
Workshop \Types in Compilation", Amsterdam, June 1997

The e�ectiveness of type-based unboxing

Xavier Leroy

�

INRIA Rocquencourt

Abstract

We compare the e�ciency of type-based unboxing

strategies with that of simpler, untyped unboxing op-

timizations, building on our practical experience with

the Gallium and Objective Caml compilers. We �nd

the untyped optimizations to perform as well on the

best case and signi�cantly better in the worst case.

1 Introduction

In Pascal or C, the actual types of all data are always

known at compile-time, allowing the compilers to base

data representation decisions on this typing informa-

tion, thus supporting e�cient memory layout of data

structures as well as e�cient calling conventions for

functions.

This is no longer true for languages featuring poly-

morphism and type abstraction, such as ML: there, the

static, compile-time type information does not always

determine the actual, run-time type of a data (e.g. when

the static type contains type variables or abstract type

identi�ers).

Hence, compilers for these languages often abandon

C-style type-based data representations and revert to

uniform, Lisp-style data representations, where all data

structures �t a common format (usually, one word), if

necessary by boxing (i.e. heap-allocating and handling

through a pointer) data that does not naturally �t the

common format.

However, the extra boxing involved can be quite ex-

pensive in terms of performance, and is a bottleneck

in certain applications, especially numerical computa-

tion. To address this issue, a number of unboxing strate-

gies for polymorphically-typed languages have been pro-

posed: some rely on static typing information, just like

C-style representation algorithms, but extended to cope

with polymorphism and abstract types [9, 12, 6, 18, 16];

others rely on program analyses distinct from typing

and apply equally well to untyped or dynamically-typed

languages [3, 13].

�

Authors' address: projet Cristal, B.P.105, 78153 Le Chesnay,

France. E-mail: Xavier.Leroy@inria.fr.

If only core ML polymorphism is considered, a simpler

alternative to these unboxing strategies is monomorphi-

sation (duplicating polymorphic functions once for each

instantiation type to obtain a monomorphic program).

Experimental evidence [4, 11] suggests that monomor-

phisation does not result in major increase in code size,

even though it remains delicate to implement e�ciently

in a separate compilation context. But the real chal-

lenge is with the SML module system, especially func-

tors and type abstraction in structures, which results

in large quantities of generic code (code that manip-

ulates values whose representation types are statically

unknown). Here, monomorphisation does not appear vi-

able, leaving the unboxing strategies mentioned above

as the only alternatives.

In this position paper, we build on our practical expe-

rience with unboxing strategies in the Gallium and Ob-

jective Caml compilers to assess the e�ciency of type-

based unboxing. We claim that while type-based unbox-

ing strategies can be very e�ective on some monomor-

phic programs (e.g. numerical applications), they also

add signi�cant overhead to polymorphic programs and

some monomorphic programs as well (e.g. symbolic

computation). On the other hand, we found that un-

typed unboxing strategies can also achieve good perfor-

mances on numerical applications, without penalizing

symbolic computations. In other words, the best case

for untyped strategies is almost as good as for type-

based strategies, but the worst case is signi�cantly bet-

ter.

The remainder of this paper is organized as fol-

lows. Section 2 recalls the main type-based unboxing

strategies proposed so far. Section 3 analyzes some

of the overheads incurred by these strategies. Sec-

tion 4 presents untyped unboxing optimizations that

avoid these overheads. Section 5 discusses experimental

results obtained with our Caml compilers, followed by

concluding remarks in section 6.

2 Type-directed unboxing

Type-directed techniques for avoiding unnecessary box-

ing fall in three classes:

1



Coercions: In this approach, coercions between

boxed and unboxed data representations are inserted at

type specialization points, so that generic code always

operates on boxed representations, while monomor-

phic code can take advantage of unboxed representa-

tions [6, 15]. This approach is particularly e�ective for

supporting e�cient, register-based calling conventions

(with tuple arguments 
attened and 
oat arguments

passed in 
oat registers). Its main weakness is that

it does not support deep unboxing inside generic data

structures (e.g. lists or arrays with unboxed elements).

Run-time type inspection: Here, run-time repre-

sentations of static typing information are maintained in

the program, as extra arguments to polymorphic func-

tions and extra components of structures de�ning ab-

stract types; generic code then inspects those run-time

type expressions to determine the locations and sizes of

values with statically unknown types [18, 8]. Earlier

proposals in the context of stack-based abstract ma-

chines [9, 10] pass only size information as extra pa-

rameters, instead of full type expressions. Unlike the

coercion-based approach, this approach supports arbi-

trary unboxing inside data structures, but does not ac-

commodate very well e�cient register-based calling con-

ventions for generic functions.

Tag-based unboxing: Tagging is a well-known tech-

nique for implementing dynamically-typed languages

(Lisp, Smalltalk). It can be used as a special case of

run-time type inspection, where type information is at-

tached to data structures instead of being passed sepa-

rately, and type expressions are mapped to a small set

of base types, e�ciently encoded at the bit level. Tag-

ging supports only type inspection over types of existing

values, and is best performed on large data structures,

where the space overhead of storing the tag is negligible.

As an example of tag-based unboxing, we show how

arrays are handled in the Gallium 2 and Objective Caml

compilers. The run-time system supports two kinds of

arrays: arrays of pointers and tagged integers, and ar-

rays of unboxed 
oats. The two kinds have di�erent tag

bytes in the array header. Operations on arrays with a

known type (� array where � is neither a type variable

nor an abstract type) generate directly the correct code

for accessing arrays of pointers or 
oats. Array opera-

tions with statically unknown type test the array tag at

run-time, and if it is a 
oat array, perform the required

boxing and unboxing of 
oating-point numbers. This

scheme supports fast operations over 
oat arrays with

known type, without the expense of extra type param-

eters, but at the cost of slower operations over generic

arrays.

3 Overheads of type-directed

unboxing

The overall goal of unboxing is to make program run

faster by reducing the number of heap allocations and

pointer dereferences. However, the unboxing techniques

presented above also add extra run-time operations.

The overheads of unboxing techniques must therefore

be weighted carefully against the bene�ts. It must be

kept in mind that the load operations eliminated by un-

boxing are relatively inexpensive operations on a mod-

ern processor with good memory hierarchy and possibly

several load/store units. Heap allocations eliminated by

unboxing represent more signi�cant savings. Still, even

small overheads can result in unboxing techniques being

globally less e�cient than no unboxing at all.

3.1 Extra operations introduced by un-

boxing

The �rst source of overhead is the extra operations in-

troduced in the program code to implement the unbox-

ing strategy.

Coercions: The extra coercions introduced by the

unboxing strategy often introduce no overhead (the box-

ing and unboxing steps performed by the coercions

would also be performed { at di�erent times { by a

systematic boxing strategy), but not always. In partic-

ular, coercions on functions involve extra function calls.

Worse, some examples demonstrate a long sequence of

successive unboxing and boxing of the same data before

it is actually used [6].

Run-time type inspection: Propagating type infor-

mation at run-time adds some overhead to polymor-

phic function calls: there are more arguments to pass,

and more importantly some heap allocation is often per-

formed to build the tree-shaped structures representing

types at run-time. Even constant type expressions, en-

tirely built at compile-time, entail the overhead of load-

ing constant pointers in registers

1

.

The second source of overhead is actually testing the

run-time type information inside generic code. This

can involve complex pattern-matching on the type ex-

pressions, resulting in additional loads and conditional

branches, as well as a general increase in code size.

Several techniques have been proposed to reduce the

overhead of type building or type inspection, but not

both. Tolmach [19] uses an indirect representation of

type expressions, reminiscent of explicit substitutions,

1

With position-independent code, as is now standard on the

Alpha and PowerPC, loading a constant pointer is not as cheap

as it seems, since it is turned into a load and requires the global

pointer to be properly set up.

2



so that only the variable parts of type expressions need

to be passed at run-time. This greatly reduces run-

time heap allocations of type expressions, but still re-

quires arbitrary pattern-matching for type discrimina-

tion. Shao [16] uses hash-consing to reduce most type

tests to simple pointer equality tests, but this makes

type construction even more expensive.

Little experimental data on the actual cost of run-

time type passing and type inspection has been pub-

lished. The �gures in [18] are not conclusive, since they

are given for small test programs where all run-time

type handling has been eliminated through aggressive

inlining. Morrisett [8] reports slow-downs of 10% to

350% between single-module test programs (hence com-

pletely monomorphised by the compiler) and the same

programs split in several separately-compiled modules

(hence still containing run-time type tests). However,

the slow-downs reported also include the cost of calling

unknown functions instead of using pre-de�ned inlined

operations. Even if its precise cost has not yet been

determined, we believe that run-time type inspection

can have a fairly high price on modern processors: it

increases code size and introduces lots of conditional

branches, which are di�cult to schedule well and con-

sume extra entries in the processor's branch prediction

tables. Both phenomena favor code stalls, which are

very expensive on modern processors.

Tag-based unboxing: Tagging shares some of the

costs of run-time type inspection, but not all. Stor-

ing tags in newly-allocated blocks often has zero cost,

since the tag can often be merged with GC informa-

tion, which has to be maintained in any case. In Ob-

jective Caml, for instance, each heap block has a one-

byte tag stored in the one-word header containing the

block size and GC marking bits. There is no overhead

on function calls, since no extra type parameters are

introduced. Run-time tag tests are relatively inexpen-

sive (one load and one integer comparison), never re-

quiring pattern-matching on arbitrary trees. However,

some of the drawbacks of run-time type inspection still

apply to tag tests: increased code size and extra condi-

tional branches. For instance, in Objective Caml 1.05,

a polymorphic array copy function runs 10 times slower

than the same function specialized to integer arrays,

and 8 times slower than the same function specialized

to 
oat arrays.

3.2 GC overhead

The sources of overhead discussed so far apply only to

generic code: fully monomorphic code pays no perfor-

mance penalty. This is not the case for the GC-related

overhead, discussed below, which a�ects all programs.

Unboxing strategies can add signi�cant overhead to

the traversal of the memory graph performed by the

garbage collector. With a conventional, fully-boxed

data representation strategy, walking the memory graph

is relatively e�cient: typically, one bit needs to be

tested in every value to distinguish pointers from inte-

gers; then, for each pointer, one word of header must be

consulted to determine the size of the block and whether

it contains other pointers or just raw data. Most unbox-

ing strategies complicate this traversal of the memory

graph:

Getting the roots in the stack With unboxing,

stack frames usually contain a mixture of valid point-

ers (or well-tagged integers) and raw, unboxed integers

and 
oats. A non-conservative garbage collector needs

to distinguish the pointers from the raw data. One pos-

sibility, used in Gallium and Objective Caml, is to as-

sociate frame descriptors, listing the locations of the

pointers in the frame, to return addresses. Finding

the descriptors associated with the return addresses in

the stack frames and interpreting them adds some over-

head compared with a fully boxed model where all stack

words are valid pointers or tagged integers.

Handling mixtures of pointers and raw data in

heap blocks Some unboxing strategies result in heap

blocks that contain pointers intermingled with unboxed

integers or 
oats. For instance, in Gallium, a heap

block containing a value of type string * float *

int list contains two pointers at byte o�sets 0 and

12, separated by 8 bytes of raw data for the unboxed


oat. In this case, �nding all the pointers contained in

a block is no longer a yes/no question. The Gallium

runtime system stores, in the block header, a pointer to

a block descriptor enumerating the machine types (ad-

dress, integer or 
oat) of all block �elds. The garbage

collector then decodes that information to follow the

pointers contained in the block. Despite various op-

timizations for frequent special cases (no pointers, all

pointers, etc.), we found that this decoding of block

descriptors accounts for a fairly large part of the time

spent in garbage collection.

Type-directed garbage collection Some garbage

collectors abandon tags and header words altogether,

and base their traversal of the memory graph on static

type information, using either run-time type parame-

ters for polymorphic code [19] or GC-time type recon-

struction [2, 1]. Here, determining where pointers lie

inside blocks is even more expensive than in the previ-

ous case, since instead of reading pre-digested block de-

scriptors, the garbage collector must interpret full type

expressions. In addition, since type information is not

attached to data, a Cheney-style breadth-�rst traver-

sal of the memory graph is no longer feasible and must

3



be replaced by a depth-�rst traversal [2, 19] or allocate

extra heap memory for storing types. Tolmach [19] re-

ports execution times ranging from 0.6 to 2.6 relative

to a Gallium-style garbage collector on small programs.

(Some of the extra cost of garbage collection is com-

pensated by the fact that heap blocks are smaller { no

extra header word is required). We believe more impor-

tant slow-downs would be observed relative to a con-

ventional, fully-tagged garbage collector, especially on

larger programs.

In conclusion, the GC overhead of an unboxing strat-

egy can be signi�cant, and a�ects not only generic code,

but fully monomorphic programs as well. This is espe-

cially bad for heavy symbolic processing (e.g. theorem

proving), which is GC-intensive (it is not unusual to

spend more than 30% of total running time in garbage

collection), and does not bene�t much from unboxing

optimizations: most of the computation is performed on

tree-shaped datatypes representing expressions, which

remain fully boxed with all existing unboxing strategies.

Symbolic processing often runs slower with aggressive

unboxing optimizations than with a conventional, fully-

boxed data representation, since the main code is iden-

tical but the garbage collector runs slower. In our opin-

ion, this is not acceptable: symbolic processing, which is

ML's bread and butter, should never run slower due to

optimizations targeted towards hypothetical numerical

or byte-oriented applications.

Recovering the e�ciency of a conventional, fully-

tagged garbage collector can be done in two directions.

The �rst is to restrict the unboxing strategy so that

it never produces heap blocks containing both pointers

and unboxed data. For instance, a heap block contain-

ing a value of type float * float has the two 
oats

unboxed (and is marked as \raw data" for the garbage

collector), but a block containing a float * string

holds two pointers, the 
oat being allocated separately.

Both SML/NJ and Objective Caml go even further and


atten only records of 
oating-point numbers, keeping

everything else boxed inside heap blocks [15, 5].

The second direction is to allow mixed heap blocks,

but group all pointers at the beginning of the block. The

garbage collector is then instructed to follow the �rst N

�elds as pointers, with N possibly null or smaller than

the actual size of the block. This greatly complicates

access to block �elds: a block of type �

1

* �

2

, no longer

contains a value of type �

1

followed by a value of type

�

2

; for instance, if �

1

= string * int and �

2

= string,

the �rst component of the pair is composed of �elds

0 and 2 of the block, while the second component is

�eld 1. Also, there are practical di�culties with storing

both a size and a pointer count in a one-word block

header.

4 Untyped unboxing techniques

In addition to the type-directed unboxing techniques

recalled in section 2, there also exists several unboxing

techniques that use no or very little typing information,

yet achieve most of the performance of type-based tech-

niques, usually with a better worst-case behavior.

4.1 Local unboxing

Boxing and unboxing operations that cancel each other

in the same function body are easily eliminated by a

straightforward data
ow analysis. For instance, the fol-

lowing Objective Caml code

let f a x =

let y = a.(0) *. x in y +. 1.0

performs only one 
oat unboxing (on the x argument)

and one 
oat boxing (on the function result); the in-

termediate results remain unboxed. Also, the access to

the array a performs neither unboxing nor type testing,

since a is statically known to be a 
oat array.

Trivial as it may seem, local unboxing is already very

e�ective on numerical code, provided loops are not rep-

resented as tail-recursive functions in the intermediate

language, but kept as part of the current function us-

ing special loop constructs in the intermediate language.

For instance, the core of our FFT benchmark (see sec-

tion 5) is composed of one fairly large function with four

nested loops; local unboxing succeeds in eliminating all


oating-point boxing and unboxing in this function, re-

sulting in assembly code that looks very much like the

one produced by a good C compiler.

Like all data
ow analyses, local unboxing can be ex-

tended to an inter-function analysis operating on whole

compilation units, by combining it with a control-
ow

analysis (to determine the call graph) and an escape

analysis (to determine data structures for which all cre-

ation and use sites are known). The Bigloo Scheme

compiler performs unboxing of 
oats and 
oat arrays

this way, and achieves respectable performance on nu-

merical code [13].

4.2 Known functions and partial inlin-

ing

A standard trick for making function calls with multi-

ple arguments e�cient in ML is to have two entry points

per function: a standard entry point, using the regular

calling conventions (take a heap-allocated tuple of ar-

guments for uncurried function, or take one argument

and return a closure for a curried function), and a fast

entry point, taking all the arguments in registers. A

direct call to the fast entry point is generated when

the caller \knows" which function is being called (i.e. a

4



control-
ow analysis has determined that only one func-

tion 
ows to the call site) and provides exactly the ex-

pected number of arguments (no partial application).

In all other cases (call to an unknown function, partial

application, etc.), a regular call through the function's

closure is generated, and the closure points to the stan-

dard entry point. The standard entry point can be a

code prelude sequence, which dispatches the arguments

to registers before falling through the fast entry point,

or (to save code space) a shared combinator, which dis-

patches the arguments before tail-calling the fast entry

point, stored in a conventional �eld of the closure.

For calling known functions taking a tuple of argu-

ments, this scheme is essentially as e�cient as unboxed

tuples in a coercion-based unboxing scheme [6]. Un-

boxed tuples work better for calls to unknown functions

with known types, but the multiple entry point scheme

deals with curried functions equally well, while unbox-

ing schemes are ine�ective against currying.

Peyton-Jones and Launchbury [12] and independently

Goubault [3] proposed an elegant reformulation of the

multiple entry point trick as a partial inlining problem,

which allows not only tuples of arguments to be un-

boxed, but also tuples of results, 
oating-point argu-

ments and results, and possibly more. It is obvious that

inlining a function at point of call and applying a local

unboxing optimization gets rid of all unnecessary boxing

of the function arguments and results. However, most

functions are too large to be inlined. The solution is to

decompose functions into three parts:

� a prelude that unboxes those arguments that need

to be unboxed (as determined by the local unboxing

analysis);

� a body that takes unboxed arguments and com-

putes unboxed results;

� a postlude that boxes the results.

Then, the function is partially inlined at call sites where

it can be determined that the function is the only one

that 
ows to these call sites: the prelude and postlude

are inlined, hopefully canceling the boxing and unboxing

operations around the call site; the function body is not

inlined, but simply called.

No experimental results have been published for the

partial inlining approach to unboxing, but, based on our

experience with multiple entry points for curried and

uncurried functions in Objective Caml, we expect this

scheme to be very e�ective for removing boxing and

unboxing operations around function calls. The only

potential problem is a certain growth in code size when

the inlined preludes and postludes do not cancel cleanly

with other operations around the call site. Also, inlining

a postlude can prevent tail call optimization.

Of course, both multiple entry points and partial in-

lining apply only to calls to known functions. On our

test suite for the Objective Caml compiler, 80% to 100%

of all dynamically executed function calls are statically

turned into direct calls to known functions. However,

Objective Caml uses a very simple-minded control-
ow

analysis, comparable to the �rst iteration of the 0CFA

algorithm [17, 14]; we expect that better control-
ow

analyses would lead to even better �gures. Objective

Caml's simple-minded control-
ow analysis works quite

well not only on the core ML language, but across struc-

tures and functors as well. We have not yet extended it

to the object-oriented features of Objective Caml, how-

ever. It is likely that more sophisticated control-
ow

analyses are needed to recognize invocations of known

methods.

5 Experimental results

We now discuss some experimental results obtained

with the Gallium 1, Gallium 2 and Objective Caml

compilers. Gallium 1 was the �rst implementation of

the coercion-based type-directed unboxing presented in

[6]. It generated code for the MIPS processor and had

a simple, one-generation copying collector. Gallium 2,

brie
y described in [19], also uses coercion-based unbox-

ing, but adds a better, more portable code generator, a

two-generation copying collector, as well as tag-based

unboxing of 
oats in arrays (as described in section 2).

The Objective Caml native-code compiler [5, 7] aban-

dons coercion-based unboxing and uses conventional,

mostly-tagged data representations in combination with

local unboxing of 
oats (as described in section 4.1),

multiple entry points to uncurried and curried functions

(section 4.2), and tag-based handling of unboxed 
oat

arrays (section 2). The garbage collector has two gener-

ations, using an incremental mark-and-sweep collector

on the old generation. The main reason coercion-based

unboxing was abandoned in Objective Caml is because

of the GC overhead discussed in section 3.2, and also

to allow more code sharing with the Objective Caml

bytecode compiler.

The �rst series of experimental results are shown in

�gure 1. They compare the Gallium 1 compiler with

type-directed unboxing versus a simple variant of the

same compiler using conventional, fully boxed or tagged

data representations. The intent was to compare un-

boxed and boxed representation strategies with all other

things (code generator, garbage collector, etc) being

equal. The compiler using boxed representations did not

implement any kind of local unboxing nor optimizations

for multiple-argument functions, though. The results

are taken from [6].

As �gure 1 shows, unboxing is most e�ective on pro-

grams that perform a lot of 
oating-point computation,

such as integral, achieving speedups of 3 to 4. Inte-

ger computations (sieve, sumlist) run at about the

5



Test Gallium 1 Gallium 1 What is tested

with unboxing no unboxing

takeushi 3.00 5.09 function calls, integer arithmetic

integral 0.80 2.83 
oating-point arithmetic, loops

sumlist 3.60 3.45 list processing, integer arithmetic

sieve 1.00 0.94 integer arithmetic, lists, functionals, polymorphism

boyer 1.80 2.76 term processing, function calls

knuth-bendix 0.90 0.98 term processing, functionals, polymorphism

quad quad succ 6.58 2.40 Church numerals, functionals, polymorphism

Times are given in seconds, averaged on three runs. The tests were conducted on a MIPS R3000-based Decstation

5000/200 running Ultrix 4.0.

Figure 1: Performance comparison between Gallium 1 with and without coercion-based type-directed unboxing

same speed, even though one compiler uses native 32-

bit integer arithmetic, while the other uses tagged 31-bit

integers (with n being represented as 2n+ 1). Clearly,

the overhead of maintaining the tag bit on integers is

low, and probably even lower on a more modern proces-

sor with multiple integer units. The symbolic process-

ing tests (boyer, knuth-bendix) show a slight perfor-

mance advantage for the unboxing compiler, which we

attribute to the fact that the calling conventions for

uncurried functions with several arguments are more

e�cient in the unboxing compiler. This intuition is

con�rmed by the takeushi test, which measures essen-

tially the speed of function calls with three arguments.

The quad quad succ test, based on Church numerals,

is the one known case where the unboxing and boxing

coercions wrapped around polymorphic function actu-

ally perform a lot of unnecessary work, causing perfor-

mances much worse than those of a fully-boxed imple-

mentation.

The second set of results (�gure 2) pit the Gallium 2

compiler, with coercion-based type-directed unboxing,

against the Objective Caml 1.05 native-code compiler,

which uses mostly standard (tagged or boxed) data

representations combined with a number of tricks for


oats, 
oat arrays, and multiple-argument functions.

The comparison is not completely fair, since both com-

pilers use slightly di�erent code generators and garbage

collectors.

As �gure 2 shows, despite its inferior unboxing tech-

nology, Objective Caml matches the performances of

Gallium 2 on most tests. Objective Caml is even slightly

faster than Gallium 2 on some symbolic processing tests

(knuth-bendix, bdd), a fact we attribute to the sim-

pler heap traversal in the Objective Caml garbage col-

lector, which, unlike Gallium's, does not have to deal

with mixed pointers and raw data in heap blocks. On

the other hand, the Objective Caml garbage collector is

handicapped by the fact that the major heap is not con-

tiguous (it grows on demand without copying), making

it more expensive to determine which pointers point to

the heap than in Gallium; this accounts for Gallium's

better performance on boyer.

On 
oating-point tests (fft, nucleic), local unbox-

ing of 
oats as in Objective Caml is just as e�ective as

the more general unboxing strategy of Gallium 2. In-

teger tests (fib, takeushi, sieve, solitaire) show

no signi�cant di�erences, thus con�rming that 63-bit

tagged arithmetic is essentially as fast as 64-bit native

arithmetic.

Tests involving arrays (fft, quicksort, solitaire,

bdd) show a large performance advantage for Objective

Caml. This is a consequence of much more e�cient ar-

ray bounds checking in Objective Caml. To compensate

for this, we also give measurements with array bounds

checking turned o� (the starred tests in �gure 2).

The only test where Objective Caml is noticeably

slower is mandelbrot, which operates on references to


oats. The Gallium compiler gets rid of the two levels

of indirection (the reference, then the 
oat), while the

local unboxing algorithm of Objective Caml 1.05 elim-

inates only one level. This is to be construed as a bug

in Objective Caml 1.05, which we expect to �x shortly.

6 Conclusions

Like all typing analyses, type-directed unboxing is

highly systematic: all data having the same type must

have the same representation. This leads to unboxing

strategies that either unbox very little, as in SML/NJ,

or unbox quite a lot but slow down the garbage collector

and other parts of the runtime system, as in Gallium.

We believe unboxing is best viewed as an optimization,

in the classic compiler sense of the term: a transforma-

tion that can be applied or not on a case-by-case basis,

without compromising correctness. Following this ap-

proach, we have found that a modest amount of type-

directed unboxing (tag-based handling of unboxed 
oat

arrays and records of unboxed 
oats) combined with

mostly-standard, untyped optimizations (local unbox-

6



Test Gallium 2 Obj. Caml What is tested

bdd 19.0 12.3 term processing, hash tables

bdd * 17.8 11.0 same as bdd, without array bounds checking

boyer 0.52 0.62 term processing, function calls

fft 3.49 2.00 
oating-point arithmetic, 
oat arrays

fft * 2.02 1.58 same as fft, without array bounds checking

fib 0.33 0.34 integer arithmetic, function calls (1 argument)

genlex 0.69 0.76 lexing, parsing, symbolic processing

knuth-bendix 3.00 2.47 term processing, function calls, functionals

mandelbrot 2.52 7.31 
oating-point arithmetic, loops

nucleic 0.88 0.89 
oating-point arithmetic, tree searching

quad quad succ 0.53 0.12 Church numerals, functionals, polymorphism

quicksort 1.44 0.65 integer arrays, loops

quicksort * 0.54 0.43 same as quicksort, without array bounds checking

sieve 1.03 1.01 integer arithmetic, list processing, functionals

solitaire 1.51 0.56 arrays, loops

solitaire * 0.41 0.38 same as solitaire, without array bounds checking

takeushi 0.41 0.39 integer arithmetic, function calls (3 arguments)

Times are given in seconds, averaged on three runs. The tests were conducted on an Alpha 21064-based Decstation

3000/400 running Digital Unix.

Figure 2: Performance comparison between Gallium 2 and Objective Caml 1.05

ing, special calling protocols for known functions) per-

forms just as well as, and even slightly better than ag-

gressive coercion-based type-directed unboxing.

We conclude that unboxing is not the \killer app"

for type-based compilation: good unboxing can be

achieved without propagating type information through

the whole compilation chain

2

. This is not to say that

it's a bad idea to propagate types throughout an ML

compiler; just that there must be other motivations to

do so besides unboxing optimizations.

References

[1] S. Aditya, C. H. Flood, and J. E. Hick. Garbage

collection for strongly-typed languages using run-

time type reconstruction. In Lisp and Functional

Programming 1994, pages 12{23. ACM Press, 1994.

[2] A. W. Appel. Run-time tags aren't necessary. Lisp

and Symbolic Computation, 2(2), 1989.

[3] J. Goubault. Generalized boxing, congruences and

partial inlining. In Static Analysis Symposium '94,

number 864 in Lecture Notes in Computer Science,

pages 147{161. Springer-Verlag, 1994.

2

The Objective Caml compiler exploits type information in the

�rst compilation pass only { the one that goes from ML abstract

syntax to the lambda intermediate code. All type-directed trans-

formations are performed there. This greatly simpli�es further

compilation passes, which do not have to keep typing information

up to date.

[4] M. P. Jones. Partial evaluation for dictionary-free

overloading. Technical Report YALEU/DCS/RR-

959, Yale University, Dept. of Computer Science,

Apr. 1993.

[5] X. Leroy, J. Vouillon, and D. Doligez. The

Objective Caml system. Software and doc-

umentation available on the Web, http://

pauillac.inria.fr/ocaml/, 1996.

[6] X. Leroy. Unboxed objects and polymorphic typ-

ing. In 19th symposium Principles of Programming

Languages, pages 177{188. ACM Press, 1992.

[7] X. Leroy. Le syst�eme Caml Special Light: modules

et compilation e�cace en Caml. Research report

2721, INRIA, Nov. 1995.

[8] G. Morrisett. Compiling with types. PhD thesis,

Carnegie Mellon University, Dec. 1995.

[9] R. Morrison, A. Dearle, R. C. H. Connor, and A. L.

Brown. An ad hoc approach to the implementation

of polymorphism. ACM Trans. Prog. Lang. Syst.,

13(3), 1991.

[10] A. Ohori and T. Takamizawa. An unboxed opera-

tional semantics for ML polymorphism. Lisp and

Symbolic Computation, 1997. To appear.

[11] D. P. Oliva and A. Tolmach. From ML to Ada(!?!):

strongly-typed language interoperability via source

7



translation. Draft, available electronically, Nov.

1996.

[12] S. L. Peyton-Jones and J. Launchbury. Unboxed

values as �rst-class citizens in a non-strict func-

tional language. In Functional Programming Lan-

guages and Computer Architecture 1991, volume

523 of Lecture Notes in Computer Science, pages

636{666, 1991.

[13] M. Serrano and M. Feeley. Storage use analysis and

its applications. In International Conference on

Functional Programming 1996, pages 50{61. ACM

Press, 1996.

[14] M. Serrano. Control 
ow analysis: a functional

language compilation paradigm. In Symposium on

Applied Computing SAC '95. ACM Press, 1995.

[15] Z. Shao and A. Appel. A type-based compiler for

Standard ML. In Programming Language Design

and Implementation 1995, pages 116{129. ACM

Press, 1995.

[16] Z. Shao. Flexible representation analysis. In Inter-

national Conference on Functional Programming

1997. ACM Press, 1997.

[17] O. Shivers. Control-
ow analysis in Scheme. SIG-

PLAN Notices, 23(7):164{174, July 1988.

[18] D. Tarditi, G. Morrisett, P. Cheng, C. Stone,

R. Harper, and P. Lee. TIL: a type-directed opti-

mizing compiler for ML. In Programming Language

Design and Implementation 1996, pages 181{192.

ACM Press, 1996.

[19] A. Tolmach. Tag-free garbage collection using ex-

plicit type parameters. In Lisp and Functional Pro-

gramming 1994, pages 1{11. ACM Press, 1994.

8


