
Formally verifying a compiler:
what does it mean, exactly?

Xavier Leroy

INRIA Paris

ICALP, 2016-07-13

Tool-assisted formal verification

Old, fundamental ideas. . .
(Hoare logic, 1960’s; model checking, abstract interpretation, 1970’s)

that remained theoretical for a long time. . .

are now implemented and automated in verification tools. . .

usable and sometimes used in the critical software industry.

A panorama of verification tools

Basic safety Full correctness

Automatic

Interactive

106 LOC

102 LOC

Static analyzers

Model checkers

Deductive program provers

Proof assistants

Static analysis: automatically infer simple properties of one variable
(x ∈ [N1,N2], x mod N = 0, etc) or several (x + y ≤ z).

A panorama of verification tools

Basic safety Full correctness

Automatic

Interactive

106 LOC

102 LOC

Static analyzers

Model checkers

Deductive program provers

Proof assistants

Model checking: automatically check that some “bad” program
points are not reachable.

A panorama of verification tools

Basic safety Full correctness

Automatic

Interactive

106 LOC

102 LOC

Static analyzers

Model checkers

Deductive program provers

Proof assistants

Program proof (Hoare logic, separation logic): show that
preconditions⇒ invariants⇒ postconditions
using automated theorem provers.

A panorama of verification tools

Basic safety Full correctness

Automatic

Interactive

106 LOC

102 LOC

Static analyzers

Model checkers

Deductive program provers

Proof assistants

Proof assistants: conduct mathematical proofs in interaction with
the user; re-check the proofs for correctness.

Examples of uses for avionics software

Simulink, Scade

C code

Executable
AiT WCET

(precise time bounds)

Astrée
(absence of run-time errors,

incl. floating-point)

Caveat
(program proof) (*)

Rockwell-Collins toolchain
(model-checking + proof)

(*) Motto: “unit proofs as a replacement for unit tests”

Examples of uses for avionics software

Simulink, Scade

C code

Executable
AiT WCET

(precise time bounds)

Astrée
(absence of run-time errors,

incl. floating-point)

Caveat
(program proof) (*)

Rockwell-Collins toolchain
(model-checking + proof)

(*) Motto: “unit proofs as a replacement for unit tests”

Examples of uses for avionics software

Simulink, Scade

C code

Executable
AiT WCET

(precise time bounds)

Astrée
(absence of run-time errors,

incl. floating-point)

Caveat
(program proof) (*)

Rockwell-Collins toolchain
(model-checking + proof)

(*) Motto: “unit proofs as a replacement for unit tests”

Examples of uses for avionics software

Simulink, Scade

C code

Executable
AiT WCET

(precise time bounds)

Astrée
(absence of run-time errors,

incl. floating-point)

Caveat
(program proof) (*)

Rockwell-Collins toolchain
(model-checking + proof)

(*) Motto: “unit proofs as a replacement for unit tests”

Trust in tools
that participate in

the production and verification of critical software

Trust in formal verification

Simulink, Scade

Code generator

C code

Compiler

Executable

Simulation

Model-checking

Program proof

Static analysis

Testing

?

?

The unsoundness risk: Are verification tools semantically sound?

The miscompilation risk: Are compilers semantics-preserving?

Miscompilation happens

We tested thirteen production-quality C compilers and, for
each, found situations in which the compiler generated
incorrect code for accessing volatile variables.

E. Eide & J. Regehr, EMSOFT 2008

To improve the quality of C compilers, we created Csmith, a
randomized test-case generation tool, and spent three years
using it to find compiler bugs. During this period we reported
more than 325 previously unknown bugs to compiler
developers. Every compiler we tested was found to crash and
also to silently generate wrong code when presented with valid
input.

X. Yang, Y. Chen, E. Eide & J. Regehr, PLDI 2011

Why is it so hard to compile correctly?

Misunderstandings of the definition of the source language.

(In particular, the C and C++ standards have many subtle points.)

Ambitious optimizations to try to increase performance.

(Example next.)

An example of optimizing compilation

double dotproduct(int n, double * a, double * b)

{

double dp = 0.0;

int i;

for (i = 0; i < n; i++) dp += a[i] * b[i];

return dp;

}

Compiled with a good compiler, then manually decompiled to C. . .

double dotproduct(int n, double a[], double b[]) {
dp = 0.0;

if (n <= 0) goto L5;

r2 = n - 3; f1 = 0.0; r1 = 0; f10 = 0.0; f11 = 0.0;

if (r2 > n || r2 <= 0) goto L19;

prefetch(a[16]); prefetch(b[16]);

if (4 >= r2) goto L14;

prefetch(a[20]); prefetch(b[20]);

f12 = a[0]; f13 = b[0]; f14 = a[1]; f15 = b[1];

r1 = 8; if (8 >= r2) goto L16;

L17: f16 = b[2]; f18 = a[2]; f17 = f12 * f13;

f19 = b[3]; f20 = a[3]; f15 = f14 * f15;

f12 = a[4]; f16 = f18 * f16;

f19 = f29 * f19; f13 = b[4]; a += 4; f14 = a[1];

f11 += f17; r1 += 4; f10 += f15;

f15 = b[5]; prefetch(a[20]); prefetch(b[24]);

f1 += f16; dp += f19; b += 4;

if (r1 < r2) goto L17;

L16: f15 = f14 * f15; f21 = b[2]; f23 = a[2]; f22 = f12 * f13;

f24 = b[3]; f25 = a[3]; f21 = f23 * f21;

f12 = a[4]; f13 = b[4]; f24 = f25 * f24; f10 = f10 + f15;

a += 4; b += 4; f14 = a[8]; f15 = b[8];

f11 += f22; f1 += f21; dp += f24;

L18: f26 = b[2]; f27 = a[2]; f14 = f14 * f15;

f28 = b[3]; f29 = a[3]; f12 = f12 * f13; f26 = f27 * f26;

a += 4; f28 = f29 * f28; b += 4;

f10 += f14; f11 += f12; f1 += f26;

dp += f28; dp += f1; dp += f10; dp += f11;

if (r1 >= n) goto L5;

L19: f30 = a[0]; f18 = b[0]; r1 += 1; a += 8; f18 = f30 * f18; b += 8;

dp += f18;

if (r1 < n) goto L19;

L5: return dp;

L14: f12 = a[0]; f13 = b[0]; f14 = a[1]; f15 = b[1]; goto L18;

}

double dotproduct(int n, double a[], double b[]) {

dp = 0.0;

if (n <= 0) goto L5;

r2 = n - 3; f1 = 0.0; r1 = 0; f10 = 0.0; f11 = 0.0;

if (r2 > n || r2 <= 0) goto L19;

prefetch(a[16]); prefetch(b[16]);

if (4 >= r2) goto L14;

prefetch(a[20]); prefetch(b[20]);

f12 = a[0]; f13 = b[0]; f14 = a[1]; f15 = b[1];

r1 = 8; if (8 >= r2) goto L16;

L17: f16 = b[2]; f18 = a[2]; f17 = f12 * f13;

f19 = b[3]; f20 = a[3]; f15 = f14 * f15;

f12 = a[4]; f16 = f18 * f16;

f19 = f29 * f19; f13 = b[4]; a += 4; f14 = a[1];

f11 += f17; r1 += 4; f10 += f15;

f15 = b[5]; prefetch(a[20]); prefetch(b[24]);

f1 += f16; dp += f19; b += 4;

if (r1 < r2) goto L17;

L16: f15 = f14 * f15; f21 = b[2]; f23 = a[2]; f22 = f12 * f13;

f24 = b[3]; f25 = a[3]; f21 = f23 * f21;

f12 = a[4]; f13 = b[4]; f24 = f25 * f24; f10 = f10 + f15;

a += 4; b += 4; f14 = a[8]; f15 = b[8];

f11 += f22; f1 += f21; dp += f24;

L18: f26 = b[2]; f27 = a[2]; f14 = f14 * f15;

f28 = b[3]; f29 = a[3]; f12 = f12 * f13; f26 = f27 * f26;

a += 4; f28 = f29 * f28; b += 4;

f10 += f14; f11 += f12; f1 += f26;

dp += f28; dp += f1; dp += f10; dp += f11;

if (r1 >= n) goto L5;

L19: f30 = a[0]; f18 = b[0]; r1 += 1; a += 8; f18 = f30 * f18; b += 8;

dp += f18;

if (r1 < n) goto L19;

L5: return dp;

L14: f12 = a[0]; f13 = b[0]; f14 = a[1]; f15 = b[1]; goto L18;

}

double dotproduct(int n, double a[], double b[]) {
dp = 0.0;

if (n <= 0) goto L5;

r2 = n - 3; f1 = 0.0; r1 = 0; f10 = 0.0; f11 = 0.0;

if (r2 > n || r2 <= 0) goto L19;

prefetch(a[16]); prefetch(b[16]);

if (4 >= r2) goto L14;

prefetch(a[20]); prefetch(b[20]);

f12 = a[0]; f13 = b[0]; f14 = a[1]; f15 = b[1];

r1 = 8; if (8 >= r2) goto L16;

L17: f16 = b[2]; f18 = a[2]; f17 = f12 * f13;

f19 = b[3]; f20 = a[3]; f15 = f14 * f15;

f12 = a[4]; f16 = f18 * f16;

f19 = f29 * f19; f13 = b[4]; a += 4; f14 = a[1];

f11 += f17; r1 += 4; f10 += f15;

f15 = b[5]; prefetch(a[20]); prefetch(b[24]);

f1 += f16; dp += f19; b += 4;

if (r1 < r2) goto L17;

L16: f15 = f14 * f15; f21 = b[2]; f23 = a[2]; f22 = f12 * f13;

f24 = b[3]; f25 = a[3]; f21 = f23 * f21;

f12 = a[4]; f13 = b[4]; f24 = f25 * f24; f10 = f10 + f15;

a += 4; b += 4; f14 = a[8]; f15 = b[8];

f11 += f22; f1 += f21; dp += f24;

L18: f26 = b[2]; f27 = a[2]; f14 = f14 * f15;

f28 = b[3]; f29 = a[3]; f12 = f12 * f13; f26 = f27 * f26;

a += 4; f28 = f29 * f28; b += 4;

f10 += f14; f11 += f12; f1 += f26;

dp += f28; dp += f1; dp += f10; dp += f11;

if (r1 >= n) goto L5;

L19: f30 = a[0]; f18 = b[0]; r1 += 1; a += 8; f18 = f30 * f18; b += 8;

dp += f18;

if (r1 < n) goto L19;

L5: return dp;

L14: f12 = a[0]; f13 = b[0]; f14 = a[1]; f15 = b[1]; goto L18;

}

Formal verification of tools

Why not formally verify the compiler and the verification tools
themselves? (using program proof)

After all, these tools have simple specifications:

Correct compiler: if compilation succeeds, the generated
code behaves as prescribed by the semantics of the
source program.

Sound verification tool: if the tool reports no alarms, all
executions of the source program satisfy a given safety
property.

As a corollary, we obtain:

The generated code satisfies the given safety property.

An old idea. . .

Mathematical Aspects of Computer Science, 1967

An old idea. . .

Machine Intelligence (7), 1972.

CompCert:
a formally-verified C compiler

The CompCert project
(X. Leroy, S. Blazy, et al)

Develop and prove correct a realistic compiler, usable for critical
embedded software.

• Source language: a very large subset of C99.

• Target language: PowerPC/ARM/x86 assembly.

• Generates reasonably compact and fast code
⇒ careful code generation; some optimizations.

Note: compiler written from scratch, along with its proof; not
trying to prove an existing compiler.

The formally verified part of the compiler

CompCert C Clight C#minor

CminorCminorSelRTL

LTL Linear Mach

Asm PPCAsm ARMAsm x86

side-effects out

of expressions

type elimination

loop simplifications

stack allocation

of “&” variables

instruction

selection

CFG construction

expr. decomp.

register allocation (IRC)

calling conventions

linearization

of the CFG

layout of

stack frames

asm code generation

Optimizations: constant prop., CSE,

inlining, tail calls

Formally verified using Coq

The correctness proof (semantic preservation) for the compiler is
entirely machine-checked, using the Coq proof assistant.

Theorem transf_c_program_correct:

forall (p: Csyntax.program) (tp: Asm.program)

(b: behavior),

transf_c_program p = OK tp ->

program_behaves (Asm.semantics tp) b ->

exists b’, program_behaves (Csem.semantics p) b’

/\ behavior_improves b’ b.

A fairly large proof: 60 000 lines, 6 person.years, low automation.

Programmed (mostly) in Coq

All the verified parts of the compiler are programmed directly in
Coq’s specification language, using pure functional style.

• Monads to handle errors and mutable state.

• Purely functional data structures.

Coq’s extraction mechanism produces executable Caml code from
these specifications.

Claim: purely functional programming is the shortest path to
writing and proving a program.

The whole Compcert compiler

AST C

AST Asm

C source

AssemblyExecutable

preprocessing, parsing, AST construction

type-checking, de-sugaring

V
erifi

ed
co

m
p

iler

printing of

asm syntax

assembling

linking

Register allocation

Code linearization heuristics

Proved in Coq
(extracted to Caml)

Not proved
(hand-written in Caml)

Part of the TCB

Not part of the TCB

Performance of generated code
(On a Power 7 processor)

fi
b

q
so

rt ff
t

sh
a1 ae

s

al
m

ab
en

ch

lis
ts

b
in

ar
yt

re
es

fa
n

n
ku

ch

kn
u

cl
eo

ti
d

e

m
an

d
el

br
o

t

n
b

o
d

y

n
si

ev
e

n
si

ev
eb

it
s

sp
ec

tr
al

vm
ac

h

b
is

ec
t

ch
o

m
p

p
er

lin

ar
co

d
e

lz
w

lz
ss

ra
yt

ra
ce

r

Execution time
gcc -O0 CompCert gcc -O1 gcc -O3

A tangible increase in quality

The striking thing about our CompCert results is that the
middleend bugs we found in all other compilers are
absent. As of early 2011, the under-development version
of CompCert is the only compiler we have tested for
which Csmith cannot find wrong-code errors. This is not
for lack of trying: we have devoted about six CPU-years
to the task. The apparent unbreakability of CompCert
supports a strong argument that developing compiler
optimizations within a proof framework, where safety
checks are explicit and machine-checked, has tangible
benefits for compiler users.

X. Yang, Y. Chen, E. Eide, J. Regehr, PLDI 2011

What have we proved, exactly?

Trusting a proof

Did we prove it right?

• Pencil & paper proof: proof reviews, social consensus.

• Mechanized proof: trust the proof assistant.

• Axioms used, if any.

Did we prove the right thing?

• Does the statement of the theorem say what we think it says?

• Are the definitions it uses correct?

Mathematical proofs

For some mathematical proofs, the final statement is immediately
understandable:

Theorem Fermat’s_last:

forall (a b c n: nat),

a >= 1 /\ b >= 1 /\ c >= 1 /\ n >= 3 ->

power a n + power b n <> power c n.

The proof itself would involve higher mathematics, of course. But
they do not show up in the statement of the final theorem.

For the skeptics. . .

We can even avoid fancy notations and provide all the definitions
used in the statement of the theorem:

Inductive nat : Type := O | S (n: nat).

Fixpoint add (x y: nat) :=

match x with O => y | S x’ => S (add x’ y) end.

Fixpoint mul (x y: nat) :=

match x with O => O | S x’ => add (mul x’ y) y end.

Fixpoint power (x y: nat) :=

match y with O => S O | S y’ => mul x (power x y’) end.

Fixpoint ge (x y: nat) :=

match x, y with _, O => True | O, S _ => False

| S x’, S y’ => ge x’ y’ end.

Theorem Fermat’s_last:

forall (a b c n: nat),

ge a (S O) /\ ge b (S O) /\ ge c (S O) /\ ge n (S(S(S O))) ->

add (power a n) (power b n) <> power c n.

A more realistic example:
The Feit-Thompson theorem

As verified in Coq by G. Gonthier et al:

Theorem Odd_Order:

forall T mul one inv (G : T -> Type) (n : natural),

group_axioms T mul one inv -> group T mul one inv G ->

finite_of_order T G n -> odd n ->

solvable_group T mul one inv G.

The definitions required by this statement fit in one page.

CompCert’s correctness statement

Theorem transf_c_program_correct:

forall (p: Csyntax.program) (tp: Asm.program)

(b: behavior),

transf_c_program p = OK tp ->

program_behaves (Asm.semantics tp) b ->

exists b’, program_behaves (Csem.semantics p) b’

/\ behavior_improves b’ b.

Not obvious that we proved the right thing!

CompCert’s correctness statement

Theorem transf_c_program_correct:

forall (p: Csyntax.program) (tp: Asm.program)

(b: behavior),

transf_c_program p = OK tp ->

program_behaves (Asm.semantics tp) b ->

exists b’, program_behaves (Csem.semantics p) b’

/\ behavior_improves b’ b.

We need to understand:

• Program behaviors and the ∀-∃-improves dance.

• The operational semantics for the source language
(Csem.semantics, 2500 lines)

• The operational semantics for the target language
(Asm.semantics, 400 lines)

• Supporting libraries: machine integers (1000 lines),
floating-point numbers (2000), memory states (1500).

CompCert’s correctness statement

Theorem transf_c_program_correct:

forall (p: Csyntax.program) (tp: Asm.program)

(b: behavior),

transf_c_program p = OK tp ->

program_behaves (Asm.semantics tp) b ->

exists b’, program_behaves (Csem.semantics p) b’

/\ behavior_improves b’ b.

However, there is no need to understand:

• The code generation and optimization algorithms
(transf_c_program, about 10 000 lines)

• The operational semantics for the intermediate languages.

In particular, adding a new compilation pass or improving an
existing pass does not change the final correctness statement.

How to build confidence?

Review the definitions and final statement.

Analyze the definitions by proving more properties about them:

• The Flocq formalization of floating-point is used in several
other verification projects.

• The CompCert Clight semantics and memory model is
exercised in the VST verified separation logic.

• The CompCert C#minor semantics is exercised in the Verasco
verified static analyzer.

Test executable forms of the specifications.

• CompCert provides a reference interpreter for its C semantics.

• Frameworks for executable semantics: K, PLT Redex, Ott, . . .

A peek under the hood:
CompCert’s operational semantics

and notion of semantic preservation

The Asm semantics

Very naturally, a Labeled Transition System:

(registers,memory)
`→ (registers′,memory’)

One transition = execute the instruction pointed by register PC.

Broadly similar to the instruction set manuals of the target
architecture.

More abstract in some respects:

• The code is immutable and not stored in memory.

• No bit-level encoding of instructions.

Chapter 8. Instruction Set 8-9Chapter 8. Instruction Set 8-9Chapter 8. Instruction Set 8-9

8

addx addx
Add (x’7C00 0214’)

add rD,rA,rB (OE = 0 Rc = 0)
add. rD,rA,rB (OE = 0 Rc = 1)
addo rD,rA,rB (OE = 1 Rc = 0)
addo. rD,rA,rB (OE = 1 Rc = 1)

rD ← (rA) + (rB)

The sum (rA) + (rB) is placed into rD.

The add instruction is preferred for addition because it sets few status bits.

Other registers altered:
• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (If Rc = 1)
NOTE: CR0 field may not reflect the infinitely precise result if overflow occurs (see

next bullet item.

• XER:
Affected: SO, OV (If OE = 1)
NOTE: For more information on condition codes see Section 2.1.3, “Condition

Register,” and Section 2.1.5, “XER Register.”

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA XO

0 5 6 10 11 15 16 20 21 22 30 31
31 D A B OE 266 Rc

Observable transitions

Most transitions (labeled τ) are internal computations.

Some transitions (labeled c!v or c?v) are input/output operations
that can be observed from the outside of the program:

• Calls to functions representing OS services
(e.g. getchar, putchar).

• Reads and writes to “volatile” memory areas corresponding to
hardware I/O devices.

Compilation must preserve the observable I/O actions but can
change the internal computation steps.

From transitions to
whole-program behaviors

Normal termination with trace a1 . . . ak :

initial 3 s
τ→ s1

a1→ s2
τ→ · · · ak→ sn ∈ final

Abnormal termination with trace a1 . . . ak :

initial 3 s
τ→ s1

a1→ s2
τ→ · · · ak→ sn ∈ error

Reactive divergence with infinite trace a1 . . . ak . . .:

initial 3 s
τ→ · · · ai→ τ→ τ→ τ→ · · ·

aj→ τ→ τ→ · · ·

Silent divergence with trace a1 . . . ak :

initial 3 s
τ→ · · · ak→ sn

τ→ τ→ τ→ τ→ · · ·

The CompCert C semantics

Early versions of CompCert used big-step (natural) semantics, with
some twists:

• normal, inductive big-step semantics with traces of I/O
(for terminating behaviors);

• co-inductive big-step semantics with traces of I/O
(for diverging behaviors).

Eventually we switched to Labeled Transition Systems so as to
correctly handle

• Nondeterminism in expression evaluation order.

• Unstructured control such as goto.

Transitions with continuations
(A. Appel and S. Blazy)

(c , k,m)
`→ (c ′, k ′,m′)

c is the statement or expression under focus.

k is the continuation of c : what to do “after” c?
(e.g. “loop one more time” or “return to caller”)

m is the current memory state and environments.

Transitions are either computational steps or refocusing steps
(updating c ,k to change the focus, without doing actual work):

(s1; s2), k ,m
τ→ s1, kseq(s2, k),m (focusing on s1)

(loc = val), k ,m
τ→ skip, k ,m{loc ← val} (computing)

skip, kseq(s, k),m
τ→ s, k,m (focusing out)

Handling goto by continuation surgery

A search function that finds a subcommand labeled lbl while
manufacturing the corresponding continuation:

goto lbl

continuation 1

call continuation

function body
continuation 2

lbl :

Implements the transition goto lbl/k1/m
τ→ lbl : c/k2/m.

Relating the C and Asm semantics
through compilation

First try: bisimulation

Any possible behavior of the generated Asm code is a
possible behavior of the source C code, and conversely.

Bisimulation is too strong, because:

• The C source can have several possible evaluation orders,
leading to internal nondeterminism, and the compiler can pick
one specific evaluation order.

• The C source can exhibit undefined behaviors (run-time
errors), which the compiler need not preserve exactly.

Evaluation orders in C expressions

int a(void) { printf("a"); return 1; }

int b(void) { printf("b"); return 2; }

int c(void) { printf("c"); return 3; }

int main(void) { return a() + b() + c(); }

The subexpressions a() and b() and c() can be evaluated in any
order that the compiler chooses.

⇒ any of the 6 permutations abc, acb, bac, bca, cab, cba
is a valid output for this program.

“Undefined behavior” in C

Systems programs can encounter run-time errors:

• Integer division by zero.

• Accessing an array outside of its bounds.

• Dereferencing the null pointer.

• Possibly: overflow in signed integer arithmetic.

High-level languages such as Java define those behaviors, typically
as aborting the computation by raising an exception.

The C standard treats those run-time errors as undefined behavior,
where anything can happen:

• Execution can be aborted on a fatal error.

• Execution can continue with any value the hardware provides.

• Other parts of the program can misbehave.

The pros and cons of undefined behaviors

Pros: more efficient machine code can be generated:

• No need to check for null pointers, array bounds, zero divisor.

• The compiler can optimize under the assumption that no
undefined behavior occurs:

int x = *p; int x = *p;

if (p == NULL) return ERROR; ---> // redundant test

... ...

Cons: undefined behaviors open security holes.

Compiling undefined behaviors

Strict interpretation of the C standards: if the source code has
undefined behaviors, the compiled code can do anything.

More useful interpretation: if the source code does some I/O t
then runs into undefined behavior, the compiled code should do
the same I/O t and then can do anything.

Source code: i1.o1.o2.i2.o3 i1.o1.† run-time error

Compiled code: i1.o1.o2.i2.o3 i1.o1.o2 . . .

(same behavior) (“improved” undefined behavior)

Improving whole-program behaviors

To capture the “more useful” interpretation, we define the
improvement relation b � b′ as

• either b = b′,

• or b is “run-time error after performing an I/O trace t”, and
b′ is any behavior whose trace starts with t.

Compiler correctness as refinement
with behavior improvement

We can finally state the correctness property of CompCert:

If compilation succeeds, for every observable behavior b
of the compiled code, there exists a possible observable
behavior b′ of the source program such that b′ � b.

Theorem transf_c_program_correct:

forall (p: Csyntax.program) (tp: Asm.program)

(b: behavior),

transf_c_program p = OK tp ->

program_behaves (Asm.semantics tp) b ->

exists b’, program_behaves (Csem.semantics p) b’

/\ behavior_improves b’ b.

Backward simulation diagrams

safe 3 S1 S2
R

Original program Transformed program

S ′2

t

S ′1

+

or t
|S ′2| < |S2| and ∗

R

safe 3 S1 S2 /∈ final
R

S ′2

t

Simulation:

Progress:

S ∈ safe means ¬ S
∗−−→
τ

error (cannot crash silently).

Backward simulation woes

It is hard to build backward simulation relations in the frequent
case where a single, atomic transition of the original program is
implemented by several, simpler steps in the transformed program.

Example: function calls.

Move arguments to
conventional registers

Call f
Allocate stack frame
Save return address
Save some registers
Move conventional registers
to function parameters

x = f(v)

body of f

R

R

?

?

Alternative proof: Forward simulation

For passes the do not reduce nondeterminism, it’s easier to reason
“in the other direction”:

error /∈ S1 S2
R

Original program Transformed program

S ′1

t

S ′2

+

t or
∗ and |S ′1| < |S1|

R

Theorem (Ševč́ık, Vafeiadis, Zappa Nardelli, Jagannathan, Sewell)

A backward simulation can be constructed from a forward
simulation if the source language is receptive and the target
language is determinate.

Concluding remarks

On tool verification

CompCert is still an ongoing project, but it demonstrates that the
formal verification of realistic compilers is feasible (within the
limitations of today’s proof assistants).

See also the related Verasco project: formal verification of a C
static analyzer based on abstract interpretation.

Much work remains:

• Handle other source languages: functional, reactive.

• More optimizations, esp. loop optimizations.

• Increase confidence even further.

• Shared-memory concurrency.

On trusting the specifications

A difficult problem, faced by all kinds of formal verifications.

A small simplification in the specifications is worth a large increase
in proof effort.

Executable specifications (e.g. reference interpreters) can help:

• For testing the specifications.

• To discuss with standard committees.

On mechanized semantics

A need shared by many verification efforts, not just verified
compilers.

A difficult task, especially for realistic programming languages
(i.e. Java and the JVM; C; Javascript).

Machine assistance is a necessity to scale up to realistic
programming languages.

The sensitivity is disturbingly high: adding one language feature
can deeply impact the whole semantics.

The unreasonable effectiveness of Labeled Transition Systems
(despite looking more like abstract machines than high-level specs).

Determinacy and receptiveness

Two labels are compatible `1 � `2 if they differ only by input
values.
(I.e. `1 = `2 = τ or `1 = `2 = c!v or `1 = c?v1, `2 = c?v2.)

A language is determinate if:

• s
`1→ s1 and s

`2→ s2 imply `1 � `2.

• s
`→ s1 and s

`→ s2 imply s1 = s2.

In other words: the only nondeterminism comes from the input
values in labels. This is the case for CompCert Asm.

A language is receptive if:

• s
`1→ s1 and `1 � `2 implies ∃s2, s

`2→ s2.

In other words: a transition with an input is possible regardless of
the value of the input. This is the case for all CompCert languages.

Putting it all together

CompCert C

nondeterm.
eval order

CompCert C

fixed
eval order

. . . Asm

(15 compilation passes)

R1(actual proofs)
P1 P2 . . . P14 P15

P
(diagram composition)

R′(preservation to refinement)

R′′(composition)

Putting it all together

CompCert C

nondeterm.
eval order

CompCert C

fixed
eval order

. . . Asm

(15 compilation passes)

R1(actual proofs)
P1 P2 . . . P14 P15

P
(diagram composition)

R′(preservation to refinement)

R′′(composition)

Putting it all together

CompCert C

nondeterm.
eval order

CompCert C

fixed
eval order

. . . Asm

(15 compilation passes)

R1(actual proofs)
P1 P2 . . . P14 P15

P
(diagram composition)

R′(preservation to refinement)

R′′(composition)

