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1940’s: hand-written machine code
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1950’s: assembly languages + assemblers, linkers, autocoders
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1960’s: higher-level languages + compilers
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1980’s: automatic code generation from models or declarative specs



Development and verification tools

ExecutableTesting

Compiler

C / C++ / Ada

Code generator

Simulink, ScadeSimulation

Model-checkers

Program provers

Static analyzers

2000’s: tool-assisted formal verification



A panorama of verification tools

Basic safety Full correctness

Automatic

Interactive

106 LOC

102 LOC

Static analyzers

Model checkers

Deductive program provers

Proof assistants

Static analysis: automatically infer simple properties of one variable
(x ∈ [N1,N2], p points to a, etc) or several (x + y ≤ z).



A panorama of verification tools

Basic safety Full correctness

Automatic

Interactive

106 LOC

102 LOC

Static analyzers

Model checkers

Deductive program provers

Proof assistants

Model checking: automatically check that some “bad” program
points are not reachable.



A panorama of verification tools

Basic safety Full correctness

Automatic

Interactive

106 LOC

102 LOC

Static analyzers

Model checkers

Deductive program provers

Proof assistants

Program proof (Hoare logic, separation logic): show that
preconditions⇒ invariants⇒ postconditions
using automated theorem provers.



A panorama of verification tools

Basic safety Full correctness

Automatic

Interactive

106 LOC

102 LOC

Static analyzers

Model checkers

Deductive program provers

Proof assistants

Proof assistants: conduct mathematical proofs in interaction with
the user; re-check the proofs for correctness.



The long road to formal verification

From very early intuitions that there is something to be proved
about computer programs. . .

F. L. Morris & C. B. Jones * Turing Proof 
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Figure 1 (Redrawn from Turing’s original) 

Conference Discussion (from page 70 of the conference 
report) 

Prof. Hartree said that he thought that Dr Turing had 
used the terms “induction” and “inductive variable” in a 
misleading sense since to most mathematicians induction 
would suggest “mathematical induction” whereas the pro- 
cess so called by von Neumann and Turing often consisted 
of repetition without logical connection. Prof. Newman sug- 
gested that the term “recursive variable” should be used. Dr 
Turing, however, still thought that his original terminology 
could be justified. 

Comments 

The contributors to the conference discussion were 
M. H. A. Newman, then professor of pure mathematics 
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at Manchester University, who had played a leading 
part in setting up the Manchester computer project, 
and D. R. Hartree, then professor of mathematical 
physics at Cambridge University, who had been a 
moving force both at the NPL and at Cambridge. 

We now turn to a discussion of Turing’s proof 
method. Present methods might combine Turing’s 
Figures 1 and 2 into a flowchart that includes the 
assertions. Figure A is an annotated flowchart in the 
style of Floyd (1967). Two significant differences be- 
tween Figure A and Turing’s presentation may be 
observed. 

1. In the Floyd style, assertions may be any propo- 
sitions relating the values of the variables to each 

Figure 2 (Redrawn from Turing’s original) 
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Alan Turing,
Checking a large
routine, 1949.

(The first known
example of loop
invariants.)



The long road to formal verification

From very early intuitions that there is something to be proved
about computer programs. . .

. . . to fundamental formalisms . . .

• Deductive verification: Floyd 1967, Hoare 1969.

• Abstract interpretation: Cousot & Cousot, 1977.

• Model checking: Clarke & Emerson, 1980; Queille & Sifakis, 1982.



The long road to formal verification

From very early intuitions that there is something to be proved
about computer programs. . .

. . . to fundamental formalisms . . .

. . . to verification tools that automate these ideas . . .

. . . to actual use in the critical software industry. (50 years later)



Trust in the development tools



Tool-related risks

Simulink, Scade

Code generator

C, C++, Ada

Compiler

Executable

Simulation

Model-checker

Program prover

Static analyzer

Testing

The unsoundness risk: a verification tool could fail to account for
all possible run-time states of the program, giving a false sense of
safety.



Tool-related risks

Simulink, Scade

Code generator

C, C++, Ada

Compiler

Executable

Simulation

Model-checker

Program prover

Static analyzer

Testing

?

?

The miscompilation risk: a compiler could generate bad code from
a correct source program, invalidating all guarantees obtained by
source-level formal verification.



Miscompilation happens

NULLSTONE isolated defects [in integer division] in twelve of
twenty commercially available compilers that were evaluated.

http://www.nullstone.com/htmls/category/divide.htm

We tested thirteen production-quality C compilers and, for
each, found situations in which the compiler generated
incorrect code for accessing volatile variables.

E. Eide & J. Regehr, EMSOFT 2008

To improve the quality of C compilers, we created Csmith, a
randomized test-case generation tool, and spent three years
using it to find compiler bugs. During this period we reported
more than 325 previously unknown bugs to compiler
developers. Every compiler we tested was found to crash and
also to silently generate wrong code when presented with valid
input.

X. Yang, Y. Chen, E. Eide & J. Regehr, PLDI 2011



Why is it so hard to compile and analyze
correctly?

• Algorithmic complexity of compilers and analyzers.
Ambitious optimizations; complex abstractions;
SAT and SMT solving; etc.

• Structural complexity of input data (= arbitrary programs).
Some test suites for compilers, low coverage.
No test suites of wrong programs for analyzers.
Random differential testing as a substitute for proper tests.

• Misunderstandings in the definition of the source language.
Esp. the C and C++ standards, which have many subtle
points and 200+ undefined behaviors.
Sometimes compiler writer misreads the standards.
More often, an undefined behavior is compiled differently from
expected by the programmer.
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Silly compiler bugs

[Our] new method succeeded in finding bugs in the latter
five (newer) versions of GCCs, in which the previous
method detected no errors.

int main (void)

{

unsigned x = 2U;

unsigned t = ((unsigned) -(x/2)) / 2;

assert ( t != 2147483647 );

}

It turned out that [the program above] caused the same
error on the GCCs of versions from at least 3.1.0 through
4.7.2, regardless of targets and optimization options.

E. Nagai, A. Hashimoto, N. Ishiura, SASIMI 2013



Misunderstandings: GCC bug #323

Title: optimized code gives strange floating point results.

#include <stdio.h>

void test(double x, double y)

{
double y2 = x + 1.0; // computed in 80 bits, not rounded to 64 bits

if (y != y2) printf("error!");

}

void main()

{
double x = .012;

double y = x + 1.0; // computed in 80 bits, rounded to 64 bits

test(x, y);

}

Why it is a bug: ISO C allows intermediate results to be computed
with excess precision, but requires them to be rounded at
assignments.



Misunderstandings: GCC bug #323

Reported in 2000.

Dozens of duplicates.

More than 150 comments.

Still not acknowledged as a bug.

“Addressed” in 2009 (in GCC 4.5) via flag
-fexcess-precision=standard.

Responsible for PHP’s strtod() function not terminating on some
inputs. . .

. . . causing denial of service on many Web sites.



Misunderstandings: a Linux bug

struct sock *sk = tun->sk;

if (tun == NULL)

return POLLERR;

/* write to address based on tun */

GCC removes the tun == NULL safety check, reasoning that if tun
is NULL the memory access tun->sk is undefined behavior.

However, this code runs in the kernel, and the read tun->sk can
succeed (without a kernel panic) even if tun is NULL.

Removing the tun == NULL check therefore opens an exploitable
security hole, CVE-2009-1897.



Formal verification of tools

Testing tools to a high level of confidence is hard. Why not
formally verify the compiler and the verification tools themselves?
(using program proof)

After all, these tools have simple specifications:

Correct compiler: if compilation succeeds, the generated
code behaves as prescribed by the semantics of the
source program.

Sound verification tool: if the tool reports no alarms, all
executions of the source program satisfy a given safety
property.

As a corollary, we obtain:

The generated code satisfies the given safety property.



An old idea. . .

Mathematical Aspects of Computer Science, 1967



An old idea. . .

Machine Intelligence (7), 1972.



CompCert:
a formally-verified C compiler



The CompCert project
(X.Leroy, S.Blazy, et al + AbsInt Gmbh)

Develop and prove correct a realistic compiler, usable for critical
embedded software.

• Source language: a very large subset of C 99.

• Target language: PowerPC/ARM/RISC-V/x86 assembly.

• Generates reasonably compact and fast code
⇒ careful code generation; some optimizations.

Note: compiler written from scratch, along with its proof; not
trying to prove an existing compiler.



The formally verified part of the compiler

CompCert C Clight C#minor

CminorCminorSelRTL

LTL Linear Mach

Asm PPCAsm ARMAsm x86Asm RISC-V

side-effects out

of expressions

type elimination

loop simplifications

stack allocation

of “&” variables

instruction

selection

CFG construction

expr. decomp.

register allocation (IRC)

calling conventions

linearization

of the CFG

layout of

stack frames

asm code generation

Optimizations: constant prop., CSE,

inlining, tail calls



Formally verified using Coq

The correctness proof (semantic preservation) for the compiler is
entirely machine-checked, using the Coq proof assistant.

Theorem transf_c_program_preservation:

forall (p: Csyntax.program) (tp: Asm.program) (b: behavior),

transf_c_program p = OK tp ->

program_behaves (Asm.semantics tp) b ->

exists b’, program_behaves (Csem.semantics p) b’

/\ behavior_improves b’ b.

Shows refinement of observable behaviors b:

• Reduction of internal nondeterminism
(e.g. choose one evaluation order among the several allowed by C)

• Replacement of run-time errors by more defined behaviors
(e.g. optimize away a division by zero)



Proof effort

15%

Code

8%

Sem.

17%

Claims

54%

Proof scripts

7%

Misc

100,000 lines of Coq.

Including 15000 lines of “source code” (≈ 60,000 lines of Java).

6 person.years

Low proof automation (could be improved).



Programmed (mostly) in Coq

All the verified parts of the compiler are programmed directly in
Coq’s specification language, using pure functional style.

• Monads to handle errors and mutable state.

• Purely functional data structures.

Coq’s extraction mechanism produces executable Caml code from
these specifications.

Claim: purely functional programming is the shortest path to
writing and proving a program.



The whole Compcert compiler

AST C

AST Asm

C source

AssemblyExecutable

preprocessing, parsing, AST construction

type-checking, de-sugaring

V
erifi
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iler

printing of

asm syntax

assembling

linking

Valex translation validator

Register allocation

Code linearization heuristics

Proved in Coq
(extracted to Caml)

Not proved
(hand-written in Caml)

Part of the TCB

Not part of the TCB



Performance of generated code
(On a Power 7 processor)
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WCET and stack use improvements
on a real-time application

linker from Wind River Systems, or the GCC tool chain
(version 4.8, together with GNU binutils 2.24).

5 Integration and Performance
Integration The ECU control software uses a limited
set of timing interrupts which does not impair worst-
case execution time estimations. The traditional com-
piler accepts pragma indications to flag C-functions so
they can be called immediately from an interrupt vec-
tor. The compiler then adds code for saving the system
state and more registers than used in a standard Pow-
erPC EABI function call.

CompCert does not accept this compiler-dependent
pragma nor inline assembly so the user must hand-code
the mechanism outlined in the previous paragraph in as-
sembler language in separate assembly files. Such as-
sembler code can be placed in the runtime environment
module. Some system state recovery contained in a fall-
back exception handler is also transferred to the runtime
environment.

The strategy of using a minimum sufficient subset as
discussed in Sec. 2 above is fully confirmed since only
one related change to the source code was necessary.
For more than five years CompCert has fully covered the
chosen range of constructs even during earlier phases of
its development.

Behaviors undefined according to the C semantics are
not covered by the formal correctness proof of Comp-
Cert. Only code that exhibits no numeric overflows, di-
vision by zero, invalid memory accesses or any other
undefined behavior can possibly be functionally cor-
rect. The sound abstract interpretation based analyzer
Astrée can prove the absence of runtime errors includ-
ing any undefined behaviors [18, 19]. Therefore we use
Astrée to complement the formal correctness argument
of CompCert.

Further minor modifications were necessary to adapt
the build process to the CompCert compiler options.
Also the linker control file required some changes since
CompCert allocates memory segments differently from
some traditional popular compilers.

In the final step an MTU specific flashing tool as-
signs code, constant data as well as initialized and non-
initialized data as required by the C runtime environ-
ment specific to the target architecture.

Testability Testing functional behaviour on the target
platform can be tedious. Potentially concurrent software
interacts with hardware which does not necessarily be-
have according to the synchronous paradigm. The hard-
ware in turn interacts with the noise charged physical
environment. In addition some of that interaction only
works properly under hard real time restrictions. Thus
typical module or software tests in the target environ-
ment suffer from the necessity to impose severe restric-
tions on the behaviors expected in reality.

It is thus desirable to test software components reach-

ing a maximum coverage of real world interaction noise.
If such components are specified to expose defined

complete and non contradicting behaviour on their
boundaries and are written as generically as possible,
abstract testing comes into reach. Generic behaviour
does not depend on underlying processor properties
such as endianness and hardware register allocation. On
the compiler side it does not depend on compiler spe-
cific or undefined behaviour. Coding guidelines and ar-
chitectural constraints may ensure compliance with such
rules.

If software artifacts comply with these constraints
they may be tested independently from hardware and
specific compilation tool chain. CompCert is available
for ARM, x86 and PowerPC architectures so that prop-
erties acquired on one platform hold on the other.

Code Performance The code generated by CompCert
was subjected to the Valex tool and shows no indica-
tions of incompliance. The generated code was inte-
grated into the target hardware and extensively tested in
a simulated synthetic environment which is a precon-
dition to using the integrated system on a real engine.
If simulator test and engine test are passed they jointly
provide behavioral validation coverage of every aspect
of the functional system requirements.
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Figure 4: WCET estimates for MTU application

All building processes were completed successfully;
all functional tests passed. Thus these tests – on an
admittedly minimized and robust language subset – ex-
posed no indication of compiler flaws.

To assess the performance of the CompCert compiler
further we have investigated the size and the worst-case
execution time of the generated code.

To determine the memory consumption by code and
data segments we have analyzed the generated binary
file. Compared to the conventional compiler the code
segment in the executable generated by CompCert is
slightly smaller. The size of the data segment size is
almost identical in both cases. These observations are
consistent with our expectations since in CompCert we
have used more aggressive optimization settings. The
traditional compiler was configured not to use any opti-

mization to ensure traceability and to reduce functional
risks introduced by the compiler itself during the opti-
mization stage.
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Figure 5: Worst-case stack usage for MTU application

With the verified compiler CompCert at hand the de-
sign decision was made to lift this restriction. CompCert
performs register allocation to access data from regis-
ters and minimizes memory accesses. In addition, as
opposed to the traditional compiler it accesses memory
using small data areas. That mechanism lets two regis-
ters constantly reference base memory addresses so that
address references require two PowerPC assembler in-
structions instead of three as before.

The maximum execution time for one computational
cycle is assessed with the static WCET (worst-case ex-
ecution time) analysis tool aiT [17]. When configured
correctly this tool delivers safe upper execution time
bounds. All concurrent threads are mapped into one
computation cycle under worst-case conditions. The
precise mapping definition is part of the architectural
software design on the bare processor.

Analyses are performed on a normal COTS PC, each
entry (synchronous function, interrupt) has been ana-
lyzed separately. Analysis of timing interrupt is split
in several modes, and finally, the WCRT (worst-case re-
sponse time) for one computational cycle is calculated.
The results for the MTU application are shown in Fig. 4.
The computed WCET bounds lead to a total processor
load which is about 28% smaller with the CompCert-
generated code than with the code generated by the con-
ventional compiler. The main reason for this behaviour
is the improved memory performance. The result is con-
sistent with our expectations and with previously pub-
lished CompCert research papers.

We have also determined a safe upper bound of the
total stack usage in both scenarios, using the static an-
alyzer StackAnalyzer [13]. The results are shown in
Fig. 5. When providing suitable behavioral assump-
tions about the software to the analyzer the overall
stack usage is around 40% smaller with the CompCert-
generated code than the code generated by the conven-
tional compiler.

6 Tool Qualification
MTU’s qualification strategy is built on three columns,
namely providing evidence of a structured tool devel-
opment, sufficient user experience, and confirmation of
reliable operation via validation (cf. Sec. 3 and Fig. 2).
This strategy has also been applied to qualify CompCert
for use within a highly safety-critical application.

Compilation As described in Sec. 4 all of CompCert’s
front-end and back-end compilation passes are formally
proved to be free of miscompilation errors. These for-
mal proofs bring strong confidence in the correctness of
the front-end and back-end parts of CompCert. These
parts include all optimizations – which are particularly
difficult to qualify by traditional methods – and most
code generation algorithms.

The formal proof does not cover some elements of
the parsing phase, nor the preprocessing, assembling
and linking (cf. [19]) for which external tools are used.
Therefore we complement the formal proof by applying
a publically available validation suite.

The overall qualification strategy for CompCert is de-
picted in Fig. 6. In contrast to validating the correlation
of source files and the resulting fully linked executable
file, qualification of the compiler toolchain is split in
three phases: traditional testsuite validation, formal ver-
ification, and translation validation.

Preprocessor Source-code preprocessing is mandated
to a well-used version of gcc. The selected version
is validated using a preprocessor testsuite, for which
the correlation to the used language subset is manually
proven. MTU uses strict coding rules limiting the use of
C-language [?] constructs to basic constructs known to
be widely in use. Also usage of C preprocessing macros
is limited by these rules to very basic constructs. The
testsuite is tailored to fully cover these demands.

It must be ensured that source files and included
header files only use a subset of the features which are
validated by the above procedure. This may be accom-
plished by establishing a suitable checklist and manu-
ally applying it to each and every source file.

Effort may however be reduced and the reliability of
that process be vastly improved if a coding guideline
checker is used. That tool must again be validated to
provide alarms for every violation of any required rule.

As described above Astrée includes a code checker,
called RuleChecker, which analyzes each source file
for compliance with a predefined set of rules, includ-
ing MISRA:2004 [22]. It also provides a Qualification
Support Kit and Qualification Software Life Cycle Data
reports which facilitate the tool qualification process.

Assembling and Linking Cross-assembling and
cross-linking is also done by gcc. To complement the
proven-in-use argument and the implicit coverage by
the validation suite we use the translation validation
tool Valex shipped with CompCert which provides

Daniel Kästner et al, CompCert: Practical experience on
integrating and qualifying a formally verified optimizing compiler,
ERTS 2018, session Fr1B.



Verasco:
a formally-verified C static analyzer



The Verasco project
J.H. Jourdan, V. Laporte, et al

Goal: develop and verify in Coq a realistic static analyzer by
abstract interpretation:

• Language analyzed: the CompCert subset of C.

• Property established: absence of run-time errors
(out-of-bound array accesses, null pointer dereferences, division by

zero, etc).

• Nontrivial abstract domains, including relational domains.

• Modular architecture inspired from Astrée’s.

• Decent (but not great) alarm reporting.



Properties inferred by Verasco

Properties of a single variable / memory cell: (value analysis)

Variation intervals x ∈ [c1; c2]
Integer congruences x mod c1 = c2

Points-to and nonaliasing p poinsTo {x1, . . . , xn}

Relations between variables: (relational analysis)

Polyhedra c1x1 + · · ·+ cnxn ≤ c
Octagons ±x1 ± x2 ≤ c
Symbolic equalities x = expr



Architecture

source → C → Clight → C#minor → Cminor → · · ·
CompCert compiler

Abstract interpreter

Memory & pointers abstraction

Z→ int

Channel-based combination of domains

NR→ R NR→ R

Integer & F.P.

intervals

Integer
congruences

Symbolic
equalities

Convex
polyhedra

Octagons

OK / AlarmsControl

State

Numbers



Proof methodology

The abstract interpretation framework, with some simplifications:

• Only prove the soundness of the analyzer,
using the γ half of Galois connections:

γ : abstract object→ ℘(concrete things)

• Don’t prove relative optimality of abstractions
(the α half of Galois connections).

• Don’t prove termination of the analyzer.



Status of Verasco

It works!

• Fully proved (46 000 lines of Coq)

• Executable analyzer obtained by extraction.

• Able to show absence of run-time errors in small but nontrivial
C programs.

It needs improving!

• Some loops need full unrolling
(to show that an array is fully initialized at the end of a loop).

• Analysis is slow (e.g. 10 sec for 100 LOC).



Perspectives



Current status

Formal verification of development tools is just starting:

• CompCert is entering industrial use, with commercial support
from AbsInt;

• Verasco is still at the advanced prototype stage.

However, these projects demonstrate that the formal verification of
compilers, static analyzers, and related tools is feasible.
(Within the limitations of today’s proof assistants.)



Future directions
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Other source languages besides C:
reactive languages (Velus project), functional languages, Rust, . . .



Future directions

Connections w/

hardware
verification

Other source languages

Other verification tools

More
assurance

More
optimizations

Tool
qualification

Shared-memory
concurrency

Other verification tools besides static analyzers:
program provers, model checkers, SAT and SMT solvers
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Prove or validate more of the TCB:
preprocessing, elaboration, . . .
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Add advanced optimizations, esp. loop optimizations.
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How to leverage Coq proofs in a tool qualification?
See Kästner et al in session Fr1B for a IEC 60880 certification
involving CompCert.
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Race-free programs + concurrent separation logic
or: racy programs + hardware memory models a la C++11
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Formal specs for architectures & instruction sets, as the missing link
between compiler verification and hardware verification.



In closing. . .

Critical software deserves the most trustworthy tools
that computer science can produce.

Let’s make this a reality!


