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Part I

Imperfect software



Software crashes. . .

Paris highway Las Vegas billboard



Software crashes. . .

Metro station, Manhattan Heathrow airport



Software crashes. . .

Olympic games, 2008

Nine Inch Nails concert



Software has security holes. . .

Attacker can remotely control
many of the car’s functions.

Fiat-Chrysler recalled 1.5 M
vehicles for software update.

8 
 

Network Architecture 
The architecture of the 2014 Jeep Cherokee was very intriguing to us due to the fact that the head unit 
(Radio) is connected to both CAN buses that are implemented in the vehicle.  

 
Figure: 2014 Jeep Cherokee architecture diagram 

We speculated that if the Radio could be compromised, then we would have access to ECUs on both the 
CAN-IHS and CAN-C networks, meaning that messages could be sent to all ECUs that control physical 
attributes of the vehicle. You’ll see later in this paper that our remote compromise of the head unit does 
not directly lead to access to the CAN buses and further exploitation stages were necessary.  With that 
being said, there are no CAN bus architectural restrictions, such as the steering being on a physically 
separate bus.  If we can send messages from the head unit, we should be able to send them to every 
ECU on the CAN bus. 

  

Remote Exploitation of an Unaltered Passenger Vehicle, C. Miller and C. Valasek, 2015



Software kills. . .

Therac 25 radiation machine Newborn monitor
(3 patients dead following (several cases of sudden infant death

massive overdose.) where the alarm did not ring)



Part II

A glimpse of hope:

Critical avionics software



Running example: fly-by-wire software
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(G. Ladier)



Timeline

Avro CF 105
(analog)

1958

Concorde
(analog)

1969

Airbus 320
(digital)

1984

Boeing 777
(digital)

1995
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Functions of FBW software
AIRBUS FLIGHT CONTROL LAWS

Click Here for printer friendly version.
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Load Factor
Limitation
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NORMAL LAW

High Speed
Protection

Flight Augmentation
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Load Factor
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Only

 

 

   
DIRECT LAW

   

 

FLIGHT CONTROL LAWS SUMMARY

 
NORMAL LAW

Normal operating configuration of the system. Failure of
any single computer does not affect normal law. 

Covers 3-axis control, flight envelope protection, and load

Execute pilot’s commands.

Flight assistance: keep aircraft
within safe flight envelope.

Fuel economy: minimize drag.

Active damping of oscillations.



Anatomy of FBW systems

Two-part software:

• A minimalistic operating system (written in C)

(Boot, self-tests, communications over buses, static
scheduling of periodic tasks. Generally hand-crafted,
sometimes off-the-shelf.)

• Mostly: control-command code (in Simulink/Scade)

(≈ discretized differential equations)

Hard real-time.

100k – 1M LOC of C code, mostly generated from Scade/Simulink.

Asymmetric redundancy (e.g. 3 primary units, 3 secondary).



Implementing a control law

“Hello, world” example: PID controller.

Error e(t) = desired state(t)− current state(t).

Action a(t) = Kpe(t) + Ki

∫ t

0
e(t)dt + Kd

d

dt
e(t)

(Proportional) (Integral) (Derivative)



Implementing a control law

Mechanical (e.g. pneumatic):



Implementing a control law

Analog electronics:



Implementing a control law

In software (today’s favorite solution):

previous_error = 0; integral = 0

loop forever:

error = setpoint - actual_position

integral = integral + error * dt

derivative = (error - previous_error) / dt

output = Kp * error + Ki * integral + Kd * derivative

previous_error = error

wait(dt)



Block diagrams
(Simulink, Scade, Scicos, etc)

This kind of code is rarely hand-written, but rather auto-generated
from block diagrams:



Block diagrams and reactive languages

In the case of Scade, this diagram is a graphical syntax for the
Lustre reactive language:

error = setpoint - position

integral = (0 -> pre(integral)) + error * dt

derivative = (error - (0 -> pre(error))) / dt

output = Kp * error + Ki * integral + Kd * derivative

(= Time-indexed series defined by recursive equations.)



Block diagrams and reactive languages

Control law
a(t) = Kpe(t) + Ki

∫ t
0 e(t)dt + Kd

d
dt
e(t)

Block diagram

Lustre code

Recursive sequences

in = in−1 + en.dt
dn = (en − en−1)/dt
on = Kpen + Ki in + Kddn

C code

(modeling)

(discretization)

(syntax)

(semantics)

(code generation)
(hand-coding)

Lustre: an example of a successful domain specific language.



The certification process (DO-178)
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Design and development process is meticulous and fully
documented.

Rigorous validation at multiple levels (from design to product):

• Reviews (qualitative)

• Analyses (quantitative)

• Test, test!, test!!, test, test, test, test, . . .

• Recent development: use of formal verification tools.



From unit testing. . .

double max(double x, double y)

{

if (x >= y) return x; else return y;

}

max(0,0) = 0 max(1,-1) = 1

max(0,1) = 1 max(1,3.14) = 3.14

max(0,-1) = 0 max(1,inf) = inf

max(0,3.14) = 3.14 max(inf,0) = inf

max(0,inf) = inf max(inf,-inf) = inf

max(0,-inf) = 0 max(nan,0) = 0

max(1,0) = 1 max(0,nan) = nan

max(1,1) = 1



. . . to integration testing. . .
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. . . to exploration on an Iron Bird. . .



. . . to test flights



Part III

Tool-assisted formal verification



Beyond testing: formal verification

Program testing can be used to show the presence of bugs,
but never to show their absence!

(E.W.Dijkstra, 1972)

Formal verification of software:
verify, possibly infer, properties that hold of all possible executions
of a program.

Used in some industrial contexts (airplanes, railways)

• To obtain independent guarantees (besides testing).

• To obtain stronger guarantees (than with testing).

• To replace costly unit tests.



A panorama of verification tools

Basic safety Full correctness

Automatic

Interactive

106 LOC

102 LOC

Static analyzers

Model checkers

Deductive program provers

Proof assistants

Static analysis: automatically infer simple properties of one variable
(x ∈ [N1,N2], x mod N = 0, etc) or several (x + y ≤ z).



A panorama of verification tools

Basic safety Full correctness

Automatic

Interactive

106 LOC

102 LOC

Static analyzers

Model checkers

Deductive program provers

Proof assistants

Model checking: automatically check that some “bad” program
points are not reachable.



A panorama of verification tools

Basic safety Full correctness

Automatic

Interactive

106 LOC

102 LOC

Static analyzers

Model checkers

Deductive program provers

Proof assistants

Program proof: show that
preconditions⇒ invariants⇒ postconditions
using automated theorem provers.



A panorama of verification tools

Basic safety Full correctness

Automatic

Interactive

106 LOC

102 LOC

Static analyzers

Model checkers

Deductive program provers

Proof assistants

Proof assistants: conduct mathematical proofs in interaction with
the user; re-check the proofs for correctness.



Example: computing prime numbers

int a[] = new int[n];

a[0] = 2;

loop:

for (int i = 1, m = 3; i < n; m = m + 2) {
int j = 0;

while (j < i ∧ a[j] <=
√
m ) {

if (a[j] divides m) continue loop;

j = j + 1;

}
a[i] = m; i = i + 1;

}

Goal: compute the first n prime numbers.

Algorithm: try successive odd numbers m, striking out those
divisible by primes already found.



Example: computing prime numbers

int a[] = new int[n];

a[0] = 2;

loop:

for (int i = 1, m = 3; i < n; m = m + 2) {
int j = 0;

while (j < i ∧ a[j] <=
√
m ) {

if (a[j] divides m) continue loop;

j = j + 1;

}
a[i] = m; i = i + 1;

}

Static analyzer: can infer 1 ≤ i < n and 0 ≤ j < i inside the loop,
hence array accesses are safe (within bounds).



Example: computing prime numbers

int a[] = new int[n];

a[0] = 2;

loop:

for (int i = 1, m = 3; i < n; m = m + 2) {
int j = 0;

while (j < i ∧ a[j] <=
√
m ) {

if (a[j] divides m) continue loop;

j = j + 1;

}
a[i] = m; i = i + 1;

}

Automatic program prover: can prove partial correctness if the user
provides detailed loop invariants and simple axioms about primality
and divisibility. (Termination is harder to prove.)



Example: computing prime numbers

int a[] = new int[n];

a[0] = 2;

loop:

for (int i = 1, m = 3; i < n; m = m + 2) {
/* invariant:

∀k , 0 ≤ k < i ⇒ isprime(a[k])
∀p, 2 ≤ p < m ∧ isprime(p) ⇒ ∃k , 0 ≤ k < i ∧ a[k] = p
∀k ,m, 0 ≤ k < j < i ⇒ a[k] < a[j ]

*/

Automatic program prover: can prove partial correctness if the user
provides detailed loop invariants and simple axioms about primality
and divisibility. (Termination is harder to prove.)



Example: computing prime numbers
Knuth, The Art of Computer Programming, vol.1

int a[] = new int[n];

a[0] = 2;

loop:

for (int i = 1, m = 3; i < n; m = m + 2) {
int j = 0;

while (j < i ∧ a[j] <=
√
m ) {

if (a[j] divides m) continue loop;

j = j + 1;

}
...

Knuth’s cunning optimization: the test j < i is redundant and can
be omitted. Can you see why? Because of Bertrand’s postulate!

Theorem (Chebychev, 1850; Erdös, 1932; Coq proof: Théry, 2002)

For all n > 1, there exists a prime p in ]n, 2n [.
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Success stories in verification of
avionics code

Simulink, Scade

C code

Executable
AiT WCET

(precise time bounds)

Astrée
(absence of run-time errors,

incl. floating-point)

Caveat
(program proof) (*)

Rockwell-Collins toolchain
(model-checking + proof)

(*) Motto: “unit proofs as a replacement for unit tests”
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Success stories in verification of
avionics code

Simulink, Scade

C code

Executable
AiT WCET

(precise time bounds)

Astrée
(absence of run-time errors,

incl. floating-point)

Caveat
(program proof) (*)

Rockwell-Collins toolchain
(model-checking + proof)

(*) Motto: “unit proofs as a replacement for unit tests”



Success stories in verification of
systems code

The seL4 secure microkernel: (NICTA, 2009)

• Full correctness proof of a high-performance microkernel.

• Using the Isabelle/HOL proof assistant + custom automation.

• 8 KLOC of C code, 200 KLOC proof, 20 person.years.

• The largest deductive verification of a software system ever.

The Yxv6 file system: (U. Washington, 2016)

• Formally proved correct even in the presence of crashes.

• Automated verification using the custom Yggdrasil tool.



Part IV

Formally-verified compilation



Trust in software verification

Simulink, Scade

Code generator

C code

Compiler

Executable

Simulation

Model-checking

Program proof

Static analysis

Testing

?

?

The unsoundness risk: Are verification tools semantically sound?

The miscompilation risk: Are compilers semantics-preserving?



Miscompilation happens

NULLSTONE isolated defects [in integer division] in twelve of
twenty commercially available compilers that were evaluated.

http://www.nullstone.com/htmls/category/divide.htm

We tested thirteen production-quality C compilers and, for
each, found situations in which the compiler generated
incorrect code for accessing volatile variables.

E. Eide & J. Regehr, EMSOFT 2008

To improve the quality of C compilers, we created Csmith, a
randomized test-case generation tool, and spent three years
using it to find compiler bugs. During this period we reported
more than 325 previously unknown bugs to compiler
developers. Every compiler we tested was found to crash and
also to silently generate wrong code when presented with valid
input.

X. Yang, Y. Chen, E. Eide & J. Regehr, PLDI 2011



An example of optimizing compilation

~a · ~b =
i<n∑
i=0

aibi

double dotproduct(int n, double * a, double * b)

{

double dp = 0.0;

int i;

for (i = 0; i < n; i++) dp += a[i] * b[i];

return dp;

}

Compiled with a good compiler, then manually decompiled to C. . .



double dotproduct(int n, double a[], double b[]) {
dp = 0.0;

if (n <= 0) goto L5;

r2 = n - 3; f1 = 0.0; r1 = 0; f10 = 0.0; f11 = 0.0;

if (r2 > n || r2 <= 0) goto L19;

prefetch(a[16]); prefetch(b[16]);

if (4 >= r2) goto L14;

prefetch(a[20]); prefetch(b[20]);

f12 = a[0]; f13 = b[0]; f14 = a[1]; f15 = b[1];

r1 = 8; if (8 >= r2) goto L16;

L17: f16 = b[2]; f18 = a[2]; f17 = f12 * f13;

f19 = b[3]; f20 = a[3]; f15 = f14 * f15;

f12 = a[4]; f16 = f18 * f16;

f19 = f29 * f19; f13 = b[4]; a += 4; f14 = a[1];

f11 += f17; r1 += 4; f10 += f15;

f15 = b[5]; prefetch(a[20]); prefetch(b[24]);

f1 += f16; dp += f19; b += 4;

if (r1 < r2) goto L17;

L16: f15 = f14 * f15; f21 = b[2]; f23 = a[2]; f22 = f12 * f13;

f24 = b[3]; f25 = a[3]; f21 = f23 * f21;

f12 = a[4]; f13 = b[4]; f24 = f25 * f24; f10 = f10 + f15;

a += 4; b += 4; f14 = a[8]; f15 = b[8];

f11 += f22; f1 += f21; dp += f24;

L18: f26 = b[2]; f27 = a[2]; f14 = f14 * f15;

f28 = b[3]; f29 = a[3]; f12 = f12 * f13; f26 = f27 * f26;

a += 4; f28 = f29 * f28; b += 4;

f10 += f14; f11 += f12; f1 += f26;

dp += f28; dp += f1; dp += f10; dp += f11;

if (r1 >= n) goto L5;

L19: f30 = a[0]; f18 = b[0]; r1 += 1; a += 8; f18 = f30 * f18; b += 8;

dp += f18;

if (r1 < n) goto L19;

L5: return dp;

L14: f12 = a[0]; f13 = b[0]; f14 = a[1]; f15 = b[1]; goto L18;

}
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Addressing miscompilation

Best industrial practices: more testing; manual reviews of
generated assembly code; turn optimizations off; . . .

A more radical solution: why not formally verify the compiler itself?

After all, compilers have simple specifications:

If compilation succeeds, the generated code should
behave as prescribed by the semantics of the source
program.

As a corollary, we obtain:

Any safety property of the observable behavior of the
source program carries over to the generated executable
code.



An old idea. . .

Mathematical Aspects of Computer Science, 1967



An old idea. . .

Machine Intelligence (7), 1972.



The next 100 papers
Maulik Dave, Compiler verification, a bibliography, 2003
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The CompCert project
(X.Leroy, S.Blazy, et al)

Develop and prove correct a realistic compiler, usable for critical
embedded software.

• Source language: a very large subset of C99.

• Target language: PowerPC/ARM/x86 assembly.

• Generates reasonably compact and fast code
⇒ careful code generation; some optimizations.

Note: compiler written from scratch, along with its proof; not
trying to prove an existing compiler.



The formally verified part of the compiler

CompCert C Clight C#minor

CminorCminorSelRTL

LTL Linear Mach

Asm PPCAsm ARMAsm x86

side-effects out

of expressions

type elimination

loop simplifications

stack allocation

of “&” variables

instruction

selection

CFG construction

expr. decomp.

register allocation (IRC)

calling conventions

linearization

of the CFG

layout of

stack frames

asm code generation

Optimizations: constant prop., CSE,

inlining, tail calls



Formally verified using Coq

The correctness proof (semantic preservation) for the compiler is
entirely machine-checked, using the Coq proof assistant.

Theorem transf_c_program_preservation:

forall p tp beh,

transf_c_program p = OK tp ->

program_behaves (Asm.semantics tp) beh ->

exists beh’, program_behaves (Csem.semantics p) beh’

/\ behavior_improves beh’ beh.

Shows refinement of observable behaviors beh:

• Reduction of internal nondeterminism
(e.g. choose one evaluation order among the several allowed by C)

• Replacement of run-time errors by more defined behaviors
(e.g. optimize away a division by zero)



Compiler verification patterns (for each pass)

transformation transformation

validator

×

transformation

untrusted solver

×

checker

Verified transformation Verified translation validation

External solver with verified validation

= formally verified

= not verified



Programmed (mostly) in Coq

All the verified parts of the compiler are programmed directly in
Coq’s specification language, using pure functional style.

• Monads to handle errors and mutable state.

• Purely functional data structures.

Coq’s extraction mechanism produces executable Caml code from
these specifications.

Claim: purely functional programming is the shortest path to
writing and proving a program.



The whole Compcert compiler

AST C

AST Asm

C source

AssemblyExecutable
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Performance of generated code
(On a Power 7 processor)
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A tangible increase in quality

The striking thing about our CompCert results is that the
middleend bugs we found in all other compilers are
absent. As of early 2011, the under-development version
of CompCert is the only compiler we have tested for
which Csmith cannot find wrong-code errors. This is not
for lack of trying: we have devoted about six CPU-years
to the task. The apparent unbreakability of CompCert
supports a strong argument that developing compiler
optimizations within a proof framework, where safety
checks are explicit and machine-checked, has tangible
benefits for compiler users.

X. Yang, Y. Chen, E. Eide, J. Regehr, PLDI 2011



Part V

Conclusions



Is software perfection within reach?

Perhaps! But at a minimum we need:

• Mathematical specifications (e.g. control-command)

• Appropriate programming languages (e.g. Scade)

• Serious testing (of the airplane kind)

• Formal verification (static analysis, model checking, program proof)

• Trustworthy tools (CompCert, Verasco)

• Theorem proving (Coq, HOL, Z3, . . . )

• . . . and further research!
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