
Well-founded recursion done right
(Coq programming pearl)

Xavier Leroy
Collège de France, PSL University

Paris, France
xavier.leroy@college-de-france.fr

Abstract
Several Coq libraries and extensions support the definition
of non-structural recursive functions using well-founded or-
derings for termination. After pointing out some drawbacks
of these existing approaches, we advocate going back to the
basics and defining recursive functions by explicit structural
induction on a proof of accessibility of the principal recursive
argument.

1 Introduction
Coq and other proof assistants featuring inductive predi-
cates provide excellent support for proofs by well-founded
induction: to prove ∀𝑥, 𝑃 (𝑥), just show 𝑃 (𝑥) assuming the in-
duction hypothesis ∀𝑦 < 𝑥, 𝑃 (𝑦), where < is a well-founded
ordering. The proof is constructive and proceeds by struc-
tural induction on a proof term for the “accessibility” of 𝑥 ,
namely the inductive fact that all descending chains origi-
nating from 𝑥 are finite.

In this note, we focus on well-founded recursion : the defi-
nition of recursive functions that terminate not because re-
cursive calls are made on structural subterms of the principal
argument, but because they are made on principal arguments
that are strictly smaller in a well-founded ordering. Exam-
ples of such functions include computing greatest common
denominators by Euclid’s algorithm (shown below), comput-
ing least fixed points by Tarski iteration (appendix A), and
DFS traversal of a DAG (appendix B).

2 Evaluating the existing approaches
When developing verified software in Coq, such as CompCert
[4], function definitions are held to more stringent legibil-
ity requirements than proof terms. I found the following
properties to be highly desirable:

1. The function definition should be easy to read for a
functional programmer and make it obvious which al-
gorithm is used. This rules out most definitions by
tactics. Even the use of fixed-point combinators such
as the Fix combinator from Coq’s standard library
hurts legibility.

2. It should be easy to prove properties of the function
after its definition.We should not be forced to prove
all needed properties during the definition. This is a
known problem with the Program mechanism.

3. The function definition and the proofs of its properties
should not involve axioms. This is a known problem for
curried multiple-argument functions defined with the
Fix combinator: the Fix_eq proof rule has an exten-
sionality hypothesis that cannot be proved without
the function extensionality axiom.

4. Extraction should generate OCaml code that contains
no extraneous computations and looks natural to an
OCaml programmer. Tactics tend to generate awful
code. Program Fixpoint and Equations leave un-
necessary and noisy let bindings in extracted code.

Table 1 evaluates five known ways to implement well-
founded recursion in Coq with respect to these properties:
tactics in proof mode [2, §16.4] [3, §7.1], the Fix combinator
from Coq’s standard library [1], the Functionmechanism [6,
§4.1.4], the Program Fixpoint mechanism [6, §2.2.9], and
the Equations package [5]. Sadly, the only way that ticks all
the box is Function, which is documented as “legacy func-
tionality” [6, p. 585], and its claimed successor Equations
is not quite as good extraction-wise yet.

3 Proposed approach
After 20 years of using and teaching a mixture of Fix,
Function and Program Fixpoint, I realized that there is
a simpler approach to well-founded recursion that meets
requirements 1–4 above and requires no extension to Coq:
just go back to the basics, namely structural recursion over
accessibility proofs.
Here is an example for the GCD function. Start with the

naive recursive definition that is rejected because it is not
structurally recursive:
Fail Fixpoint gcd_rec (a b: nat): nat :=
if Nat.eq_dec b 0 then a

else gcd_rec b (a mod b).
Fail Definition gcd (a b: nat): nat :=
if b <=? a then gcd_rec a b else gcd_rec b a.

Then, add an argument that is a proof of accessibility of b,
the argument that decreases at recursive calls. The function
becomes structurally recursive on this proof.
Fixpoint gcd_rec (a b: nat) (ACC: Acc lt b)

{struct ACC}: nat :=
if Nat.eq_dec b 0 then a

else gcd_rec b (a mod b) _ .

https://orcid.org/0000-0002-8971-9171


Xavier Leroy

Tactics Fix Function Program Equations This paper
(1) Legibility of definitions ✘ ≈ ✔ ✔ ✔ ✔
(2) Ease of proving properties ≈ ≈ ✔ ✘ ✔ ✔
(3) No axioms used ✔ ✘ ✔ ✘ ✔ ✔
(4) Legibility of extracted code ✘ ✔ ✔ ✘ ✘ ✔

Table 1. Comparing various approaches to well-founded recursive definitions. ✔: good, ≈: passable, ✘: bad.

Definition gcd (a b: nat): nat :=
if b <=? a then gcd_rec a b (lt_wf b)

else gcd_rec b a (lt_wf a).

Now it remains to fill the hole _ with a proof of accessibil-
ity of a mod b. The proof must be transparent and return
a structural subterm of ACC, otherwise Coq rejects the re-
cursion as not structural. A reliable way to ensure this is
to explicitly use the Acc_inv lemma from the Coq standard
library:
Fixpoint gcd_rec (a b: nat) (ACC: Acc lt b)

{struct ACC}: nat :=
if Nat.eq_dec b 0 then a else
gcd_rec b (a mod b) (Acc_inv ACC _).

For reference, Acc_inv is just the inversion principle for the
Acc inductive predicate:
Acc_inv: forall (A: Type) (R: A -> A -> Prop) (x: A),

Acc R x -> forall y: A, R y x -> Acc R y

Now, the hole in gcd_rec is any proof of a mod b < b, and
it can be opaque. I often use Program to fill these holes,
but an explicit proof works well too, especially for teaching
purposes.
Remark gcd_oblig:
forall (a b: nat) (NE: b <> 0), a mod b < b.

Proof.
intros. apply Nat.mod_bound_pos; lia.

Qed.
Fixpoint gcd_rec (a b: nat) (ACC: Acc lt b)

{struct ACC}: nat :=
match Nat.eq_dec b 0 with
| left EQ => a
| right NE => gcd_rec b (a mod b)

(Acc_inv ACC (gcd_oblig a b NE))
end.

Properties of the recursive function gcd_rec are easily
proved by well-founded induction. It is tempting to do an
induction on the ACC accessibility proof argument, to mimick
the structure of the function definition, but this quickly runs
into the usual problems with dependent induction. Instead,
we just do well-founded induction over the decreasing
argument b, followed by a destruction of the ACC argument
and simplification, which unrolls the recursive definition —
just like the Fix_eq lemma from the Coq standard library
but without the unprovable-without-axioms extensionality
hypothesis.

Lemma gcd_rec_correct: forall b a ACC,
b <= a -> is_gcd (gcd_rec a b ACC) a b.

Proof.
induction b using (well_founded_induction lt_wf);
intros; destruct ACC; simpl.
destruct (Nat.eq_dec b 0).

- (* base case *)
- (* recursive case *)
Qed.

Finally, extraction produces optimal OCaml code, just by
erasing the ACC argument because it has sort Prop.
let rec gcd_rec a b =
if Nat.eq_dec b O then a else
gcd_rec b (Nat.modulo a b)

let gcd a b =
if Nat.leb b a then gcd_rec a b else gcd_rec b a

4 Conclusions
That’s all there is to it! I believe this simple, back-to-the-
basics approach makes non-structural recursive functions in
Coq less mysterious and more accessible, both in the class-
room and for developing verified software in Coq.

References
[1] Antonia Balaa and Yves Bertot. Fix-point equations for well-founded

recursion in type theory. In Theorem Proving in Higher Order Logics,
TPHOLs 2000, volume 1869 of LNCS, pages 1–16. Springer, 2000.

[2] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Pro-
gram Development – Coq’Art: The Calculus of Inductive Constructions.
Springer, 2004.

[3] Adam Chlipala. Certified Programming with Dependent Types: A Prag-
matic Introduction to the Coq Proof Assistant. The MIT Press, 2022.

[4] Xavier Leroy. Formal verification of a realistic compiler. Communica-
tions of the ACM, 52(7):107–115, 2009.

[5] Matthieu Sozeau and Cyprien Mangin. Equations reloaded: High-level
dependently-typed functional programming and proving in Coq. Proc.
ACM Program. Lang., 3(ICFP), 2019.

[6] The Coq Development Team. The Coq reference manual – release
8.18.0. https://coq.inria.fr/doc/V8.18.0/refman, 2023.

https://coq.inria.fr/doc/V8.18.0/refman


Well-founded recursion done right

A Additional example: Computing least fixed points by Tarski iteration
(* A semi-lattice *)
Variable A: Type.
Variable bot: A.
Variable le: A -> A -> Prop.
Hypothesis le_trans: forall x y z, le x y -> le y z -> le x z.
Hypothesis le_bot: forall x, le bot x.
Hypothesis eq_dec: forall (x y: A), {x=y} + {x<>y}.

(* There are no infinite ascending chains *)
Let gt (x y: A): Prop := x <> y /\ le y x.
Hypothesis wf: well_founded gt.

(* A monotonic operator *)
Variable F: A -> A.
Hypothesis F_mono: forall x y, le x y -> le (F x) (F y).

(* Tarski iteration from a pre-fixed point [x] *)
Program Fixpoint iter (x: A) (PRE: le x (F x)) (ACC: Acc gt x) {struct ACC}: A :=

let x' := F x in
match eq_dec x x' return _ with
| left EQ => x
| right NE => iter x' _ (Acc_inv ACC _)
end.

Next Obligation. split; auto. Qed.

Program Definition lfp: A := iter bot _ (wf bot).

(* The result is a fixed point. *)
Theorem lfp_eq: F lfp = lfp.
Proof.

unfold lfp. generalize bot lfp_obligation_1 (wf bot).
induction bot0 using (well_founded_induction wf).
rename bot0 into x. intros PRE ACC. destruct ACC; simpl.
destruct (eq_dec x (F x)).

- auto.
- apply H. split; auto.
Qed.

(* The result is the smallest fixed point. *)
Theorem lfp_least: forall z, F z = z -> le lfp z.
Proof.

(* exercise *)
Qed.

B Additional example: DFS traversal of an acyclic graph
(* A directed graph *)
Variable node: Type.
Variable successors: node -> list node.
Variable eq_node: forall (x y: node), {x=y} + {x<>y}.

(* The 'x is a successor of y' relation *)



Xavier Leroy

Definition succ (x y: node): Prop := In x (successors y).

(* The graph is acyclic iff there are no infinite chains of successors *)
Hypothesis acyclic: well_founded succ.

(* Preorder enumeration of the nodes, using DFS traversal *)
(* Note that the recursive call to [dfs] must have its accessibility argument

of the form [Acc_inv A _] so that it is recognized as a structural subterm of [A].
This leads to using [incl l (successors x)] as the precondition for
the iteration over the list of successors of [x]. *)

Program Fixpoint dfs (x: node) (accu: list node) (A: Acc succ x) {struct A}: list node :=
if In_dec eq_node x accu then accu else
let fix dfs_list (l: list node) (accu: list node) {struct l} :

incl l (successors x) -> list node :=
match l return _ with
| nil => fun INCL => accu
| y :: l => fun INCL => dfs_list l (dfs y accu (Acc_inv A _)) _
end in

x :: dfs_list (successors x) accu _ .
Next Obligation. apply INCL. simpl; auto. Qed.
Next Obligation. eapply incl_cons_inv; eauto. Qed.
Next Obligation. apply incl_refl. Qed.

(* A key property of [dfs]. *)

Definition succ_closed (l: list node): Prop :=
forall x y, In x l -> succ y x -> In y l.

Lemma dfs_correct: forall x l A,
succ_closed l ->
forall y, In y (dfs x l A) <-> In y l \/ clos_refl_trans _ succ y x.

Proof.
(* exercise *)

Qed.


	Abstract
	1 Introduction
	2 Evaluating the existing approaches
	3 Proposed approach
	4 Conclusions
	References
	A Additional example: Computing least fixed points by Tarski iteration
	B Additional example: DFS traversal of an acyclic graph

