Formal verification of a static analyzer: abstract interpretation in type theory

Xavier Leroy

Inria Paris-Rocquencourt

TYPES meeting, 2014-05-14

Informatiques (nothingsignes

In memoriam Radhia Cousot, †2014

David Pichardie

and the Verasco project team:

Sandrine Blazy, Vincent Laporte, André Maronèze (Rennes) Jacques-Henri Jourdan, Jérôme Feret, Xavier Rival, Arnaud Spiwack (Paris-Rocquencourt) Alexis Fouilhé, David Monniaux, Michael Périn (Grenoble) Jean Souyris (Airbus)

2 Abstract interpretation, in set theory and in type theory

- 3 Scaling up: the Verasco project
- 4 Conclusions and future work

Static analysis in a nutshell

Statically infer properties of a program that hold for all its executions. At this program point, $0 < x \le y$ and pointer p is not NULL.

Emphasis on infer: no help from the programmer. (E.g. loop invariants are not written in the source.)

Emphasis on statically:

- The inputs to the program are not known.
- The analysis must terminate.
- The analysis must run in reasonable time and space.

Example of properties that can be inferred

Properties of the value of one variable: (value analysis)

x = aconstant propagationx > 0 ou x = 0 ou x < 0signs $x \in [a, b]$ intervalles $x = a \pmod{b}$ congruencesvalid $(p[a \dots b])$ memory validityp pointsTo x or $p \neq q$ (non-) aliasing between pointers

(a, b, c are constants inferred by the analyzer.)

Example of properties that can be inferred

Properties of several variables: (relational analysis)

 $\begin{array}{ll} \sum a_i x_i \leq c & \text{polyhedra} \\ \pm x_1 \pm \cdots \pm x_n \leq c & \text{octogons} \\ expr_1 = expr_2 & \text{Herbrand equivalences} \\ doubly-linked-list(p) & \text{shape analysis} \end{array}$

Non-functional properties:

- Memory consumption.
- Worst-case execution time (WCET).

Using static analysis for code optimization

Apply algebraic identities when their conditions are met:

Optimize array accesses and pointer dereferences:

Automatic parallelization:

 $loop_1$; $loop_2 \rightarrow loop_1 \parallel loop_2$ if $polyh(loop_1) \cap polyh(loop_2) = \emptyset$

Using static analysis for verification

Use the results of static analysis to prove the absence of certain run-time errors:

$$x \in [a, b] \land 0 \notin [a, b] \implies x/y$$
 cannot fail
valid $(p[a \dots b]) \land i \in [a, b] \implies p[i]$ cannot fail

Report an alarm otherwise.

Using static analysis for verification

Use the results of static analysis to prove the absence of certain run-time errors:

$$x \in [a, b] \land 0 \notin [a, b] \implies x/y$$
 cannot fail
valid $(p[a \dots b]) \land i \in [a, b] \implies p[i]$ cannot fail

Report an alarm otherwise.

True alarms, false alarms

True alarm (wrong behavior)

False alarm (analysis too imprecise)

More precise analysis (polyhedron instead of intervals): the false alarm goes away.

Some properties verifiable by static analysis

Absence of run-time errors:

- Arrays and pointers:
 - No out-of-bound accesses.
 - No dereferencing the null pointer.
 - No access after a free.
 - Alignment constraints are respected.
- Integer arithmetic:
 - No division by zero.
 - No (signed) arithmetic overflows.
- Floating-point arithmetic:
 - No arithmetic overflows (result is $\pm \infty$)
 - No undefined operations (result Not a Number)
 - No catastrophic cancellation.

Simple programmer-inserted assertions:

e.g. assert (0 <= x && x < sizeof(tbl)).

2 Abstract interpretation, in set theory and in type theory

- 3 Scaling up: the Verasco project
- 4 Conclusions and future work

Basic idea: analyzing a program is executing it with a nonstandard semantics

Abstract interpretation in a nutshell

Execute ("interpret") the program with a semantics that:

- Computes over an abstract domain of the desired properties (e.g. "x ∈ [a, b]" for interval analysis) instead of computing with concrete values and states (e.g. numbers).
- Handle Boolean conditions even if they cannot be resolved statically:
 - \blacktriangleright The then and else branches of an if are both taken \rightarrow joins.
 - \blacktriangleright Loops and recursions execute arbitrarily many times \rightarrow fixpoints.
- Always terminates.

Examples of abstract interpretation

In the concrete	In the abstract
$\{x = 3, y = 1\}$	$\{ x^{\#} = [0, 9], y^{\#} = [-1, 1] \}$
z =	x + 2 * y;
$\{ z = 3 + 2 \times 1 = 5 \}$	{ $z^{\#} = [0,9] + {}^{\#} 2 \times {}^{\#} [-1,1] = [-2,11] $ }

Examples of abstract interpretation

In the concrete In the abstract $\{ x^{\#} = [0, 9], y^{\#} = [-1, 1] \}$ $\{x = 3, y = 1\}$ z = x + 2 * y; $\{z=3+2\times 1=5\}$ $\{z^{\#}=[0,9]+^{\#}2\times^{\#}[-1,1]=[-2,11]\}$ { $b^{\#} = \top, x^{\#} = [0, 9], y^{\#} = [-1, 1]$ } $\{ b = true, x = 3, y = 1 \}$ z = (if b then x else y); $\{ z = 3 \}$ $\{ z^{\#} = [0, 9] \sqcup [-1, 1] = [-1, 9] \}$

Idea #2: a variable can have different abstractions at different program points

Sensitivity to control flow

Imperative variable assignment:

x = x + 1;
{
$$x^{\#} = [0,9]$$
 }
{ $x^{\#} = [1,10]$ }

Refining the abstraction at conditionals:

if
$$(x == 0) \{$$

 $\begin{cases} x^{\#} = [0, 9] \} \\ \{ x^{\#} = [0, 0] \} \\ \vdots \\ \end{cases}$
else $\{$
 $\{ x^{\#} = [1, 9] \} \\ \vdots \\ \}$

Sensitivity to control flow

Contrast with dependent pattern-matching, where the type of the scrutinee is unchanged, but additional facts are added to the environment.

```
match eq_dec x 0 with
| left (EQ: x = 0) => ...
| right (NEQ: x <> 0) => ...
end.
match x as z return x = z -> T with
```

```
| None => fun (P: x = None) => ...
| Some y => fun (P: x = Some y) => ...
end (refl_equal x).
```

Idea #3: we can also infer relations between the values of several variables

Non-relational / relational analysis

Non-relational analysis:

```
abstract environment = variable \mapsto abstract value
```

(Like simple typing environments.)

Relational analysis:

abstract environments are a domain of their own, featuring:

- a semi-lattice structure: \bot , \top , \Box , \sqcup
- an abstract operation for assignment / binding.

Example: polyhedra, i.e. conjunctions of linear inequalities $\sum a_i x_i \leq c$.

Idea # 4: widening fixpoints can be computed even in non-well-founded domains

Fixpoints - the recurring problem

Static analysis of a loop:

<pre>while () { }</pre>	$\{ e^{\#} = X_0 \}$
	$\{ e^{\#} = X \}$
	$\{ e^{\#} = \Phi(X) \}$

Given X_0 (the abstract state before the loop) and Φ (the transfer function for the loop body), find X (the loop invariant).

 $X \sqsupseteq X_0$ (first iteration) $X \sqsupseteq \Phi(X)$ (next iterations)

X is, ideally, the smallest fixpoint of $F = X \mapsto X_0 \sqcup \Phi(X)$ or at least any post-fixpoint of F $(X \supseteq F(X))$.

Paradise

Theorem (Tarski)

Let (A, \sqsubseteq, \bot) a partially ordered set such that \Box is well founded (no infinite increasing sequences).

Let $F : A \rightarrow A$ an increasing function.

Then F has a smallest fixpoint, obtained by finite iteration from \perp :

$$\exists n, \perp \sqsubset F(\perp) \sqsubset \ldots \sqsubset F^n(\perp) = F^{n+1}(\perp)$$

Paradise lost

Most abstract domains are not well founded. Examples:

- Integer intervals: $[0,0] \sqsubset [0,1] \sqsubset [0,2] \sqsubset \cdots \sqsubset [0,n] \sqsubset \cdots$
- Environments: variable \mapsto abstract values.

Moreover, even when Tarski iteration converges, it converges too slowly:

$$x = 0$$
; while (x <= 10000) { $x = x + 1$; }

(Starting with $x^{\#} = [0, 0]$, it takes 10000 iterations to reach the fixpoint $x^{\#} = [0, 10000]$.)

Paradise regained: widening

A widening operator $\nabla : A \to A \to A$ computes a majorant of its second argument in such a way that the following iteration converges always and quickly:

$$X_0 = \bot$$
 $X_{i+1} = egin{cases} X_i & ext{if } F(X_i) \sqsubseteq X_i \ X_i oxtimes F(X_i) & ext{otherwise} \end{cases}$

The limit X of this sequence is a post-fixpoint: $F(X) \sqsubseteq X$.

Example: widening for intervals:

$$\begin{bmatrix} l_1, u_1 \end{bmatrix} \nabla \begin{bmatrix} l_2, u_2 \end{bmatrix} = \begin{bmatrix} \text{if } l_2 < l_1 \text{ then } -\infty \text{ else } l_1, \\ \text{if } u_2 > u_1 \text{ then } \infty \text{ else } u_1 \end{bmatrix}$$

Widening in action

Narrowing the post-fixpoint

The quality of the post-fixpoint can be improved by iterating *F* some more:

$$Y_0 = a \text{ post-fixpoint}$$
 $Y_{i+1} = F(Y_i)$

If F is increasing, each Y_i is a post-fixpoint: $F(Y_i) \sqsubseteq Y_i$.

Often, $Y_i \sqsubset Y_0$, improving the analysis quality.

Iteration can be stopped when Y_i is a fixpoint, or at any time.

Widening plus narrowing in action

Specification of widening

A simple variation on the constructive definition of well foundedness:

```
Inductive Acc: A -> Prop :=
| Acc_intro: ∀x,
        (∀y, y□x -> Acc y) ->
        Acc x.
```

Definition well_founded := $\forall x, Acc x.$

```
Inductive AccW: A -> Prop :=

| AccW_intro: \forall x,

(\forall y, y \exists x \rightarrow AccW (x \nabla y)) \rightarrow AccW x.
```

Definition widening_correct := $\forall x$, AccW x.

Specification of widening

A simple variation on the constructive definition of well foundedness:

```
Definition well_founded := Definition widening_correct := \forall x, Acc x. \forall x, AccW x.
```

Even Coq understands that widened iteration terminates:

```
Fixpoint postfixpoint (F: A->A) (x: A) (acc: AccW x) {struct acc} ::
let y := F x in
match decide (x\sqsubseteqy) with
| left LE => x
| right GT => postfixpoint F (x\nablay) (AccW_inv x acc y GT)
end.
```

Idea #6: Galois connections: abstract operators can be calculated in a systematic, sound, and optimal manner

A Galois connection

A semi-lattice \mathcal{A}, \sqsubseteq of abstract states and two functions:

- Abstraction function α : set of concrete states \rightarrow abstract state
- Concretization function γ : abstract state \rightarrow set of concrete states

E.g. for intervals $\alpha(S) = [\inf S, \sup S]$ and $\gamma([a, b]) = \{x \mid a \le x \le b\}$.

Axioms of Galois connections

The adjunction property:

$$\forall \mathsf{a}, \mathsf{S}, \ \alpha(\mathsf{S}) \sqsubset \mathsf{a} \Leftrightarrow \mathsf{S} \subseteq \gamma(\mathsf{a})$$

or, equivalently:

 α increasing

 $\wedge \quad \gamma \, \, {\rm increasing} \,$

$$\land \forall S, S \subseteq \gamma(\alpha(S))$$
 (soundness)

 $\land \forall a, \alpha(\gamma(a)) \sqsubseteq a$ (optimality)

Calculating abstract operators

For any concrete operator $F: C \to C$ we define its abstraction $F^{\#}: A \to A$ by

$$F^{\#}(a) = \alpha\{F(x) \mid x \in \gamma(a)\}$$

This abstract operator is:

- Sound: if $x \in \gamma(a)$ then $F(x) \in \gamma(F^{\#}(a))$.
- Optimally precise: every a' such that x ∈ γ(a) ⇒ F(x) ∈ γ(a') is such that F[#](a) ⊑ a'.

Moreover, an algorithmic definition of $F^{\#}$ can be calculated from the definition above.

Calculating $+^{\#}$ for intervals

$$\begin{aligned} [a_1, b_1] +^{\#} [a_2, b_2] \\ &= \alpha \{ x_1 + x_2 \mid x_1 \in \gamma[a_1, b_1], x_2 \in \gamma[a_2, b_2] \} \\ &= \left[\inf \{ x_1 + x_2 \mid a_1 \leq x_1 \leq b_1, a_2 \leq x_2 \leq b_2 \}, \\ \sup \{ x_1 + x_2 \mid a_1 \leq x_1 \leq b_1, a_2 \leq x_2 \leq b_2 \} \right] \\ &= \left[+\infty, -\infty \right] \text{ if } a_1 > b_1 \text{ or } a_2 > b_2 \\ &= \left[a_1 + b_1, a_2 + b_2 \right] \text{ otherwise} \end{aligned}$$

Note: the intuitive definition $[a_1, b_1] + \# [a_2, b_2] = [a_1 + b_1, a_2 + b_2]$ is sound but not optimal.

Trouble ahead: Galois connections in type theory

Type-theoretic difficulties

Minor issue: the calculations of abstract operators are poorly supported by interactive theorem provers such as Coq:

$$F^{\#}a = \alpha(\lambda x.P) = \alpha(\lambda x.P') = \dots$$

$$\uparrow$$
because $\forall x, P \Leftrightarrow P'$

Either:

- use setoid equalities everywhere, or
- add extensionality axioms (functional, propositional).

Type-theoretic difficulties

Major issue: γ is easily modeled as

 $\gamma: A \rightarrow (C \rightarrow \text{Prop})$ (two-place predicate)

but α is generally not computable as soon as C is infinite:

$$\begin{array}{ll} \alpha: (\mathcal{C} \to \texttt{Prop}) \to \mathcal{A} & \texttt{morally constant functions only} \\ \alpha: (\mathcal{C} \to \texttt{bool}) \to \mathcal{A} & \texttt{can only query a finite number of } \mathcal{C}\texttt{'s} \end{array}$$

(E.g. $\alpha(S) = [\inf S, \sup S]$, no more computable than inf and sup.)

 \rightarrow Need more axioms (description, Hilbert's epsilon).

For some domains, the abstraction function α does not exist! (The optimality condition $a \sqsubseteq \alpha(\gamma(a))$ cannot be satisfied.)

Example 1: intervals of rationals.

$$\alpha\{x \mid x^2 \le 2\} = ???$$

There is no best rational approximation of $\left[-\sqrt{2},\sqrt{2}\right]$.

For some domains, the abstraction function α does not exist! (The optimality condition $a \sqsubseteq \alpha(\gamma(a))$ cannot be satisfied.)

Example 1: intervals of rationals.

$$\alpha\{x \mid x^2 \le 2\} = ???$$

There is no best rational approximation of $[-\sqrt{2}, \sqrt{2}]$.

Example 2: polyhedra

$$\alpha\{(x,y) \mid x^2 + y^2 \le 1\} = ???$$

(It works in practice nonetheless, because the abstract interpreter and abstract operators are set up in such a way that non-abstractible sets like the above never occur.)

For some domains, the abstraction function α does not exist! (The optimality condition $a \sqsubseteq \alpha(\gamma(a))$ cannot be satisfied.)

Example 1: intervals of rationals.

$$\alpha\{x \mid x^2 \le 2\} = ???$$

There is no best rational approximation of $[-\sqrt{2}, \sqrt{2}]$.

Example 2: polyhedra

$$\alpha\{(x,y) \mid x^2 + y^2 \le 1\} = ???$$

(It works in practice nonetheless, because the abstract interpreter and abstract operators are set up in such a way that non-abstractible sets like the above never occur.)

For some domains, the abstraction function α does not exist! (The optimality condition $a \sqsubseteq \alpha(\gamma(a))$ cannot be satisfied.)

Example 1: intervals of rationals.

$$\alpha\{x \mid x^2 \le 2\} = ???$$

There is no best rational approximation of $[-\sqrt{2}, \sqrt{2}]$.

Example 2: polyhedra

$$\alpha\{(x,y) \mid x^2 + y^2 \le 1\} = ???$$

(It works in practice nonetheless, because the abstract interpreter and abstract operators are set up in such a way that non-abstractible sets like the above never occur.) Plan B: soundness (γ) is essential, optimality (α) is optional

Getting rid of α

Remember the two properties of abstract operators $F^{\#}$ calculated from $F^{\#}(a) = \alpha \{F(x) \mid x \in \gamma(a)\}$:

- Soundness: if $x \in \gamma(a)$ then $F(x) \in \gamma(F^{\#}(a))$.
- Optimality: every a' such that x ∈ γ(a) ⇒ F(x) ∈ γ(a') is such that F[#](a) ⊑ a'.

Instead of calculating $F^{\#}$, we can guess a definition for $F^{\#}$, then verify

- property 1: soundness (mandatory!)
- possibly property 2: optimality (optional sanity check).

These proofs only need the concretization relation $\gamma,$ which is unproblematic.

Soundness first!

Having made optimality entirely optional, we can further simplify the analyzer and its soundness proof, while increasing its algorithmic efficiency:

- Abstract operators that return over-approximations (or just ⊤) in difficult / costly cases.
- Join operators ⊔ that return an upper bound for their arguments but not necessarily the least upper bound.
- "Fixpoint" iterations that return a post-fixpoint but not necessarily the smallest (widening + return ⊤ when running out of fuel).
- Validation a posteriori of algorithmically-complex operations, performed by an untrusted external oracle. (Next slide.)

Validation a posteriori

Some abstract operations can be implemented by unverified code if it is easy to validate the results a posteriori by a validator. Only the validator needs to be proved correct.

Example: the join operator \sqcup over polyhedra.

The inclusion test can itself use validation a posteriori. (Cf. talk by Fouilhe, Boulmé and Périn.)

An overview of static analysis

- 2 Abstract interpretation, in set theory and in type theory
- 3 Scaling up: the Verasco project
 - 4 Conclusions and future work

The Verasco project

Inria Celtique, Gallium, Abstraction, Toccata + Verimag + Airbus

Goal: develop and verify in Coq a realistic static analyzer by abstract interpretation:

- Language analyzed: the CompCert subset of C.
- Nontrivial abstract domains, including relational domains.
- Modular architecture inspired from Astrée's.
- Decent alarm reporting.

Slogan: if "CompCert = 1/10th of GCC but formally verified", likewise "Verasco = 1/10th of Astrée but formally verified".

Architecture

Upper layer: the abstract interpreter

$$\begin{array}{c} \mathsf{CompCert} \ \mathsf{C} \to \mathsf{Clight} \to \mathsf{C} \# \mathsf{minor} \to \mathsf{Cminor} \to \mathsf{RTL} \to \dots \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

Connected to the intermediate languages of the CompCert compiler.

Parameterized by a relational abstract domain for execution states (environment + memory state + call stack).

- Abstract interpreter for RTL (Blazy, Maronèze, Pichardie, SAS 2013) Unstructured control \rightarrow per-function fixpoints (Bourdoncle).
- Abstract interpreter for C#minor (Jourdan, in progress) Local fixpoints for each loop + per-function fixpoint for goto + per-program fixpoint for function calls.

Lower layer: numerical domains

Non-relational:

- Integer intervals and congruences (over Z).
- Floating-point intervals (on top of the Flocq library).

Relational:

- The VPL library (Fouilhé, Monniaux, Périn, SAS 2013): polyhedra with rational coefficients, implemented in OCaml, producing certificates verifiable in Coq.
- Integration in progress in Verasco.

What is a generic interface for a numerical domain?

For a non-relational domain:

- A semilattice (A, \sqsubseteq) of abstract values.
- A concretization relation $\gamma: A \rightarrow \mathbf{Z} \rightarrow \operatorname{Prop}$
- Abstract operators such as

```
add: A -> A -> A;
add_sound: forall a b x y,
x \in \gamma a -> y \in \gamma b -> (x + y) \in \gamma (add a b);
```

• Inverse abstract operators (to refine abstractions based on the results of conditionals) such as

```
eq_inv: A -> A -> bool -> A * A;
eq_inv_sound: forall a b c x y,
x \in \gamma a \rightarrow y \in \gamma b \rightarrow
(if c then x = y else x <> y) ->
x \in \gamma (fst (eq_inv a b c))
\land y \in \gamma (snd (eq_inv a b c));
```

What is a generic interface for a numerical domain?

For a relational domain, the main abstract operations are:

- assign var = expr
- forget var = any-value
- assume *expr* is true or *expr* is false

var are program variables or abstract memory locations.

expr are simple expressions (+ $- \times$ div mod ...) over variables and constants.

To report alarms, we also need to query the domain, e.g. "is x < y?" or "is $x \mbox{ mod } 4 = 0?$ ". The basic query is

```
• get_itv expr 
ightarrow variation interval
```

(Next slide: Coq interface.)

```
Class ab_ideal_env (var t:Type) '{EqDec var}: Type := {
  id_wl:> weak_lattice t;
  id_gamma:> gamma_op t (var->ideal_num);
  id_adom:> adom t (var->ideal_num) id_wl id_gamma;
  get_itv: iexpr var -> t -> IdealIntervals.abs+\perp;
  assign: var -> iexpr var -> t -> t+\perp;
  forget: var -> t -> t+\perp;
  assume: iexpr var -> bool -> t -> t+\perp;
  get_itv_sound: forall e \rho ab,
    \rho \in \gamma ab ->
    eval_iexpr \rho \in \subset \gamma (get_itv e ab);
  assign_sound: forall x e \rho n ab,
    \rho \in \gamma ab ->
    n \in eval_iexpr \rho e \rightarrow
     (upd \rho x n) \in \gamma (assign x e ab);
  forget_sound: forall x \rho n ab,
    \rho \in \gamma ab ->
     (upd \rho x n) \in \gamma (forget x ab);
  assume_sound: forall c \rho ab b,
    \rho \in \gamma ab ->
     (INz (if b:bool then 1 else 0)) \in eval_iexpr \rho c ->
    \rho \in \gamma (assume c b ab)
```

}.

Machine integers vs. mathematical integers

Machine integers = N-bit vectors, with arithmetic modulo 2^N , and two possible interpretations (signed or unsigned).

For intervals, ad-hoc solutions based on pairs of Z-intervals:

or on cyclic intervals:

What about relational domains?

A domain transformer for machine integers (J-H. Jourdan)

Given a relational domain (A, γ) over **Z**, construct a relational domain over *N*-bit machine integers as follows:

- Same abstract domain A.
- New concretization: $\gamma'(a) = \{b : bitvect(N) \mid \exists n : \mathbf{Z}, n \in \gamma(a) \land n = b \pmod{2^N}\}$
- Same abstract operators for addition, subtraction, multiplication.
- For other operators (comparisons, division, ...): try first to reduce the ideal integers modulo 2^N to the interval $[0, 2^N)$ or $[-2^{N-1}, 2^{N-1})$, depending on whether the operation is signed or unsigned.

Middle layer: abstracting memory and state

The CompCert memory model: memory location = block $b \times$ offset δ .

Abstraction of offsets \rightarrow integer domain.

Abstraction of blocks:

- First attempt (Pichardie): 1 concrete block = 1 abstract block "global variable x" or "local variable y of function f".
- Recursion, dynamic allocation \rightarrow need for imprecise abstract blocks (standing for several concrete blocks).
- In progress (Laporte): abstract memory model with block fusion and weak updates.

An overview of static analysis

- 2 Abstract interpretation, in set theory and in type theory
- 3 Scaling up: the Verasco project
- 4 Conclusions and future work

Conclusions

Trying to bridge elegant foundations and nitty-gritty details (low-level language, algorithmic efficiency).

Abstract interpretation is a very effective guideline once we forget about optimality of the analysis.

Future work

Much remains to be done to reach a realistic static analyzer:

- "Good" abstractions for memory.
- More (combinations of) abstract domains: symbolic equalities, reduced products, trace partitioning,
- Algorithmic efficiency needs more work, esp. on sharing between representations of abstract states.
- Good alarm reports.
- Debugging the precision of the analyses.

One step at a time...

... we get closer to the formal verification of the tools that participate in the production and verification of critical embedded software.

