
Mechanizing abstract interpretation

Xavier Leroy (Collège de France)
Workshop on the Next 40 years of Abstract Interpretation, 2024-01-20

Why mechanize abstract interpretation?

Because static analyzers deserve formal verification!

• They participate in the production of critical software.
• Abstract interpretation as the framework that guides the

construction of static analyzers and their verification.

Because abstract interpretation is a beautiful theory!

• A general trend towards mechanizing nice mathematics.
• Might learn something new about A.I.
• A stress test for many proof assistants.

2

Why mechanize abstract interpretation?

Because static analyzers deserve formal verification!

• They participate in the production of critical software.
• Abstract interpretation as the framework that guides the

construction of static analyzers and their verification.

Because abstract interpretation is a beautiful theory!

• A general trend towards mechanizing nice mathematics.
• Might learn something new about A.I.
• A stress test for many proof assistants.

2

Some previous attempts (using Coq or Agda)

Theoretical Practical Work
ambition ambition force

David Monniaux Abstract domains, None Master’s
(1998) Galois connections internship

David Pichardie γ-only soundness Interval PhD
(2002–2005, adv. + termination analysis thesis
Cachera & Jensen) for JavaCard

Verasco project γ-only soundness Mini- ANR project
(2012–2015) Astrée (3 PhDs, 5 labs)

David Darais Constructive Gradual PhD
(2013–2017, adv. Galois connections typing thesis
David Van Horn)

3

Project Verasco:
Verification of a static analyzer for C
based on abstract interpretation

The Verasco project

(PhDs: J.-H. Jourdan, V. Laporte, A. Fouilhé; PIs: D. Pichardie & X. Leroy;
participants: S. Blazy, J. Feret, A. Miné, X. Rival, D. Monniaux, M. Périn.)

Goal: develop and verify in Coq a realistic static analyzer by
abstract interpretation:

• Language analyzed: the CompCert subset of C.
• Nontrivial abstract domains, including relational domains.
• Modular architecture inspired from Astrée’s.
• Coq proofs of soundness against the CompCert semantics.

Slogan: if “CompCert = 1/10th of GCC but formally verified”,
likewise “Verasco = 1/10th of Astrée but formally verified”.

4

Architecture

source→ C→ Clight→ C#minor→ Cminor→ · · ·
CompCert compiler

Abstract interpreter

Memory & pointers abstraction

Z→ int

Channel-based combination of domains

NR→ R NR→ R

Integer & F.P.
intervals

Integer
congruences

Symbolic
equalities

Convex
polyhedra

Octagons

OK / AlarmsControl

State

Numbers

5

What is a generic interface for a numerical domain?

For a non-relational domain: the “gamma-only” presentation
used by Pichardie, Bertot, Nipkow, . . .

• A semilattice (A,⊑) of abstract values.
• A concretization relation γ : A→ ℘(Z)

• “Forward” abstract operators such as +#, satisfying

v1 ∈ γ(a1) ∧ v2 ∈ γ(a2)⇒ v1 + v2 ∈ γ(a1 +# a2)

• “Backward” abstract operators (to refine abstractions based
on the results of conditionals) such as <−1

#

If (a′
1, a′

2) = (a1 <
−1
a2),

v1 ∈ γ(a1) ∧ v2 ∈ γ(a2) ∧ v1 < v2 ⇒ v1 ∈ γ(a′
1) ∧ v2 ∈ γ(a′

2)

6

What is a generic interface for a numerical domain?

For a relational domain, the main abstract operations are:

• assign var = expr
• forget var = any-value
• assume expr is true or expr is false

var are program variables or abstract memory locations.

expr are simple expressions (+ − × div mod . . .) over variables
and constants.

To report alarms, we also need to query the domain, e.g.
“is x < y?” or “is x mod 4 = 0?”. The basic queries are

• get_itv expr what is a variation interval for expr?
• nonblock expr is expr always well-defined?

7

The abstract operations

Class ab_machine_env (t var: Type): Type :=

{ leb: t -> t -> bool

; top: t

; join: t -> t -> t

; widen: t -> t -> t

; forget: var -> t -> t+⊥
; assign: var -> nexpr var -> t -> t+⊥
; assume: nexpr var -> bool -> t -> t+⊥
; nonblock: nexpr var -> t -> bool

; get_itv: nexpr var -> t -> num_val_itv+⊤+⊥

8

. . . and their specifications

; γ : t -> ℘ (var->num_val)

; gamma_monotone: forall x y,

leb x y = true -> γ x ⊆ γ y;

; gamma_top: forall x, x ∈ γ top;

; join_sound: forall x y,

γ x ∪ γ y ⊆ γ (join x y)

; forget_correct: forall x ρ n ab,

ρ ∈ γ ab -> (upd ρ x n) ∈ γ (forget x ab)

; assign_correct: forall x e ρ n ab,

ρ ∈ γ ab -> n ∈ eval_nexpr ρ e ->

(upd ρ x n) ∈ γ (assign x e ab)

; assume_correct: forall e ρ ab b,

ρ ∈ γ ab -> of_bool b ∈ eval_nexpr ρ e ->

ρ ∈ γ (assume e b ab)

; nonblock_correct: forall e ρ ab,

ρ ∈ γ ab -> nonblock e ab = true -> block_nexpr ρ e -> False

; get_itv_correct: forall e ρ ab,

ρ ∈ γ ab -> (eval_nexpr ρ e) ⊆ γ (get_itv e ab)

}.

9

An abstract interpreter for the C#minor language

Interp#(stmt) (Ai, Al) = (Ao, Ar, Ae, Ag) + alarm

Structural abstract interpretation, reflecting the different ways a
C#minor statement can be entered and can terminate:

stmt
normallyAi

searching forAl
label ℓ

normally Ao
early by exit(n) Ae

early by return(v) Ar
early by goto(ℓ) Ag

Local fixed-point iteration for loops + global iteration for goto.

Functions are expanded at point of call.

10

Proving the soundness of the abstract interpreter

A two-step approach inspired by Y. Bertot (2005):

1. Soundness of the abstract interpreter w.r.t. a simple Hoare
logic for C#minor:
if Interp#(stmt, Ai, Al) = (Ao, Ar, Ae, Ag) ̸= alarm,
then the weak Hoare 7-tuple

{ γ(Ai), γ(Al) } stmt { γ(Ao), γ(Ar), γ(Ae), γ(Ag) }

is derivable.
2. Soundness of the Hoare logic w.r.t. the small-step

operational semantics of C#minor.

11

Verasco in practice

It works!

• Soundness fully proved (30 000 lines of Coq).
• Executable analyzer obtained by extraction.
• Able to show absence of run-time errors in small but

nontrivial C programs.

It needs improving!

• Some loops need manual unrolling
(to show that an array is fully initialized at the end of a loop).

• The memory abstraction is inefficient.
• Analysis is slow (up to one minute for 100 LOC).

12

Soundness first! . . . but many shortcuts

Compared with The Calculational Design of a Generic Abstract
Interpreter and other holy texts:

• No Galois connections; gamma-only domains.
• No optimality guarantees: lubs are just upper bounds;

abstract operators can over-approximate.
• No guarantees on the termination of fixed-point iteration

(jump to ⊤ after a huge number of iterations).
• No proper collecting semantics.
• No calculations; implement then verify.

A good match for Coq’s constructive logic. . .
but too many ⊤ and some disappointment!

13

Fixed-point iterations in
constructive logic

Tarski’s fixed-point iteration

Let (A,⊑) be a partially-ordered set, with a smallest element ⊥,
satisfying the ascending chain condition:

every increasing sequence x0 ⊑ x1 ⊑ · · · ⊑ xi ⊑ xi+1 ⊑ · · ·
reaches a limit: there exists k s.t. xk = xk+1 = · · · = xk+i .

Theorem (Knaster-Tarski)
Every increasing function F : A→ A has a smallest fixed point,
which is the limit of the sequence ⊥, F(⊥), . . . , Fn(⊥), . . .

14

Accessibility and the chain condition

An alternate statement of the chain condition:

There are no infinite strictly increasing sequences
x0 ⊏ x1 ⊏ · · · ⊏ xi ⊏ xi+1 ⊏ · · ·

A constructive reformulation in terms of well-founded relations:

Every x : A is accessible, written Acc(x), meaning that
all strictly ascending sequences starting in x are finite.

with an inductive characterization of accessibility:

∀y, x ⊏ y ⇒ Acc(y)

Acc(x)

15

Inductive predicate = no infinite branch in the derivation tree

Example: N ∪ {∞} with the usual < ordering.

∞

0 1

0

2

1

0

0

3

2

1

0

0

1

0

0

. . .

16

A computable function for Tarski iteration

Well-founded orders support defining recursive functions that
always terminate because they are structurally recursive over a
proof of accessibility Acc(x) of their recursive argument x.

Program Fixpoint iter (x: A) (PRE: le x (F x)) (ACC: Acc x)

{struct ACC}: A :=

let x’ := F x in

if eq_dec x x’ then x else iter x’ _ _ .

Program Definition lfp := iter bot _ _ .

(The _ are proof terms that are found semi-automatically by Coq.)

Easy proof (by induction on Acc x) that F lfp = lfp.

17

Executable OCaml code for Tarski iteration

“Extraction” (automatic code generation) produces the following
OCaml code:

let rec iter eq_dec f x =

let x’ = f x in if eq_dec x x’ then x else iter eq_dec f x’

let lfp bot eq_dec f =

iter eq_dec f bot

Proof terms have disappeared, since they don’t contribute to the
computation.

18

Post fixed-point iteration with widening

A widening operator ∇, such that x ⊑ x∇y and y ⊑ x∇y for all
x, y, and moreover

for every increasing sequence x0 ⊑ · · · ⊑ xi ⊑ xi+1 ⊑ · · · ,
the sequence defined by y0 = x0 and yi+1 = yi∇xi+1
reaches a limit: there exists k s.t. xk = xk+1 = · · ·

Theorem (Cousot and Cousot, 1992)
If F : A→ A is increasing and a ⊑ F(a), the sequence

x0 = a xi+1 = xi∇F(xi)

reaches a limit b, and b ⊑ F(b).

19

Post fixed-point iteration with widening

X

F(X)

Tarski iteration
xn+1 = F(xn)

Widened iteration
xn+1 = xn∇F(xn)

20

Widened accessibility

A constructive reformulation of the widened ascending chains
condition:

WAcc(x, x) holds for any x : A

where WAcc is the inductive predicate defined by

∀x′, x ⊑ x′ ∧ y∇x′ ̸= y ⇒ WAcc(x′, y∇x′)

WAcc(x, y)

(Read: for any ascending chain starting in x, any widened chain
starting in y reaches a limit after a finite number of steps.)

21

A computable function for post-fixed point computation

Program Fixpoint witer (x y: A) (LE: le x (F y)) (ACC: WAcc x y)

{struct ACC}: A :=

let y’ := F y in

let y’’ := widen y y’ in

if le_dec y’ y then y else witer y’ y’’ _ _ .

Program Definition pfp: A := witer bot bot _ _ .

Easy proof (by induction on WAcc x y) that F pfp ⊑ pfp.

22

A success story for constructive mechanization

The constructive reformulation of the ascending chain
conditions, using inductive predicates, supports the direct
definition of iteration functions by structural recursion, which
terminates by construction.

Yet, these constructive formulations are just as easy to use as the
usual formulations!

23

Towards a mechanization
of Galois connections
and the calculational style

Classic Galois connection (℘(C),⊆) −−→←−−α
γ

(A,⊑)

(x, y) ∈ [1, 5]× [1, 3]

α γ

The adjunction property:

∀a, s, α(s) ⊑ a⇔ s ⊆ γ(a)

24

Calculating sound and optimal abstract operations

F#
def
= α ◦ F ◦ γ

This equation defines an abstraction F# : A→ A of F : C → C that

• is sound:
c ∈ γ(a)⇒ F(c) ∈ γ(F#(a))

• is optimal:

if ∀c ∈ γ(a), F(c) ∈ γ(a′) then F#(a) ⊑ a′

• can be calculated systematically.

25

Calculating sound and optimal abstract operations

succ#(a) = α {x + 1 | x ∈ γ(a)} * by definition of succ# +

= α {· · · | · · · } * for good reasons +

= · · · * case distinction +

= · · · * more good reasons +

=

⊥ if a = ⊥

⊤ if a = ⊤

ODD if a = EVEN

EVEN if a = ODD

26

Problems with α

Sometimes not well defined

Ex: {x | x2 ≤ 2} has no best abstraction as a rational interval.

Generally not computable (as soon as C is infinite)

Ex with intervals: α(s) def
= [inf(s), sup(s)].

For infinite sets s of integers, inf(s) and sup(s) are not
computable.

A computable α can only look at a finite number of elements of s.

27

Proof assistants and non-computable functions

Proof assistants vary in their support for classical logic:

• Agda: purely constructive
• Coq, Lean: constructive + classical axioms (excluded middle)
• HOL4, Isabelle/HOL: fully classical.

But they are all logics of computable functions (Milner’s LCF).

This supports computation within the prover and extraction to
efficient functional code.

Axioms can be added to define non-computable functions
(similar to the axiom of choice, ∀x, ∃y, P(x, y)⇒ ∃f ,∀x, P(x, f (x)))
but this can break executability and extraction.

28

Plan B: no calculations; gamma-only optimality

Pichardie’s approach:

• No α; use only γ : A→ ℘(C) concretization predicates.
• No calculations; define abstract operators F# a priori

(or: calculate them on paper).
• Prove soundness: c ∈ γ(a)⇒ F(c) ∈ F#(a)

• Optionally, prove optimality:
if ∀c ∈ γ(a), F(c) ∈ a′ then F#(a) ⊑ a′.

It works! But some elegance is lost compared with the
calculational approach.

(Plus: elementary proofs of optimality are a pain.)

29

Plan M like Monads (Darais and Van Horn)

Handling I/O and other effectful computations in pure functional
languages via monads:

• a type M(A) of effectful computations of a value of type A.
• ret : A→ M(A) to inject values as trivial computations.
• bind : M(A)→ (A→ M(B))→ M(B) for sequencing.
• but no projection M(A)→ A.

Darais and Van Horn (2016), working in Agda, propose to use a
monad to separate

• computable functions such as F# (w/ constructive logic)
• non-computable functions such as α (w/ classical logic).

30

Calculations in a monadic style

ret(succ#(a)) = α {x + 1 | x ∈ γ(a)} * by definition of succ# +

= . . . * using monad laws +

= · · · * for good reasons +

= ret(match a with

| Bot => Bot

| Top => Top

| Even => Odd

| Odd => Even)

It follows that succ#(a) = match a with

31

Constructive Galois connections (Darais and Van Horn, ICFP 2016, JFP 2019)

Start with two constructive functions:

extraction ν : C → A interpretation µ : A→ ℘(C)

(Extraction must be computable! E.g. to abstract constants. . .)

Derive a Galois connection (℘(C),⊆) −−→←−−α
γ

(℘(A),⊆) by taking

α(c∗) = {ν(c) | c ∈ c∗} γ(a∗) =
⋃
{µ(a) | a ∈ a∗}

As the monad, use classical, infinite, non-computable sets

mon(X) def
= X → Prop

as opposed to computable finite sets of A, which are the
arguments and results of abstract operators.

32

An example of calculation mechanized in Agda (Darais and Van Horn)

On paper Mechanized

Case ae = rand:

{ηz(i) | ρ ∈ µr(ρ♯) ∧ ρ ⊢ rand ⇓a i}
= {ηz(i) | ρ ∈ µr(ρ♯) ∧ i ∈ Z} ! defn. of ρ ⊢ rand ⇓a i "
⊆ {ηz(i) | i ∈ Z} ! ∅ when µr(ρ♯) = ∅ "
⊆ {any} ! {any} mon. w.r.t. ⊑z "
! {A♯[rand](ρ♯)} ! defining A♯[rand] "

Case ae = x:

{ηz(i) | ρ ∈ µr(ρ♯) ∧ ρ ⊢ x ⇓a i}
= {ηz(ρ(x)) | ρ ∈ µr(ρ♯)} ! defn. of ρ ⊢ x ⇓a i "
= {ηz(i) | i ∈ µz(ρ♯(x))} ! defn. of µr(ρ♯) "
⊆ {ρ♯(x)} ! Eq. CGC-Red "
! {A♯[x](ρ♯)} ! defining A♯[x] "

Case ae = x (Monadic):

pure(ηz)∗(A[x]∗(µr(ρ♯)))

= pure(λρ.ηz(ρ(x)))∗(µr(ρ♯)) ! defn. of A[x] "
= pure(ηz)∗(µz∗(ρ♯(x))) ! defn. of µr(ρ♯) "
⊆ ret(ρ♯(x)) ! Eq. CGC-Red "
! pure(A♯[x])(ρ♯) ! defining A♯[x] "

Figure 3. Constructive GC calculations on paper

which unfolds to:

{ηz(i) | ρ ∈ µr(ρ♯) ∧ ρ ⊢ ae ⇓a i} ⊆ {A♯[ae](ρ♯)}

To calculate A♯ we reason equationally from the spec on the left
towards the singleton set on the right, and declare the result the
definition of A♯. We do this by case analysis on ae; we show the
cases for ae = rand and ae = x in Figure 3. Each calculation can
also be written in monadic form, which is the style we mechanize;
we repeat the variable case in monadic form in the figure.

Mechanized Calculation Our Agda calculation of A♯ strongly
resembles the on-paper monadic one. We show the Agda proof
code for abstract variable references in Figure 4. The first line is the
top level definition site for the derivation of A♯ for the Var case.
The proof-mode term is part of our “proof-mode” library which
gives support for calculational reasoning in the form of Agda proof
combinators with mixfix syntax. Statements surrounded by double
square brackets [[e]] restate the current proof state, which Agda will
check is correct. Reasoning steps are employed through !e" terms,
which transform the proof state from the previous form to the next.
The term [focus-right [·] of e] focuses the goal to the right of
the outermost application, scoped between begin and end.

Using constructive Galois connections, our mechanized calcu-
lation closely follows Cousot’s classical one, uses both η and µ
mappings, and results in a verified, executable static analyzer. Such
a result is not possible using classical Galois connections, due to
the inability to encode α functions constructively.

We complete the full calculation of Cousot’s generic abstract
interpreter for WHILE in Agda as supplemental material to this
paper, where the resulting interpreter is both sound and computable
by construction. We also provide our “proof-mode” library which
supports general calculational reasoning with posets.

-- Agda Calculation of Case ae = x:

α[A] (Var x) ρ♯ = [proof-mode]

do [[(pure · ηz) ∗ · (A[Var x] ∗ · (µr · ρ♯))]]

" [focus-right [·] of (pure · ηz) ∗] begin

do [[A[Var x] ∗ · (µr · ρ♯)]]

" ! A[Var]/≡ "
" [[(pure · lookup[x]) ∗ · (µr · ρ♯)]]

" ! lookup/µr/≡ "
" [[µz ∗ · (pure · lookup♯[x] · ρ♯)]]

end

" [[(pure · ηz) ∗ · (µz ∗ · (pure · lookup♯[x] · ρ♯))]]

" ! reductive[ηµ] "
" [[ret · (lookup♯[x] · ρ♯)]]

" [[pure · A♯[Num n] · ρ♯]] #

Figure 4. Constructive GC calculations in Agda

The Classical Design Classically, one first designs a powerset
lifting of the concrete semantics, called a collecting semantics:

A℘[] : aexp→ ℘(env) → ℘(Z)

A℘[ae](R) := {i | ρ ∈ R ∧ ρ ⊢ ae ⇓a}
The classical soundness specification for A♯[ae](ρ♯) is then:

αz(A℘[ae](γr(ρ♯))) ⊑ A♯[ae](ρ♯)

However, as usual, the abstraction αz cannot be mechanized effec-
tively, preventing a mechanized derivation of A♯ by calculus.

5. Case Study: Gradual Type Systems
Recent work in metatheory for gradual type systems by Garcia
et al. [17] shows how a Galois connection discipline can guide the
design of gradual typing systems. Starting with a Galois connection
between precise and gradual types, both the static and dynamic
semantics of the gradual language are derived systematically. This
technique is called Abstracting Gradual Typing (AGT).

The design presented by Garcia et al is to begin with a precise
type system, like the simply typed lambda calculus, and add a new
type ? which functions as the⊤ element in the lattice of type preci-
sion. The precise typing rules are presented with meta-operators <:
for subtyping and

..∨ for the join operator in the subtyping lattice.
The gradual type system is then written using abstract variants <:♯

and
..∨♯

which are proven correct w.r.t. specifications induced by the
Galois connection.

The Precise Type System The AGT paper describes two designs
for gradual type systems in increasing complexity. We chose to
mechanize a hybrid of the two which is simple, like the first de-
sign, yet still exercises key challenges addressed by the second. We
also made slight modifications to the design at parts to make mech-
anization easier, but without changing the nature of the system.

The precise type system we mechanized is the simply typed
lambda calculus with booleans, and top and bottom elements for
a subtyping lattice, which we call any and none:

τ ∈ type ::= none | B | τ → τ | any
The first design in the AGT paper does not involve subtyping,
and their second design incorporates record types with width and
depth subtyping. By just focusing on none and any, we exercise

320

Case ae = rand:

{ηz(i) | ρ ∈ µr(ρ♯) ∧ ρ ⊢ rand ⇓a i}
= {ηz(i) | ρ ∈ µr(ρ♯) ∧ i ∈ Z} ! defn. of ρ ⊢ rand ⇓a i "
⊆ {ηz(i) | i ∈ Z} ! ∅ when µr(ρ♯) = ∅ "
⊆ {any} ! {any} mon. w.r.t. ⊑z "
! {A♯[rand](ρ♯)} ! defining A♯[rand] "

Case ae = x:

{ηz(i) | ρ ∈ µr(ρ♯) ∧ ρ ⊢ x ⇓a i}
= {ηz(ρ(x)) | ρ ∈ µr(ρ♯)} ! defn. of ρ ⊢ x ⇓a i "
= {ηz(i) | i ∈ µz(ρ♯(x))} ! defn. of µr(ρ♯) "
⊆ {ρ♯(x)} ! Eq. CGC-Red "
! {A♯[x](ρ♯)} ! defining A♯[x] "

Case ae = x (Monadic):

pure(ηz)∗(A[x]∗(µr(ρ♯)))

= pure(λρ.ηz(ρ(x)))∗(µr(ρ♯)) ! defn. of A[x] "
= pure(ηz)∗(µz∗(ρ♯(x))) ! defn. of µr(ρ♯) "
⊆ ret(ρ♯(x)) ! Eq. CGC-Red "
! pure(A♯[x])(ρ♯) ! defining A♯[x] "

Figure 3. Constructive GC calculations on paper

which unfolds to:

{ηz(i) | ρ ∈ µr(ρ♯) ∧ ρ ⊢ ae ⇓a i} ⊆ {A♯[ae](ρ♯)}

To calculate A♯ we reason equationally from the spec on the left
towards the singleton set on the right, and declare the result the
definition of A♯. We do this by case analysis on ae; we show the
cases for ae = rand and ae = x in Figure 3. Each calculation can
also be written in monadic form, which is the style we mechanize;
we repeat the variable case in monadic form in the figure.

Mechanized Calculation Our Agda calculation of A♯ strongly
resembles the on-paper monadic one. We show the Agda proof
code for abstract variable references in Figure 4. The first line is the
top level definition site for the derivation of A♯ for the Var case.
The proof-mode term is part of our “proof-mode” library which
gives support for calculational reasoning in the form of Agda proof
combinators with mixfix syntax. Statements surrounded by double
square brackets [[e]] restate the current proof state, which Agda will
check is correct. Reasoning steps are employed through !e" terms,
which transform the proof state from the previous form to the next.
The term [focus-right [·] of e] focuses the goal to the right of
the outermost application, scoped between begin and end.

Using constructive Galois connections, our mechanized calcu-
lation closely follows Cousot’s classical one, uses both η and µ
mappings, and results in a verified, executable static analyzer. Such
a result is not possible using classical Galois connections, due to
the inability to encode α functions constructively.

We complete the full calculation of Cousot’s generic abstract
interpreter for WHILE in Agda as supplemental material to this
paper, where the resulting interpreter is both sound and computable
by construction. We also provide our “proof-mode” library which
supports general calculational reasoning with posets.

-- Agda Calculation of Case ae = x:

α[A] (Var x) ρ♯ = [proof-mode]

do [[(pure · ηz) ∗ · (A[Var x] ∗ · (µr · ρ♯))]]

" [focus-right [·] of (pure · ηz) ∗] begin

do [[A[Var x] ∗ · (µr · ρ♯)]]

" ! A[Var]/≡ "
" [[(pure · lookup[x]) ∗ · (µr · ρ♯)]]

" ! lookup/µr/≡ "
" [[µz ∗ · (pure · lookup♯[x] · ρ♯)]]

end

" [[(pure · ηz) ∗ · (µz ∗ · (pure · lookup♯[x] · ρ♯))]]

" ! reductive[ηµ] "
" [[ret · (lookup♯[x] · ρ♯)]]

" [[pure · A♯[Num n] · ρ♯]] #

Figure 4. Constructive GC calculations in Agda

The Classical Design Classically, one first designs a powerset
lifting of the concrete semantics, called a collecting semantics:

A℘[] : aexp→ ℘(env) → ℘(Z)

A℘[ae](R) := {i | ρ ∈ R ∧ ρ ⊢ ae ⇓a}
The classical soundness specification for A♯[ae](ρ♯) is then:

αz(A℘[ae](γr(ρ♯))) ⊑ A♯[ae](ρ♯)

However, as usual, the abstraction αz cannot be mechanized effec-
tively, preventing a mechanized derivation of A♯ by calculus.

5. Case Study: Gradual Type Systems
Recent work in metatheory for gradual type systems by Garcia
et al. [17] shows how a Galois connection discipline can guide the
design of gradual typing systems. Starting with a Galois connection
between precise and gradual types, both the static and dynamic
semantics of the gradual language are derived systematically. This
technique is called Abstracting Gradual Typing (AGT).

The design presented by Garcia et al is to begin with a precise
type system, like the simply typed lambda calculus, and add a new
type ? which functions as the⊤ element in the lattice of type preci-
sion. The precise typing rules are presented with meta-operators <:
for subtyping and

..∨ for the join operator in the subtyping lattice.
The gradual type system is then written using abstract variants <:♯

and
..∨♯

which are proven correct w.r.t. specifications induced by the
Galois connection.

The Precise Type System The AGT paper describes two designs
for gradual type systems in increasing complexity. We chose to
mechanize a hybrid of the two which is simple, like the first de-
sign, yet still exercises key challenges addressed by the second. We
also made slight modifications to the design at parts to make mech-
anization easier, but without changing the nature of the system.

The precise type system we mechanized is the simply typed
lambda calculus with booleans, and top and bottom elements for
a subtyping lattice, which we call any and none:

τ ∈ type ::= none | B | τ → τ | any
The first design in the AGT paper does not involve subtyping,
and their second design incorporates record types with width and
depth subtyping. By just focusing on none and any, we exercise

320

33

Plan U like Universes: exploiting the Prop/Type separation

Instead of monads, some languages use type and effect systems
to control effects (e.g. throws clauses in Java).

Likewise(?), Coq and Lean distinguish between

• Prop, the universe of logical propositions and their proofs;
• Type, the universe of data types and their computations.

Various combinations are possible, but a computation in Type

cannot depend on a proof in Prop.

34

Prop vs Type

From a proof of terminates(tm) ∨ ¬terminates(tm),
we can reason by case whether tm terminates or not:

terminates(tm) ∨ ¬terminates(tm)→ P : Prop

but we cannot define a Boolean-valued “it terminates” function:

terminates(tm) ∨ ¬terminates(tm)→ bool : Type

(All functions with this type are constant.)

This makes it possible to add excluded middle as an axiom
without endangering extraction (which erases all of Prop).

35

Plan U in Coq

1) Define α as a relation between ℘(C) and A:
Inductive is_alpha (cc: Z → Prop) : A → Prop :=

| is_alpha_bot:

(∀ c, ∼cc c) →
is_alpha cc Bot

| is_alpha_even: ∀ c1,
cc c1 →
(∀ c, cc c → c mod 2 = 0) →
is_alpha cc Even

| is_alpha_odd: ∀ c1,
cc c1 →
(∀ c, cc c → c mod 2 = 1) →
is_alpha cc Odd

| is_alpha_top: ∀ c0 c1,

cc c0 → cc c1 → c0 mod 2 = 0 → c1 mod 2 = 1 →
is_alpha cc Top.

36

Plan U in Coq

1) Define α as a relation between ℘(C) and A:

2) Show that it satisfies the adjunction property:

Lemma adjunction: ∀ cc a, is_alpha cc a →
∀ a’, le a a’ ↔ (∀ c, cc c → gamma c a’).

36

Plan U in Coq

1) Define α as a relation between ℘(C) and A:

2) Show that it satisfies the adjunction property:

3) Do not use a choice / description axiom to get an alpha

function from the is_alpha predicate. This leads nowhere and
endangers extraction.

36

Plan U in Coq

1) Define α as a relation between ℘(C) and A:

2) Show that it satisfies the adjunction property:

3) Do not use a choice / description axiom to get an alpha

function from the is_alpha predicate. This leads nowhere and
endangers extraction.

4) Describe abstract operators with the help of is_alpha.

Lemma succsharp_exist:

∀ a, {a’ | is_alpha (fun n ⇒ ∃ m, gamma a m ∧ n = succ m) a’}

36

Plan U in Coq

1) Define α as a relation between ℘(C) and A:

2) Show that it satisfies the adjunction property:

3) Do not use a choice / description axiom to get an alpha

function from the is_alpha predicate. This leads nowhere and
endangers extraction.

4) Describe abstract operators with the help of is_alpha.

5) Use interactive proof mode to construct a’.

6) Project out the abstract operator and its soundness and
optimality proof.
Definition succsharp (a: A) := proj1_sig (succsharp_exist a).

Lemma succsharp_sound_complete: ∀ a,
is_alpha (fun x ⇒ ∃ y, gamma y a ∧ x = y + 1) (succsharp a).

36

A glimpse of the “calculation”

Proof.

intros. destruct a; unfold gamma.

- (* Bot *)

econstructor; eapply is_alpha_bot. firstorder.

- (* Top *)

econstructor; eapply is_alpha_top with (c0 := 0) (c1 := 1).

∃ (-1); auto. ∃ 0; auto. reflexivity. reflexivity.

- (* Even *)

∃ Odd. apply is_alpha_odd with (c1 := 1).

∃ 0; auto.

intros c’ (y & P & Q). subst c’. unfold eta.

rewrite ← Z.add_mod_idemp_l, P by lia. reflexivity.

- (* Odd *)

∃ Even. apply is_alpha_even with (c1 := 0).

∃ (-1); auto.

intros c’ (y & P & Q). subst c’. unfold eta.

rewrite ← Z.add_mod_idemp_l, P by lia. reflexivity.

Defined. 37

A Pyrrhic victory for mechanization

In the end, it is possible to mechanize some forms of Galois
connections (Darais & Van Horn’s η/µ or my is−α/γ)
and use them to calculate abstract operations.

The mechanized approaches don’t have (yet?) the crispness nor
the immediacy of the classic pencil-and-paper presentation of AI.

38

What’s next?

On the formal verification of static analyzers

Naive, γ-only abstract interpretation provides a robust approach.

Textbook material (e.g. Concrete Semantics, Nikpow & Klein).

Scales to nontrivial relational analysis (see the Verasco project).

Hard to scale much further: complex algorithms, difficult proofs.

Little interest for verified static analysis (outside of compilers).

39

On the mechanization of abstract interpretation

Still a challenge for contemporary proof assistants:

• Abstract interpretation is deeply grounded in set theory,
yet produces algorithms in the end.

• Poor support for the calculational style, not just for A.I.
but also for Bird-style program derivations, or even for
undergraduate mathematics.

40

	Project Verasco: Verification of a static analyzer for C based on abstract interpretation
	Fixed-point iterations in constructive logic
	Towards a mechanization of Galois connections and the calculational style
	What's next?

