a larger subset of C.
(E.g. with goto.)

Deploy and prove correct more optimizations.
(Loop optimizations, instruction scheduling, . . . )

Prove semantic preservation for non-terminating programs (in
progress); for concurrent programs? (hard!)

Target other processors beyond the PowerPC.

Test usability on real-world embedded codes.
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Front-ends for other source languages

Cminor PPCClight

Mini-MLCoq specs

???

An experiment in progress for a small functional language (mini-ML).

Main difficulty: proving the run-time system (allocator, GC) and interfacing this

proof with that of the compiler.

What about a reactive / synchronous language, for instance?
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More generally: formal verification of programming tools

Besides compilers, many other programming tools are involved in the
production and verification of critical software:

Code generators (e.g. SCADE to C).

Static analyzers, including type checkers.

Model checkers.

Program provers.

Formally verify these tools as well?
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To finish. . .

The formal verification of compilers and other programming tools

. . . could be worthwhile,

. . . might be feasible,

. . . and is definitely exciting!
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