Trust in compilers, code generators,
and software verification tools

Xavier Leroy

Inria Paris

Embedded Real Time Software and Systems, 2018-02-02

V4

&z,:,m.,w.x,m..mm,m

Development and verification tools

Testing ~ --—-—-

1940’s: hand-written machine code

Development and verification tools

Assembly

Assembler

Testing ~ --—-—- Executable

1950's: assembly languages + assemblers, linkers, autocoders

Development and verification tools

C/ C4++ / Ada

Compiler

Testing ~ ----- Executable

1960's: higher-level languages + compilers

Development and verification tools

Simulation ----- Simulink, Scade

Code generator
C/ C4++ / Ada
Compiler

Testing ~ --—-—- Executable

1980's: automatic code generation from models or declarative specs

Development and verification tools

Simulation ----- Simulink, Scade

Model-checkers Code generator
Program provers ----- C/ C++ / Ada

Static analyzers Compiler

Testing ~ ----- Executable

2000’s: tool-assisted formal verification

A panorama of verification tools

Automatic . |
Static analyzers
(6]

\
\
\

Modekcheckers

\
\
N\
N

Deductive \prqgram provers
e \\\

. Proof _assistants
Interactive o

A | A

10° LOC

102 LOC

Basic safety Full correctness

Static analysis: automatically infer simple properties of one variable

(x € [Ny, N2], p points to a, etc) or several (x +y < z).

Automatic

Interactive

i

)

A panorama of verification tools

Static analyzers
(6]

\
\
\

Modekcheckers

\
\
N\
N

Deductive \prqgram provers
e \\\

~_

\\Proef\a‘s‘s\i§t_a!nts

10° LOC

102 LOC

Basic safety Full correctness

Model checking: automatically check that some “bad” program
points are not reachable.

A panorama of verification tools

I\ | A
Automatic .
Static analyzers
Q
\\
\
\\
Model checkers
.\\\
Deductive \prqgram provers
. \\\
) " Proof assistants
Interactive o —--

10° LOC

102 LOC

Basic safety Full correctness

Program proof (Hoare logic, separation logic): show that
preconditions = invariants = postconditions
using automated theorem provers.

Automatic

Interactive

i

)

A panorama of verification tools

Static analyzers
(6]

\
\
\

Modekcheckers

\
\
N\
N

Deductive \prqgram provers
e \\\

- "Proof assistants

10° LOC

102 LOC

Basic safety Full correctness

Proof assistants: conduct mathematical proofs in interaction with
the user; re-check the proofs for correctness.

The long road to formal verification

From very early intuitions that there is something to be proved
about computer programs. . .

Alan Turing,
Checking a large
routine, 1949.

Figure 1 (Redrawn from Turing’s original)

(The first known

(INITIAL) s10P) |
STORAGE
LOCATION POR k5 A k@o k@a x@\ k@Z exam p I e Of I (o]0 p
27 | s s+1 s
2 ’ ‘ ’ ’ ’ . .
n n n n n
¢ ¢l g | e | el invariants.)
3t r In 3 I i
TO TO TO TO TO0 TO
WlTv =1 © IFr =®ﬂ © WlT =r+1 ®
=1 |10 ® Fszr
Fren 0
WITHS =s+1
| Fs<r

Figure 2 (Redrawn from Turing’s original)

The long road to formal verification

From very early intuitions that there is something to be proved
about computer programs. . .

. to fundamental formalisms ...

e Deductive verification: Floyd 1967, Hoare 1969.
o Abstract interpretation: Cousot & Cousot, 1977.
e Model checking: Clarke & Emerson, 1980; Queille & Sifakis, 1982.

The long road to formal verification

From very early intuitions that there is something to be proved
about computer programs. . .

. to fundamental formalisms ...
. to verification tools that automate these ideas . ..

. to actual use in the critical software industry. (50 years later)

Trust in the development tools

Tool-related risks

Simulation ----- Simulink, Scade

Model-checker 7 Code generator

Program prover ----- C, C++, Ada

Static analyzer Compiler

Testing ----- Executable

The unsoundness risk: a verification tool could fail to account for
all possible run-time states of the program, giving a false sense of
safety.

Tool-related risks

Simulation ----- Simulink, Scade

Model-checker 7 Code generator ‘.?

Program prover ----- C, C++, Ada

Static analyzer Compiler ‘.?

Testing ----- Executable

The miscompilation risk: a compiler could generate bad code from
a correct source program, invalidating all guarantees obtained by
source-level formal verification.

Miscompilation happens

NULLSTONE isolated defects [in integer division] in twelve of
twenty commercially available compilers that were evaluated.

http://www.nullstone.com/htmls/category/divide.htm

We tested thirteen production-quality C compilers and, for
each, found situations in which the compiler generated
incorrect code for accessing volatile variables.

E. Eide & J. Regehr, EMSOFT 2008

To improve the quality of C compilers, we created Csmith, a
randomized test-case generation tool, and spent three years
using it to find compiler bugs. During this period we reported
more than 325 previously unknown bugs to compiler
developers. Every compiler we tested was found to crash and
also to silently generate wrong code when presented with valid
input.

X. Yang, Y. Chen, E. Eide & J. Regehr, PLDI 2011

Why is it so hard to compile and analyze
correctly?
e Algorithmic complexity of compilers and analyzers.

Ambitious optimizations; complex abstractions;
SAT and SMT solving; etc.

Why is it so hard to compile and analyze
correctly?

e Algorithmic complexity of compilers and analyzers.
Ambitious optimizations; complex abstractions;
SAT and SMT solving; etc.

e Structural complexity of input data (= arbitrary programs).
Some test suites for compilers, low coverage.
No test suites of wrong programs for analyzers.
Random differential testing as a substitute for proper tests.

Why is it so hard to compile and analyze
correctly?

e Algorithmic complexity of compilers and analyzers.
Ambitious optimizations; complex abstractions;
SAT and SMT solving; etc.

e Structural complexity of input data (= arbitrary programs).
Some test suites for compilers, low coverage.
No test suites of wrong programs for analyzers.
Random differential testing as a substitute for proper tests.

e Misunderstandings in the definition of the source language.
Esp. the C and C++ standards, which have many subtle
points and 200+ undefined behaviors.

Sometimes compiler writer misreads the standards.
More often, an undefined behavior is compiled differently from
expected by the programmer.

Silly compiler bugs

[Our] new method succeeded in finding bugs in the latter
five (newer) versions of GCCs, in which the previous
method detected no errors.

int main (void)

{
unsigned x = 2U;
unsigned t = ((unsigned) -(x/2)) / 2;
assert (t != 2147483647);

}

It turned out that [the program above] caused the same
error on the GCCs of versions from at least 3.1.0 through
4.7.2, regardless of targets and optimization options.

E. Nagai, A. Hashimoto, N. Ishiura, SASIMI 2013

Misunderstandings: GCC bug #323
Title: optimized code gives strange floating point results.

#include <stdio.h>

void test(double x, double y)

{
double y2 = x + 1.0; // computed in 80 bits, not rounded to 64 bits
if (y !'= y2) printf("error!");

}

void main()

{
double x = .012;
double y = x + 1.0; // computed in 80 bits, rounded to 64 bits
test(x, y);

}

Why it is a bug: ISO C allows intermediate results to be computed
with excess precision, but requires them to be rounded at
assignments.

Misunderstandings: GCC bug #323

Reported in 2000.
Dozens of duplicates.
More than 150 comments.

Still not acknowledged as a bug.
“Addressed” in 2009 (in GCC 4.5) via flag

-fexcess-precision=standard.

Responsible for PHP’s strtod () function not terminating on some
inputs. . .

... causing denial of service on many Web sites.

Misunderstandings: a Linux bug

struct sock *sk = tun->sk;
if (tun == NULL)
return POLLERR;
/* write to address based on tun */

GCC removes the tun == NULL safety check, reasoning that if tun
is NULL the memory access tun->sk is undefined behavior.

However, this code runs in the kernel, and the read tun->sk can
succeed (without a kernel panic) even if tun is NULL.

Removing the tun == NULL check therefore opens an exploitable
security hole, CVE-2009-1897.

Formal verification of tools

Testing tools to a high level of confidence is hard. Why not
formally verify the compiler and the verification tools themselves?
(using program proof)

After all, these tools have simple specifications:

Correct compiler: if compilation succeeds, the generated
code behaves as prescribed by the semantics of the
source program.

Sound verification tool: if the tool reports no alarms, all
executions of the source program satisfy a given safety

property.

As a corollary, we obtain:
The generated code satisfies the given safety property.

An old idea. ..

John McCarthy
James Painter!

CORRECTNESS OF A COMPILER
FOR ARITHMETIC EXPRESSIONS®

1. Introduction. This paper contains a proof of the correctness of a simple
compiling algorithm for compiling arithmetic expressions into machine
language.

The definition of correctness, the formalism used to express the descrip-
tion of source language, object language and compiler, and the methods
of proof are all intended to serve as prototypes for the more complicated
task of proving the correctness of usable compilers. The ultimate goal,
as outlined in references [1], [2], [3] and [4] is to make it possible to use
a computer to check proofs that compilers are correct.

Mathematical Aspects of Computer Science, 1967

An old idea. ..

3

Proving Compiler Correctness
in a Mechanized Logic

R. l\/lilﬁer and R. Weyhrauch

Computer Science Department
Stanford University

Abstract

We discuss the task of machine-checking the proof of a simple compiling
algorithm. The proof-checking program is LCF, an implementation of a logic
for computable. functions due to Dana Scott, in which the abstract syntax
and extensional semantics of programming languages can be naturally
expressed. The source language in our example is a simple ALGor-like
language with assignments, conditionals, whiles and compound statements.
The target language is an assembly language for a machine with a pushdown
store. Algebraic methods are used to give structure to the proof, which is
presented enly in outline. However, we present in full the expression-compiling
part of the algorithm. More than half of the complete proof has been machine
checked, and we anticipate no difficulty with the remainder. We discuss our
experience in conducting the proof, which indicates that a large part of it
may be automated to reduce the human contribution.

Machine Intelligence (7), 1972.

CompCert:
a formally-verified C compiler

The CompCert project
(X.Leroy, S.Blazy, et al + AbsInt Gmbh)

Develop and prove correct a realistic compiler, usable for critical
embedded software.

e Source language: a very large subset of C 99.

e Target language: PowerPC/ARM/RISC-V/x86 assembly.

e Generates reasonably compact and fast code
= careful code generation; some optimizations.

Note: compiler written from scratch, along with its proof; not
trying to prove an existing compiler.

The formally verified part of the compiler

side-effects out_ {] type elimination]
CompCert C ! = C#minor
of expressions |) loop simplifications

stack allocation

Optimizations: constant prop., CSE,

inlining, tail calls of "&" variables

CFG construction (.) instruction (.
RTL | CminorSel = , Cminor
) expr. decomp. \) selection

register allocation (IRC)

calling conventions

Y

| linearization () layout of
LTL > Linear > Mach
of the CFG \ !) stack frames

ge on
Y
[Asm RISC—V] [Asm x86] [Asm ARM Asm PPC

Formally verified using Coq

The correctness proof (semantic preservation) for the compiler is
entirely machine-checked, using the Coq proof assistant.

Theorem transf_c_program_preservation:
forall (p: Csyntax.program) (tp: Asm.program) (b: behavior),
transf_c_program p = 0K tp —>
program_behaves (Asm.semantics tp) b ->
exists b’, program_behaves (Csem.semantics p) b’
/\ behavior_improves b’ b.

Shows refinement of observable behaviors b:

e Reduction of internal nondeterminism
(e.g. choose one evaluation order among the several allowed by C)

e Replacement of run-time errors by more defined behaviors
(e.g. optimize away a division by zero)

Proof effort

- 8% | 17% 54% .

Code Sem. Claims Proof scripts Misc

100,000 lines of Coq.
Including 15000 lines of “source code” (= 60,000 lines of Java).
6 person.years

Low proof automation (could be improved).

Programmed (mostly) in Coq

All the verified parts of the compiler are programmed directly in
Coq's specification language, using pure functional style.

e Monads to handle errors and mutable state.

e Purely functional data structures.

Coq's extraction mechanism produces executable Caml code from
these specifications.

Claim: purely functional programming is the shortest path to
writing and proving a program.

The whole Compcert compiler

preprocessing, parsing, AST construction
C source , .
type-checking, de-sugaring

. . .—
Register allocation
]

= ASTC

I
Code linearization heuristics »

131dwod payLIBA

1
I

. . 1

Valex translation validator 1
I

T

I

Part of the TCB Not proved
Not part of the TCB (hand-written in Caml)

-

assembling printing, of

Executable AST Asm

linking asm syntax

Proved in Coq
(extracted to Caml)

(On a Power 7 processor)

Performance of generated code

gcc -03

B gcc -00 mm CompCerimm gcc -01

Execution time

Jaoea1hed
ssz|

MZ|
spoo.e
uijad
dwoyd
109s1q
yoewa
|es3oads
S1IgaAISU
SA3ISU
Apoqu
10iqopuew
apI109anuy
yomyuuey
sea41hieulq
18|
yousqewe
soe

Teys

3

1osb

RE;

WCET and stack use improvements
on a real-time application

WCET(s)
20 [CompCert
1800 Bytes
[Conventional compiler 28% [CompCert
1500 800
[Conventional compiler

1200 600
900

400 -50%

-18%
200

¥ &
§ & &
s &
S ¢
o &
\Q

Daniel Kastner et al, CompCert: Practical experience on
integrating and qualifying a formally verified optimizing compiler,
ERTS 2018, session Frl1B.

Verasco:
a formally-verified C static analyzer

The Verasco project
J.H. Jourdan, V. Laporte, et al

Goal: develop and verify in Coq a realistic static analyzer by
abstract interpretation:
e Language analyzed: the CompCert subset of C.
e Property established: absence of run-time errors
(out-of-bound array accesses, null pointer dereferences, division by
zero, etc).

Nontrivial abstract domains, including relational domains.

Modular architecture inspired from Astrée's.

Decent (but not great) alarm reporting.

Properties inferred by Verasco

Properties of a single variable / memory cell: (value analysis)

Variation intervals x € [ar;]
Integer congruences xmod ¢ = &
Points-to and nonaliasing p poinsTo {xi,..., X}

Relations between variables: (relational analysis)

Polyhedra caxi+ -+ cpxp < c
Octagons +x1 £ x <c
Symbolic equalities x = expr

Architecture

CompCert compiler

source JC) C — Clight — C#minor — Cminor —]

Control

State

Numbers

Y
[Abstract interpreter)—» OK / Alarms

[Memory & pointers abstraction]

E

Channel- based combination of domains

|

Convex Symbohc NR —R NR —R
polyhedra equalltles

5 Integer & F.P. Integer
@ intervals congruences

Proof methodology

The abstract interpretation framework, with some simplifications:

e Only prove the soundness of the analyzer,
using the ~ half of Galois connections:

~y : abstract object — p(concrete things)

e Don't prove relative optimality of abstractions
(the « half of Galois connections).

e Don't prove termination of the analyzer.

Status of Verasco

It works!
e Fully proved (46000 lines of Coq)
e Executable analyzer obtained by extraction.

e Able to show absence of run-time errors in small but nontrivial
C programs.

It needs improving!

e Some loops need full unrolling
(to show that an array is fully initialized at the end of a loop).

e Analysis is slow (e.g. 10 sec for 100 LOC).

Perspectives

Current status

Formal verification of development tools is just starting:
e CompCert is entering industrial use, with commercial support
from Abslnt;
e Verasco is still at the advanced prototype stage.

However, these projects demonstrate that the formal verification of
compilers, static analyzers, and related tools is feasible.
(Within the limitations of today's proof assistants.)

Future directions

Other verification tools

More Other source languages
assurance
\ Connections w/
hardware

More / verification
optimizations

Shared-memory

Tool concurrency

qualification

Other source languages besides C:
reactive languages (Velus project), functional languages, Rust, ...

Future directions

Other verification tools

More Other source languages
assurance
\ Connections w/
hardware

More / verification
optimizations

Shared-memory

Tool concurrency

qualification

Other verification tools besides static analyzers:
program provers, model checkers, SAT and SMT solvers

Future directions

Other verification tools

More Other source languages
assurance
\ Connections w/
hardware

More / verification
optimizations

Shared-memory

Tool concurrency

qualification

Prove or validate more of the TCB:
preprocessing, elaboration,

Future directions

Other verification tools

More Other source languages
assurance
\ Connections w/
hardware

More / verification
optimizations

Shared-memory

Tool concurrency

qualification

Add advanced optimizations, esp. loop optimizations.

Future directions

Other verification tools

More Other source languages
assurance
\ Connections w/
hardware

More / verification
optimizations

Shared-memory

Tool concurrency

qualification

How to leverage Coq proofs in a tool qualification?
See Kastner et al in session Fr1B for a IEC 60880 certification
involving CompCert.

Future directions

Other verification tools

More Other source languages
assurance
\ Connections w/
hardware

More / verification
optimizations

Shared-memory

Tool concurrency

qualification

Race-free programs 4+ concurrent separation logic
or: racy programs + hardware memory models a la C++11

Future directions

Other verification tools

More Other source languages

assurance
\ Connections w/

hardware

More / verification
optimizations

Shared-memory

Tool concurrency

qualification

Formal specs for architectures & instruction sets, as the missing link
between compiler verification and hardware verification.

In closing. . .

Critical software deserves the most trustworthy tools
that computer science can produce.

Let's make this a reality!

