
Proc. 18th Symp. Principles of Programming Languages, 1991, pages 291–302.

Polymorphic type inference and assignment
Xavier Leroy∗

Ecole Normale Supérieure
Pierre Weis∗

INRIA Rocquencourt

Abstract

We present a new approach to the polymorphic typing
of data accepting in-place modification in ML-like lan-
guages. This approach is based on restrictions over type
generalization, and a refined typing of functions. The
type system given here leads to a better integration of
imperative programming style with the purely applica-
tive kernel of ML. In particular, generic functions that
allocate mutable data can safely be given fully polymor-
phic types. We show the soundness of this type system,
and give a type reconstruction algorithm.

1 Introduction

Polymorphic type disciplines originate in the study of λ-
calculus and its connections to constructive logic [7, 14],
so it is no surprise it fits very nicely within purely
applicative languages, without side effects. However,
polymorphism becomes problematic when we move to-
ward conventional imperative languages (Algol, Pas-
cal), and allow physical modification of data structures.
The problem appeared at an early stage of the design of
ML [8, p. 52], when assignment operators were provided
for the primitive data types of references and vectors.
Consider the following example, in ML1:

let r = ref [] in
r := [1];
if head(!r) then . . . else . . .

If we naively give type ∀α. α list ref to the reference r,
we can first use it with type int list ref , and store in it
the list with 1 as single element — an int list, indeed.
Given its type, we can also consider r as having type
bool list ref , hence head(!r) has type bool, and the if
statement is well-typed. However, head(!r) evaluates
to 1, which is not a valid boolean. This example shows

∗Authors’ address: B.P.105, 78153 Le Chesnay, France.
E-mail: xleroy@margaux.inria.fr, weis@margaux.inria.fr.

1Survival kit for the reader unfamiliar with ML: [] is the (poly-
morphic) empty list, [a1; . . . ; an] the list with elements a1 . . . an.
ref x allocates a new reference (indirection cell), initialized to x.
r := x updates the contents of reference r by x. !r returns the
current contents of reference r.

that physical modification of data compromises type
safety, since it can invalidate static typing assumptions.

As demonstrated here, the use of polymorphic mu-
table data (that is, data structures that can be mod-
ified in place) must be restricted. An obvious way to
tackle this problem, used in early implementations of
ML [3], is to require all such data to have monomor-
phic, statically-known types. This restriction trivially
solves the problem, but it also makes it impossible to
write polymorphic functions that create mutable values.
This fact has unfortunate consequences.

A first drawback is that it is not possible to provide
generic, efficient implementations of most data struc-
tures (vectors, hash tables, graphs, B-trees, . . .), as
they require physical modification. Even a trivial func-
tion such as taking a vector of an arbitrary type and
returning a copy of it is not well-typed with the policy
above, since it creates a vector with a statically un-
known type.

Another drawback is that polymorphic mutable val-
ues are prohibited even if they are not returned, but
used for internal computation only. As a consequence,
most generic functions cannot be written in an impera-
tive style, with references holding intermediate results.
Consider the familiar map functional:

let rec applicative map f l =
if null l then [] else

f (head l) :: applicative map f (tail l)

Here is an alternate implementation of map in impera-
tive style:

let imperative map f l =
let argument = ref l and result = ref [] in

while not (null !argument) do
result := f (head !argument) :: !result ;
argument := tail !argument

done;
reverse !result

Some ML type systems reject imperative map as ill-
typed. Others give it a less general type than its
purely applicative version. In any case, the imperative
version cannot be substituted for the applicative one,

Page 1

even though they have exactly the same semantics. As
demonstrated here, the programming style (imperative
vs. applicative) interferes with the type specifications.
This clearly goes against modular programming.

Some enhancements to the ML type system have been
proposed [4, 16, 17, 1], that weaken the restrictions over
polymorphic mutable data. Standard ML [11] incorpo-
rates some of these ideas. These enhanced type systems
make it possible to define many useful generic functions
over mutable data structures, such as the function that
copies a vector. However, these systems are still not
powerful enough: they fail to infer the most general
type for the imperative map example above; and they
do not work well in conjunction with higher-order func-
tions. Because of these shortcomings, Standard ML
does not provide adequate support for the imperative
programming style. This is a major weakness for a
general-purpose programming language.

In this paper, we present a new way to typecheck mu-
table data within a polymorphic type discipline. Our
type system is a simple extension of the one of ML.
It permits type reconstruction and possesses the prin-
cipal type property. It requires minimal modifications
to the ML type algebra. Yet it definitely improves the
support for imperative programming in ML. It allows
generic functions over mutable data structures to have
fully polymorphic types. It is powerful enough to assign
to a function written in imperative style the same type
as its purely applicative counterpart. For example, in
this system, the imperative implementation of map can-
not be distinguished from the usual, applicative one, as
far as types are concerned.

The remainder of the paper is organized as follows.
In section 2, we introduce informally our type system,
and show the need for a more precise typechecking of
functions. Section 3 formalizes the ideas above. We
state the typechecking rules, show their soundness, and
give a type reconstruction algorithm. Section 4 briefly
compares our approach with previous ones. We give a
few concluding remarks in section 5.

2 Informal presentation

In this section, we informally introduce our typing dis-
cipline for mutable data, focusing on references to be
more specific. Unlike the Standard ML approach, we
do not attempt to detect the creation of polymorphic
references. What we prohibit is the use of a reference
with two different types. The only way to use a value
with several types is to generalize its type first, that is,
to universally quantify over some of its type variables.
(In ML, the only construct that generalizes types is the

let binding.) Hence, what we restrict is type general-
ization: we never generalize a type variable that may be
free in the type of a reference. Such a type variable is
said to be dangerous. Not generalizing dangerous type
variables ensures that a mutable value always possesses
a monotype.

It remains to detect dangerous type variables at
generalization-time. Though this suggests a complex
and expensive static analysis, this turns out not to be
the case: dangerous variables can be determined by
mere examination of the type being generalized, as we
shall now illustrate.

2.1 Datatypes

Consider the example given in introduction:

let r = ref [] in
r := [1];
if head(!r) then . . . else . . .

The expression ref [] has type A = α list ref . This
type is a ref type, and α is free in it, hence α is dan-
gerous in A. The let construct does not generalize α,
hence α gets instantiated to int when typing r := [1],
and typing if head(!r) . . . leads to a type clash.

References may be embedded into more complex data
structures (pairs, lists, concrete datatypes). Fortu-
nately, the type of a data structure contains enough
information to retrieve the types of the components of
the structure. For instance, a pair with type A × B
contains one value of type A and one value of type B.
Therefore, any variable which is dangerous in A or in
B is also dangerous in A×B. For instance, in

let r = ([], ref []) in e

the expression ([], ref []) has type α list× β list ref ,
where β is dangerous but not α. Hence in e, variable r
has type ∀α. α list× β list ref .

The treatment of user-defined datatypes is similar.
Parameterless datatypes cannot contain polymorphic
data, so there is no dangerous variable in them. Pa-
rameterized datatypes come in two flavors: those which
introduce new ref types (such as type α foo = A |
B of α ref), and those which don’t. The former are
treated like ref types: all variables free in their parame-
ter(s) are considered dangerous. The latter are treated
like product types: their dangerous variables are the
dangerous variables of their parameter(s).

2.2 Functions

Function types are treated specially. The reason is that
a value with type A → B does not contain a value of

Page 2

type A, nor a value of type B, in contrast with regular
datatypes such as A × B or A list. Hence it seems
there are no dangerous variables in type A → B, even
if A or B contain dangerous variables themselves. For
instance, the function

let make ref = function x → ref x

has type α → α ref , and α is not dangerous in it,
so it is fully polymorphic. It is actually harmless by
itself. What’s harmful is to apply make ref to a poly-
morphic argument such as [], bind the result with a
let construct, and use it with two different types. But
this is not possible in the proposed type system, since
make ref [] has type β list ref , and this type will not be
generalized, as β is dangerous in it. In our approach,
generic functions that create and return mutable ob-
jects are given very general types. Type safety is en-
sured by controlling what can be done with the result
of their application, as described above.

The analysis above is based solely on the type of
the function result. Hence, the usage of a polymor-
phic function is unrestricted if the function does not
return any references, as witnessed by the absence of
ref types in its codomain type. This holds even if the
function allocates references with statically unknown
types for internal purposes, but does not return them.
For instance, this is the case for the imperative map
functional given in the introduction: it is given type
∀α, β. (α → β) → α list → β list, the very same type
as its purely applicative counterpart applicative map.
The imperative map functional can be substituted for
applicative map in any context. In particular, it can be
applied to highly polymorphic arguments: the expres-
sion

imperative map (function x → x) []

is well-typed, and returns the fully polymorphic empty
list, even though two references were created with type
α list ref . The type system guarantees that these ref-
erences are used consistently inside the function, and
are not exported outside.

Another strength of this type-based analysis is its
good handling of higher-order functions and partial
applications. Consider the partial application of
applicative map to make ref : our type system correctly
recognize it as harmless, and gives it the fully polymor-
phic type ∀α. α list → α ref list. This is not the case
for ML type systems that attempt to control the cre-
ation of references (see section 4).

2.3 Functions with free variables

The careful reader may have noticed a flaw in the dis-
cussion above: we have neglected the fact that a func-

tion may possess free variables. Suppose that a function
f has a free variable r which is bound to a reference out-
side the function. Function f can access and update the
reference, yet the type of r does not necessarily appear
in the type of f . A classic example is the functional
presentation of references as a pair of functions, one for
access, the other for update:

let functional ref x =
let r = ref x in

(function () → !r),
(function z → r := z)

The expression functional ref [] has type (unit →
α list) × (α list → unit), where no type variable is
dangerous, so it is fully polymorphic, yet it breaks type
safety just as ref [] does. The problem is that the types
of the free variables of a function do not appear in the
type of the function. In this context, it is useful to think
of functions as closures. Closures, in contrast with any
other data structure, are not adequately described by
their (functional) type: we do not know anything about
the types of the values contained in the environment
part of a closure.

Our solution is to keep track of what is inside a clo-
sure. We associate with any function type a set of types,
the types of all variables free in the function. We could
put this set of types as a third argument to the arrow
type constructor. For technical reasons, we find it more
convenient to add an extra level of indirection in record-
ing this set of types. Therefore, each function type is
adorned with a label. Labels are written L, M , and
labeled function types are written A

L→ B. Separately,
we record constraints on those labels. Constraints have
the format A . L, meaning that objects of type A are
allowed to occur in environments of type L. An envi-
ronment of type L is not required to contain a value of
type A. It is not allowed to contain a value of a type B
unless B . L is one of the recorded constraints.

This way, function type labels allow typings of
the environment parts of closures. For instance,
functional ref now has type:

α
L→ (unit

M→ α)× (α N→ unit)
with α ref . M, α ref . N

hence functional ref [] has type:

(unit
M→ β list)× (β list

N→ unit)
with β list ref . M, β list ref . N

thus revealing the presence of a polymorphic reference
in each function of the pair, and preventing the gen-
eralization of β. The rule is that in a functional type

Page 3

A
M→ B, a variable α is dangerous iff there exists a

constraint C . M with α dangerous in C.
This typing of closures gives a precise account of

the interleaving of internal computation and parameter
passing in (curried) functions, and of the possible data
sharing between invocations. For instance, it succeeds
in distinguishing the following two functions:

function () → ref [] :
unit L→ α list ref

let r = ref [] in function () → r :
unit L→ α list ref with α list ref . L

The former is harmless, since it returns a fresh refer-
ence each time, so it can be generalized. The latter
always return the same reference, which is therefore
shared between all calls to the function. It must re-
main monomorphic, which is indeed the case, since α is
a dangerous variable in its type.

Before presenting the type system formally, we now
give the main intuitions behind the typing of closures.
Constraints are synthesized during the typing of ab-
stractions, as follows: when giving type A

M→ B to the
abstraction e = function x → . . ., for each variable
y free in e, we look up the type Cy of y in the typing
environment and record the constraint Cy . M .

It is always safe to add new constraints, since the
constraints over a label L are intended to give an upper
bound for what can go inside closures of type L. (This
may lead to less general types, however, since more vari-
ables will be declared dangerous.) Unifying two labeled
function types A

L→ B and C
M→ D is easy: it suffices

to identify both labels L and M , resulting in a single
label which bears the previous constraints on M as well
as those on L. For instance, assuming f : int L→ int,
the expression

if . . . then f else
let z = 1 in function x → x + z

has type int
L→ int as well, with the additional con-

straint that int . L.
Finally, to give the most general type to function-

als, we must be able to generalize over labels, in the
same way as we generalize over regular type variables.
Consider the functional:

function f → 2 + (f 1)

It must be possible to apply it to any function mapping
integers to integers, whatever its closure may contain.
Yet if we give it the type (int L→ int) M→ int without
generalizing over L, we could only apply it to functions

without free variables, assuming there is no constraint
over L in the current environment. Instead, the right
typing is ∀L. (int L→ int) M→ int. In more complex sit-
uations, the current environment contains constraints
over the label to be generalized. These constraints are
discharged in the type schema, and reintroduced at spe-
cialization time. Type schemas therefore have the for-
mat ∀V1 . . . Vn. A with Γ, where the Vi are either labels
or type variables, and Γ is a sequence of constraints.

3 Formalization

In this section, we formalize a calculus based on the
ideas above.

3.1 Syntax

The language we consider is the core ML language, λ-
calculus plus a distinguished let construct. We shall
assume a built-in int type, with integer constants. The
store is presented through the type A ref of references
to a term of type A, and the operations ref(a), to al-
locate a new reference to term a, !a to get the contents
of the reference a, and a := b to update the content of
a by b.

We assume given a countable set Var of term vari-
ables, with typical elements x, y. In the following, i
ranges over integers. The syntax of terms, with typical
elements a, b, is as follows:

a ::= x | i | λx. a | (b a) | let x = a in b |
ref(a) | !a | a := b

3.2 Typechecking

Type expressions, with typical elements A,B, have
the following syntax:

A ::= X | int | A L→ B | A ref

In the definition above, X stands for a type variable,
ranging over a given countable set TVar . Function
types A

L→ B are annotated by a label L, taken from a
countable set Lbl . Labels are distinct from term vari-
ables and type variables.

Type schemas, with typical element Σ, are composed
of type expressions with some type variables and some
labels universally quantified. They also contain a se-
quence of constraints Γ. Constraints have the format
Σ . L.

Σ ::= A | ∀V1 . . . Vn. A with Γ
Γ ::= ε | Σ . L, Γ
V ::= X | L

Page 4

(int) E ` i : int with Γ

(varspec)
E(x) = ∀X1 . . . Xn, L1 . . . Lm. A with Γ

E ` x : A{Xi ← Bi, Lj ← Mj} with Γ{Xi ← Bi, Lj ← Mj} ∪ Γ′

(fun)
E[x ← A] ` b : B with Γ for all y free in λx. b, (E(y) . L) ∈ Γ

E ` λx. b : A
L→ B with Γ

(app)
E ` b : A

L→ B with Γ E ` a : A with Γ

E ` (b a) : B with Γ

(letgen)
E ` a : A with Γ (Σ, Γ′) = Gen(A,E, Γ) E[x ← Σ] ` b : B with Γ′ ∪ Γ′′

E ` let x = a in b : B with Γ′ ∪ Γ′′

(ref)
E ` a : A with Γ

E ` ref(a) : A ref with Γ
(deref)

E ` a : A ref with Γ

E ` !a : A with Γ

(assign)
E ` a : A ref with Γ E ` b : A with Γ

E ` a := b : A with Γ

Figure 1: The typing rules.

Given a type A in the context of a constraint se-
quence Γ, we define its free variables (labels as well as
type variables) FV (A with Γ) and its dangerous free
variables DV (A with Γ) as follows. The intuition be-
hind the definition of FV is that the components of a
functional type A

L→ B are not only A, B and L, but
also any type expression C such that C .L is one of the
recorded constraints.

FV (X with Γ) = {X}
FV (int with Γ) = ∅

FV (A ref with Γ) = FV (A with Γ)

FV (A L→ B with Γ) = {L} ∪ FV (A with Γ) ∪
FV (B with Γ) ∪⋃

(Σ.L)∈Γ

FV (Σ with Γ)

DV (X with Γ) = ∅
DV (int with Γ) = ∅

DV (A ref with Γ) = FV (A with Γ)

DV (A L→ B with Γ) =
⋃

(Σ.L)∈Γ

DV (Σ with Γ)

To complete the definition above, we extend FV and
DV to type schemas and to typing environments in the
obvious way:

FV
(
(∀V1 . . . Vn. A with Γ′) with Γ

)
=

FV (A with Γ ∪ Γ′) \ {V1 . . . Vn}

DV
(
(∀V1 . . . Vn. A with Γ′) with Γ

)
=

DV (A with Γ ∪ Γ′) \ {V1 . . . Vn}
FV (E with Γ) =⋃

x∈Dom(E)

FV (E(x) with Γ)

The typing rules are given in figure 1. They are very
similar to the rules for ML, except for the additional
handling of constraints, reminiscent of the treatment
of subtyping hypotheses in type inference systems with
subtypes [12, 6].

The rules define the proposition “term a has type
A under assumptions E and constraints Γ”, written
E ` a : A with Γ. The typing environment E is a
partial mapping from term variables to type schemas.
We write E[x ← A] for the environment identical to E,
except that x is mapped to A. We assume the usual set
operations are defined over constraints Γ in the obvious
way.

As in Standard ML [11, p. 21], the Gen operator
used in the (letgen) rule is responsible for generaliz-
ing as many type variables as possible in a type. Here,
we also generalize over labels whenever possible. In ad-
dition, we prohibit generalization over dangerous type
variables. A tentative definition would therefore be
Gen(A,E, Γ) = ∀V1 . . . Vn. A where the set {V1 . . . Vn}
is FV (A with Γ) \ DV (A with Γ) \ FV (E with Γ).
However, it would be incorrect to generalize over a vari-
able which remains free in the constraint sequence used

Page 5

i[s] e=⇒ int(i)[s] x[s] e=⇒ e(x)[s] (λx. a)[s] e=⇒ clos(x, a, e|FV (a))[s]

b[s] e=⇒ clos(x, c, e1)[s1] a[s1]
e=⇒ v2[s2] c[s2]

e1[x←v2]=⇒ v3[s3]

(b a)[s] e=⇒ v3[s3]

a[s] e=⇒ v1[s1] b[s1]
e[x←v1]=⇒ v2[s2]

(let x = a in b)[s] e=⇒ v2[s2]

a[s] e=⇒ v[s′] ` /∈ Dom(s′)

ref(a)[s] e=⇒ loc(`)[s′[` ← v]]

a[s] e=⇒ loc(`)[s′]

!a[s] e=⇒ s′(`)[s′]

a[s] e=⇒ loc(`)[s1] b[s1]
e=⇒ v[s2]

(a := b)[s] e=⇒ v[s2[` ← v]]

Figure 2: The evaluation rules

later. Therefore, Gen also discharges in the schema all
“generic” constraints, i.e. the constraints in Γ where
one of the Vi is free, and returns the remaining con-
straints, to be used further in the typing derivation.

Definition 1 (Generalization) Let A be a type ex-
pression, E be a typing environment, Γ be a constraint
sequence. Define:

{V1 . . . Vn} =
FV (A with Γ) \DV (A with Γ) \ FV (E with Γ).

Let Γ′ be the sequence of those constraints Σ . L in Γ
such that L is one of the Vi. Then:

Gen(A,E, Γ) = (∀V1 . . . Vn. A with Γ′), (Γ \ Γ′)

3.3 Evaluation

We give here an evaluation mechanism for terms of our
calculus, using structural operational semantics. The
evaluation relation a[s] e=⇒ v[s′] maps a term a, in the
context of an evaluation environment e and a store s,
to some value v, and a modified store s′. Values have
the following syntax:

v ::= int(i) | clos(x, a, e) | loc(`)
Here, ` ranges over a countable set Loc of locations.
Stores are partial mappings from locations to values.
Since we assume call-by-value, evaluation environments
are partial mappings from term variables to values. The
rules given in figure 2 define precisely the evaluation re-
lation, assuming standard left-to-right evaluation order.

To account for run-time type errors, we introduce
the special result wrong, and state that if none of the
evaluation rules match, then a[s] e=⇒ wrong. This
way, we can distinguish between type errors and non-
termination.

3.4 Soundness of typing

The type system presented here is sensible with respect
to the evaluation mechanism above: no well-typed term
can evaluate to wrong.

Proposition 1 Let a be a term, A be a type, Γ be a
sequence of constraints such that we can derive ∅ ` a :
A with Γ. Then, for all stores s0, a[s0] does not evalu-

ate to wrong; that is, we cannot derive a[s0]
∅=⇒ wrong.

The proof can be found in appendix. It closely fol-
lows Tofte’s [16, chapter 5]. The crucial point is that
closure labels and constraints give a better control over
the types of store locations than in ML. As a conse-
quence, a variable cannot be free in the type of a loca-
tion reachable from a value without being dangerous in
the type of that value. This guarantees the soundness
of type generalization.

3.5 Type reconstruction

In this section, we consider an adaptation to our lan-
guage of the well-known Damas-Milner type reconstruc-
tion algorithm for ML (algorithm W of [5]). In the fol-
lowing, we write mgu(A, B) for the principal unifier of
types A and B, if A and B are unifiable. (Otherwise,
the type inference algorithm fails.) Type expressions
are terms of a two-sorted free algebra, hence this en-
sures the existence of a principal unifier, that can be
obtained by the classical unification algorithm between
terms of a free algebra.

Let a be a term, E be a typing environment, and
Γ be an initial sequence of constraints. We define
infer(E, a, Γ) as the triple (A, σ,∆), where A is a type
expression, σ a substitution and ∆ a constraint se-
quence, as follows:

Page 6

infer(E, i, Γ) =
(int, Id, Γ)

infer(E, x, Γ) =
let (∀X1 . . . Xn, L1 . . . Lm. A with ∆) = E(x)
let Y1, . . . , Yn be fresh type variables

(not free in E nor in A)
and M1, . . . , Mm be fresh labels
let σ = {Xi ← Yi, Lj ← Mj}
in (σA, Id, Γ ∪ σ∆)

infer(E, λx. b, Γ) =
let X, L be fresh variables
let Θ = {E(y) . L | y free in λx. b}
let B, σ,∆ = infer(E[x ← X], b, Γ ∪Θ)
in (σX

L→ B, σ,∆)

infer(E, (b a), Γ) =
let B, ρ, Θ = infer(E, b, Γ)
let A, σ,∆ = infer(ρE, a, Θ)
let X, L be fresh variables
let µ = mgu(σB, A

L→ X)
in (µX, µσρ, µ∆)

infer(E, let x = a in b,Γ) =
let A, σ,∆ = infer(E, a,Γ)
let Σ, ∆′ = Gen(A, σE, ∆)
let B, ρ, Θ = infer((σE)[x ← Σ], b, ∆′)
in (B, ρσ, Θ)

infer(E, ref(a),Γ) =
let A, σ,∆ = infer(E, a,Γ)
in (A ref , σ,∆)

infer(E, !a, Γ) =
let A, σ,∆ = infer(E, a,Γ)
let X be a fresh variable
let µ = mgu(A,X ref)
in (µX, µσ, µ∆)

infer(E, a := b,Γ) =
let A, σ,∆ = infer(E, a,Γ)
let B, ρ, Θ = infer(σE, b, ∆)
let µ = mgu(ρA,B ref)
in (µB, µρσ, µΘ)

This algorithm enjoys the good properties of the
Damas-Milner algorithm: it is correct and complete
with respect to the typing rules, and the inferred type
is the most general one. The proof is very similar to
Damas’ proof [4].

3.6 Relation to ML

We have introduced closure typing as a way to keep
track of mutable values embedded in functions. As
a consequence, two expressions having the same func-
tional type in ML may now be distinguished by their
closure type, and we may fear that this leads to a type
system more restrictive than the one of ML. Ideally, we
would like the purely applicative fragment of our cal-
culus (that is, without the ref type constructor, and
the ref, := and ! term constructors) to be a conser-
vative extension of ML: any pure, closed term that is
well-typed in ML should also be well-typed in our cal-
culus. Unfortunately, this is not the case — but for
more subtle reasons than the one outlined above.

Actually, two type expressions in our system cannot
be distinguished by their closure labels only. The rea-
son is that unification cannot fail because of the labels:
given the syntax of type expressions, a label can only be
matched against another label, and labels are treated as
variables as far as unification is concerned. Therefore,
in our system, unification between types is conservative
with respect to unification between the corresponding
ML types. To be more precise, we introduce the “strip”
operator ↓, that maps type expressions in our calculus
to ML type expressions, by erasing the labels from func-
tion types:

int↓ = int X↓ = X (A ref)↓ = A↓ ref

(A M→ B)↓ = A↓ → B↓
Then, two type expressions A and B are unifiable if
and only if A↓ and B↓ are, and in this case, taking σ =
mgu(A, B) and ρ = mgu(A↓, B↓), we have (σC)↓ =
ρ(C↓) for all types C.

This lemma, along with the close resemblance be-
tween our algorithm infer and Damas-Milner’s W al-
gorithm, lead us to believe that, given the same pure
term, both algorithms infer the same type, modulo clo-
sure labels. However, this does not hold because of
the generalization step in the case of a let construct.
Consider the typing of let x = a in b. Assume that,
starting from typing environment E, algorithm infer
infers type A with Γ for a, while algorithm W , start-
ing from the corresponding ML typing environment E↓,
infers the corresponding ML type A↓. We must check
that both algorithms generalize exactly the same type
variables, so that they will type b in compatible envi-
ronments. This could be not the case for two reasons.

The first reason is that algorithm infer does not gen-
eralize dangerous type variables, while W does. But
this is no problem here, since we consider only the pure
fragment of our calculus, without the ref type construc-
tor, hence the set of dangerous variables of any type is
always empty.

Page 7

The second, more serious reason is that closure typ-
ing introduces additional free variables in a given type.
In general, FTV (A with Γ), the set of free type vari-
ables in A with Γ, is a superset of FV (A↓). (Take for
instance A = int

L→ int and Γ = X . L.) So it is not
obvious that FTV (A with Γ) \ FTV (E with Γ), the
set of type variables generalized by infer , is the same
as FV (A↓) \FV (E↓), the set of type variables general-
ized by W . Indeed, there are cases where infer does not
generalize some type variable X, while W does, because
X is free in E with Γ, but not in E↓. Consider:

λz . let id =
λx .

(
if . . . then z else (λy . x ; y)

)
; x

in id id

Assuming x : X and y : Y , the term (λy . x ; y) is given
type Y

M→ Y with X . M , and the if construct forces
z to have the same type. Therefore, when we attempt
to generalize X

L→ X (the type of λx. . . . ; x), we have
E(z) = Y

M→ Y under constraints Γ = X . M, Y
M→

Y . L, and we cannot generalize over X, since it is free
in the type of z. Hence, id remains monomorphic, and
the application id id is ill-typed. In ML, we would
have z : Y → Y , so we could freely generalize over X,
getting id : ∀X.X → X, and the whole term would be
well-typed.

The example above is quite convoluted, and it is the
simplest one we know that exhibits this “variable cap-
ture through labels” phenomenon. We need more expe-
rience with the proposed type system to find whether
this phenomenon happens in more practical situations.
However, in case this turns out to be a serious flaw
of our closure typing system, we are investigating two
possible improvements that seem to avoid variable cap-
tures.

One direction is to record less constraints when typ-
ing a λ-abstraction. In the example above, one could
argue that the constraint X.M should not be recorded,
on the grounds that x is “not actually used” in the body
of the function, as witnessed by the fact that the type
variable X is not free in the type of the function result,
nor in the type of the parameter.

The other direction is to check that two function
types are compatible without actually identifying their
closure types. This way, we could avoid the propagation
of the constraint X . M to the type of z.

3.7 Pragmatics of constraint handling

Practically, the main concern with the type inference
algorithm above is the additional overhead introduced
by the handling of constraints. First, it is possible to

simplify sequences of constraints. Here are some possi-
ble simplification rules:

Σ . M, Σ . M → Σ . M

Σ . M → ε if Σ is closed
A×B . M → A . M, B . M

These three simplifications are obviously sound with
respect to the computation of free and dangerous vari-
ables. The third rule actually generate more con-
straints, but this may open the way to further simplifi-
cations, e.g. if A = B, or if A is closed.

In addition, constraint handling becomes quite cheap
if we distribute constraints inside types, instead of han-
dling a single list of constraints. We suggest grouping
together all constraints over the same label L, arranged
as a list of type schemes. This list represents the label
L itself. To identify two labels, we just have to con-
catenate the two lists, and this can be done in constant
time, using e.g. difference lists. Hence, when unifying
two type expressions A and B, the additional work of
identifying labels takes time at most proportional to the
size of A,B. Therefore, unification can be performed in
linear time, as in ML.

4 Comparison with other type
systems

In this section, we compare our type system with pre-
vious proposals of polymorphic type systems for lan-
guages featuring physical modification.

4.1 Standard ML

We consider first the systems proposed for ML. All these
systems rely on detecting the creation of mutable val-
ues (e.g. by special typechecking rules for the ref con-
struct), and ensuring that the resulting mutable values
have monomorphic types.

The first system we consider is the one proposed by
Tofte [16, 17], and adopted in Standard ML [11]. It
makes use of weak type variables (written with a ∗ su-
perscript) to prohibit polymorphic references. Weak
type variables cannot be generalized by a let binding,
unless the corresponding expression is guaranteed to be
non-expansive, i.e. that it does not create any refer-
ences. Damas [4] proposed a related, but slightly dif-
ferent scheme, that gives similar results in most cases.

The other system is an extension of Tofte’s, used in
the Standard ML of New Jersey implementation [1]. In
this scheme, type variables are no longer partitioned
into weak and non-weak variables; instead, each type

Page 8

Standard ML SML-NJ Our system

make ref α∗ → α∗ ref α1 → α1 ref α
L→ α ref

make ref [] rejected rejected rejected

imperative map (α∗ → β∗) →
α∗ list → β∗ list

(α2 → β2) →
α2 list → β2 list

(α L→ β) M→ α list
N→

β list with α
L→ β . N

imperative map id [] rejected rejected α list

applicative map make ref rejected rejected α list
L→ α ref list

id make ref rejected rejected α
L→ α ref

(raise Exit : α ref) α ref α ref rejected

Figure 3: Comparison with other type systems

variable has an associated integer, its “degree of weak-
ness”, or “strength”. This degree measures the number
of abstractions that have to be applied before the cor-
responding reference is actually created. Regular, un-
constrained type variables have strength infinity. Vari-
ables with strength zero cannot be generalized. Vari-
ables with strength n > 0 can be generalized, but each
function application decrements the strength of vari-
ables.

The comparative results are given in figure 3. For
each test program, we give its most general type in each
system. We assume these are top-level phrases. As in
most ML implementations, we reject top-level phrases
whose types cannot be closed (because some free vari-
ables cannot be generalized).

The first test is the make ref function, defined as
function x → ref x . It exercises the possibility of
writing generic functions that create and return up-
datable data structures. Most functions over vectors,
matrixes, doubly linked lists, . . . are typed similarly.
All type systems considered here capture the fact that
make ref should be applicable to monomorphic values
only.

The second test is the imperative map functional
given in the introduction. It illustrates the use of poly-
morphic references as auxiliaries inside a generic func-
tion. Our type system is the only one which gives a
fully polymorphic type to imperative map. The others
restrict it to be used with monomorphic type.

The third test is the partial application of
applicative map, defined in the introduction, to the
make ref function. It exercises the compatibility be-
tween functions that create mutable data and higher-
order functions. SML and SML-NJ refuse to generalize
its type, hence reject it. They are unable to detect that
applicative map does not apply make ref immediately,
hence that applicative map make ref does not create
any polymorphic reference.

A simplified version of this test, shown below, is to

apply the identity function id to the make ref function.
Our type system gives the same type to id make ref
and to make ref . The others don’t, and we take this as
strong evidence that they do not handle full function-
ality correctly.

The last example illustrates a weakness of our type-
based approach. By using exceptions, for instance, one
may mimic the creation of a reference as far as types
are concerned, without actually creating one. In the
expression (raise Exit : α ref), our type system con-
siders that α is dangerous and does not generalize it.
Other type systems recognize that no references are cre-
ated, hence they correctly generalize it. This flaw of our
method has little impact on actual programming, how-
ever.

4.2 Quest

In our system, we made no attempt at restricting the
creation of mutable values, and concentrated on type
generalization instead. We were inspired by Cardelli’s
Quest language [2], which departs significantly from
ML, but features mutable data structures and polymor-
phic typing.

Quest makes almost no typing restrictions for muta-
ble values. Soundness is ensured by different seman-
tics for type specialization. Namely, an expression with
polymorphic type is evaluated each time its type is spe-
cialized, in contrast with ML, where it would be eval-
uated only once. This is consistent with the fact that
polymorphism is explicit in Quest programs: polymor-
phic objects are actually presented as functions that
take a type as argument and return a specialized ver-
sion of the object. But these semantics are incompat-
ible with ML, where generalization and specialization
are kept implicit in the source program.

Page 9

4.3 FX

The FX effect system [9] is a polymorphic type system
that performs purity analysis as well: the type of an
expression indicates what kind of side-effects its eval-
uation can perform. This provides a simple way to
deal with the problem of mutable values: the type of
an expression cannot be generalized unless this expres-
sion is referentially transparent. It is easy to see that
such “pure” expressions can safely be used with differ-
ent types.

Though this approach is attractive for other purposes
(e.g. automatic program parallelization), it definitely
does not address the main issue considered here: how
to give the same type to semantically equivalent func-
tions, whether written in applicative style or in impera-
tive style. The reason is that the purity analysis of FX
makes it apparent in the types whether a function al-
locates mutable data for local purposes. For instance,
imperative map and applicative map do not have the
same type in FX.

5 Conclusion

We have presented herein an extension of the ML type
system that considerably enhances the support for data
accepting in-place modification. This is a significant
step toward the integration of polymorphic type disci-
pline and imperative programming style. We have in-
troduced the notion of closure typing, which is essential
to the soundness of this approach. We have given one
type system that performs this closure typing, based
upon labels and constraints. Our system is simple, but
falls short of being a conservative extension of ML. Fur-
ther work includes investigating alternate, more subtle
ways to typecheck closures, that would not reject any
well-typed ML program, while correctly keeping track
of mutable data.

The scope of this work is not strictly limited to the
problem of mutable data structures. For instance, it is
well-known that polymorphic exceptions raise the same
issues as references, and can be handled in the same
way. More generally, similar problems arise in the in-
tegration of polymorphic typing within several other
programming paradigms. For instance, one approach
to the integration of functional and logic programming
is to allow partially defined values containing logical
variables within a conventional functional language [15].
Polymorphic logical variables break type safety just as
polymorphic references do, and are amenable to the
same treatment. In object-oriented programming, sta-
tus variables of objects can be seen as references sys-
tematically encapsulated in functions (the methods).
Closure typing seems relevant to the polymorphic type-

checking of such objects. Finally, some calculi of com-
municating systems feature channels as first-class values
[10]. Polymorphic typing of these channels must guar-
antee that senders and receivers agree on the types of
transmitted values, and this is similar to ensuring that
writers and readers of a reference use it consistently
[13].

Acknowledgments

Didier Rémy suggested the use of constraints in the
typing rules. We also benefited from his expertise in
type inference and unification problems. Many thanks
to Brad Chen for his editorial help.

A Proof of soundness

In this appendix, we sketch the proof of soundness of the
type system with respect to the operational semantics
given in section 3.3.

We formalize the fact that a value v semantically be-
longs to a type expression A under constraints Γ. We
write this S |= v : A with Γ. The hypothesis S is a
store typing, that is, a partial mapping from locations
to type expressions. The store typing is needed to take
into account the sharing of values introduced by the
store.

Definition 2 (Semantic typing judgements) Let
S be a store typing, v a value, A a type, Γ a constraint
sequence. The predicate S |= v : A with Γ is defined by
induction on v:

• S |= int(i) : int with Γ.

• S |= loc(`) : (A ref) with Γ iff ` belongs to the
domain of S, and S(`) = A.

• S |= clos(x, b, e) : (A M→ B) with Γ iff

– for all x ∈ Dom(e), there exists a type schema
Σ such that Σ . M is in Γ, and S |= e(x) :
Σ with Γ;

– and there exists a typing environment E such
that E[x ← A] ` b : B with Γ.

The predicate above is extended to type schemas by tak-
ing S |= v : (∀V1 . . . Vn. A with Γ′) with Γ iff for
all substitutions µ over V1 . . . Vn, we have S |= v :
µA with Γ ∪ µΓ′

Let e be an evaluation environment, and E be a typ-
ing environment. We say that S |= e : E with Γ iff
Dom(e) ⊆ Dom(E) and for all x ∈ Dom(e), we have
S |= e(x) : E(x) with Γ.

Page 10

Similarly, let s be a store. We say that |= s : S
with Γ if Dom(s) ⊆ Dom(S) and for all ` ∈ Dom(s),
we have S |= s(`) : S(`) with Γ.

In the proof of soundness, we will use the fact that the
semantic typing judgement is stable under substitution.

Lemma 1 (Semantic substitution) If S |= v : A
with Γ, then µS |= v : µA with µΓ for all substitutions
µ.

Starting from a given value v, it is not possible in
general to access any location in the store. The set R(v)
of locations reachable from v is defined by induction on
v, as follows.

Definition 3 (Reachable locations)

R(int(i)) = ∅
R(loc(`)) = {`}

R(clos(x, a, e)) =
⋃

y∈Dom(e)

R(e(y))

In the definition of S |= v : A with Γ, the types of
the locations that cannot be reached from v are irrele-
vant. We can actually assume any other type for those
locations:

Lemma 2 (Garbage collection) Let S, S′ be two
store typings such that S(`) = S′(`) for all ` ∈ R(v). If
S |= v : A with Γ, then S′ |= v : A with Γ

Our type expressions are informative enough to allow
us to connect the type of a location ` reachable from a
value v with the type A of v. More precisely, we have
the following key lemma which relates the variables free
in the type of ` with the dangerous variables of A.

Lemma 3 (Store typing control) Assume S |= v :
A with Γ. Let ` be a location in R(v). Then

FV (S(`) with Γ) ⊆ DV (A with Γ).

Proof: By induction on v.
Case 1: A = int and v = int(i). Obvious, since there

are no locations reachable from v.
Case 2: A = B ref , v = loc(`′), and S(`′) = B.

By definition of the reachable locations, ` = `′. Hence
FV (S(`) with Γ) = FV (B with Γ) = DV (A with Γ).

Case 3: A = A1
L→ A2, and v = clos(x, a, e). Let

y be a variable such that ` is reachable from e(y). Let
Σ be a type scheme such that S |= e(y) : Σ and (Σ .
L) ∈ Γ. We write ∀V1 . . . Vn. B with Γ′ for Σ. For all
substitutions µ over V1 . . . Vn, since S |= e(y) : µB
with Γ ∪ µΓ′, we get by induction hypothesis:

FV (S(`) with Γ ∪ µΓ′) ⊆ DV (µB with Γ ∪ µΓ′)

Taking well-chosen substitutions µ, it follows that:

FV (S(`) with Γ) ⊆ DV (B with Γ ∪ Γ′) \ {V1 . . . Vn}
Hence the desired result: FV (S(`) with Γ) ⊆ DV (Σ
with Γ) ⊆ DV (A with Γ) 2

We are now ready to show the soundness of the typing
rules.

Proposition 2 (Soundness) Assume E ` a : A
with Γ. Let e be an evaluation environment, s a store,
S a store typing such that:

S |= e : E with Γ |= s : S with Γ.

Assume a[s] e=⇒ w. Then, w = v[s′], and there exists
a store typing S′ extending S, such that:

S′ |= v : A with Γ |= s′ : S′ with Γ

Proof: By induction on the length of the evaluation.
All cases proceed as in Tofte’s proof [16, chapter 5],
except when a is a let binding. Then, the last step of
the typing derivation is:

E ` a : A with Γ
(Σ, Γ′) = Gen(A,E, Γ)

E[x ← Σ] ` b : B with Γ′

E ` let x = a in b : B with Γ′

Applying the induction hypothesis to the first premise,
we get va, sa, Sa extending S such that:

a[s] e=⇒ va[sa]

Sa |= va : A with Γ |= sa : Sa with Γ.

To apply the induction hypothesis to the last premise,
we need to show that:

Sa |= e[x ← va] : E[x ← Σ] with Γ′

where we write (Σ, Γ′) for Gen(A,E, Γ), and
∀V1 . . . Vn. A with Γ′′ for Σ. Since Sa extends S, and
V1 . . . Vn are not free in E, we already have Sa |= e :
E with Γ′ as a corollary of lemma 2. It remains to show
that:

Sa |= va : (∀V1 . . . Vn. A with Γ′′) with Γ′.

To do so, we must prove that, for any substitution µ
over the Vi,

Sa |= va : µA with Γ′ ∪ µΓ′′.(1)

Since Sa |= va : A with Γ, we have, by lemma 1,

µSa |= va : µA with µΓ.(2)

Page 11

By definition of Gen, none of the Vi appears in any
constraint of Γ′, hence

µ(Γ) = µ(Γ′ ∪ Γ′′) = Γ′ ∪ µΓ′′.(3)

By lemma 3, for any location ` reachable from va, we
have FV (Sa(`) with Γ) ⊆ DV (A with Γ), and none of
the Vi is dangerous in A with Γ, hence none of the Vi

is free in Sa(`). Therefore,

(µSa)(`) = Sa(`) for all ` ∈ R(va)(4)

and the claim (1) above follows from (2), (3), (4), and
lemma 2. Therefore, we can apply the induction hy-
pothesis to the right branch of the typing derivation,
getting vb, sb, Sb extending Sa such that:

b[sa]
e[x←va]
=⇒ vb[sb]

Sb |= vb : B with Γ′ |= sb : Sb with Γ′

which is the expected result. 2

References

[1] A. W. Appel and D. B. MacQueen. Standard ML
reference manual (preliminary). AT&T Bell Lab-
oratories, 1989. Included in the Standard ML of
New Jersey distribution.

[2] L. Cardelli. Typeful programming. In E. J.
Neuhold and M. Paul, editors, Formal Descrip-
tion of Programming Concepts, pages 431–507.
Springer-Verlag, 1989.

[3] G. Cousineau and G. Huet. The CAML primer.
Technical report 122, INRIA, 1990.

[4] L. Damas. Type assignment in programming lan-
guages. PhD thesis, University of Edinburgh, 1985.

[5] L. Damas and R. Milner. Principal type-schemes
for functional programs. In 9th symposium Prin-
ciples of Programming Languages, pages 207–212.
ACM Press, 1982.

[6] Y.-C. Fuh and P. Mishra. Type inference with sub-
types. In ESOP ’88, volume 300 of Lecture Notes
in Computer Science, pages 94–114. Springer Ver-
lag, 1988.

[7] J.-Y. Girard. Interprétation fonctionnelle et élim-
ination des coupures de l’arithmétique d’ordre
supérieur. Thèse d’État, Université Paris VII,
1972.

[8] M. J. Gordon, A. J. Milner, and C. P. Wadsworth.
Edinburgh LCF, volume 78 of Lecture Notes in
Computer Science. Springer-Verlag, 1979.

[9] J. M. Lucassen and D. K. Gifford. Polymorphic
effect systems. In 15th symposium Principles of
Programming Languages, pages 47–57. ACM Press,
1988.

[10] R. Milner, J. Parrow, and D. Walker. A calculus
of mobile processes: part 1. Research report ECS-
LFCS-89-85, University of Edinburgh, 1989.

[11] R. Milner, M. Tofte, and R. Harper. The definition
of Standard ML. The MIT Press, 1990.

[12] J. C. Mitchell. Coercion and type inference. In
11th symposium Principles of Programming Lan-
guages, pages 175–185. ACM Press, 1984.

[13] J. H. Reppy. First-class synchronous operations
in Standard ML. Technical Report TR 89-1068,
Cornell University, 1989.

[14] J. C. Reynolds. Toward a theory of type struc-
ture. In Programming Symposium, Paris, 1974,
volume 19 of Lecture Notes in Computer Science,
pages 408–425. Springer-Verlag, 1974.

[15] G. Smolka. FRESH: a higher-order language with
unification and multiple results. In D. DeGroot
and G. Lindstrom, editors, Logic Programming:
Functions, Relations, and Equations, pages 469–
524. Prentice-Hall, 1986.

[16] M. Tofte. Operational semantics and polymorphic
type inference. PhD thesis CST-52-88, University
of Edinburgh, 1988.

[17] M. Tofte. Type inference for polymorphic refer-
ences. Information and Computation, 89(1), 1990.

Page 12

