Xavier Leroy
0OCaml 2021

Collége de France and Inria

From: Xavier Leroy <xleroy AT pauillac.inria.fr>

To: caml-list AT pauillac.inria.fr, comp-lang-ml AT cs.cmu.edu
Subject: Objective Caml 1.00

Date: Thu, 9 May 1996 16:27:36 +0200 (MET DST)

We are proud to announce the availability of Objective Caml version 1.00.

Objective Caml is an object-oriented extension of the Caml dialect of ML.

It is statically type-checked (no "message not understood" run-time errors)
and performs ML-style type reconstruction (no type declarations for function
parameters). This is arguably the first publically available

object-oriented language featuring ML-style type reconstruction.

Objective Caml is a class-based 00 language, and offers pretty much
all standard features of these languages, including "self", single and
multiple inheritance, "super", and binary methods, plus a number of

less common features such as parametric classes. [...]

Objective Caml is based on (and supersedes) the Caml Special Light
system. It inherits from Caml Special Light a powerful module
calculus, Modula-style separate compilation, a fast-turnaround
bytecode compiler, and a high-performance native-code compiler.
Upward compatilibity with Caml Special Light is very high.

50 years of ML
The early years : from LCF to Core ML

Robin Milner, 1934-2010

LCF : an interactive prover for the Logic of Computable Functions

4 \ Lecture Notes in
Computer Science

AD-785 072

LOGIC FOR COMPUTABLE FUNCTIONS Edited by G Goos and J Hartmaris
DESCRIPTION OF A MACHINE IMPLEMENTATION

Robin Milner

Stanford University 78

Michael J. Gord
\. J Wichac| 4 Gordon
4 N\

Christopher P. Wadsworth
Prepared for:

Aavanced Research Projaczl A;e ey
National Ae i i .
LD Edinburgh LCF
AMachansed Lo ofCamputsicn
May 1972 Logic. putate

Proofs are terms of type thm, built using functions such as

trans (t; : thm) (t; : thm) : thm =
if t1is “A = B" and t; is “B = C” then return “A = C" else fail

ML : the Meta Language of the LCF prover

To write these terms, Milner wanted a “meta-language” that was

- applicative (functional);
« interactive (with a REPL);

- strongly typed, to enforce type abstraction on type thm
(making sure the user cannot build “0 = 1" : thm)

LISP would not do, hence Milner invented “ML”, a
functional/imperative language with strong static typing and
type abstraction.

Polymorphism and type inference in ML

JOURNAL OF COMPUTER AND $YSTEM ScIENCES 17, 348-375 (1978) Peincial type-scheses for functicnal prograns

Luts Damast and Rabin Milner
Eatnburon tntversicy

A Theory of Type Polymorphism in Programming

5 Iedue of succasseul use of th

RoBIN MILNER his paper 1s concerned ¥ith the polymorphic other research and in ¢t

trpe atscipline of K., which 16 has bocons saportant

Computer Science Department, University of Edinburgh, Edinburgh, Scotland functionsl prograsming 1u paseiculanty becasse th
Reccived October 10, 1977; revised April 19, 1978 Eisat. introduces as & mtalanguage (shence it [repRp—

sace) for conducting proofs n the LCF proot system soundness) and detectio

(@6, The type Alscipline xas studled in
‘The aim of this work is largely a practical one. A widely employed style of programming, here 1t was shown to be
particularly in structure-processing languages which impose no discipline of types,

has proved to be one of

e atseipiine can

cense sade precise belov, but vhere one lsportant

entails defining procedures which work well on objects of a wide variety. We present a [T
formal type discipline for such polymorphic procedures in the context of a simple pro- estion vas 1e€c cpuns dows e type-checking g, shich mpe & g
gramming language, and a compile time type-checking algorithm %" which enforces the algoritha = or mre prectsely, the type assigument

discipline. A Semantic Soundness Theorem (based on a formal semantics for the language) -

states that well-type programs cannot “go wrong” and a Syntactic Soundness Theorem gk (e s s sasioned by e o [P
states that if %" accepts a program then it is well typed. We also discuss extending these o maticned by the programmr) - £iad

results to richer languages; a type-checking algorithm based on #" is in fact already
implemented and working, for the metalangusge ML in the Edinburgh LCF system.

e roquirea declaratio
e possible for every exprassion

o €0 n 4f nal

Types of function parameters can be inferred from their uses
(e.g. fun x y -> x && not y).

What if they cannot? (e.g. fun x -> x).

 Hindley : give type o — « for some fixed, unknown type a.
« Milner : give a type schema Va. a — « denoting a
polymorphic function. 6

User-defined data structures in LCF ML

Built-in product types t; # t, and sum types t; + t,.

Other datatypes are defined as abstract types + constructor
functions + accessor functions.

Example : binary trees with values of type * at leaves.

absrectype * tree = * + * tree # * tree
with leaf n = abstree(inl n)
and node (t1, t2) = abstree(inr(tl, t2))
and isleaf t = isl(reptree t)
and leafval t = outl(reptree t) 7 failwith ‘leafval‘
and leftchild t = fst(outr(reptree t) ? failwith ‘leftchild®
and rightchild t = snd(outr(reptree t) 7 failwith ‘leftchild’

Inductive types and pattern matching

(R. Burstall, G. Cousineau, D. MacQueen, R. Milner, ...; HOPE, Prolog)

From “typed Lisp”... ...to Core ML

type ’a tree =
| Leaf of ’a

| Node of ’a tree * ’a tree

letrec sumtree t = let rec sumtree t =
if isleaf t then match t with
leafval t | Leaf n -=> n
else | Node(1l, r) -> sumtree 1 + sumtree r

sumtree (leftchild t)
+ sumtree (rightchild t)

Hindley-Milner polymorphic typing
and type inference

Call-by-value Inductive types,
functional language pattern matching

SASL (”Agda#
_—
Miranda —a Haskell —» Haskell98 —»

LazyML —
Hope (V rv Alice

LCF ML SML90 ——— = SML97

Lisp / - MoscowML
Prolog ﬁ (>Reason

CAML — Caml Light — 0OCaml —=

L»F#*

10

From CAML to Caml Special Light

CAML (1985-1994)

(G. Cousineau, G. Huet, M. Mauny, A. Suarez, P. Weis)

Core ML + facilities for “embedded languages”
(parsers, quotations, anti-quotations)

Developed along the Coq proof assistant, as Coq's
implementation language.

let calc env = calcrec
where rec calcrec = function
’Constant(n) -> n
| ’Variable(x) -> assoc x env
| << "el + "e2 >> -> calcrec(el) + calcrec(e2)
| << "el * ~e2 >> -> calcrec(el) * calcrec(e2)

EI

1

CAML = ML running on the CAM

CAML CAM LLM3 Le Lisp
source int. lang. virt. mach. runtime

The Categorical Abstract Machine (G. Cousineau, P-L. Curien, M. Mauny) :
a simple evaluation model for call-by-value, inspired by cartesian
closed categories.

[O] =snd [n+1]=fst;[n]
[A-M] = cur([M])
[M N] = push; [M]; swap; [N]; cons; app
Pro : one of the first formalizations of function closures.
Cons : inefficient; one “cons” for each binding.

12

A decisive encounter

Je connais un langage ou il y a un gros travail
de compilation a faire.

Let me tell you about a programming language where
there is much compilation work to do.

(Guy Cousineau, spring 1988)

13

The ZINC experiment (1989)

(X. L., D. Doligez)

Rapports Techniques

New7

+ Core ML (simplified from CAML).

Proj 1
Caleul symbolique, Programmation
et Génie logiciel

Efficient generational GC.

THE ZINC EXPERIMENT:
AN ECONOMICAL
IMPLEMENTATION OF
THE ML LANGUAGE

An abstract machine (the ZAM)
where bindings use a stack.

A bytecode interpreter
written in C.

Xavier LEROY

14

Caml Light (1991-2000)

(X. L., D. Doligez, P. Weis, M. Mauny)

A completion of the ZINC experiment,
practically usable, esp. for teaching.

: s bl « Type checking and type inference.
The Caml Light syst
release 0.5 « Separate compilation and linking.
+ Modula-2 modules :
Documentation and implementation ﬁle (ml)
user's manual + Iinterface file (mli)-
« Toplevel interactive REPL.
+ Bootstrapped.

Xavier Leroy + Available for Unix, Mac OS, and MS-DOS!

Michel Mauny

(TN 15

Caml Light in higher education

Many undergraduate CS courses used Caml Light, esp. in France.

APPROCHE

FONCTIONNELLE
DELA
PROGRAMMATION
NOUVESUX EXERCICES COURS ET EXERCICES
DALGORITIIMIQUE DINFORMATIQUE

iy

16

Studying the SML module language

Advanced language features for programming “in the large” :
modules (structures) with multiple interfaces (signatures);
parameterized modules (functors) with sharing constraints; ...

As presented in the Definition of Standard ML : complex
type-checking rules based on an internal, DAG-like
representation.

Can we explain SML modules in type-theoretic terms?
(V, 3 quantification; dependent types;...)

17

Type systems for module languages

A Type-Theoretic Approach to Higher-Order Modules with Sharing*

Robert Harper! ~ Mark Lillibridge*
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3891

Abstract Proc. 215t Symp. Principles of Programming Languages, 1994, pages 109-122.
The design of a module system for constructing and main-
taining large programs is a difficult task that raises a number Manifest types, modules, and separate compilation
of theoretical and practical issues. A fundamental issue is h

the management of the flow of information between program
units at compile time via the notion of an interface. Expe-
rience has shown that fully opaque interfaces are awkward

Xavier Leroy *

Stanford University

Abstract

This paper presents a variant of the SML module system
that introduces a strict distinction between abstract types
and manifest types (types whose definitions are part of the
module specification), while retaining most of the expressive
power of the SML module system. The resulting module
system provides much better support for separate compila-
tion.

represent parameterized modules, and function applications

to connect modules—all features that cannot be accounted
“ <" approach.

L makes no provision

parate compilation. s defined as “an interactive
[17]. implying that users are expected to build
s linearly in strict bottom-up order. This re-
quirement can be alleviated by systematic use of functors,
at the cost of extra declarations (sharing constraints) and
late detection of inter-compilation unit type clashes. Re-

Using manifest types (X. L.) / translucent sums (R. Harper and
M. Lillibridge) to express type propagation and sharing.

functor (X: sig type t ... end) -> sig type u = X.t ...

Caml Special Light (1994-1996)

The language : the core Caml Light language + an SML-style
module language using syntactic signatures and manifest types.

The implementation : the Caml Light runtime system
+an improved ZAM2 bytecode compiler and interpreter
+ a native-code compiler.

From: Xavier Leroy <xleroy AT pauillac.inria.fr>
To: caml-list AT pauillac.inria.fr

Subject: Release 1.06 of Caml Special Light
Date: Tue, 12 Sep 1995 11:27:13 +0200 (MET DST)

Announcing Caml Special Light 1.06, the first public release of the
Caml Special Light system.

Caml Special Light is a complete reimplementation of Caml Light that
adds a powerful module system in the style of Standard ML. The module
system is based on the notion of manifest types / translucent sums; it
supports Modula-style separate compilation, and fully transparent
higher-order functors (see the papers in the POPL 94 and 95

proceedings) .
Caml Special Light comprises two compilers: a bytecode compiler in the
style of Caml Light (but up to twice as fast), and a high-performance

native code compiler for the following platforms: [...]

20

O(bjective) Caml

Object orientation in the 1990s

Inheritance Is Not Subtyping

William R. Cook ~ Walter L. Hill Peter S. Canning R
Hewlett-Packard Laboratories A THEORY

P.O. Box 10490 Palo Alto CA 94303-0969 OF OBJECTS
-

- MaRTIN ABADI
Luca CARDELLI
e

A wave that swept industry and software engineering

Non-00 programming languages were seen as irrelevant.

A puzzle for P.L. theory

Hard to explain 0.0. in type-theoretic terms.

(Structural vs. nominal types; inheritance vs. subtyping; elusive encodings;...)

21

Row polymorphism for objects

(D. Rémy, J. Vouillon)

Using rows to keep track of method names and types, and
row variables to keep track of other, not yet known methods.

(m:int; pq) (k : bool; p7)

(m: int; () (m: int; k : bool; p)
Perfect for inferring the type of an object from its uses:

fun x -> x#name ~ string_of_int x#rank

: < name : string; rank : int; .. > -> string

Note : parametric polymorphism, not subtype polymorphism.

22

Objective Caml 1.00 (1996)

(J. Vouillon, D. Rémy)

Caml Special Light
+ objects with row polymorphism in the core language
+ a sub-language for classes (object generators),
including multiple inheritance, self type specialization, ...

class printable_colored_point y c as self =
inherit colored_point y c
inherit printable_point y as super
method print =
print_string "("; super#print; print_string ", ";
print_string (self#color); print_string ")"
end

23

From: Xavier Leroy <xleroy AT pauillac.inria.fr>

To: caml-list AT pauillac.inria.fr, comp-lang-ml AT cs.cmu.edu
Subject: Objective Caml 1.00

Date: Thu, 9 May 1996 16:27:36 +0200 (MET DST)

We are proud to announce the availability of Objective Caml version 1.00.

Objective Caml is an object-oriented extension of the Caml dialect of ML.

It is statically type-checked (no "message not understood" run-time errors)
and performs ML-style type reconstruction (no type declarations for function
parameters). This is arguably the first publically available

object-oriented language featuring ML-style type reconstruction.

Objective Caml is a class-based 00 language, and offers pretty much
all standard features of these languages, including "self", single and
multiple inheritance, "super", and binary methods, plus a number of

less common features such as parametric classes. [...]

Objective Caml is based on (and supersedes) the Caml Special Light
system. It inherits from Caml Special Light a powerful module
calculus, Modula-style separate compilation, a fast-turnaround
bytecode compiler, and a high-performance native-code compiler.

Upward compatilibity with Caml Special Light is very high. 2%

Reactions to Objective Caml

The FOOL community : polite lack of interest.
(“Nice, but not enough like Java.”)

Early adopters of ML : slight concern.
(“You're not giving up on functional programming, right?”)

Many newcomers, reassured by familiar objects,
quickly learned to use functions and datatypes instead.

OCaml : the rehabilitation clinic for 00O programmers.

(Erik Meijer)

23]

Two influential early uses

Active VRML (Todd Knoblock et al, Microsoft Research)
A domain-specific language for animated 3D scenes.

Horus/ML then Ensemble (Robert van Renesse et al, Cornell)
A toolkit for building distributed applications.

An unexpected affinity between OCaml and systems
programming.

26

Major evolutions of O(bjective) Caml

2.00 (Aug 1998) Revised class language

3.00 (Apr2000) Labeled/optional arguments; polymorphic variants
3.05 (Jul 2002) Polymorphic record fields and methods

3.07 (Sep 2003) Recursive module definitions

3.08 (Jul2004) Immediate objects

3.12 (Aug 2010) Polymorphic recursion

3.12 (Aug 2010) First-class modules

4.00 (Jul 2012) Generalized Algebraic Datatypes (GADTSs)

27

Labeled/optional arguments; extensible variants

Two extensions prototyped by J. Garrigue in OLabl, then merged
in OCaml 3.00 :

Labels on function arguments, to make functions more
self-documenting and to support optional arguments.

Stringlabels.sub “"pos: 5 "len: 2 txt

Polymorphic variants, to mix and match data constructors freely.

[‘On; ‘0ff] : [> ‘0ff | ‘On] list
function ‘On -> 1 | ‘Off -> 0 | ‘Number n -> n
[< ‘Number of int | ‘Off | ‘On] -> int

Both extensions were motivated by GUI toolkits (LablTk, LablGTK).

28

Modules as first-class values

Implemented by A. Frisch based on a design by Cl. Russo for
Moscow ML. Enable modules to be encapsulated as first-class
values and manipulated by the core language.

module type DEVICE = sig ... end
let devices : (string, (module DEVICE)) Hashtbl.t = Hashtbl.create 17

module SVG = struct ... end
let _ = Hashtbl.add devices "SVG" (module SVG : DEVICE)
module PDF = struct ... end
let _ = Hashtbl.add devices "PDF" (module PDF: DEVICE)

module Device =
(val (try Hashtbl.find devices (parse_cmdline())
with Not_found -> eprintf "Unknown device %s\n"; exit 2)

: DEVICE)
29

Generalized Algebraic Data Types

Implemented by J. Le Normand, J. Garrigue, A. Frisch, based on
ideas by many (see next slide).

A natural idea : constructors of parameterized datatypes (*a ty)
may not all produce ’a ty results, just instances 7 ty.

type ’a compact_array =
| Array: ’a array -> ’a compact_array (* default case *)
| Bytes: bytes -> char compact_array (* special case *)

| Bools: bitvect -> bool compact_array (* special case *)

The devil is in the details of type inference for pattern-matchings
over GADTs...

30

History of GADTs

1992 Laufer : Polymorphic Type Inference and Abstract
Data Types. “Existential types”, a special case of
GADT.

1994 Augustsson, Petersson : Silly type families (draft).
Let's remove the regularity condition over
constructor types. Problems to infer the types of
match.

2003 Xi, Chen, Chen : Guarded Recursive Datatype
Constructors. Rediscovery of the same ideas.

2006 Peyton-Jones et al + Pottier and Régis-Gianas. First
algorithms for partial type inference for GADTs
pattern matching.

2007 GHC 6.8 : introduction of GADTs in Haskell.

2012 OCaml 4.00 : introduction of GADTs in Caml.
31

Recent and planned evolutions

Since 4.00 : many small additions to the language, e.g.

4.02 (Aug 2014) match ... with exception ...
Extensible datatypes

4.03 (Apr 2016) Inline records

412 (Feb 2021) Injectivity annotations on type constructors

In progress :

5.00 Multicore OCaml (shared-memory parallelism)
5.?? Some forms of algebraic effects
5.?? Modular implicits

32

In closing

A language that evolved gradually

Certainly, seen from 1996, the story [of Caml] could have
been more linear.

(Guy Cousineau, 1996)

Seen from 2021, even more so!

38)

A language that is still faithful to its roots

Mostly functional (+ imperative and 00 when needed).
Types as the skeleton of the language.

Devotion to type inference and existence of principal types.

34

Beauty can come out of formal con

Pilliam Shakespeare
Sonnet 116

Let me not to the marriage of true minds
Admit impediments. Love is not low
Which alters when it alteration finds,
Or bends with the remover to remove:
0, no! it is an ewr-fixed mark,
That looks on tempests and is never shalen;
Itis the star to every wandering barlk,
Whose worth's unknown, although his height be taken.
Love's not Time's fool, though rosy lips and cheeks
Within his bending sickle's compass come;
Love alters not with his brief hours and weeks,
But bears it out even to the edge of doom
If this be error and upon me prov'd,
I never writ, nor no man ever lovd.

FIGURE 4. Opening of Fugue XXIl from Part [of J.S. Bach's
“The Well-Tempered Clavier.”

85

An active community that it still organizing

Much collective effort, as exemplified in this OCaml workshop.

Thanks to all for the many contributions.

Keep up the good work!

36

	50 years of ML The early years: from LCF to Core ML
	From CAML to Caml Special Light
	O(bjective) Caml
	In closing

