
25 years of OCaml

Xavier Leroy
OCaml 2021

Collège de France and Inria

From: Xavier Leroy <xleroy AT pauillac.inria.fr>

To: caml-list AT pauillac.inria.fr, comp-lang-ml AT cs.cmu.edu

Subject: Objective Caml 1.00

Date: Thu, 9 May 1996 16:27:36 +0200 (MET DST)

We are proud to announce the availability of Objective Caml version 1.00.

Objective Caml is an object-oriented extension of the Caml dialect of ML.

It is statically type-checked (no "message not understood" run-time errors)

and performs ML-style type reconstruction (no type declarations for function

parameters). This is arguably the first publically available

object-oriented language featuring ML-style type reconstruction.

Objective Caml is a class-based OO language, and offers pretty much

all standard features of these languages, including "self", single and

multiple inheritance, "super", and binary methods, plus a number of

less common features such as parametric classes. [...]

Objective Caml is based on (and supersedes) the Caml Special Light

system. It inherits from Caml Special Light a powerful module

calculus, Modula-style separate compilation, a fast-turnaround

bytecode compiler, and a high-performance native-code compiler.

Upward compatilibity with Caml Special Light is very high. 2

50 years of ML
The early years : from LCF to Core ML

Robin Milner, 1934–2010

3

LCF : an interactive prover for the Logic of Computable Functions

AD-785 072

LOGIC FOR COMPUTABLE FUNCTIONS
DESCRIPTION OF A MACHINE IMPLEMENTATION

Robin Milner

Stanford University

Prepared for:

Advanced Research Projects Agency
National Aeronautics and Space Administration

May 1972

DISTRIBUTED BY: urn
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

Lecture Notes in
Computer Science
Edited by G. Goos and J. Hartmanis

78

Michael J. Gordon
Arthur .J. Milner
Christopher P. Wadsworth

Edinburgh LCF
A Mechanised Logic of Computation

Proofs are terms of type thm, built using functions such as

trans (t1 : thm) (t2 : thm) : thm =

if t1 is “A = B” and t2 is “B = C” then return “A = C” else fail

4

ML : the Meta Language of the LCF prover

To write these terms, Milner wanted a “meta-language” that was

• applicative (functional) ;
• interactive (with a REPL) ;
• strongly typed, to enforce type abstraction on type thm

(making sure the user cannot build “0 = 1” : thm)

LISP would not do, hence Milner invented “ML”, a
functional/imperative language with strong static typing and
type abstraction.

5

Polymorphism and type inference in ML

JOURNAL OF COMPUTER AND SYSTEM SCIENCES 17, 348-375 (1978)

A Theory of Type Polymorphism in Programming

ROBIN MILNER

Computer Science Department, Vm+ersity of Edinburgh, Edinburgh, Scotland

Received October 10, 1977; revised April 19, 1978

The aim of this work is largely a practical one. A widely employed style of programming,
particularly in structure-processing languages which impose no discipline of types,
entails defining procedures which work well on objects of a wide variety. We present a
formal type discipline for such polymorphic procedures in the context of a simple pro-
gramming language, and a compile time type-checking algorithm w which enforces the
discipline. A Semantic Soundness Theorem (based on a formal semantics for the language)
states that well-type programs cannot “go wrong” and a Syntactic Soundness Theorem
states that if fl accepts a program then it is well typed. We also discuss extending these
results to richer languages; a type-checking algorithm based on w is in fact already
implemented and working, for the metalanguage ML in the Edinburgh LCF system,

1. INTRODUCTION

The aim of this work is largely a practical one. A widely employed style of programming,
particularly in structure-processing languages which impose no discipline of types
(LISP is a perfect example), entails defining procedures which work well on objects of
a wide variety (e.g., on lists of atoms, integers, or lists). Such flexibility is almost essential
in this style of programming; unfortunately one often pays a price for it in the time taken
to find rather inscrutable bugs-anyone who mistakenly applies CDR to an atom in
LISP, and finds himself absurdly adding a property list to an integer, will know the
symptoms. On the other hand a type discipline such as that of ALGOL 68 [22] which
precludes the flexibility mentioned above, also precludes the programming style which
we are talking about. ALGOL 60 was more flexible-in that it required procedure
parameters to be specified only as “procedure” (rather than say “integer to realprocedure”)
-but the flexibility was not uniform, and not sufficient.

An early discussion of such flexibility can be found in Strachey [19], who was probably
the first to call it polymorphism. In fact he qualified it as “parametric” polymorphism,
in contrast to what he called “adhoc” polymorphism. An example of the latter is the use
of “+” to denote both integer and real addition (in fact it may be further extended to
denote complex addition, vector addition, etc.); this use of an identifier at several distinct
types is often now called “overloading,” and we are not doncerned with it in this paper.

In this paper then, we present and justify one method of gaining type flexibility, but
also retaining a discipline which ensures robust programs. We have evidence that this

348
0022-0000/78/0173-0348$02.00/0
Copyright 8 1978 by Academic Press, Inc.
All rights of reproduction in any form reserved.

Principal type-schemes for functional programs

Luis Darnas* and Robin Milne~

Edinburgh University

1. Introduction

This paper is concerned with the polymorphic

type discipline of NL, which is a general purpose

functional programming language, although it was

first introduced as a metalanguage (whence its

name) for conducting proofs in the LCF proof system

[GMW] . The type discipline was studied in [Mil] ,

where it was shown to be semantically sound, in a

sense made precise below, but where one important

question was left open: does the type-checking

algorithm - or more precisely, the type assignment

algorithm (since types are assigned by the compiler,

and need not be mentioned by the programmer) - find

the most general type possible for every expression

and declaration? Here we answer the question in

the affirmative, for the purely applicative part

of ML. It follows immediately that it is decid-

able whether a program is well-typed, in contrast

with the elegant and slightly more permissive type

discipline of Coppo [Cop] . After several years

* The work of this author is supported by the
Portuguese Instituto National de Investigacao
Cientifica.

Permksion to copy without fee all or part of this material k granted
provided that the copies are not made ordktributed fordkect
commercial advantage, the ACM copyright notice and the title of the
publication and ha date appear, and notice k given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

@ 1982 ACM O-89791-065-6/82/OOl/0207 $00.75

of successful use of the language, both in LCF and

other research and in teaching to undergraduates,

it has become important to answer these questions -

particularly because the combination of flexibility

(due to polymorphism) , robustness (due to semantic

soundness) and detection of errors at compile time

has proved to be one of the strongest aspects of ML.

The discipline can be well illustrated by a

small example. Let us define in ML the function

“map”, which maps a given function over a given list

- that is,

map f [xl;. ..;xn] =

The required declaration

letrec map f s = if null—

[f(xl); f(xn)]

is

s then nil

else cons(f (hd s)) (map f (tl s))

The type-checker will deduce a type-scheme for “map”

from existing type-schemes for “null”, “nil”, “cons”,

“hd” and “tl”; the term “type-scheme” is appropriate

since all these objects are polymorphic. In fact,

from

null : Va(a list+ bool)

nil : Va(a list)

cons : Va(a + (a list + u list))

hd : Va(u list + a)

tl : VU([

will be deduced

maP : V’WV(3

list + a list)

(u + !3) + (a list+5 list) .

207

Types of function parameters can be inferred from their uses
(e.g. fun x y -> x && not y).

What if they cannot ? (e.g. fun x -> x).

• Hindley : give type α → α for some fixed, unknown type α.
• Milner : give a type schema ∀α. α → α denoting a

polymorphic function. 6

User-defined data structures in LCF ML

Built-in product types t1 # t2 and sum types t1 + t2.

Other datatypes are defined as abstract types + constructor
functions + accessor functions.

Example : binary trees with values of type * at leaves.

absrectype * tree = * + * tree # * tree

with leaf n = abstree(inl n)

and node (t1, t2) = abstree(inr(t1, t2))

and isleaf t = isl(reptree t)

and leafval t = outl(reptree t) ? failwith ‘leafval‘

and leftchild t = fst(outr(reptree t) ? failwith ‘leftchild‘

and rightchild t = snd(outr(reptree t) ? failwith ‘leftchild‘

7

Inductive types and pattern matching

(R. Burstall, G. Cousineau, D. MacQueen, R. Milner, . . . ; HOPE, Prolog)

From “typed Lisp”. to Core ML

type ’a tree =

| Leaf of ’a

| Node of ’a tree * ’a tree

letrec sumtree t = let rec sumtree t =

if isleaf t then match t with

leafval t | Leaf n -> n

else | Node(l, r) -> sumtree l + sumtree r

sumtree (leftchild t)

+ sumtree (rightchild t)

8

Core ML

Call-by-value
functional language

Inductive types,
pattern matching

Hindley-Milner polymorphic typing
and type inference

9

A rich lineage

LCF ML SML90 SML97

LazyML
Miranda Haskell Haskell98

CAML Caml Light OCaml

F#

Reason

MoscowML

Alice

Agda

Hope

SASL

Lisp

Prolog

10

From CAML to Caml Special Light

CAML (1985–1994)

(G. Cousineau, G. Huet, M. Mauny, A. Suarez, P. Weis)

Core ML + facilities for “embedded languages”
(parsers, quotations, anti-quotations)

Developed along the Coq proof assistant, as Coq’s
implementation language.

let calc env = calcrec

where rec calcrec = function

’Constant(n) -> n

| ’Variable(x) -> assoc x env

| << ^e1 + ^e2 >> -> calcrec(e1) + calcrec(e2)

| << ^e1 * ^e2 >> -> calcrec(e1) * calcrec(e2) ;;

11

CAML = ML running on the CAM

CAML
source

CAM
int. lang.

LLM3
virt. mach.

Le Lisp
runtime

The Categorical Abstract Machine (G. Cousineau, P.-L. Curien, M. Mauny) :
a simple evaluation model for call-by-value, inspired by cartesian
closed categories.

[[0]] = snd [[n + 1]] = fst; [[n]]

[[λ.M]] = cur([[M]])

[[M N]] = push; [[M]]; swap; [[N]]; cons; app

Pro : one of the first formalizations of function closures.

Cons : inefficient ; one “cons” for each binding.

12

A decisive encounter

Je connais un langage où il y a un gros travail
de compilation à faire.

Let me tell you about a programming language where
there is much compilation work to do.

(Guy Cousineau, spring 1988)

13

The ZINC experiment (1989)

(X. L., D. Doligez)

• Core ML (simplified from CAML).

• Efficient generational GC.

• An abstract machine (the ZAM)
where bindings use a stack.

• A bytecode interpreter
written in C.

14

Caml Light (1991–2000)

(X. L., D. Doligez, P. Weis, M. Mauny)

A completion of the ZINC experiment,
practically usable, esp. for teaching.

• Type checking and type inference.
• Separate compilation and linking.
• Modula-2 modules :

implementation file (.ml)
+ interface file (.mli).

• Toplevel interactive REPL.
• Bootstrapped.
• Available for Unix, Mac OS, and MS-DOS !

15

Caml Light in higher education

Many undergraduate CS courses used Caml Light, esp. in France.

16

Studying the SML module language

Advanced language features for programming “in the large” :
modules (structures) with multiple interfaces (signatures) ;
parameterized modules (functors) with sharing constraints ; . . .

As presented in the Definition of Standard ML : complex
type-checking rules based on an internal, DAG-like
representation.

Can we explain SML modules in type-theoretic terms ?
(∀, ∃ quantification ; dependent types ; . . .)

17

Type systems for module languages

A Type-Theoretic Approach to Higher-Order Modules with Sharing*

Abstract

Robert Harpert Mark Lillibridge$

School of Computer Science

Carnegie Mellon University

Pittsbwgh, PA 15213-3891

The design of a module system for constructing and main-
taining Ilarge programs is a difficult task that raises a number
of theoretical and practical issues. A fundamental issue is
the management of the flow of information between program
units at compile time via the notion of an interface. Expe-
rience has shown that fully opaque interfaces are awkward
to use in practice since too much information is hidden, and
that fully transparent interfaces lead to excessive interde-
pendencies, creating problems for maintenance and separate
compilation. The “sharing” specifications of Standard ML
address this issue by allowing the programmer to specify
equational relationships between types in separate modules,
but are not expressive enough to allow the programmer com-
plete control over the propagation of type information be-
t ween modules.

These problems are addressed from a type-theoretic view-
point by considering a calculus based on Girard’s system
FU. The calculus differs from those considered in previous
studies by relying exclusively on a new form of weak sum
type to propagate information at compile-time, in contrast
to approaches based on strong sums which rely on substi-
tution. The new form of sum type allows for the specifica-
tion of equational, as well as type and kind, information in
interfaces. This provides complete control over the propa-
gation of compile-time information between program units
and is sufficient to encode in a straightforward way most
uses of type sharing specifications in Standard ML. Modules
are treated as “first-class” citizens, and therefore the sys-
tem supports higher-order modules and some object-oriented

*Thk work was sponsored by the Advanced Research Projects
Agency, CSTO, under the title “The Fox Project: Advanced De-
velopment of Systems Software”, ARPA Order No. 8313, issued
by ESD/AVS under Contract No. F19628-91-C-0168.

t Electro& ~~1 ad&e~~: rWh@c~ , ~mu. ~d~.
~Electronic mail address: mdl@cs . cmu. edu.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantaga, the ACM copyright notica and tha
titfe of the publication and its data appear, and notica ia givan
that copying ia by parrtiasion of the Association for Computing
Machinery. To copy otharwiaat or to repubfish, raquirea a fee
and/or specific permission.
POPL 94- 1/94, Portland Oregon, USA

programming idioms; the language may be easily restricted
to “second-class” modules found in ML-like languages.

1 Introduction

Modularity is an essential technique for developing and
maintaining large software systems [46, 24, 36]. Most
modern programming languages provide some form of
module system that supports the construction of large
systems from a collection of separately-defined program
units [7, 8, 26, 32]. A fundamental problem is the man-
agement of the tension between the need to treat the
components of a large system in relative isolation (for
both conceptual and pragmatic reasons) and the need
to combine these components into a coherent whole.
In typical cases this problem is addressed by equipping
each module with a well-defined interface that mediates
all access to the module and requiring that interfaces be
enforced at system link time.

The Standard ML (SML) module system [17, 32]
is a particularly interesting design that has proved to
be useful in the development of large software sys-
tems [2, 1, 3, 11, 13]. The main constituents of the
SML module system are signatures, structures, and
functors, with the latter two sometimes called modules.
A structure is a program unit defining a collection of
types, exceptions, values, and structures (known as sub-
structures of the structure). A functor may be thought
of as a “parameterized structure”, a first-order function
mapping structures to structures. A signature is an in-
terface describing the constituents of a structure — the
types, values, except ions, and structures that it defines,
along with their kinds, types, and interfaces. See Fig-
ure 1 for an illustrative example of the use of the SML
module system; a number of sources are available for
further examples and information [15, 39].

A crucial feature of the SML module system is the no-
tion of type sharingl which allows for the specification

1The closely-related notion of structur-c sharing ia not consid-
ered in this paper.

@ 1994 ACM C-897914336-IY941001 ..$3.S()

123

Proc. 21st Symp. Principles of Programming Languages, 1994, pages 109–122.

Manifest types, modules, and separate compilation

Xavier Leroy §

Stanford University

Abstract

This paper presents a variant of the SML module system
that introduces a strict distinction between abstract types
and manifest types (types whose definitions are part of the
module specification), while retaining most of the expressive
power of the SML module system. The resulting module
system provides much better support for separate compila-
tion.

1 Introduction

1.1 Modules and separate compilation

Modularization is the process of decomposing a program
in small units (modules) that can be understood in isola-
tion by the programmers, and making the relations between
these units explicit to the programmers. Separate compila-
tion is the process of decomposing a program in small units
(compilation units) that can be typechecked and compiled
separately by the compiler, and making the relations be-
tween these units explicit to the compiler and linker. Both
processes are required for realistic programming: modular-
ization makes large programs understandable by program-
mers; separate compilation makes large programs tractable
by compilers.

Several languages rely on a common mechanism to pro-
vide modules and separate compilation. A typical example
is Modula-2 [27], where modules are identified with compila-
tion units composed of an implementation file (source code)
and an interface file (specification). However, this identifica-
tion is limiting. Since compilation units are usually directly
mapped onto file system objects, separate compilation tends
to keep the structure of compilation units simple, with the
dependencies “hard-wired” inside the units. Modern mod-
ule systems go much farther in their attempts to accurately
express the program structure. A well-known example is the
module system of SML [14], which is actually a small typed
language of its own, with modules (also called structures) as
the base data structure, module specifications (signatures)
as types, functions from modules to modules (functors) to

§Dept. of Computer Science, Stanford University, Stanford CA
94305-2140. E-mail: xavier@cs.stanford.edu. Supported by an IN-
RIA post-doctoral grant.

0Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is
by permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

represent parameterized modules, and function applications
to connect modules—all features that cannot be accounted
for in the “modules as compilation units” approach.

As a consequence of this tension, SML makes no provision
for separate compilation. SML is defined as “an interactive
language” [17], implying that users are expected to build
their programs linearly in strict bottom-up order. This re-
quirement can be alleviated by systematic use of functors,
at the cost of extra declarations (sharing constraints) and
late detection of inter-compilation unit type clashes. Re-
cently, Shao and Appel [24] have proposed a more free-form
separate compilation mechanism for SML, which infers the
required constraints, but delays all type checks between com-
pilation units to the linking phase, which is much too late.
Late detection of type errors increases the likeliness of pro-
grammers writing large quantities of inconsistent code, only
to discover later that major changes are required to bring
the parts together.

The work presented in this paper grew out of an attempt
to apply the Modula-2 separate compilation techniques
(which ensure early detection of inter-compilation unit type
clashes) to the SML module system. The starting idea is to
abandon the identification of modules and compilation
units, and consider compilation units as an additional layer
on top of modules: just as Modula-2 compilation units are
collections of language objects (types, variables, functions),
SML compilation units should be collections of module
objects (signatures, structures, functors). These collections
of modules can, then, be defined in implementation files
and specified (by their signatures) in interface files, and
their dependencies can be expressed by Modula-2-style
import declarations.

1.2 The problem with SML modules

The simple approach outlined above turns out to fail, not be-
cause it is inherently flawed, but because it exposes a weak-
ness in the SML module system: a module signature does not
express all the typing properties that the remainder of the
program can assume about the corresponding structure. In
other terms, SML signatures are not complete specifications
with respect to typing. This is because type specifications
in signatures are “transparent”: they do not hide the actual
type provided by the structure. For instance, assume a struc-
ture S has a signature ß specifying a type component t. Even
though the signature does not say anything about the imple-
mentation of t, another structure S’ can rely on S.t being
implemented as some particular type, say, int. If S and S’

are not defined in the same compilation unit, the implemen-

Page 1

Using manifest types (X. L.) / translucent sums (R. Harper and
M. Lillibridge) to express type propagation and sharing.

functor (X: sig type t ... end) -> sig type u = X.t ... end

18

Caml Special Light (1994–1996)

The language : the core Caml Light language + an SML-style
module language using syntactic signatures and manifest types.

The implementation : the Caml Light runtime system
+ an improved ZAM2 bytecode compiler and interpreter
+ a native-code compiler.

19

From: Xavier Leroy <xleroy AT pauillac.inria.fr>

To: caml-list AT pauillac.inria.fr

Subject: Release 1.06 of Caml Special Light

Date: Tue, 12 Sep 1995 11:27:13 +0200 (MET DST)

Announcing Caml Special Light 1.06, the first public release of the

Caml Special Light system.

Caml Special Light is a complete reimplementation of Caml Light that

adds a powerful module system in the style of Standard ML. The module

system is based on the notion of manifest types / translucent sums; it

supports Modula-style separate compilation, and fully transparent

higher-order functors (see the papers in the POPL 94 and 95

proceedings).

Caml Special Light comprises two compilers: a bytecode compiler in the

style of Caml Light (but up to twice as fast), and a high-performance

native code compiler for the following platforms: [...]

20

O(bjective) Caml

Object orientation in the 1990s

Inheritance Is Not Subtyping

William R. Cook Walter L. Hill Peter S. Canning
Hewlett -Packard Laboratories

P.O. Box 10490 Palo Alto CA 94303-0969

Abstract
In typed object-oriented languages the subtype relation
is typically based on the inheritance hierarchy. This ap-
proach, however, leads either to insecure type-systems
or to restrictions on inheritance that make it less flexible
than untyped Smalltalk inheritance. We present a new
typed model of inheritance that allows more of the flex-
ibility of Smalltalk inheritance within a statically-typed
system. Significant features of our analysis are the intro
duction of polymorphism into the typing of inheritance
and the uniform application of inheritance to objects,
classes and types. The resulting notion of type inher-
itance allows us to show that the type of an inherited
object is an inherited type but not always a subtype.

1 Introduction
In strongly-typed object-oriented languages like Simula
[I], C++ [28], Trellis [25], Eiffel [19], and Modula-3 [9],
the inheritance hierarchy determines the conformance
(subtype) relation. In most such languages, inheritance
is restricted to satisfy the requirements of subtyping.
Eiffel, on the other hand, has a more expressive type
system that allows more of the flexibility of Smalltalk
inheritance [14], but suffers from type insecurities be-
cause its inheritance construct is not a sound baais for
a subtype relation [12].

In this paper we present a new typed model of inher-
itance that supports more of the flexibility of Smalltalk
inheritance while allowing static type-checking. The
typing is based on an extended polymorphic lambda-
calculus and a denotational model of inheritance. The
model contradicts the conventional wisdom that inher-
itance must always make subtypes. In other words,
we show that incremental change, by implementation
inheritance, can produce objects that are not subtype
compatible with the original objects. We introduce the
notion of type inheritance and show that an inherited

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy other-
wise, or to republish, requires a fee and/or specific permission.

0 1990 ACM 089791-3434/90/0001/0125 $1 SO 125

object has an inherited type. Type inheritance is the ba-
sis for a new form of polymorphism for object-oriented
programming.

Much of the work presented here is connected with the
use of self-reference, or recursion, in object-oriented lan-
guag- 13, 4, 51. 0 ur model of inheritance is intimately
tied to recursion in that it is a mechanism for incre-
mental extension of recursive structures [lI, 13, 221. In
object-oriented languages, recursion is used at three lev-
els: objects, classes, and types. We apply inheritance
uniformly to each of these forms of recursion while en-
suring that each form interacts properly with the others.
Since our terminology is based on this uniform develop-
ment, it is sometimes at odds with the numerous tech-
nical terms used in the object-oriented paradigm. Our
notion of object inheritance subsumes both delegation
and the traditional notion of class inheritance, while our
notion of class inheritance is related to Smalltalk meta-
classes.

Object inheritance is used to construct objects incre-
mentally. We show that when a recursive object defini-
tion is inherited to define a new object, a correspond-
ing change is often required in the type of the object.
To achieve this effect, polymorphism is introduced into
recursive object definitions by abstracting the type of
self. Inheritance is defined to specialize the inherited
definition to match the type of the new object being
defined. A form of polymorphism developed for this
purpose, called F-bounded polymorphism [3], is used to
characterize the extended types that may be created by
inheritors.

Class inheritance supports the incremental definition
of classes, which are parameterized object definitions.
A class is recursive if its instances use the class to cre-
ate new instances. When a class is inherited to define a
new class, the inherited creation operations are updated
to create instances of the new,class. Since class recur-
sion is also related to recursion in the object types, the
polymorphic typing of inheritance is extended to cover
class recursion. We also introduce a generalization of
class inheritance that allows modification of instantia-
tion parameters.

A final application of inheritance is to the definition
of recursive types. Type inheritance extends a recursive

A wave that swept industry and software engineering

Non-OO programming languages were seen as irrelevant.

A puzzle for P.L. theory

Hard to explain O.O. in type-theoretic terms.
(Structural vs. nominal types ; inheritance vs. subtyping ; elusive encodings ; . . .)

21

Row polymorphism for objects

(D. Rémy, J. Vouillon)

Using rows to keep track of method names and types, and
row variables to keep track of other, not yet known methods.

⟨m : int; ρ1⟩ ⟨k : bool; ρ2⟩

⟨m : int; ∅⟩ ⟨m : int; k : bool; ρ⟩

Perfect for inferring the type of an object from its uses :

fun x -> x#name ^ string_of_int x#rank

: < name : string; rank : int; .. > -> string

Note : parametric polymorphism, not subtype polymorphism.

22

Objective Caml 1.00 (1996)

(J. Vouillon, D. Rémy)

Caml Special Light
+ objects with row polymorphism in the core language
+ a sub-language for classes (object generators),

including multiple inheritance, self type specialization, . . .

class printable_colored_point y c as self =

inherit colored_point y c

inherit printable_point y as super

method print =

print_string "("; super#print; print_string ", ";

print_string (self#color); print_string ")"

end

23

From: Xavier Leroy <xleroy AT pauillac.inria.fr>

To: caml-list AT pauillac.inria.fr, comp-lang-ml AT cs.cmu.edu

Subject: Objective Caml 1.00

Date: Thu, 9 May 1996 16:27:36 +0200 (MET DST)

We are proud to announce the availability of Objective Caml version 1.00.

Objective Caml is an object-oriented extension of the Caml dialect of ML.

It is statically type-checked (no "message not understood" run-time errors)

and performs ML-style type reconstruction (no type declarations for function

parameters). This is arguably the first publically available

object-oriented language featuring ML-style type reconstruction.

Objective Caml is a class-based OO language, and offers pretty much

all standard features of these languages, including "self", single and

multiple inheritance, "super", and binary methods, plus a number of

less common features such as parametric classes. [...]

Objective Caml is based on (and supersedes) the Caml Special Light

system. It inherits from Caml Special Light a powerful module

calculus, Modula-style separate compilation, a fast-turnaround

bytecode compiler, and a high-performance native-code compiler.

Upward compatilibity with Caml Special Light is very high. 24

Reactions to Objective Caml

The FOOL community : polite lack of interest.
(“Nice, but not enough like Java.”)

Early adopters of ML : slight concern.
(“You’re not giving up on functional programming, right ?”)

Many newcomers, reassured by familiar objects,
quickly learned to use functions and datatypes instead.

OCaml : the rehabilitation clinic for OO programmers.

(Erik Meijer)

25

Two influential early uses

Active VRML (Todd Knoblock et al, Microsoft Research)
A domain-specific language for animated 3D scenes.

Horus/ML then Ensemble (Robert van Renesse et al, Cornell)
A toolkit for building distributed applications.

An unexpected affinity between OCaml and systems
programming.

26

Major evolutions of O(bjective) Caml

2.00 (Aug 1998) Revised class language

3.00 (Apr 2000) Labeled/optional arguments ; polymorphic variants

3.05 (Jul 2002) Polymorphic record fields and methods

3.07 (Sep 2003) Recursive module definitions

3.08 (Jul 2004) Immediate objects

3.12 (Aug 2010) Polymorphic recursion

3.12 (Aug 2010) First-class modules

4.00 (Jul 2012) Generalized Algebraic Datatypes (GADTs)

27

Labeled/optional arguments ; extensible variants

Two extensions prototyped by J. Garrigue in OLabl, then merged
in OCaml 3.00 :

Labels on function arguments, to make functions more
self-documenting and to support optional arguments.

StringLabels.sub ~pos: 5 ~len: 2 txt

Polymorphic variants, to mix and match data constructors freely.

[‘On; ‘Off] : [> ‘Off | ‘On] list

function ‘On -> 1 | ‘Off -> 0 | ‘Number n -> n

: [< ‘Number of int | ‘Off | ‘On] -> int

Both extensions were motivated by GUI toolkits (LablTk, LablGTK).

28

Modules as first-class values

Implemented by A. Frisch based on a design by Cl. Russo for
Moscow ML. Enable modules to be encapsulated as first-class
values and manipulated by the core language.

module type DEVICE = sig ... end

let devices : (string, (module DEVICE)) Hashtbl.t = Hashtbl.create 17

module SVG = struct ... end

let _ = Hashtbl.add devices "SVG" (module SVG : DEVICE)

module PDF = struct ... end

let _ = Hashtbl.add devices "PDF" (module PDF: DEVICE)

module Device =

(val (try Hashtbl.find devices (parse_cmdline())

with Not_found -> eprintf "Unknown device %s\n"; exit 2)

: DEVICE)
29

Generalized Algebraic Data Types

Implemented by J. Le Normand, J. Garrigue, A. Frisch, based on
ideas by many (see next slide).

A natural idea : constructors of parameterized datatypes (’a ty)
may not all produce ’a ty results, just instances τ ty.

type ’a compact_array =

| Array: ’a array -> ’a compact_array (* default case *)

| Bytes: bytes -> char compact_array (* special case *)

| Bools: bitvect -> bool compact_array (* special case *)

The devil is in the details of type inference for pattern-matchings
over GADTs. . .

30

History of GADTs

1992 Läufer : Polymorphic Type Inference and Abstract
Data Types. “Existential types”, a special case of
GADT.

1994 Augustsson, Petersson : Silly type families (draft).
Let’s remove the regularity condition over
constructor types. Problems to infer the types of
match.

2003 Xi, Chen, Chen : Guarded Recursive Datatype
Constructors. Rediscovery of the same ideas.

2006 Peyton-Jones et al + Pottier and Régis-Gianas. First
algorithms for partial type inference for GADTs
pattern matching.

2007 GHC 6.8.1 : introduction of GADTs in Haskell.
2012 OCaml 4.00 : introduction of GADTs in Caml.

31

Recent and planned evolutions

Since 4.00 : many small additions to the language, e.g.

4.02 (Aug 2014) match ... with exception ...

Extensible datatypes
4.03 (Apr 2016) Inline records
4.12 (Feb 2021) Injectivity annotations on type constructors

In progress :

5.00 Multicore OCaml (shared-memory parallelism)
5. ? ? Some forms of algebraic effects
5. ? ? Modular implicits

32

In closing

A language that evolved gradually

Certainly, seen from 1996, the story [of Caml] could have
been more linear.

(Guy Cousineau, 1996)

Seen from 2021, even more so !

33

A language that is still faithful to its roots

Mostly functional (+ imperative and OO when needed).

Types as the skeleton of the language.

Devotion to type inference and existence of principal types.

34

Beauty can come out of formal constraints

35

An active community that it still organizing

Much collective effort, as exemplified in this OCaml workshop.

Thanks to all for the many contributions.

Keep up the good work !

36

	50 years of ML The early years: from LCF to Core ML
	From CAML to Caml Special Light
	O(bjective) Caml
	In closing

