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Polymorphic typing of an algorithmic languageXavier Leroy1AbstractThe polymorphic type discipline, as in the ML language, �ts well within purely applicative lan-guages, but does not extend naturally to the main feature of algorithmic languages: in-place updateof data structures. Similar typing di�culties arise with other extensions of applicative languages:logical variables, communication channels, continuation handling. This work studies (in the settingof relational semantics) two new approaches to the polymorphic typing of these non-applicativefeatures. The �rst one relies on a restriction of generalization over types (the notion of dangerousvariables), and on a re�ned typing of functional values (closure typing). The resulting type systemis compatible with the ML core language, and is the most expressive type systems for ML withimperative features proposed so far. The second approach relies on switching to \by-name" seman-tics for the constructs of polymorphism, instead of the usual \by-value" semantics. The resultinglanguage di�ers from ML, but lends itself easily to polymorphic typing. Both approaches smoothlyintegrate non-applicative features and polymorphic typing.Typage polymorphe d'un langage algorithmiqueXavier LeroyR�esum�eLe typage statique avec types polymorphes, comme dans le langage ML, s'adapte parfaitementaux langages purement applicatifs, mais ne s'�etend pas naturellement au trait principal des lan-gages algorithmiques: la modi�cation en place des structures de donn�ees. Des di�cult�es de ty-page similaires apparaissent avec d'autres extensions des langages applicatifs: variables logiques,canaux de communication, manipulations de continuations. Ce travail �etudie (dans le cadre dela s�emantique relationnelle) deux nouvelles approches du typage polymorphe de ces constructionsnon-applicatives. La premi�ere repose sur une restriction de l'op�eration de g�en�eralisation des types(la notion de variables dangereuses), et sur un typage plus �n des valeurs fonctionnelles (le typagedes fermetures). Le syst�eme de types obtenu reste compatible avec le noyau applicatif de ML, etse r�ev�ele être le plus expressif parmi les syst�emes de types pour ML plus traits imp�eratifs propos�esjusqu'ici. La seconde approche repose sur l'adoption d'une s�emantique \par nom" pour les con-structions du polymorphisme, au lieu de la s�emantique \par valeur" usuelle. Le langage obtenus'�ecarte de ML, mais se type tr�es simplement avec du polymorphisme. Les deux approches rendentpossible l'interaction sans heurts entre les traits non-applicatifs et le typage polymorphe.1�Ecole Normale Sup�erieure and INRIA Rocquencourt, projet Formel
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Introduction

When I was a child, I was told that Santa Claus came in through the chimney, and that computers
were programmed in binary code. Since then, I have learned that programming is better done in
higher-level languages, more abstract and more expressive. I have also learned that programmers
sometimes make errors, and therefore that advanced programming languages should not only convey
the programmer’s thoughts, but also allow the automatic checking for certain inconsistencies in
programs.

The most popular of these consistency checks is called static typing. It consists in detecting a
large family of errors: the application of operations to objects over which they are not defined (the
integer addition to a boolean and a character string, for instance). This is achieved by grouping the
objects handled by the program into classes: the types, and by abstractly simulating the execution
at the level of types, following a set of rules called the type system.

The strength of static typing is that it guarantees the absence of type errors in the programs it
accepts. The weakness of static typing is that it rejects some programs that are in fact correct, but
too complex to be recognized as such by the type system used. From this tension follows the search
for more and more expressive type systems [14, 66], an endless quest to which the work presented
here belongs.

In this quest, the apparition of the concept of polymorphism has been a major breakthrough.
Polymorphism supports the static typing of generic functions: pieces of programs that can oper-
ate on data of different types [83, 58]. For instance, a sorting algorithm can work on arrays of
any type, as long as a suitable ordering function between the array elements is provided. These
generic functions are important, since they can naturally be reused without modification in many
programs. Without polymorphism, static typing prohibits this reuse; with polymorphism, static
typing supports this reuse, while checking its correctness with respect to the types.

Polymorphic type systems fit seamlessly within purely applicative programming languages:
those languages where variables cannot be assigned to, and data structures cannot be modified
in place [47, 94, 38]. In contrast, in this dissertation, I concentrate on non-purely applicative
languages such as the algorithmic languages from the Algol family: Pascal, Ada, Modula-3, and
especially ML. These languages support variable assignment and in-place modification of data
structures. These two features are difficult to typecheck with polymorphic types. Mutable data
structures naturally admit simple typing rules; these rules are sound in monomorphic type sys-
tems, but turn out to be unsound in the presence of polymorphic types. This is illustrated by the
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4 Introduction

following example, written in ML1:

let r = ref [ ] in

r := [1];
if head(!r) then . . . else . . .

The naive application of the typing rules leads to assign the polymorphic type ∀α.α list ref to
the variable r in the body of the let construct. This type allows r to be considered with type
int list ref, and therefore to store the list containing the integer 1 in r. This type also allows
r to be considered with type bool list ref, hence we can treat head(!r) (the first element of the
list contained in r) as a boolean. The if construct is therefore well-typed. However, at run-time,
head(!r) evaluates to the value 1, which is not a boolean. This example demonstrates that modifying
a polymorphic object in-place can invalidate static typing assumptions, hence compromise type
safety: after [ ] has been replaced by [1] in r, the typing assumption r : ∀α.α list ref no longer
holds.

As illustrated above, a polymorphic type system must restrict the use of polymorphic mutable
objects. We must not be able to use a given mutable object inconsistently, that is, with two different
types. That’s what the type system must ensure. Several type systems are known to achieve this
result [64, 99, 21, 3, 40, 100]; but they turn out to be too restrictive in practice, rejecting as
erroneous many correct programs that are useful in practice. To palliate these deficiencies, I was
led to design new polymorphic type systems for mutable structures, to which the main part of
this dissertation is devoted. To illustrate these generalities, take as example the simplest of all
restrictions that prevent inconsistent use of mutable objects: the restriction consisting in requiring
all mutable objects to be created with closed, monomorphic types, that is, types containing no
type variables. This is the approach taken in early ML implementations, such as the Caml system
[19, 99]. The resulting type system is obviously sound. Unfortunately, it prohibits generic functions
that create mutable structures. This is a major limitation in practice, as shown by the following
example. Assume defined an abstract type τ matrix for matrices with elements of type τ , admitting
in-place modification. The following function is useful in many programs:

let transpose matrix m1 =
let m2 = new matrix(dim y(m1), dim x(m1), matrix elt(m1, 0, 0)) in

for x = 0 to dim x(m1)− 1 do

for y = 0 to dim y(m1)− 1 do

set matrix elt(m2, x, y, matrix elt(m1, y, x))
done

done;
m2

1The examples given in this Introduction assume that the reader has some notions of ML. I use the syntax of
the CAML dialect [19, 51]; the readers used to SML will add val and end after let. Here is a survival kit for the
readers unfamiliar with ML. Most syntactic constructs read like English. [ ] stands for the empty list, [a] stands for
the list with one element a, and [a1; . . . ; an] stands for the n-element list a1 . . . an. The type τ list is the type of
the lists whose elements have type τ ; the empty list [ ] has type τ list for all types τ . References are indirection
cells that can be modified in-place — in other terms, arrays of size 1. ref(a) allocates a fresh reference, initialized to
the value a. !r returns the current contents of reference r. r := a replaces the contents of the reference r by a.
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Clearly, this function can operate over matrices of any type: its natural type is α matrix →
α matrix for all types α. However, the Caml type system does not allow this type for this func-
tion. That’s because the function creates a matrix m2 with a non-closed type (α matrix). The
function transpose matrix is not well-typed in Caml unless its parameter m1 is restricted (by a
type constraint) to a particular monomorphic type such as int matrix. We thus obtain a function
that transposes only integer matrices. To transpose floating-point matrices, the function must be
duplicated just to change the type constraint — as if we were programming in a monomorphic
language like Pascal. We are therefore prevented from providing a library of generic functions
operating on mutable matrices. The same holds for many well-known data structures (hash tables,
graphs, balanced binary trees, B-trees), whose efficient implementation requires in-place modifica-
tion of the structure: we cannot implement these structures once and for all by a library of generic
functions.

To overcome this limitation, other polymorphic type systems have been proposed for mutable
objects, that are more precise, but also more complex than the one considered above. These
more precise type systems are able to type many generic functions over mutable structures. A
well-known example is the Standard ML type system [64, 63, 71], that relies on the notion of
“imperative variables” [92, 93], and its extension to “weak variables”, as in the Standard ML of
New Jersey implementation [3]. With this system, the generic functions over matrices, hash tables,
etc. are given slightly restricted polymorphic types, called weakly polymorphic types, that are
in practice general enough to support the reuse of these functions. However, serious deficiencies
of this system appear when we start constructing other generic functions on top of these weakly
polymorphic functions.

Weakness number one: weakly polymorphic functions do not interfere well with full function-
ality. For instance, the two code fragments below are not equivalent:

let makeref1 = function x→ ref x in . . .
let makeref2 = (function f→ f)(function x→ ref x) in . . .

The makeref1 function is weakly polymorphic; the makeref2 function is monomorphic. Inserting
an application of the identity function can therefore change the type of a program; this is strange.
Other oddities show up when we partially apply higher-order functions to weakly polymorphic
functions:

let mapref1 = map (function x→ ref x) in . . .
let mapref2 = function l→ map (function x→ ref x) l in . . .

The mapref1 function is monomorphic; the mapref2 function is weakly polymorphic. Hence, the
SML type system is not stable under eta-reduction; once again, this is strange.2 The two oddities
mentioned above reveal deep theoretical flaws in the design of the Standard ML type system;
however, they do not cause serious programming difficulties, since they can be circumvented by
local transformations over programs.

This is not the case for the second major weakness of the Standard ML typing for imperative
constructs: generic functions that utilize mutable structures internally, to hold intermediate results,

2In the core ML type system, as in most known type systems, if an expression a has type τ under some assumptions,
and if a eta-reduces to a′, then a′ also has type τ . This is not so in SML, since mapref2 eta-reduces to mapref1.
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cannot be assigned fully polymorphic types. There is no simple way to circumvent this weakness.
This is a serious deficiency: the internal use of mutable structures is required for the efficient imple-
mentation of many generic functions. Example: the well-known algorithms over graphs (depth-first
or breadth-first walk, determination of the connected components, topological sort, etc.) often
allocate an array, stack or queue of vertices [88]. Here is an example of generic function written in
this style:

let reverse1 l =
let arg = ref l in

let res = ref [ ] in

while not is null(!arg) do

res := cons(head(!arg), !res);
arg := tail(!arg)

done;
!res

This function reverses lists. It makes use of two local, private references. Here is another function
that reverses lists, without using references this time:

let reverse2 l =
let rec rev arg res =

if null(arg) then res else rev (cons(head(arg), res)) (tail(res))
in rev l [ ]

Those two functions are exactly equivalent. Yet, the Standard ML type system assigns to reverse1

a less general type than the one assigned to reverse2: the type of reverse1 is weakly polymor-
phic, preventing reverse1 from being applied to the polymorphic empty list for instance, while the
type of reverse2 is fully polymorphic, allowing reverse2 to be applied to lists of any type. Most
polymorphic functions that use reverse1, directly or indirectly, will be assigned a weakly poly-
morphic type, less general than if reverse2 were used instead. Hence we cannot replace reverse2

by reverse1 in a library of functions over lists, even if those two functions have exactly the same
semantics. This goes against the excellent principles of modular programming [70] that Standard
ML precisely aims at supporting [55]: an implementation issue: the programming style (imperative
vs. purely applicative), interferes with one of the specifications: the type.

As demonstrated above, Standard ML and its variants have not succeeded in their attempt to
combine polymorphic typing and imperative constructs: they allow programming either generically,
or in the imperative style, but not both. It is delicate to discuss the importance of this fact without
engaging in the controversy between tenants of purely applicative programming (“everything else is
messy”) and defenders of the imperative style (“nothing else works”). Here, I take the viewpoint of
a programmer who looks for an algorithmic language — a language that can directly express most
known algorithms — for large-scale programming. Most algorithms are described in the literature
by pseudo-code, mixing the declarative style (“let x be a vertex of the graph with minimal degree”)
and the imperative style (“take E ← E \ {x} and iterate until E = Ø”). Translating these
algorithms in a purely applicative language without increasing their complexity is often difficult.
(The Journal of Functional Programming devotes a column, Functional pearls, to this kind of
problems.) There are many efficient algorithms for which no purely applicative formulations are
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known [75]. A huge translation work remains to be done before purely applicative languages can
be considered as algorithmic languages.

Large-scale programming is made easier by decomposing the program in “autonomous” mod-
ules: modules that communicate as few information as possible with the remainder of the program,
following a strict protocol. With mutable structures, each module can contain status variable,
maintained internally without cooperation from the client modules. In a purely applicative lan-
guage, this status information must be communicated to the clients (the outside world), and it is
the client’s responsibility to correctly propagate them. This is clearly error-prone.

From these two standpoints, I conclude that imperative features are required for algorithmic
programming, in the current state of our knowledge. The fact that the polymorphic typing of these
features is problematic therefore means that it remains to prove that an algorithmic language can
actually benefit from polymorphic typing. One of the goals of this dissertation is to make such a
proof, by proposing type systems where polymorphism interacts much better with the imperative
programming style, without compromising type safety.

As further evidence that the issues raised by the polymorphic typing of mutable structures are
not anecdotal, it should be pointed out that similar problems appear when attempting to apply
a polymorphic type discipline to a number of other features from various non-purely applicative
languages. I shall mention three such features: logical variables, communication channels, and
continuation objects.

Logical variables are the basis of most of the “logical” programming languages; they can also
be found in some proposals for unifying logical and applicative languages [89, 74, 1]. They allow to
compute over objects with initially unknown parts, which are gradually reconstructed by accumu-
lation of constraints during the program execution. Thanks to logical variables, the programmer
can avoid to explicitly formulate a resolution strategy for these constraints.

Communication channels support the exchange of data between processes executing concur-
rently. They are essential to many calculi of communicating processes [59, 37]. (Here, I consider
higher-order calculi, where the channels themselves are first-class values.) This extension of applica-
tive languages supports the description of distributed algorithms. Also, some apparently sequential
problems can be implemented more elegantly as several communicating processes.

Finally, continuation objects allow programs to capture and to manipulate the current state
of their evaluation, and hence to define their own control structures, such as interleaving mecha-
nisms (coroutines) or non-blind backtracking strategies specially designed for the problem at hand.
Continuation objects can be found in Scheme [76], and in some implementations of ML [25].

I would have detailed the typing issues raised by logical variables, communication channels and
continuations if I did not have to repeat the discussion of mutable structures almost word per word.
The three extensions above can be typed in the same way as references or arrays. The resulting type
system is sound without polymorphism; it becomes unsound when polymorphism is added without
restrictions. In the case of logical variables and channels, it is easy to convince oneself of this fact,
on examples similar to the first example in this Introduction. Just as references, logical variables
can be updated in-place — only once, actually — once created. Just as references, channels allow
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transmitting data from a writer (an expression) to a reader (a context) that are not adjacent in the
source code. Hence, we immediately encounter the same problems as with mutable structures. For
continuations, it is harder to make the connection with mutable structures: the naive polymorphic
typing of continuations had long been believed sound (a “proof” of this fact was even published),
until the first counterexamples appeared. The counterexamples are much more complicated than
those for references; they rely on the fact that continuations allow restarting the evaluation of an
expression in a context that does not correspond exactly to the context in which it was typed.

We are therefore faced by three useful extensions of purely applicative languages: logical vari-
ables, communication channels and continuations, that are not directly related to the imperative
programming style, yet raise the same typing issues as mutable data structures. We can of course
apply the known type systems for references to these three extensions. For instance, the Standard
ML system has been applied to continuations [3, 101] and to channels [81]; the CAML system
has been applied to logical variables [48]. As one could expect, the weaknesses of these systems
reappear immediately, making it difficult, if not impossible, to write generic functions utilizing ei-
ther logical variables, or channels, or continuations. As a consequence, it remains to establish that
the following three language families can actually benefit from polymorphic type systems: 1- the
attempts at integrating logic and functional programming based on logical variables, 2- the calculi
of communicating processes that take channels as values, and 3- the manipulations of continuations
as values. That’s a fairly wide range of languages, and that’s why this dissertation is not limited to
proposing type systems for references: I also show that they successfully apply to communication
channels and to continuation objects.3

The thesis I defend herein is that polymorphic typing can profitably be applied to a number
of features from non-applicative languages. As we shall see in the remainder of this work, this
extension of the field of polymorphic typing is not easy: large-scale modifications are required,
either in the type system or in the semantics of some constructs. I argue that such is the price to
pay to take polymorphism and its benefits out of the ghetto of purely applicative languages.

Outline

The remainder of this dissertation is organized as follows. The first chapter presents the core ML
language, as a small applicative language equipped with Milner’s polymorphic type system. I for-
malize the semantics and the typing rules for this language in the relational semantics framework,
and I show the usual properties of soundness of the type system with respect to the evaluation rule,
and existence of a principal type.

Chapter 2 enriches the applicative language from chapter 1 with three kinds of first-class objects:
references, channels and continuations. References model mutable data structures; channels, the
communication of data between concurrent processes; continuations, non-local control structures.
I give the modified evaluation rules for the three extensions, and I show that their natural typing
rules are not sound with respect to these evaluation rules, because of polymorphic types.

3The application to logical variables has been studied by Vincent Poirriez [74], for an older version of one of my
systems. In the present dissertation, mutable structures, channels and continuations are studied in isolation. I cannot
foresee any difficulty with combining mutable structures and continuations, as in the Scheme language. It is hard to
give sensible semantics to the other combinations (mutable structures and channels, continuations and channels).
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Chapter 3 presents a new polymorphic type system for references, channels and continuations.
This system differs from Milner’s system by extra restrictions over type generalization (certain
type variables cannot be generalized: the variables occurring in dangerous position), on the one
hand, and on the other hand by a refined typing of functional values, called closure typing. I first
informally present this system and show that it correctly supports the imperative programming
style. I then formalize the typing rules, and show their soundness with respect to the evaluation
rules for references, for channels and for continuations. Finally, I prove the principal type property
for this system.

In chapter 4, I demonstrate that the previous system is not completely satisfactory, since it
rejects some “pure” programs that are well-typed in ML, and I describe a refinement of this system
that avoids this difficulty. This refinement requires a fairly heavy technical apparatus; that’s why
I have chosen to present first the simpler system in chapter 3, for pedagogical purposes, even if
it is subsumed by the refined system in chapter 4. I prove again the principal type property and
the soundness with respect to the evaluation rules, and I show that this system is a conservative
extension of ML.

Chapter 5 attempts to evaluate the contribution of this work from a practical standpoint. I
compare the proposed type systems with other systems from the literature, on the one hand from
the standpoint of expressiveness (is that useful, correct program recognized well-typed?), and on
the other hand from the standpoint of modular programming (how difficult is it to specify types in
module interfaces?)

Chapter 6 shows that the difficulties encountered with the polymorphic typing of references,
channels and continuations are essentially specific to the ML semantics for generalization and spe-
cialization (the two constructs that introduce polymorphism), which I call the “by-value” semantics
for polymorphism: if polymorphism is given alternate semantics, which I call the “by-name” se-
mantics, the naive typing rules for references, channels and continuations are now sound. This is
the main technical result in this chapter, and it suggests that a language with polymorphism by
name could be an interesting alternative to ML.

Readings

Here are some possible paths through this dissertation. They all assume some familiarity with the
ML language, as provided by the first chapters of [71, 51], or by [34, 19], and also with the ideas
from relational semantics [73, 42]. To get an overview of the problem, it suffices to read chapter 1
(especially sections 1.1 and 1.3) and chapter 2 (sections 2.1.2, 2.2.2 and 2.3.2 can be skimmed over).
To get an idea of the solutions I propose, add sections 3.1 and 4.1, chapter 5, and section 6.1. The
reader interested in soundness and principality proofs should read chapters 1, 2, 3 and 6 in their
entirety. The careful reading of chapter 4 is recommended to experts only.

Conventions

In this dissertation, the author uses “I” to express his opinions, viewpoints, methodological choices
and results obtained, all personal matters that should not be hidden behind the editorial “we”.
“We” denotes the reader and the author, joining hands for pedagogical purposes. The original
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French for this work makes heavy use of the French impersonal pronoun “on”, to state claims that
are universally true. These have also be translated by “we”.

To avoid heavy style, formal definitions are run into the text, instead of being displayed like
propositions. Definitions are however emphasized by setting in small capitals the word being
formally defined.

Some paragraphs are marked “Context”. They briefly describe alternate approaches, and situate
my work with respect to them. This provides the knowledgeable reader with some landmarks, and
the curious mind with some pointers to the literature. Bourbaki fans will consider these paragraphs
useless.



Chapter 1

A polymorphic applicative language

The full ML language is too complex to allow easy formal reasoning about it. This chapter in-
troduces a small applicative language with a polymorphic type discipline, that presents the main
features of ML, while remaining much simpler. This language is the basis for the extensions studied
in the next chapters.

The present chapter contains nothing that has not been already written several times [58,
22, 21, 92, 17, 64, 63, 93]. Nonetheless, I attempt to give a self-contained presentation with few
prerequisites. This presentation introduces most of the notations and proof techniques that are
widely used in the remainder of this work.

1.1 Syntax

The expressions of the language (written a, possibly with a prime or a subscript) are the elements
of the term algebra generated by the following grammar:

a ::= cst constant
| x identifier
| op(a) primitive application
| f where f(x) = a recursive function
| a1(a2) application
| let x = a1 in a2 the let binding
| (a1, a2) pair construction

In this grammar, x and f range over an infinite set Ident of identifiers. Expressions of the form
cst are constants, taken from a set Cst that we do not specify here, for the sake of generality. For
instance, Cst might contain integer numbers, the true values true and false, character strings,
etc.

In the expressions op(a), op ranges over a set of operators Op which is also left unspeci-
fied. Typically, Op contains the usual arithmetic operations over integers, the comparisons be-
tween integers, the two projections fst and snd; even the usual conditional constructs such as
if . . . then . . . else . . . can be treated as operators.

11
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The expression f where f(x) = a defines the function whose parameter is x and whose result
is the value of a. The identifier f is the internal name for the function. Inside the expression a, the
identifier f is considered bound to the function being defined. The defined function can therefore be
recursive. In the examples below, we write λx. a for non-recursive functions. This is an abbreviation
for f where f(x) = a, where f is any identifier that does not appear in a.

Context. The toy languages studied in the literature usually do not feature recursion. As a
consequence, they are unrealistic: it is hard to write interesting examples in these languages. Also,
they often possess properties that do not hold for any “real” programming language: “all well-typed
programs terminate”, for instance. Moreover, it is not easy to add recursion as an afterthought:
the proofs, and sometimes even the formalism, must be entirely revised. That’s why I have chosen
to consider a recursive language from the beginning.

In the ML language, recursion is presented as an extension of the let construct: let rec,
let val rec, let fun depending on the dialects. I prefer to present recursion as an extension of
λ-abstraction; this way, it is apparent that only functions can be defined recursively, and not any
value. (In ML, extra restrictions are required to rule out definitions such as let rec x = x + 1,
that cannot be executed.) In Standard ML syntax, f where f(x) = a is written let fun f x =
a in f end; in Caml syntax, let rec f x = a in f , or f where rec f x = a. 2

Example. Here are two syntactically correct expressions of the language:

let fact = f where f(n) = ifthenelse(≤ (n, 0), (1,×(n, f(−(n, 1))))) in fact(2)

let double = λf. λx. f(f(x)) in double(λx. + (x, true))(1)

For the sake of readability, we take the liberty to use the familiar infix notation for binary and
ternary operators, as well as the usual precedence and associativity rules. We therefore write the
expressions as:

let fact = f where f(n) = if n ≤ 0 then 1 else n× f(n− 1) in fact(2)

let double = λf. λx. f(f(x)) in double(λx.x+ true))(1)

2

We write I(a) for the set of the free identifiers of expression a. The binding constructs are
let and where. The precise definition of I is:

I(cst) = Ø I(x) = {x}
I(op(a)) = I(a) I(f where f(x) = a) = I(a) \ {f, x}
I(a1(a2)) = I(a1) ∪ I(a2) I(let x = a1 in a2) = I(a1) ∪ (I(a2) \ {x})
I(a1, a2) = I(a1) ∪ I(a2)
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1.2 Semantics

We are now going to give a meaning to the language expressions, by defining an evaluation mech-
anism that maps expressions to the results of their evaluations. To do so, we use the formalism of
relational semantics. It consists in defining, by a system of axioms and inference rules, a predicate
between expressions and results, the evaluation judgement, telling whether a given expression
can evaluate to a given result.

Context. This method is known as “structured operational semantics” (SOS) in Northern Great
Britain [73], and as “natural semantics” in Southern France [42]. In contrast with denotational
semantics, relational semantics require no complex mathematical framework; it also remains closer
to direct execution on a computer [16]. Other mathematically simple approaches include rewriting
semantics (for the extensions in next chapter, simple rewriting does not suffices, rewriting rules
with contexts are required [26, 27, 101]), and also translating expressions into code for an abstract
machine [46, 18]. 2

Actually, the evaluation judgement depends on extra arguments, that represent the context in
which evaluation takes place. For the language considered in the present chapter, only one such
extra argument is required: the evaluation environment, that records the bindings of identifiers to
values. The evaluation judgement is therefore e ⊢ a ⇒ r, read: “in the evaluation environment e,
the expression a evaluates to the result r”.

1.2.1 Semantic objects

The time has come to define precisely the various kinds of objects that appear in the semantics:
the results, the values, and the evaluation environments. These semantic objects range
over the term algebra defined by the grammar below:

Results: r ::= v normal result (a value)
| err error result

Value: v ::= cst base value
| (v1, v2) value pair
| (f, x, a, e) functional value (closure)

Environments: e ::= [x1 7→ v1, . . . , xn 7→ vn]

In environment expressions e, we assume the identifiers x1 . . . xn to be distinct. Here and elsewhere,
the term e = [x1 7→ v1, . . . , xn 7→ vn] is interpreted as a partial mapping with finite domain from
identifiers to values: the mapping that associates vi to xi, for all i from 1 to n, and that is undefined
on the other identifiers. We improperly call e a finite mapping from identifiers to values. The empty
mapping is written [ ]. We write Dom(e) for the domain of e, that is {x1, . . . , xn}, and Codom(e)
for its range, that is {v1, . . . , vn}. If x belongs to Dom(e), we write e(x) for the value associated
to x in e. Finally, we define the extension of e by v in x, written e+ x 7→ v, by:

[x1 7→ v1, . . . , xn 7→ vn] + x 7→ v = [x1 7→ v1, . . . , xn 7→ vn, x 7→ v]

if x /∈ {x1, . . . , xn}

[x1 7→ v1, . . . , xn 7→ vn] + x 7→ v = [x1 7→ v1, . . . , xi−1 7→ vi−1, x 7→ v, xi+1 7→ vi+1, . . . , xn 7→ vn]

if x = xi
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Hence, we have as expected

Dom(e+ x 7→ v) = Dom(e) ∪ {x}

(e+ x 7→ v)(x) = x

(e+ x 7→ v)(y) = e(y) for all y ∈ Dom(e), y 6= x.

1.2.2 Evaluation rules

Once these definitions are set up, we are able to define the evaluation judgement e ⊢ a ⇒ r. The
definition is presented as a set of axioms and inference rules. Directions for use: an axiom P allows
to conclude that proposition P holds; an inference rule such as

P1 P2 . . . Pn

P

allows to prove that the conclusion P holds as soon as all premises P1 . . . Pn have been proved.
Axioms and rules can contain (meta-) variables. These variables are implicitly quantified universally
at the beginning of each rule.

e ⊢ cst⇒ cst
x ∈ Dom(e)

e ⊢ x⇒ e(x)

x /∈ Dom(e)

e ⊢ x⇒ err

The axiom on the left states that a constant evaluates to itself. The middle rule states that an
identifier evaluates to the value bound to it in the environment e, provided that this identifier does
belong to the domain of e. Otherwise, there is no sensible value for the expression x. In this case,
the right rule therefore returns the response “an error has occurred”, denoted by err.

e ⊢ (f where f(x) = a)⇒ (f, x, a, e)

A function evaluates to a closure: an object that combines the unevaluated body of a function
(the triple f, x, a) with the environment e at the time the function was defined.

e ⊢ a1 ⇒ v1 e ⊢ a2 ⇒ v2

e ⊢ (a1, a2)⇒ (v1, v2)

e ⊢ a1 ⇒ err

e ⊢ (a1, a2)⇒ err

e ⊢ a2 ⇒ err

e ⊢ (a1, a2)⇒ err

A pair expression normally evaluates to a pair of values, in the obvious way. However, if the
evaluation of one of the two pair components causes an error (such as evaluating an unbound
identifier), then the evaluation of the whole pair also returns an error.

e ⊢ a1 ⇒ v1 e+ x 7→ v1 ⊢ a2 ⇒ r2

e ⊢ let x = a1 in a2 ⇒ r2

e ⊢ a1 ⇒ err

e ⊢ let x = a1 in a2 ⇒ err
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A let binding evaluates its first argument, then associates the value obtained to the bound iden-
tifier, and evaluates its second argument in the environment thus enriched. The result obtained is
also the result for the whole let expression. In the case where the evaluation of the first argument
causes an error, the evaluation of the let expression immediately stops on an error.

e ⊢ a1 ⇒ (f, x, a0, e0) e ⊢ a2 ⇒ v2 e0 + f 7→ (f, x, a0, e0) + x 7→ v2 ⊢ a0 ⇒ r0

e ⊢ a1(a2)⇒ r0

The rule for applications a1(a2) is the most complex. The expression a1 must evaluate to a closure
(f, x, a0, e0). The argument a2 must evaluate to a value v2. We then evaluate the function body a0

from the closure in the environment e0 from the closure, after having enriched e0 by two bindings:
the function parameter x is bound to the value v2 of the argument; the function name f is bound
to the closure (f, x, a0, e0) itself. The latter binding ensures that the evaluation of a0, which can
refer to f , will find the right value for f in the environment.

e ⊢ a1 ⇒ r1 r1 does not match (f, x, a0, e0)

e ⊢ a1(a2)⇒ err

e ⊢ a2 ⇒ err

e ⊢ a1(a2)⇒ err

Here are the two error cases for function application. The application is a1(a2) is meaningless if a1

evaluates in a value other than a closure. Example: 1(2). The leftmost rule returns err in this
case. The rightmost rule ensures that the response err propagates through applications: if the
evaluation of the argument part stops on an error, the evaluation of the whole application also
stops on an error, even if the function does not use its argument.

It remains to give evaluation rules for each of the primitives in the set Op. As an example, here
are the rules for integer addition, and for the conditional construct:

e ⊢ a⇒ (cst1, cst2) cst1 ∈ Int cst2 ∈ Int cst1 + cst2 = cst

e ⊢ +(a)⇒ cst

e ⊢ a⇒ r r is not (cst1, cst2) with cst1 ∈ Int and cst2 ∈ Int

e ⊢ +(a)⇒ err

e ⊢ a1 ⇒ true e ⊢ a2 ⇒ r2

e ⊢ if a1 then a2 else a3 ⇒ r2

e ⊢ a1 ⇒ false e ⊢ a3 ⇒ r3

e ⊢ if a1 then a2 else a3 ⇒ r3

e ⊢ a1 ⇒ r1 r1 /∈ Bool

e ⊢ if a1 then a2 else a3 ⇒ err

Here and elsewhere, we associate to these rules a relation between environments, expressions
and values, written e ⊢ a⇒ v, which is the least defined relation that satisfies the inference rules.
In the following, we frequently use the following characterization of this relation: (e, a, v) are in
relation by · ⊢ · ⇒ · if and only if there exists a finite derivation of the judgement e ⊢ a : v from
the axioms, by repeated applications of the inference rules [73].
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Context. Introducing the err response and the rules that return this response (the so-called
“error rules”) is the traditional answer to the problem of distinguishing erroneous programs from
non-terminating programs: without error rules, when an expression does not admit any (finite)
evaluation derivation, we do not know whether this is due to the fact that at some point no regular
evaluation rule match (case of a run-time type error), or to the fact that the only possible derivations
are infinite (case of a non-terminating program).

Besides complicating the semantics, the error rules put unfortunate constraints over the evalu-
ation strategy — which should not interfere at this level of description. For instance, the two error
rules for pairs proposed above:

e ⊢ a1 ⇒ err

e ⊢ (a1, a2)⇒ err

e ⊢ a2 ⇒ err

e ⊢ (a1, a2)⇒ err

imply the parallel evaluation of the two pair components (“angelic non-determinism”), since we
must return an error in all cases where one component does not terminate while the other causes
an error. To allow sequential implementation, we must break the symmetry between the two error
rules, and take for instance:

e ⊢ a1 ⇒ err

e ⊢ (a1, a2)⇒ err

e ⊢ a1 ⇒ v1 e ⊢ a2 ⇒ err

e ⊢ (a1, a2)⇒ err

But, then, we have imposed the evaluation order for the pair: left to right. Alternate, more recent
approaches that do not require error rules avoid this difficulty. These approaches make use of richer
notions of derivations: partial derivations [32], or possibly infinite derivations [20].

This indirect specification of the evaluation order through error rules is less of a problem for
statically-typed languages: when we evaluate well-typed terms only, the error cases never occur at
run-time; hence, we can adopt an evaluation strategy that does not respect the error rules. That’s
why I indulged in non-sequential error rules for pairs and function applications: these rules are
simpler and more elegant than the sequential rules. 2

1.3 Typing

We are now going to equip the language with a type system. The typing rules associate types
(more precisely, type expressions) to expressions, in the same way as the evaluation rules associate
evaluation results to expressions. We use Milner’s type system [58, 22], which is the basis for
the type systems of the ML language and several functional languages (Miranda, Hope, Haskell).
The distinctive feature of Milner’s system is polymorphism, taking into account the fact that an
expression can belong to several different types.

1.3.1 Types

We assume given a set TypBas of base types (such as int, the type of integers, and bool, the
type of truth values), and an infinite set VarTyp of type variables.

ι ∈ TypBas = {int; bool; . . .} base types
α, β, γ ∈ VarTyp type variables
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We define the set Typ of type expressions (or simply types), with typical element τ , by the
following grammar:

τ ::= ι base type
| α type variable
| τ1 → τ2 function type
| τ1 × τ2 product type

We write F(τ) for the set of type variables that are free in the type τ . This set is defined by:

F(ι) = Ø

F(α) = {α}

F(τ1 → τ2) = F(τ1) ∪ F(τ2)

F(τ1 × τ2) = F(τ1) ∪ F(τ2)

1.3.2 Substitutions

The substitutions considered here are finite mappings from type variables to type expressions. They
are written ϕ, ψ.

Substitutions: ϕ,ψ ::= [α1 7→ τ1, . . . , αn 7→ τn]

A substitution ϕ naturally extends to an homomorphism of type expressions, written ϕ, and defined
by:

ϕ(ι) = ι

ϕ(α) = ϕ(α) if α ∈ Dom(ϕ)

ϕ(α) = α if α /∈ Dom(ϕ)

ϕ(τ1 → τ2) = ϕ(τ1)→ ϕ(τ2)

ϕ(τ1 × τ2) = ϕ(τ1)× ϕ(τ2)

From now on, we do not distinguish anymore between ϕ and its extension ϕ, and we write ϕ for
both.

The following property shows the effect of a substitution over the free variables of a type.

Proposition 1.1 (Substitution and free variables) For all types τ and all substitutions ϕ, we
have:

F(ϕ(τ)) =
⋃

α∈F(τ)

F(ϕ(α))

Proof: straightforward structural induction over τ . 2

1.3.3 Type schemes

We define the set SchTyp of type schemes, with typical element σ, by the following grammar:

σ ::= ∀α1 . . . αn. τ type scheme
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In this syntax, the quantified variables α1 . . . αn are treated as a set of variables: their relative
order is not significant, and they are assumed to be distinct. We do not distinguish between the
type τ and the trivial type scheme ∀. τ , and we write τ for both. We identify two type schemes
that differ only by a renaming of the variables bound by ∀ (alpha-conversion operation), and by
the introduction or suppression of quantified variables that are not free in the type part. More
precisely, we quotient the set of schemes by the following two equations:

∀α1 . . . αn. τ = ∀β1 . . . βn. [α1 7→ β1, . . . , αn 7→ βn](τ)

∀αα1 . . . αn. τ = ∀α1 . . . αn. τ if α /∈ F(τ)

The free variables in a type scheme are:

F(∀α1 . . . αn. τ) = F(τ) \ {α1 . . . αn}.

This definition is compatible with the two equations over types schemes, as can easily be checked
using proposition 1.1.

We extend substitutions to type schemes as follows:

ϕ(∀α1 . . . αn. τ) = ∀α1 . . . αn. ϕ(τ),

assuming, after renaming the αi if necessary, that the αi are out of reach for ϕ; that is, none of
the αi is in the domain of ϕ, and none of the αi is free in one of the types in the range of ϕ. We
easily check that this definition is compatible with the two equations over schemes.

Proposition 1.1 also holds with the type τ replaced by a scheme σ.

1.3.4 Typing environments

A typing environment, written E, is a finite mapping from identifiers to type schemes:

E ::= [x1 7→ σ1, . . . , xn 7→ σn]

The image ϕ(E) of an environment E by a substitution ϕ is defined in the obvious way:

ϕ([x1 7→ σ1, . . . , xn 7→ σn]) = [x1 7→ ϕ(σ1), . . . , xn 7→ ϕ(σn)].

The operator F is extended to typing environment, by taking that a type variable is free in E if
and only if it is free in E(x) for some x:

F(E) =
⋃

x∈Dom(E)

F(E(x))

1.3.5 Typing rules

We are now going to give the typing rules for the language, using the same formalism as for the
evaluation rules. The following inference rules define the typing judgement E ⊢ a : τ , read: “in
environment E, the expression a has type τ”. The environment E associates a type scheme to each
identifier that can appear in expression a.
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τ ≤ E(x)

E ⊢ x : τ

The typing rule for identifiers states that an identifier x in an expression can be given any type
that is an instance of the type scheme associated to x in the typing environment. We say that the
type τ is an instance of the type scheme σ = ∀α1 . . . αn. τ0, and we write τ ≤ σ, if and only if
there exists a substitution ϕ whose domain is a subset of {α1 . . . αn} such that τ is equal to ϕ(τ0).
The relation τ ≤ σ is obviously compatible with the two equations over schemes (alpha-conversion,
and useless quantified variable elimination).

E + f 7→ (τ1 → τ2) + x 7→ τ1 ⊢ a : τ2

E ⊢ (f where f(x) = a) : τ1 → τ2

E ⊢ a1 : τ2 → τ1 E ⊢ a2 : τ2

E ⊢ a1(a2) : τ1

A function definition has type τ1 → τ2 as soon as the function body has type τ2, under the extra
assumptions that its formal parameter x has type τ1, and its internal name f has type τ1 → τ2. A
function application is well-typed as soon as the type of the argument corresponds to the type of
the function parameter; the type of the function result is the type of the whole application node.

E ⊢ a1 : τ1 E + x 7→ Gen(τ1, E) ⊢ a2 : τ2

E ⊢ let x = a1 in a2 : τ2

The let construct is the only one that introduces polymorphic types (that is, non-trivial type
schemes) in the environment. This is due to the generalization operator Gen, which builds a type
scheme from a type and a type environment, as follows:

Gen(τ,E) = ∀α1 . . . αn. τ where {α1 . . . αn} = F(τ) \ F(E).

We shall see later that if a1 belongs to the type τ under the assumptions E, and if α is not free
in E, then a1 also belongs to the type [α 7→ τ1](τ) for all types τ1. This intuitively explains why α
can be universally quantified, since it can be substituted by any type.

E ⊢ a1 : τ1 E ⊢ a2 : τ2

E ⊢ (a1, a2) : τ1 × τ2

τ ≤ TypCst(cst)

E ⊢ cst : τ

τ1 → τ2 ≤ TypOp(op) E ⊢ a : τ1

E ⊢ op(a) : τ2

The typing of pair expressions is obvious. For constants and primitives, we assume given two
functions TypCst : Cst→ SchTyp and TypOp : Op→ SchTyp, that assign type schemes to constants
and operators. For instance, we can take:

TypCst(i) = int (i = 0, 1, . . .)
TypCst(b) = bool (b = true or false)
TypOp(+) = int× int→ int

TypOp(ifthenelse) = ∀α. bool× α× α→ α
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Example. The expression let id = (f where f(x) = x) in id(1) has type int. That’s because
the following derivation is valid:

t ≤ t

[f 7→ t→ t, x 7→ t] ⊢ x : t

[ ] ⊢ f where f(x) = x : t→ t

int→ int ≤ ∀t. t→ t

E ⊢ id : int→ int

int ≤ int

E ⊢ 1 : int

E = [id 7→ ∀t. t→ t] ⊢ id(1) : int

[ ] ⊢ let id = (f where f(x) = x) in id(1) : int

2

Context. The presentation given above is essentially the one of the definition of Standard ML [64],
and slightly differs from Damas and Milner’s presentation [22]. The Damas-Milner system assigns
type schemes to expressions, not simple types, and features two separate rules for generalization and
instantiation. In the presentation above, these two operations are integrated into the let rule (for
generalization) and into the rules for identifiers and constants (for instantiation). The presentation
above has one advantage: the rules are syntax-directed — that is, the shape of the expression
determines the unique rule that applies; and the premises contain only strict subexpressions of the
expression in the conclusion. This makes many proofs easier, especially those for the type inference
algorithm. 2

1.3.6 Properties of the typing rules

As we said above about the typing rule for let, the typing judgement is stable under substitution:
if we can prove E ⊢ a : τ , then the judgements obtained by substituting any types for any variables
in E and τ are still provable.

Proposition 1.2 (Typing is stable under substitution) Let a be an expression, τ be a type,
E be a typing environment and ϕ be a substitution. If E ⊢ a : τ , then ϕ(E) ⊢ a : ϕ(τ).

Proof: by structural induction on a. We show the two cases that do not immediately follow from
the induction hypothesis.

• Case a = x. We must have τ ≤ E(x), with E(x) = ∀α1 . . . αn. τ0. After renaming if necessary,
we can assume that the αi are out of reach for ϕ. Let ψ be a substitution over the αi such that
τ = ψ(τ0). Define a substitution θ with domain {α1 . . . αn} by θ(αi) = ϕ(ψ(αi)). We have:

θ(ϕ(αi)) = θ(αi) = ϕ(ψ(αi)) for all i
θ(ϕ(β)) = ϕ(β) = ϕ(ψ(β)) for all β that is not an αi

Hence θ(ϕ(τ0)) = ϕ(ψ(τ0)) = ϕ(τ), showing that ϕ(τ) is an instance of ϕ(E(x)). We can therefore
derive ϕ(E) ⊢ x : ϕ(τ).

• Case a = (let x = a1 in a2). The typing derivation ends up with:

E ⊢ a1 : τ1 E + x 7→ Gen(τ1, E) ⊢ a2 : τ2

E ⊢ let x = a1 in a2 : τ
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By definition, Gen(τ1, E) is equal to ∀α1 . . . αn. τ1, with {α1 . . . αn} = F(τ1) \ F(E). Let β1, . . . , βn

be type variables out of reach for ϕ, and not free in E. Let ψ be the substitution ϕ ◦ [αi 7→ βi]. We
have ψ(E) = ϕ(E), since the variables αi are not free in E.

We apply the induction hypothesis twice: once to the left premise, with the substitution ψ;
once to the right premise, with the substitution ϕ. We obtain proofs of:

ψ(E) ⊢ a1 : ψ(τ1) ϕ(E) + x 7→ ϕ(Gen(τ1, E)) ⊢ a2 : ϕ(τ2)

We now compute Gen(ψ(τ1), ψ(E)), using proposition 1.1.

F(ψ(τ1)) \ F(ψ(E)) =





⋃

α∈F(τ1)

F(ψ(α))



 \





⋃

α∈F(E)

F(ψ(α))





By construction of ψ, we have ψ(αi) = ϕ(βi) = βi. Moreover, for all variables α that are not an
αi, the term ψ(α) is equal to ϕ(α) and does not contain any of the βi. Since the αi are free in τ1,
but not free in E, we therefore have:

βi ∈
⋃

α∈F(τ1)

F(ψ(α)) βi /∈
⋃

α∈F(E)

F(ψ(α)).

Hence {β1 . . . βn} ⊆ F(ψ(τ1)) \ F(ψ(E)). We now show the converse inclusion. Let β ∈ F(ψ(τ1)),
such that β is not one of the βi. Let α ∈ F(τ1) such that β ∈ F(ψ(α)) (the existence of α
follows from proposition 1.1). Necessarily, α is not one of the αi; otherwise, β would be one
of the βi. Hence α ∈ F(E), and β ∈

⋃

α∈F(E)F(ψ(α)) and β /∈ F(ψ(τ1)) \ F(ψ(E)). Hence
{β1 . . . βn} = F(ψ(τ1)) \ F(ψ(E)), and

Gen(ψ(τ1), ψ(E)) = ∀β1 . . . βn. ψ(τ1) = ϕ(∀α1 . . . αn. τ) = ϕ(Gen(τ1, E))

by definition of the image of a scheme by a substitution. Since ψ(E) and ϕ(E) are identical, the
two derivations obtained by applying the induction hypothesis therefore prove that:

ϕ(E) ⊢ a1 : ψ(τ1) ϕ(E) + x 7→ Gen(ψ(τ1), ϕ(E)) ⊢ a2 : ϕ(τ2).

Applying the let typing rule to these premises, we obtain the desired result:

ϕ(E) ⊢ let x = a1 in a2 : ϕ(τ2).

2

Another property of the typing rules, relevant to the type inference algorithm: if we can prove
that a has type τ under the assumptions E, then we can prove it under stronger assumptions E′.
To make this notion of “strength” more precise, we take that a scheme σ′ is more general than
a scheme σ, and we write σ′ ≥ σ, if all instances of σ are also instances of σ′.

Proposition 1.3 Let E, E′ be two typing environments such that Dom(E) = Dom(E′), and
E′(x) ≥ E(x) for all x ∈ Dom(E). If E ⊢ a : τ , then E′ ⊢ a : τ .

Proof: easy structural induction on a. The base case a = x is straightforward by hypothesis
over E and E′. For the case a = (let x = a1 in a2), we first show that F(E′) ⊆ F(E), implying
Gen(τ1, E

′) ≥ Gen(τ1, E), where τ1 is the type of a1. We can therefore apply the induction hypothesis
to the typing derivation for a2; the result follows. 2
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1.4 Type soundness

One of the main goals of static typing is to exclude the programs that can cause a type error at run-
time. We have defined the typing rules independently from the evaluation rules. It therefore remains
to show that the initial goal is reached, that is, that the typing rules are sound with respect to the
evaluation rules. The main result in this section is the following: no closed, well-typed expression
can evaluate to err.

Proposition 1.4 (Weak soundness) Let a be an expression, τ be a type, and r be a response.
If [ ] ⊢ a : τ and [ ] ⊢ a⇒ r, then r is not err.

Context. This claim does not state that there always exists a value v to which a evaluates: a
well-typed program may fail to terminate. The aim of a type system for a programming language
is not to ensure termination, but to guarantee the structural conformity of data. 2

It is difficult to prove directly the weak soundness claim, because it does not lend itself to an
inductive proof: to show that a1(a2) cannot evaluate to err, it is not enough to show that neither a1

nor a2 can evaluate to err; even then, the application a1(a2) can cause a run-time type error, for
instance if a1 does not evaluate to a closure. We are therefore going to show a stronger result: the
evaluation of a closed term with type τ , if it terminates, not only does not return err, but also
returns a value that, semantically, does belong to the type τ . For instance, an expression with type
int can only evaluate to an integer value.

1.4.1 Semantic typing

Before going any further, we must therefore define precisely what it means for a value to semantically
belong to a type. We define the following three semantic typing predicates:

|= v : τ the value v belongs to the type τ
|= v : σ the value v belongs to the scheme σ
|= e : E the values contained in the evaluation evironment e belong to the

corresponding type schemes in E

These predicates are defined as follows:

• |= cst : int if cst is an integer

• |= cst : bool if cst is true or false

• |= (v1, v2) : τ1 × τ2 if |= v1 : τ1 and |= v2 : τ2

• |= (f, x, a, e) : τ1 → τ2 if there exists a typing environment E such that

|= e : E and E ⊢ (f where f(x) = a) : τ1 → τ2

• |= v : σ if for all types τ such that τ ≤ σ, we have |= v : τ

• |= e : E if Dom(e) = Dom(E), and for all x ∈ Dom(e), we have |= e(x) : E(x).
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This definition is well-founded by structural induction over the value part v. In all cases except for
schemes, the definition of |= over the value v appeals to |= over proper subterms of v. The case
for type schemes appeals to |= on the same value, but with the type scheme replaced by a simple
type; hence, another case of the definition is going to be used just after, and this case considers
only proper subterms of v.

Context. Appealing to the type judgement to define |= over functional values is a technical trick
due to Tofte [92, 93]. A more traditional definition would be “a functional value belongs to the type
τ1 → τ2 if it maps any value of type τ1 to a value of type τ2”. More formally: |= (f, x, a, e) : τ1 → τ2
if, for all values v1 and results r2 such that

|= v1 : τ1 and e+ f 7→ (f, x, a, e) + x 7→ v1 ⊢ a⇒ r2,

we have r2 6= err and |= r2 : τ2. That’s the continuity condition that appears, for instance, in ideal
models [56]. However, such a definition is problematic in the presence of recursive functions: the
soundness proof cannot be proved by simple induction, because in the case of a where construct we
cannot conclude |= (f, x, a, e) : τ1 → τ2 unless we have already proved that |= (f, x, a, e) : τ1 → τ2.
It seems that we would have to revert to more complex proof principles, such as co-induction [62],
or to richer mathematical frameworks, such as domains [33]. By appealing to the typing judgement
for defining the semantic typing relation over functions, we are back to an elementary proof by
induction. Moreover, the semantic typing relation defined in terms of the typing judgement turns
out to be stable under substitution of type variables (proposition 1.5 below), which is not the case
with the classical relation defined over functions by continuity. This stability property is important
for the soundness proof. 2

1.4.2 Semantic generalization

The following proposition is the key lemma that shows the soundness of the let typing rule.

Proposition 1.5 Let v be a value and τ be a type such that |= v : τ . Then, for all substitutions ϕ,
we have |= v : ϕ(τ). As a consequence, for all sets of variables α1 . . . αn, we have |= v : ∀α1 . . . αn. τ .

Proof: by structural induction over v (the same induction as in the definition of the |= relation).

• Case v = cst and τ = int ou τ = bool. Obvious, since ϕ(τ) = τ in this case.

• Case v = (v1, v2) and τ = τ1 × τ2. We apply the induction hypothesis to v1 and v2. It follows
|= v1 : ϕ(τ1) and |= v2 : ϕ(τ2). Hence the result.

• Case v = (f, x, a, e) and τ = τ1 → τ2. Let E be a typing environment such that |= e : E and
E ⊢ (f where f(x) = a) : τ1 → τ2. By proposition 1.2, we have

ϕ(E) ⊢ (f where f(x) = a) : ϕ(τ1 → τ2).

It remains to show that |= e : ϕ(E). Let y ∈ Dom(e). Write E(y) as ∀α1 . . . αn. τy, with the αi

chosen out of reach for ϕ. We then have ϕ(E(y)) = ∀α1 . . . αn. ϕ(τy). We need to show that |=
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e(y) : τ ′ for all instances τ ′ of ϕ(E(y)). Let τ ′ be such an instance. We therefore have τ ′ = ψ(ϕ(τy))
for some substitution ψ. We also have |= e(y) : τy, by definition of |= over type schemes. We can
therefore apply the induction hypothesis to the value e(y), to the type τy and to the substitution
ψ◦ϕ. It follows that |= e(y) : τ ′. This holds for all instances τ ′ of ϕ(E(y)). Hence |= e(y) : ϕ(E(y)).
This holds for all y ∈ Dom(e). Hence |= e : ϕ(E), and the expected result. 2

1.4.3 Soundness proof

We are now able to precisely state and to prove the soundness of typing:

Proposition 1.6 (Strong soundness) Let a be an expression, τ be a type, E be a typing envi-
ronment, and e be an evaluation environment such that E ⊢ a : τ and |= e : E. If there exists a
result r such that e ⊢ a⇒ r, then r 6= err; instead, r is a value v such that |= v : τ .

Proof: the proof proceeds by induction over the size of the evaluation derivation. We argue by
case analysis on a, and therefore on the last rule used in the typing derivation.

• Constants.
τ ≤ TypCst(cst)

E ⊢ cst : τ

The only evaluation possibility is e ⊢ cst ⇒ cst. It remains to check that |= cst : TypCst(cst) for
all constants cst. This is true for the set of constants and the type assignment TypCst given as
examples above.

• Variables.
τ ≤ E(x)

E ⊢ x : τ

The typing guarantees that x belongs to the domain of E, which is also the domain of e by
hypothesis |= e : E. Hence, the only evaluation possibility is e ⊢ x⇒ e(x). By hypothesis |= e : E,
we have |= e(x) : E(x). Hence |= e(x) : τ by definition of |= over type schemes.

• Functions.
E + f 7→ (τ1 → τ2) + x 7→ τ1 ⊢ a : τ2

E ⊢ (f where f(x) = a) : τ1 → τ2

The only evaluation possibility is e ⊢ (f where f(x) = a) ⇒ (f, x, a, e). We have |= (f, x, a, e) :
τ1 → τ2 by definition of |=, taking E for the required typing environment.

• Applications.
E ⊢ a1 : τ2 → τ1 E ⊢ a2 : τ2

E ⊢ a1(a2) : τ1

We have three evaluation possibilities. The first one concludes r = err because e ⊢ a1 ⇒ r1
where r1 is not a closure; but this contradicts the induction hypothesis applied to a1, which shows
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|= r1 : τ2 → τ1, hence r1 is a fortiori a closure. The second evaluation leads to r = err because
e ⊢ a2 ⇒ err; it similarly contradicts the induction hypothesis applied to a2. Hence the last
evaluation step must be:

e ⊢ a1 ⇒ (f, x, a0, e0) e ⊢ a2 ⇒ v2 e0 + f 7→ (f, x, a0, e0) + x 7→ v2 ⊢ a0 ⇒ r

e ⊢ a1(a2)⇒ r

By induction hypothesis, we know that |= (f, x, a0, e0) : τ2 → τ1, and |= v2 : τ2. Hence there exists
a typing environment E0 such that |= e0 : E0 and E0 ⊢ (f where f(x) = a0) : τ2 → τ1. There is
only one typing rule that can derive this result; its premise must therefore hold:

E0 + f 7→ (τ2 → τ1) + x 7→ τ2 ⊢ a0 : τ1.

Consider the environments:

e1 = e0 + f 7→ (f, x, a0, e0) + x 7→ v2 and E1 = E0 + f 7→ (τ2 → τ1) + x 7→ τ2.

We have |= e1 : E1 and E1 ⊢ a0 : τ1. Applying the induction hypothesis to the evaluation of a0, we
get r 6= err and |= r : τ1, which is the expected result.

• let bindings.
E ⊢ a1 : τ1 E + x 7→ Gen(τ1, E) ⊢ a2 : τ2

E ⊢ let x = a1 in a2 : τ2

Two evaluations are possible. The first one is e ⊢ a1 ⇒ err. It contradicts the induction hypothesis
applied to a1. Hence the last step in the evaluation must be:

e ⊢ a1 ⇒ v1 e+ x 7→ v1 ⊢ a2 ⇒ r

e ⊢ let x = a1 in a2 ⇒ r

By the induction hypothesis applied to a1, we get |= v1 : τ1. By proposition 1.5, it follows |= v1 :
Gen(τ1, E). Define

e1 = e+ x 7→ v1 and E1 = E + x 7→ Gen(τ1, E).

We therefore have |= e1 : E1. We apply the induction hypothesis to a2 considered in the environ-
ments e1 and E1. The expected result follows: r 6= err and |= r : τ2.

• Pairs.
E ⊢ a1 : τ1 E ⊢ a2 : τ2

E ⊢ (a1, a2) : τ1 × τ2

Same reasoning as for function application, just simpler.

• Primitive applications.

τ1 → τ2 ≤ TypOp(op) E ⊢ a : τ1

E ⊢ op(a) : τ2
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Applying the induction hypothesis, we get e ⊢ a⇒ v1 with |= v1 : τ1. The remainder of the proof
depends on the types and semantics given to the operators. It is easy to check the result in the
case of the integer addition or the conditional construct, the two examples given above. 2

The weak soundness property (proposition 1.4) is an immediate corollary of the strong soundness
property (proposition 1.6).

1.5 Type inference

We have seen that if a closed expression a has type τ , it also has type τ ′ for all types τ ′ less general
than τ (that is, τ ′ = ϕ(τ) for some substitution ϕ). We are now going to show that the set of all
possible types for a is generated this way: there exists a type for a, called the principal type

for a, that is more general than all possible types for a. The computation of this type is called
type inference. The existence of a type inference algorithm allows ML compilers to reconstruct
the types of all objects from their uses, without the programmer providing type information in the
source code.

We first recall some definitions about principal unifiers. A substitution ϕ is said to be a unifier

for the two types τ1 and τ2 if ϕ(τ1) = ϕ(τ2). Two types are unifiable if there exists a unifier for
those two types. Intuitively, two types are unifiable if they can be identified by instantiating some
of their variables. A unifier for two types represents the instantiations that must be performed in
order to identify them. A unifier ϕ for τ1 and τ2 is said to be most general if all unifiers ψ for
τ1 and τ2 can be decomposed as θ ◦ ϕ for some substitution θ. The most general unifier for two
types, when it exists, represents the minimal modifications required to identify the types: all other
unifiers perform at least those modifications.

Proposition 1.7 If two types τ1 and τ2 are unifiables, then they admit a most general unifier,
unique up to a renaming, that we write mgu(τ1, τ2).

Proof: the set of types is a free term algebra. The most general unifier can be computed with
Robinson’s algorithm [85], or one of its variants. 2

Among the most general unifiers for the two types τ1 and τ2, there exist some that “do not
introduce fresh variables”, that is, such that all variables not free in τ1 nor in τ2 are out of reach
for these unifiers. (This is the case for the unifier built by Robinson’s algorithm.) In the following,
we assume that mgu(τ1, τ2) is chosen so as to satisfy this property.

We now give a variant of Damas and Milner’s algorithm [22], that computes the principal type
for an expression, if it exists, or fails otherwise. The algorithm takes as inputs an expression a, an
initial typing environment E, and a set of “fresh” variables V ; it returns as results a type τ (the
most general type for a), a substitution ϕ (representing the instantiations that had to be performed
over E), and a subset V ′ of V (the unused fresh variables).

We write inst(σ, V ) for a trivial instance of the scheme σ. That is, writing σ = ∀α1 . . . αn. τ ,
we take n distinct variables β1 . . . βn in V and we define

inst(σ, V ) = ([α1 7→ β1, . . . , αn 7→ βn](τ), V \ {β1 . . . βn}).

Clearly, inst(σ, V ) is uniquely defined up to a renaming of variables from V into variables from V .
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Algorithm 1.1 infer(E, a, V ) is the triple (τ, ϕ, V ′) defined by:

If a is x and x ∈ Dom(E):
(τ, V ′) = inst(E(x), V ) and ϕ = [ ]

If a is cst:
(τ, V ′) = inst(TypCst(cst), V ) and ϕ = [ ]

If a is (f where f(x) = a1):
let α and β be two variables from V
let (τ1, ϕ1, V1) = infer(a1, E + f 7→ (α→ β) + x 7→ α, V \ {α, β})
let µ = mgu(ϕ1(β), τ1)
then τ = µ(ϕ1(α→ β)) and ϕ = µ ◦ ϕ1 and V ′ = V1

If a is a1(a2):
let (τ1, ϕ1, V1) = infer(a1, E, V )
let (τ2, ϕ2, V2) = infer(a2, ϕ1(E), V1)
let α be a variable from V2

let µ = mgu(ϕ2(τ1), τ2 → α)
then τ = µ(α) and ϕ = µ ◦ ϕ2 ◦ ϕ1 and V ′ = V2 \ {α}

If a is let x = a1 in a2:
let (τ1, ϕ1, V1) = infer(a1, E, V )
let (τ2, ϕ2, V2) = infer(a2, ϕ1(E) + x 7→ Gen(τ1, ϕ1(E)), V1)
then τ = τ2 and ϕ = ϕ2 ◦ ϕ1 and V = V2

If a is (a1, a2):
let (τ1, ϕ1, V1) = infer(a1, E, V )
let (τ2, ϕ2, V2) = infer(a2, ϕ1(E), V1)
then τ = τ1 × τ2 and ϕ = ϕ2 ◦ ϕ1 and V ′ = V2

If a is op(a1):
let (τ1, ϕ1, V1) = infer(a1, E, V )
let (τ2, V2) = inst(TypOp(op), V1)
let α be a variable from V2

let µ = mgu(τ1 → α, τ2)
then τ = µ(α) and ϕ = µ ◦ ϕ1 and V ′ = V2 \ {α}

We take that infer(a,E, V ) is not defined if at some point none of the cases match; in particular,
if we try to unify two non-unifiable types.

Proposition 1.8 (Correctness of type inference) Let a be an expression, E be a typing envi-
ronment and V be a set of type variables. If (τ, ϕ, V ′) = infer(a,E, V ) is defined, then we can
derive ϕ(E) ⊢ a : τ .

Proof: the proof is an inductive argument over the structure of a, and makes heavy use of the
fact that the typing judgement is stable under substitution (proposition 1.2). We show one base
step and two inductive steps; the remaining cases are similar. We use the same notations as in the
algorithm.

• Case a = x. We have (τ, V ′) = inst(E(x), V ) and ϕ = [ ]. By definition of inst, we have
τ ≤ E(x). We can therefore derive E ⊢ x : τ .
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• Case a = (f where f(x) = a1). Applying the induction hypothesis to the recursive call to
infer, we get a derivation of

ϕ1(E + f 7→ (α→ β) + x 7→ α) ⊢ a1 : τ1.

By proposition 1.2, we get a derivation of:

ϕ(E + f 7→ (α→ β) + x 7→ α) ⊢ a1 : µ(τ1).

The substitution µ being by definition a unifier of ϕ1(β) and τ1, we have ϕ(β) = ψ(τ1). Hence we
have shown that:

ϕ(E) + f 7→ (ϕ(α)→ ϕ(β)) + x 7→ ϕ(α) ⊢ a1 : ϕ(β).

Applying the typing rule for functions, we get:

ϕ(E) ⊢ (f where f(x) = a1) : ϕ(α)→ ϕ(β).

That’s the expected result, since τ = ϕ(α→ β).

• Case a = let x = a1 in a2. We apply the induction hypothesis to the two recursive calls to
infer. We get derivations for:

ϕ1(E) ⊢ a1 : τ1 ϕ2(ϕ1(E) + x 7→ Gen(τ1, ϕ1(E))) ⊢ a2 : τ2.

If required, we rename the generalized variables in the left derivation so that they are out of reach
for ϕ2. We then show that

Gen(ϕ2(τ1), ϕ2(ϕ1(E))) = ϕ2(Gen(τ1, ϕ1(E)))

as in the proof of proposition 1.2, let case. Taking ϕ = ϕ2 ◦ ϕ1, we therefore have derived:

ϕ(E) ⊢ a1 : ϕ2(τ1) ϕ(E) + x 7→ Gen(ϕ2(τ1), ϕ(E)) ⊢ a2 : τ2.

We conclude, by the let typing rule,

ϕ(E) ⊢ let x = a1 in a2 : τ2.

That’s the expected result. 2

Proposition 1.9 (Completeness of type inference) Let a be an expression, E be a typing en-
vironment, and V be an infinite set of variables such that V ∩ F(E) = Ø. If there exists a type τ ′

and a substitution ϕ′ such that ϕ′(E) ⊢ a : τ ′, then (τ, ϕ, V ′) = infer(a,E, V ) is defined, and there
exists a substitution ψ such that

τ ′ = ψ(τ) and ϕ′ = ψ ◦ ϕ outside V.

By “ϕ′ = ψ ◦ϕ outside V ”, we mean that ϕ′(α) is equal to ψ(ϕ(α)) for all variables α that do
not belong to V . The condition ϕ′ = ψ ◦ ϕ outside V captures the fact that the two substitutions
ϕ′ and ψ ◦ ϕ behave the same on the initial typing problem. The variables in V are variables that
do not appear in the initial problem, but can be introduced at intermediate steps during inference;
they do not have to be taken into account when comparing ϕ′ (the proposed solution to the typing
problem) with ϕ (the inferred solution).
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Proof: we first remark that, under the assumptions of the proposition, if (τ, ϕ, V ′) = infer(a,E, V )
is defined, then V ′ ⊆ V , and the variables in V ′ are not free in τ and are out of reach for ϕ. Hence,
V ′ ∩ F(ϕ(E)) = Ø.

The proof of proposition 1.9 proceeds by structural induction over a. We show one base step
and three inductive steps; the remaining cases are similar.

• Case a = x. Since ϕ(E) ⊢ x : τ , we have x ∈ Dom(ϕ(E)) and τ ≤ ϕ(E)(x). This implies
x ∈ Dom(E). Hence infer(E, x) is defined, and returns

τ = [α1 7→ β1, . . . , αn 7→ βn](τx) and ϕ = [ ] and V ′ = V \ {β1 . . . βn}

for some variables β1 . . . βn ∈ V . Write E(x) = ∀α1 . . . αn. τx, where the αi are taken from V ′ and
out of reach for ϕ′. We have ϕ′(E(x)) = ∀α1 . . . αn. ϕ

′(τx). Take ρ to be the substitution over the
αi such that τ ′ = ρ(ϕ′(τx)). Take

ψ = ρ ◦ ϕ′ ◦ [β1 7→ α1, . . . , βn 7→ αn].

We have ψ(τ) = ρ(ϕ′(τx)) = τ ′. Moreover, all variables α /∈ V are neither one of the αi, nor one of
the βi, hence ψ(α) = ρ(ϕ′(α)) = ϕ′(α). This is the expected result, since ϕ = [ ] here.

• Case a = (f where f(x) = a1). The initial typing derivation ends up with

ϕ′(E) + f 7→ (τ ′2 → τ ′1) + x 7→ τ ′2 ⊢ a1 : τ ′1

ϕ′(E) ⊢ (f where f(x) = a) : τ ′2 → τ ′1

Choose α and β in V , as in the algorithm. Define the environment E1 and the substitution ϕ′
1 by

E1 = E + f 7→ (α→ β) + x 7→ α and ϕ′
1 = ϕ′ + α 7→ τ ′2 + β 7→ τ ′1.

We have ϕ′
1(E1) = ϕ′(E) + f 7→ (τ ′2 → τ ′1) + x 7→ τ ′2. We apply the induction hypothesis to a1, E1,

V \ {α, β}, ϕ′
1 and τ ′2. We get

(τ1, ϕ1, V1) = infer(a1, E1, V \ {α, β}) and τ ′1 = ψ1(τ1) and ϕ′
1 = ψ1 ◦ϕ1 outside V \ {α, β}.

In particular, we have ψ1(ϕ1(β)) = ϕ′
1(β) = τ ′1, hence ψ1 is a unifier of ϕ1(β) and τ1. The most

general unifier of these two types therefore exists — let us call it µ —, and infer(E, a, v) is well-
defined. Let ψ be a substitution such that ψ1 = ψ ◦ µ. We now show that this substitution ψ
satisfies the claim. We have:

ψ(τ) = ψ(µ(ϕ1(α→ β))) by definition of τ in the algorithm
= ψ1(ϕ1(α→ β)) by definition of ψ
= ϕ′

1(α→ β) because α and β are outside of V \ {α, β}
= τ ′2 → τ ′1 by construction of ϕ′

1

Moreover, for any variable γ outside of V ,

ψ(ϕ(γ)) = ψ(µ(ϕ1(γ))) by definition of ϕ in the algorithm
= ψ1(ϕ1(γ)) by definition of ψ1

= ϕ′
1(γ) because γ /∈ V

= ϕ1(γ) because γ /∈ V implies γ 6= α and γ 6= β
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The desired result follows.

• Case a = a1(a2). The initial derivation ends up with

ϕ′(E) ⊢ a1 : τ ′′ → τ ′ ϕ′(E) ⊢ a2 : τ ′′

ϕ′(E) ⊢ a1(a2) : τ ′

We apply the induction hypothesis to a1, E, V , τ ′ → τ ′′ and ϕ′, obtaining

(τ1, ϕ1, V1) = infer(a1, E, V ) and τ ′′ → τ ′ = ψ1(τ1) and ϕ′ = ψ1 ◦ ϕ1 outside V .

In particular, ϕ′(E) = ψ1(ϕ1(E)). We apply the induction hypothesis to a2, ϕ1(E), V1, τ and ψ1.
This is legitimate, since F(ϕ1(E)) ∩ V1 = Ø by the remark at the beginning of the proof. We get:

(τ2, ϕ2, V2) = infer(a2, ϕ1(E), V1) and τ ′′ = ψ2(τ2) and ψ1 = ψ2 ◦ ϕ2 outside V1.

We have F(τ1) ∩ V1 = Ø, hence ψ1(τ1) = ψ2(ϕ2(τ1)). Take ψ3 = ψ2 + α 7→ τ ′. (The variable α,
taken in V2, is out of reach for ψ2, hence ψ3 extends ψ2.) We have:

ψ3(ϕ2(τ1)) = ψ2(ϕ2(τ1)) = ψ1(τ1) = τ ′′ → τ ′

ψ3(τ2 → α) = ψ2(τ2)→ τ ′′ = τ ′′ → τ ′

The substitution ψ3 is therefore a unifier of ϕ2(τ1) and τ2 → α. Those two types therefore admit a
most general unifier, µ. Hence infer(a1(a2), E, V ) is well-defined. In addition, we have ψ3 = ψ4 ◦µ
for some substitution ψ4. We now show that ψ = ψ4 meets the requirements of the proposition.
With the same notations as in the algorithm, we have

ψ(τ) = ψ4(µ(α)))) = ψ3(α) = τ ′,

on one hand, and on the other hand, for all β /∈ V (hence a fortiori β /∈ V1, β /∈ V2, β 6= α):

ψ(ϕ(β)) = ψ4(µ(ϕ2(ϕ1(β)))) by definition of ϕ
= ψ3(ϕ2(ϕ1(β))) by definition of ψ4

= ψ2(ϕ2(ϕ1(β))) because β 6= α and α is out of reach for ϕ1 and ϕ2

= ψ1(ϕ1(β)) because ϕ1(β) /∈ V1

= ϕ′(β) because β /∈ V .

This is the expected result.

• Cas a = (let x = a1 in a2). The initial derivation ends up with

ϕ′(E) ⊢ a1 : τ ′ ϕ′(E) + x 7→ Gen(τ ′, ϕ′(E)) ⊢ a2 : τ ′′

ϕ′(E) ⊢ let x = a1 in a2 : τ ′′

We apply the induction hypothesis to a1, E, V , τ ′ and ϕ′. We get

(τ1, ϕ1, V1) = infer(a1, E, V ) and τ ′ = ψ1(τ1) and ϕ′ = ψ1 ◦ ϕ1 outside V.
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In particular, ϕ′(E) = ψ1(ϕ1(E)). We easily check that ψ1(Gen(τ1, ϕ1(E))) is more general than
Gen(ψ1(τ1), ψ1(ϕ1(E))), that is, than Gen(τ ′, ϕ′(E)). Since we can derive

ϕ′(E) + x 7→ Gen(τ ′, ϕ′(E)) ⊢ a2 : τ ′′,

proposition 1.3 shows that we can a fortiori derive

ϕ′(E) + x 7→ ψ1(Gen(τ1, ϕ1(E))) ⊢ a2 : τ ′′,

that is,
ψ1(ϕ1(E) + x 7→ Gen(τ1, ϕ1(E))) ⊢ a2 : τ ′′.

We now apply the induction hypothesis to a2, in the environment ϕ1(E) + x 7→ Gen(τ1, ϕ1(E)),
with the fresh variables V1, the type τ ′′ and the substitution ψ1. It follows that

(τ2, ϕ2, V2) = infer(a2, ϕ1(E) + x 7→ Gen(τ1, ϕ1(E)), V1)

and τ ′′ = ψ2(τ2) and ψ1 = ψ2 ◦ ϕ2 outside V1. The algorithm takes τ = τ2 and ϕ = ϕ2 ◦ ϕ1 and
V ′ = V2. Let us show that ψ = ψ2 meets the claim. We have ψ(τ) = τ ′′. And if α /∈ V , a fortiori
α /∈ V1, hence:

ψ(ϕ(α)) = ψ2(ϕ2(ϕ1(α)))) by definition of ϕ
= ψ1(ϕ1(α)) because ϕ1(α) /∈ V1, since α is out of reach for ϕ1

= ϕ′(α) since α /∈ V .

Hence ϕ′ = ψ ◦ ϕ outside V , as expected. 2
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Chapter 2

Three non-applicative extensions

In the present chapter, we enrich the simplified applicative language presented in the previous
chapter by three important features of “real” algorithmic languages. First of all, the possibility to
modify data structures in place. Second, the possibility to execute parts of the program concur-
rently, while communicating intermediate results. Finally, a number of non-local control structures
(exceptions, coroutines, and even some forms of goto).

We provide these features by introducing three new kinds of “first-class” objects: references, or
indirection cells, for in-place modification; communication channels, for communicating processes;
and continuations, for non-local control structures. We are going to enrich the purely applicative
language with primitive to create and manipulate these objects, and give the semantics of these
primitives.

From the standpoint of typing, these three extensions display striking similarities. There is a
natural way to type them, by introducing new unary type constructors. The resulting typing rules
are simple and intuitive. The type systems thus obtained are sound in the absence of polymorphism.
However, they turn out to be unsound in the presence of polymorphism. In this chapter, we just
give counterexamples; a more detailed discussion of the phenomenon, and some workarounds, are
postponed to the next chapters.

2.1 References

2.1.1 Presentation

References are indirection cells that can be modified in place. A reference has a current content
(any language value), that can be read and written at any time. A reference itself is a value: it
can be returned as the result of a function, or stored in a data structure. References are presented
through the three primitive operations:

Op ::= ref creation of a fresh reference
| ! reading of the current contents
| := modification of the current contents

33
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The expression ref(a) returns a fresh reference, initialized with the value of a. The expression !(a),
which is usually written !a, evaluates a to a reference and returns its current contents. Finally, the
expression := (a1, a2), which is usually written a1 := a2, evaluates a1 to a reference and physically
updates its contents by the value of a2. The expression a1 := a2 itself has no obvious return value:
it operates essentially by side-effect. We follow the convention that it returns a special constant,
written () (read: “void”).

Cst ::= . . .
| () the void value

Example. References combined with the let construct provide updatable identifiers (true vari-
ables). For instance, we can write a loop for !i varying from 0 to n− 1 as follows:

let i = ref(0) in

while !i < n do . . . ; i := 1 + !i done

Here and elsewhere, the notation a1; a2 means “ evaluate first a1, then a2, and return the value
of a2.” This construct is actually an abbreviation for let z = a1 in a2, where z is a fresh
identifier, not free in a2. Similarly, the loop while a1 do a2 done is an abbreviation for

(f where f(z) = if a1 then a2; f(z) else ())(())

where f and z are fresh identifiers. 2

Example. References combined with data structures provide mutable data structures (data struc-
tures that can be modified in place). For instance, to implement a term algebra, we can represent
variables by references to a special constant. To substitute a term for a variable, we simply store
the term in the reference corresponding to the variable [11]. Substituting a variable therefore takes
constant time; in contrast, with a representation of terms without references, we would have to
copy the term(s) in which the variable is substituted, which is less efficient. Moreover, if the sub-
stituted variable is shared between several terms, the substitution immediately takes effect in all
terms that contain the variable, with the reference-based implementation. In the implementation
without references, we must explicitly substitute all terms that contain the substituted variable,
requiring the programmer to keep track of all these terms. 2

Example. References combined with functions provide stateful functions — a notion close to the
one of object in object-oriented languages. For instance, here is a pseudo-random number generator:
a function that returns the next element of a hard-to-predict sequence each time it is called. We
also provide a function to reinitialize the generator.

let (random, set random) =
let seed = ref 0 in

(λx. seed := (!seed× 25173+ 13849) mod 1000; !seed),
(λnewseed. seed := newseed)

in . . .

(We have used a let with destructuration of a pair, with the obvious semantics.) This example
is delicate to program in a purely applicative language. The function random must then take the



2.1. References 35

state variable seed as argument, and return its new value as a second result. The program calling
random is responsible for correctly propagating the value of seed, that is to use the value returned
by the last call to random as argument to the next call. This clutters the program. Moreover,
this is error-prone: it is easy to give by mistake the same value of seed to random each time. The
reference-based solution is better programming style: safer and more modular. 2

2.1.2 Semantics

We now give a relational semantics to the language enriched by references. References require the
introduction of a global state (the current contents of all references) in the semantics; this global
state changes during evaluation. In more practical terms, we treat references as locations of cells
in a store. The semantics not only assign a value to each expression, but also describe how the
store is modified by the evaluation of the expression. We therefore assume given a infinite set of
locations, ranged over by ℓ, and we define the stores s as finite mappings from locations to values.
The semantic objects are defined as:

Results: r ::= v/s normal result
| err error result

Values: v ::= cst base value
| (v1, v2) pair of values
| (f, x, a, e) functional value
| ℓ memory location

Environments: e ::= [x1 7→ v1, . . . , xn 7→ vn]

Stores: s ::= [ℓ1 7→ v1, . . . , ℓn 7→ vn]

The evaluation predicate is now e ⊢ a/s0 ⇒ r, meaning “in evaluation environment e, the expres-
sion a taken in the initial store s0 evaluates to the response r.” A response is either err, or a pair
v/s1, where v is the result value and s1 is the store at the end of evaluation.

Here are the rules defining the new evaluation predicate. We give the rules for the purely
applicative constructs without comments. Constants and variables:

e ⊢ cst/s⇒ cst/s
x ∈ Dom(e)

e ⊢ x/s⇒ e(x)/s

x /∈ Dom(e)

e ⊢ x/s⇒ err

Function abstraction:
e ⊢ (f where f(x) = a)/s⇒ (f, x, a, e)/s

Function application:

e ⊢ a1/s0 ⇒ (f, x, a0, e0)/s1 e ⊢ a2/s1 ⇒ v2/s2 e0 + f 7→ (f, x, a0, e0) + x 7→ v2 ⊢ a0/s2 ⇒ r0

e ⊢ a1(a2)/s0 ⇒ r0

e ⊢ a1/s0 ⇒ r1 r1 does not match (f, x, a0, e0)/s1

e ⊢ a1(a2)/s0 ⇒ err
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e ⊢ a1/s0 ⇒ (f, x, a0, e0)/s1 e ⊢ a2/s1 ⇒ err

e ⊢ a1(a2)/s0 ⇒ err

The let binding:

e ⊢ a1/s0 ⇒ v1/s1 e+ x 7→ v1 ⊢ a2/s1 ⇒ r2

e ⊢ (let x = a1 in a2)/s0 ⇒ r2

e ⊢ a1/s0 ⇒ err

e ⊢ (let x = a1 in a2)/s0 ⇒ err

Pairs:
e ⊢ a1/s0 ⇒ v1/s1 e ⊢ a2/s1 ⇒ v2/s2

e ⊢ (a1, a2)/s0 ⇒ (v1, v2)/s2

e ⊢ a1/s0 ⇒ err

e ⊢ (a1, a2)/s0 ⇒ err

e ⊢ a1/s0 ⇒ v1/s1 e ⊢ a2/s1 ⇒ err

e ⊢ (a1, a2)/s0 ⇒ err

We now detail the rules dealing with references.

e ⊢ a/s0 ⇒ v/s1 ℓ /∈ Dom(s1)

e ⊢ ref(a)/s0 ⇒ ℓ/(s1 + ℓ 7→ v)

e ⊢ a/s0 ⇒ err

e ⊢ ref(a)/s0 ⇒ err

The creation of a reference first evaluates the initial value v, then picks an unused location ℓ (this
is always possible, because we have assumed an infinite number of locations), and enrich the store
by the binding of v to ℓ. The value part of the result is the location ℓ.

Remark. This rule might seem to destroy the determinism of evaluation: we are free to choose
various locations ℓ. However, all these choices are equivalent in some sense: if e ⊢ a/s0 ⇒ v/s1,
then the response v/s1 is unique modulo a renaming of the locations used in s1 but not in s0. 2

e ⊢ a/s0 ⇒ ℓ/s1 ℓ ∈ Dom(s1)

e ⊢ !a/s0 ⇒ s1(ℓ)/s1

e ⊢ a/s0 ⇒ ℓ/s1 ℓ /∈ Dom(s1)

e ⊢ !a/s0 ⇒ err

e ⊢ a/s0 ⇒ r r does not match ℓ/s1

e ⊢ !a/s0 ⇒ err

The dereferencing operator evaluates its argument, then reads the value stored in the location thus
obtained. It is a run-time error if the location falls outside of the current store when the evaluation
terminates.

e ⊢ a/s0 ⇒ (ℓ, v)/s1 ℓ ∈ Dom(s1)

e ⊢ :=(a)/s0 ⇒ ()/(s1 + ℓ 7→ v)

e ⊢ a/s0 ⇒ (ℓ, v)/s1 ℓ /∈ Dom(s1)

e ⊢ :=(a)/s0 ⇒ err

e ⊢ a/s0 ⇒ r r does not match (ℓ, v)/s1

e ⊢ :=(a)/s0 ⇒ err

The assignment operator evaluates its argument. The first component of the result must be a
location ℓ already used. It then updates the store at location ℓ, substituting the old value by the
value just computed.
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2.1.3 Typing

The natural typing for references is as follows: at the level of types, we introduce the construction
τ ref, which is the type of references that contain a value of type τ .

τ ::= . . .
| τ ref reference type

Then, the result of a reference creation operation ref(a) has type τ ref, provided that a has
type τ . The dereferencing !a returns a value with type τ , provided that a has type τ ref. Finally,
the assignment a1 := a2 is well-typed if a2 has the type expected for the contents of a1, that is if
a1 : τ ref and a2 : τ for some type τ . This is summarized by the following type assignment:

TypOp(ref) = ∀α.α→ α ref

TypOp(!) = ∀α.α ref→ α

TypOp(:=) = ∀α.α ref× α→ unit

In the type for :=, we have used a new base type, unit, which is the type containing only the value
():

TypBas = {unit; int; bool; . . .}

TypCst(()) = unit

The typings proposed above for the primitives over references look correct. It is fairly easy to
show that they are sound in the absence of polymorphism. However, these typings turn out to be
unsound in the presence of polymorphic types: a single reference considered with a polymorphic
type suffices to break type safety.

Example. The following program is well-typed with the typings above:

let r = ref(λx.x) in

r := (λn. n + 1);
if (!r)(true) then . . . else . . .

The type of r in the body of the let is actually ∀α. (α→ α) ref. We can therefore use r a first time
with type (int→ int) ref, and store there the successor function; then a second time with type
(bool → bool) ref, and apply the contents of r to true. At run-time, we end up adding 1 with
true — a type violation, if any. 2

It is now clear that a reference, once created, must always be used with the same type; otherwise,
one could store an object of a given type in the reference, then read it later claiming it has a different
type. This consistency between all uses of a given reference is obviously violated as soon as the
reference is given a non-trivial type scheme. We must therefore modify the type system in order to
prohibit such polymorphic references; this is the goal of the next two chapters.
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2.2 Communication channels

2.2.1 Presentation

We have yet considered only programs that live in a closed world: their evaluation does not interfere
with the state of the outside of the program. “Real” programs do not fit into this model: they
interact with external entities: the user, the operating system, other programs. We would therefore
like to describe the interactions with the outside world, in the language and in its formalization.
The next step is to internalize this notion: we consider the program no longer as a monolithic
expression that evaluates sequentially, but as several expressions that evaluate concurrently, while
exchanging information. Many algorithms can then be expressed more easily — in particular, those
requiring complex interleavings of computations. We also expect evaluation to be faster if several
processors are available.

We are now going to introduce these notions in the simplified language from chapter 1, by
means of the communication channels. A channel is a new first-class object, over which a process
can ask to send a value, or to receive a value. A value is actually transmitted when two processes
simultaneously ask for transmission over the same channel, one process trying to send, the other
trying to receive. Channels therefore allow synchronization between processes (by the so-called
“rendez-vous” mechanism), in addition to communication. Channels are presented by the following
primitives:

Op ::= newchan creation of a new channel
| ? reception from a channel
| ! emission over a channel

We traditionally write a? instead of ?(a) for receiving a value from a channel a, and a1 ! a2 instead
of !(a1, a2) for sending the value of a2 over the channel a1. The expression a? evaluates to the value
received; the expression a1 ! a2 evaluates to ().

To communicate by rendez-vous over a channel, we must be able to evaluate two expressions
in parallel: one that sends, the other that receives. We therefore introduce two extra constructs at
the level of expressions:

a ::= . . .
| a1 ‖ a2 parallel composition
| a1 ⊕ a2 non-deterministic choice

The expression a1 ‖ a2 evaluates a1 and a2 concurrently, and returns the pair of the results. It
allows a1 and a2 to communicate by rendez-vous. The expression a1 ⊕ a2 evaluates either a1 or
a2, the choice between the two expressions being non-deterministic. This construct serves to offer
several communication possibilities to the outside world. The third way to compose evaluation, the
sequence (a1; a2), can easily be defined in terms of the let binding, as shown above.

Context. Various presentations of the notion of communicating processes have been proposed.
In roughly chronological order: models based on shared memory plus semaphores or monitors or
locks; Petri nets; models based on channels (inspired by the Multics streams and the Unix pipes):
the Kahn-MacQueen process networks [43], Hoare’s CSP calculus [37], Milner’s CCS calculus [59]
and its numerous variants; more recently, the models based on “active data” [15, 6, 9, 45].
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I have followed as closely as possible the approach taken by Milner for his Calculus of Com-
municating Systems [59]. The main difference is that, in the calculus presented here, channels are
first-class values, that are created by the newchan primitive, and subject to the usual lexical scoping
rules. In contrast, in CCS, channels are not first-class values; they are permanently associated to
global names; and to limit their scope, one must use the renaming and masking constructs, that
encode a notion of dynamic scoping.

The calculus presented here is said to be higher-order, since channel values can be sent over
channels. There is no general agreement on how to extend CCS to the higher order. Thomsen
[91] and Berthomieu [10] propose having processes as values, but not channels. In his pi-calculus
[61], Milner proposes to take channel names as first-class values, which is close, but not completely
equivalent to taking channels themselves as first-class values. The “channels as values” approach
seems closer to the mechanisms provided by operating systems — the Unix pipes, in particular.

Two recent proposals for extending ML with parallelism and communication take channels as
first-class values, as in this section, but provide in addition a concrete type for communication
events, which can be combined to define new synchronization mechanisms. These proposals are
Reppy’s Concurrent ML library [81], and its variant described by Berry, Milner and Turner [8]. 2

Example. The stamp function below emits the sequence of integers over the first channel given as
argument, and starts again at zero when it receives something on the second channel. Evaluated
concurrently with other processes, it serves as a generator of unique stamps.

let stamp = λoutput. λreset.
(f where f(n) = (output ! n; f(n + 1))⊕ (reset?; f(0)))(0) in

let st = newchan(()) in

let reset = newchan(()) in

stamp(st)(reset) ‖ (reset ! (); ( . . . st ? . . . st ? . . . ) ‖ ( . . . st ? . . . ))

2

Example. The following program, taken from [43], emits all prime numbers on the channel given
as argument.

let sieve = λprimes.
let integers = newchan(()) in

((enumerate where enumerate(n) = integers ! n; enumerate(n+ 1))(2)) ‖
((filter where filter(input) =

let n = input ? in

primes ! n;
let output = newchan(()) in

filter(output) ‖
while true do

let m = input ? in if m mod n = 0 then () else output ! m
done)

(integers))
in . . .
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We easily recognize Eratosthene’s sieve here. Such a program, that puts no a priori upper bounds
on the prime numbers produced, is considerably harder to write in a purely sequential language (at
least, under strict semantics).

2

2.2.2 Semantics

We now give a relational semantics to the language enriched with channels. The evaluation predicate
must take into account the current state of the other processes evaluating concurrently with the
expression considered, so as to determine what the current communication opportunities are. To
do so, we add an argument to the evaluation predicate, that becomes e ⊢ a =

w
=⇒ r. Here, w is a finite

sequence of events; this sequence represents the communications that must take place to reach
the result r. Communication events are either c ! v or c ? v, denoting the emission or the reception
of the value v over the channel identified by c.

Results: r ::= v normal result (a value)
| err error result

Values: v ::= cst base value
| (v1, v2) pair of values
| (f, x, a, e) functional value
| c channel identifier

Environments: e ::= [x1 7→ v1, . . . , xn 7→ vn]

Events: evt ::= c ? v emission of a value
| c ! v reception of a value

Event sequences: w ::= ε the empty sequence
| evt . . . evt

We start by giving again the semantics of the base constructs, taking into account the sequencing
of communication events. This sequencing is apparent in the decomposition of the sequence w into
sub-sequences, one for each evaluation step. Constants and variables:

e ⊢ cst =
ε
⇒ cst

x ∈ Dom(e)

e ⊢ x =
ε
⇒ e(x)

x /∈ Dom(e)

e ⊢ x =
ε
⇒ err

Function abstraction:
e ⊢ (f where f(x) = a) =

ε
⇒ (f, x, a, e)

Function application:

e ⊢ a1 =
w1=⇒ (f, x, a0, e0) e ⊢ a2 =

w2=⇒ v2 e0 + f 7→ (f, x, a0, e0) + x 7→ v2 ⊢ a0 =
w3=⇒ r0

e ⊢ a1(a2) =
w1w2w3=====⇒ r0

e ⊢ a1 =
w
=⇒ r1 r1 does not match (f, x, a0, e0)

e ⊢ a1(a2) =
w
=⇒ err
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e ⊢ a1 =
w1=⇒ (f, x, a0, e0) e ⊢ a2 =

w2=⇒ err

e ⊢ a1(a2) =
w1w2===⇒ err

The let binding:

e ⊢ a1 =
w1=⇒ v1 e+ x 7→ v1 ⊢ a2 =

w2=⇒ r2

e ⊢ let x = a1 in a2 =
w1w2===⇒ r2

e ⊢ a1 =
w
=⇒ err

e ⊢ let x = a1 in a2 =
w
=⇒ err

Pair construction:

e ⊢ a1 =
w1=⇒ v1 e ⊢ a2 =

w2=⇒ v2

e ⊢ (a1, a2) =
w1w2===⇒ (v1, v2)

e ⊢ a1 =
w
=⇒ err

e ⊢ (a1, a2) =
w
=⇒ err

e ⊢ a1 =
w1=⇒ v1 e ⊢ a2 =

w2=⇒ err

e ⊢ (a1, a2) =
w1w2===⇒ err

We now describe the evaluation of the parallelism and communication constructs, starting with
channel creation.

c is unallocated anywhere else in the derivation

e ⊢ newchan(a) =
ε
⇒ c

In the evaluation rule for newchan, the channel identifier c returned as result must be different
from all other channels used in the same process, as well as in the other concurrent processes. To
ensure this condition at the level of the rules, we would have to equip the evaluation predicate
with two extra arguments: the sets of channel identifiers free before and after the evaluation. This
complicates the rules to the point of unusability. To circumvent this difficulty, we add a global
condition at the level of the derivations: in all evaluation derivations considered later, we require
that any two instances of the newchan rule assign different channel identifiers to c.

The rules for sending and receiving are the only ones that add new events c ! v or c ? v to event
sequences:

e ⊢ a1 =
w
=⇒ c

e ⊢ a1? =
w.(c?v)
====⇒ v

e ⊢ a1 =
w
=⇒ r r does not match c

e ⊢ a1? =
w
=⇒ err

e ⊢ a =
w
=⇒ (c, v)

e ⊢ !(a) =
w.(c!v)
====⇒ ()

e ⊢ a =
w
=⇒ r r does not match (c, v)

e ⊢ !(a) =
w
=⇒ err

The ⊕ operator is the non-deterministic choice:

e ⊢ a1 =
w
=⇒ r1

e ⊢ a1 ⊕ a2 =
w
=⇒ r1

e ⊢ a2 =
w
=⇒ r2

e ⊢ a1 ⊕ a2 =
w
=⇒ r2

Finally, here are the rules for the parallel composition of two expressions:

e ⊢ a1 =
w1=⇒ v1 e ⊢ a2 =

w2=⇒ v2 ⊢ w1 ‖ w2 ⇒ w

e ⊢ a1 ‖ a2 =
w
=⇒ (v1, v2)
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e ⊢ a1 =
w1=⇒ err e ⊢ a2 =

w2=⇒ r2 ⊢ w1 ‖ w2 ⇒ w

e ⊢ a1 ‖ a2 =
w
=⇒ err

e ⊢ a1 =
w1=⇒ r1 e ⊢ a2 =

w2=⇒ err ⊢ w1 ‖ w2 ⇒ w

e ⊢ a1 ‖ a2 =
w
=⇒ err

These rules rely on the notion of shuffling of two event sequences. We write ⊢ w1 ‖ w2 ⇒ w to
express that w is one possible shuffling of w1 and w2. This relation is defined by the rules below.

⊢ ε ‖ ε⇒ ε
⊢ w1 ‖ w2 ⇒ w

⊢ w1.evt ‖ w2 ⇒ w.evt

⊢ w1 ‖ w2 ⇒ w

⊢ w1 ‖ w2.evt⇒ w.evt

⊢ w1 ‖ w2 ⇒ w

⊢ w1.(c ? v) ‖ w2.(c ! v)⇒ w

⊢ w1 ‖ w2 ⇒ w

⊢ w1.(c ! v) ‖ w2.(c ? v)⇒ w

The first three shuffling cases are obvious. The last two rules correspond to a successful rendez-vous
between two concurrent processes. Then, the value v is actually passed over c from one process to
the other. Moreover, the two events c !v and c?v remain local to the two communicating processes;
therefore, they don’t appear in the event sequence w, which represents the communication activity
between a1 ‖ a2 and the outside world.

Remark. The shuffling operation is not deterministic. In particular, we can choose not to perform
a possible rendez-vous. 2

Context. In CCS, this shuffling operation is not explicit: the CCS reduction predicate has the
form a

α
→ a′, where α describes zero or one event; since the result a′ is another expression, instead of

a value, we can reduce again a′, and thus reach a normal form by successive reductions. Throughout
this work, I have opted to maintain a clear distinction between source programs and result values.
(In practice, no interpreter works by successive rewritings of the source program.) Hence the use
of event sequences to describe the calculus with channels. 2

Example. Here is one possible evaluation for x? ‖ (x ! 1 ⊕ x ! 2), in an environment e where the
identifier x is bound to the channel c.

e ⊢ x =
ε
⇒ c

e ⊢ x? =
c?2
=⇒ 2

e ⊢ x =
ε
⇒ c e ⊢ 2 =

ε
⇒ 2

e ⊢ (x, 2) =
ε
⇒ (c, 2)

e ⊢ x ! 2 =
c!2
=⇒ ()

e ⊢ x ! 1⊕ x ! 2 =
c!2
=⇒ () ⊢ c ? 2 ‖ c ! 2⇒ ε

e ⊢ x? ‖ (x ! 1⊕ x ! 2) =
ε
⇒ (2, ())

2
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2.2.3 Typing

Communication channels readily lend themselves to a typing similar to the one for references. We
require channels to be homogeneous: all values exchanged over a given channel must have the same
type. Given the fact that channels are first-class values, it is easy to see (by analogy with lists) that
static typing is intractable without this restriction. Then, we give the type τ chan to the channels
that carry values of type τ .

τ ::= . . .
| τ chan channel type

For send and receive operations, the type of the value sent or received must be the same as the
type of the values that can be transmitted over the channel. Hence the following type assignment:

TypOp(newchan) = ∀α. unit→ α chan

TypOp(?) = ∀α. α chan→ α

TypOp(!) = ∀α. α chan× α→ unit

The ‖ and ⊕ constructs have obvious typing rules:

E ⊢ a1 : τ1 E ⊢ a2 : τ2

E ⊢ a1 ‖ a2 : τ1 × τ2

E ⊢ a1 : τ E ⊢ a2 : τ

E ⊢ a1 ⊕ a2 : τ

Example. The function stamp above has type ∀α, β. int chan→ α chan→ β. 2

Context. The typing proposed above relies crucially on channels being first-class values. For
instance, in Berthomieu’s [10] and Nielson’s [68] calculi, where processes are values but not channels,
channels are permitted to carry values of different types. The type of a process consists in the names
of the channels on which it offers communication opportunities, with for each channel the type of
the transmitted value. Notice the analogy with the typing of extensible records [98, 69, 39, 77, 13,
78, 79]: channels correspond to labels; processes, to records; the transmitted values, to the values
contained in the record fields. This typing seems not to extend to the case where channels are
first-class values: my feeling is that dependent types are required. This justifies the homogeneity
hypothesis over channels, which leads to the simple typing given above. 2

As in the case of references, it turns out that the typing for channels given above is sound in a
monomorphic type system, but is unsound as soon as polymorphism is introduced.

Example. The following program is well-typed in the type system above:

let c = newchan(()) in (c ! true) ‖ (1 + c?)

That’s because c can be given type ∀α.α chan, and therefore be used once with type bool chan,
once with type int chan. Of course, this program produces a run-time type error, since it ends up
adding 1 with true. 2
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2.3 Continuations

2.3.1 Presentation

Given a program a0 and an occurrence of a subexpression a in a0, we call continuation of a (in
a0) the computation that remains to perform, once a has been evaluated, to get the value of a0.
This continuation can be viewed as the function that maps the value of a to the value of a0. For
instance, in the expression a0 = 2× a+ 1, the continuation of a is the function va 7→ 2× va + 1. I
have purposefully avoided to write λva. 2× va + 1; indeed, in a simple language such as the one in
chapter 1, continuations are not objects that can be manipulated at the language level.

The third and last extension considered here consists precisely in turning continuations into
first-class values, that the program can manipulate like any other value. We provide a primitive to
capture the continuation of an expression, turning it into a continuation object. We also provide a
primitive that discards the current continuation and installs the contents of a continuation object
instead. This gives the programmer ample freedom to alter the normal progress of evaluation:
continuation objects allows “skipping over” some computations, restart some computations from a
saved state, interleave computations, . . .

Context. Actually, almost all known control structures — including exceptions, coroutines, back-
tracking mechanisms, and even communicating processes as in section 2.2 — can be defined in a
language with continuation objects: they need not be primitive in the language [36, 97, 80]. Con-
tinuation objects are therefore of high interest as a general tool for defining new control structures.

2

Continuation objects are presented by two primitive operations:

Op ::= callcc capture of the current continuation
| throw restarting of a captured continuation

The callcc primitive takes as argument a functional value. The idiom callcc(λk. a) binds the
identifier k to the continuation of the occurrence of the callcc(. . .) expression in the whole pro-
gram, then evaluates a and returns its value. The throw primitive accepts a pair of arguments, a
continuation and a value, and restarts the continuation, feeding it the given value.

Example. The expression

callcc(λk. 1 + (if a then 2 else throw(k, 10)))

evaluates to 3 if the condition a is true, and to 10 if a is false. In the former case, the body of the
callcc evaluates as 1+ 2; this value is also the value of the whole callcc expression. In the latter
case, the continuation k is restarted on the value 10 (the second argument to throw). The current
computation, 1 + (if . . .), is interrupted, and we proceed as if it terminated on the value 10. 2

Context. Continuation objects are usually presented as functions that, when applied to a value,
restart the captured continuation over this value. This is the case in Scheme [76], for instance.
The presentation above, with a separate throw construct for restarting a computation, is taken
from Duba, Harper et MacQueen [25]. Its main motivation is to circumvent a typing difficulty in
Milner’s system. It is also more symmetric than the Scheme presentation, and easier to read in my
opinion. 2
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Example. Consider the following simplified presentation of the ML exceptions: the construct fail
aborts the current evaluation; the construct a handle b evaluates a and returns its value, unless
the evaluation of a is aborted by a fail, in which case b is evaluated and its value returned. These
two operations can easily be implemented using callcc and a stack of functions. We assume
given the abstract type τ stack of mutable stacks. Let exn stack be a global identifier with type
(unit→ unit) stack, initially bound to the empty stack. We then translate a handle b by:

callcc(λk.
push(exn stack, λx. throw(k, b));
let result = a in pop(exn stack); result)

and fail by:

pop(exn stack)(()); anything

Here, anything denotes any expression that has type τ for any type τ . For instance, we can
implement anything by the infinite loop (f where f(x) = f(x))(0). The purpose of anything is to
ensure that fail has type τ for all τ , as in ML. At any rate, the expression anything is never
executed. 2

Example. Most kinds of coroutines can be implemented (albeit painfully) with continuations and
references.

callcc(λinit k.
let next k = ref(init k) in

let communicate = λx.
callcc(λk.let old k = !next k in next k := k; throw(old k, x)) in

let process1 = f1 where f1(x) =
. . . communicate(y) . . . f1(z) . . . communicate(w) . . . in

let process2 = f2 where f2(x) =
. . . f2(z) . . . communicate(y) . . . communicate(t) . . . in

process1(callcc(λstart1.
process2(callcc(λstart2. next k := start2; throw(start1, 0)))))

In the example above, the two functions process1 and process2 interleave their computations
through the communicate function. We first apply process1 to the initial value 0. This func-
tion performs an arbitrary amount of computation, then calls communicate(v1). The control
is then transferred to process2: we start evaluating process2(v1). When process2 executes
communicate(v2), we restart the evaluation of process1 where we left it. That is, the call
communicate(v1) terminates at last, returning the value v2. And so forth. The functions process1
and process2 can also opt to terminate normally; the corresponding call to communicate then
passes the return value to the other function. Everything stops when the initial call to process1

terminates. 2

2.3.2 Semantics

The addition of callcc and throw requires a major rework of the evaluation rules. It becomes
necessary to maintain a semantic object that represents the current continuation at each evaluation
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step. The evaluation predicate is now e ⊢ a; k ⇒ r (read: “by evaluating expression a in environ-
ment e, then passing the resulting value to the continuation k, we obtain the result r”). Here, k
is a term describing what remains to be done, once the expression a is evaluated, to obtain the
result r of the program. The continuation terms, as well as the other kinds of semantic objects,
are defined by the grammar below. (For continuation terms k, we indicate to the right of each case
which point of the computation is represented by k.)

Results: r ::= v normal result (a value)
| err error result

Values: v ::= cst base value
| (v1, v2) pair of values
| (f, x, a, e) function value
| k continuation

Environments: e ::= [x1 7→ v1, . . . , xn 7→ vn]

Continuations: k ::= stop end of the program
| primc(op, k) after a primitive argument
| app1c(a, e, k) after the function part of an application
| app2c(f, x, a, e, k) after the argument part of an application
| letc(x, a, e, k) after the left part of a let

| pair1c(a, e, k) after the first argument of a pair
| pair2c(v, k) after the second argument of a pair

The head constructor of k describes what should be done with the value of an expression: apply a
primitive to it (case primc), call a function (case app2c), evaluate the other part of an application
node (case app1c), . . . The subterm of k which is itself a continuation describes similarly the next
steps of the computation.

The suspended computations represented by k must be performed at some point. This execution
is described by another predicate: ⊢ v ⊲ k ⇒ r (read: “the value v passed to the continuation k
produces the response r”). We now give the evaluation rules defining the two predicates e ⊢ a; k ⇒ r
and ⊢ v ⊲ k ⇒ r. The first axiom expresses the behavior of the initial continuation.

⊢ v ⊲ stop⇒ v

For variables, constants and functions, the value of the expression is immediately available, and we
simply pass it to the current continuation.

x ∈ Dom(e) ⊢ e(x) ⊲ k ⇒ r

e ⊢ x; k ⇒ r

x /∈ Dom(e)

e ⊢ x; k ⇒ err

⊢ cst ⊲ k ⇒ r

e ⊢ cst; k ⇒ r

⊢ (f, x, a, e) ⊲ k ⇒ r

e ⊢ (f where f(x) = a); k ⇒ r

For a let binding, we evaluate the first subexpression after introducing the letc constructor on
top of the current continuation. When this evaluation terminates, it passes the resulting value v
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to a continuation of the form letc(. . .). This restarts the evaluation of the second subexpression
of the let.

e ⊢ a1; letc(x, a2, e, k)⇒ r

e ⊢ (let x = a1 in a2); k ⇒ r

e+ x 7→ v ⊢ a2; k ⇒ r

⊢ v ⊲ letc(x, a2, e, k)⇒ r

The evaluation of a pair is similar, except that two intermediate steps are required, one after each
argument evaluation.

e ⊢ a1; pair1c(a2, e, k)⇒ r

e ⊢ (a1, a2); k ⇒ r

e ⊢ a2; pair2c(v1, k)⇒ r

⊢ v1 ⊲ pair1c(a2, e, k)⇒ r

⊢ (v1, v2) ⊲ k ⇒ r

⊢ v2 ⊲ pair2c(v1, k)⇒ r

Function application is treated similarly.

e ⊢ a1; app1c(a2, e, k)⇒ r

e ⊢ a1(a2); k ⇒ r

e2 ⊢ a2; app2c(f, x, a, e, k)⇒ r

⊢ (f, x, a, e) ⊲ app1c(a2, e2, k)⇒ r

v does not match (f, x, a, e)

⊢ v ⊲ app1c(a2, e, k)⇒ err

e+ f 7→ (f, x, a, e) + x 7→ v2 ⊢ a; k ⇒ r

⊢ v2 ⊲ app2c(f, x, a, e, k) ⇒ r

For the primitives, the first step is common to all primitives: evaluate the argument.

e ⊢ a; primc(op, k)⇒ r

e ⊢ op(a); k ⇒ r

The semantics for primitives is given by the elimination rules for the primc continuations. For
callcc, we duplicate the current continuation k by storing it inside the environment, then we
evaluate the body of the argument function.

e+ f 7→ (f, x, a, e) + x 7→ k ⊢ a; k ⇒ r

⊢ (f, x, a, e) ⊲ primc(callcc, k)⇒ r

v does not match (f, x, a, e)

⊢ v ⊲ primc(callcc, k)⇒ err

Symmetrically, the rule for throw discards the current continuation, and uses instead the continu-
ation k′ provided by its argument. (The evaluations of callcc and throw are the only ones that
do not treat the current continuation in a linear way.)

⊢ v ⊲ k′ ⇒ r

⊢ (k′, v) ⊲ primc(throw, k)⇒ r

v does not match (k′, v′)

⊢ v ⊲ primc(throw, k)⇒ err

2.3.3 Typing

Following a well-tried approach, we introduce the type τ cont of the continuation objects that
expect a value of type τ as input.

τ ::= . . .
| τ cont continuation type
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Then, throw(a1, a2) is well-typed if a1 has type τ cont and a2 has type τ , for some type τ .
The expression throw(a1, a2) itself can be assigned any type. That’s because it never terminates
normally: no value is ever returned to the enclosing context. Hence the context can make any
assumptions on the type of the returned value. We therefore take:

TypOp(throw) = ∀α, β. α cont× α→ β

The typing of callcc is more delicate. Consider the program Γ[callcc(λk. a)], where Γ is the
context enclosing the callcc expression. Let τ be the type of callcc(λk. a). This expression
normally returns whatever a returns; hence τ is also the type of a. But τ is also the type expected
by the context Γ for the value of callcc. The continuation k, which is just a representation of Γ,
therefore expects a value with type τ ; hence its type is τ cont. Hence:

TypOp(callcc) = ∀α. (α cont→ α)→ α

Context. These types are those proposed by Duba, Harper and MacQueen for the continuations in
SML-NJ [25]. Treating continuation objects as an abstract type, not as functions, circumvents one
of the restrictions of the ML type system (that quantification is not allowed inside type expressions).
The reader is referred to Duba, Harper and MacQueen’s paper for more details, and for an excellent
discussion of the alternate typings. 2

The typing proposed above has convinced the ML community for about two years. Duba, Harper
and MacQueen showed its soundness for a monomorphic type system [25]; they claimed that their
proof easily extends to a polymorphic type system. This encouraged Felleisen and Wright to publish
the soundness of the above typing for callcc in the ML polymorphic type system [101, first edition].
Unfortunately, the typing for callcc and throw proposed above is unsound: a continuation object
with a polymorphic type compromises type safety. Here is the first known counterexample, due to
Harper and Lillibridge [35].

let later =
callcc(λk.

(λx. x),
(λf. throw(k, (f, λx. ())))

in

print string(first(later)("Hello!"));
second(later)(λx. x+ 1)

This counterexample is more complex than the ones for references and channels; but it demonstrates
basically the same phenomenon. The typing proposed for callcc and throw leads to assuming:

later : ∀α. (α→ α)× (α→ α)→ unit

The application of first(later) to a character string is therefore legitimate, as well as the ap-
plication of second(later) to the successor function. However, the continuation k captured by
the callcc is λlater. print string . . . (the body of the let). Hence, the call to second(later)
re-evaluates the body of the let with first(later) equals to λx. x + 1, causing a run-time type
violation when first(later) is applied to a character string. As in the case of references and
channels, we have abused the fact that the continuation has a polymorphic type to incorrectly
apply it to values that are not general enough.



Chapter 3

Dangerous variables and closure

typing

This chapter presents a polymorphic type system for the imperative extensions introduced in chap-
ter 2 (references, channels, continuations).

3.1 Informal presentation

Typing no longer ensures type safety as soon as it allows polymorphic references. (The same holds
for polymorphic channels and for polymorphic continuations. To be more specific, the following dis-
cussion concentrates on references; unless otherwise mentioned, everything we say about references
also applies to channels and continuations.) Hence the type system must be restricted in order
to prevent references from being assigned polymorphic types — that is, non-trivial type schemes
∀α. τ [α].

3.1.1 Dangerous variables

The system I propose relies essentially on a restriction over the type generalization step (as per-
formed by the let construct). The restriction consists in not generalizing type variables that are
free in the type of a live reference. These variables are called variables occurring in dangerous
position, or dangerous variables for short. The type of a reference may well contain type variables;
but these variables are never generalized. Hence a given reference cannot be considered with several
different types during its lifespan.

It now remains to detect, at generalization-time, the type variables that are free in the type
of a live reference. To do so, we rely on the type system itself: the idea is that the type to be
generalized is precise enough to keep track of those references reachable from values belonging to
that type. We argue by case analysis on the type.

•References. All variables free in a reference type τ ref are dangerous, since the values belonging
to that type are references to values of type τ . Example:

49
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let r = ref(λx.x) in

r := (λn. n + 1);
if (!r)(true) then . . . else . . .

The expression bound to r has type (α→ α) ref. The variable α occurs in dangerous position in
this type, since it appears free under a ref type constructor. Hence it is not generalized. The body
of the let is typed under the assumption r : (α→ α) ref, instead of r : ∀α. (α→ α) ref as in the
naive, unsound type system. The typing of the assignment can only succeed if α is instantiated to
int. Then, the application (!r)(true) is ill-typed.

• Data structures. In ML, the type of a data structure (pair, list, any concrete data type)
indicates not only the kind of the structure, but also the types of the components of the structure.
For instance, a list type is not just list, but τ list, indicating that all components of a structure
with type τ list have type τ . Similarly, the product type τ1 × τ2 indicates that all values with
that type contain one component with type τ1, one component with type τ2, and nothing else.
References contained into data structures therefore “show through” in the type of the structure.
For instance, the variables dangerous in τ list are those variables dangerous in τ ; similarly, the
variables dangerous in τ1 × τ2 are the variables dangerous in τ1 or in τ2. Example:

let p = (λx. x, ref(λx. 1)) in a

In the type (α→ α) × ((β → int) ref), the variable β is dangerous, but not α. Hence a is typed
under the assumption p : ∀α. (α→ α)× ((β → int) ref).

Remark. This argument extends easily to the full ML concrete types. Consider the following
concrete type declaration:

type (α1, . . . αn) T = C1 of τ1 | . . . | Cn of τn

The kth parameter of T is said to be essentially dangerous if αk occurs in dangerous position in
any of the τ1 . . . τn. (For instance, if τk = αj ref. This corresponds to the case where the type
T introduces a reference type by itself.) Then, a variable α is dangerous in the type expression
(τ1, . . . , τn) T if α is dangerous in one of the τj, or if α is free in τk and the kth parameter of T is
essentially dangerous. 2

• Functions without free variables. The case of a value with type τ1 → τ2 is special. A value
of that type is a function that transforms values of type τ1 into values of type τ2; the functional
value itself does not generally contain a value of type τ1 nor a value of type τ2. Hence a variable
can be dangerous in τ1 or τ2, without being dangerous in τ1 → τ2. A dangerous variable in τ1
keeps track of a reference in the argument that will be passed to the function when it is applied;
a dangerous variable in τ2 reveals that a reference might appear in the function result, once it is
applied; but those references are not presently contained in the functional value. Example:

let make ref = λx. ref(x) in . . . make ref(1) . . .
make ref(true) . . .
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The variable α is not dangerous in α → α ref. Hence, make ref is given the polymorphic type
∀α.α → α ref, and it can be applied to objects of any type. The fact that make ref has such a
general type does not compromise type safety at all. That’s because the only way to break the type
system with make ref is to apply it to a polymorphic object, then to use the resulting reference
with two different types, through a let binding:

let r = make ref(λx. x) in

r := (λn. n + 1);
if (!r)(true) then . . . else . . .

But this program is ill-typed: the result of make ref has type (α→ α) ref, and α is dangerous in
this type, hence r remains monomorphic.

3.1.2 Closure typing

The discussion of functions above neglects a crucial point: a function can contain free identifiers,
and these free identifiers can be bound to references. In this case, the functional value does contain
references, in the environment part of its closure, yet this is not apparent on its type. A function
type τ1 → τ2 does not say anything about the types of the identifiers free in the functions belonging
to that type.

Example. A reference can be presented as two functions, one for reading, the other for writing.

let functional ref =
λx. let r = ref(x) in (λ(). !r), (λy. r := y) in

let (read, write) =
functional ref(λx. x) in

write(λn.n + 1); if read(())(true) then . . . else . . .

The example above is well-typed, with the following type assignment:

functional ref : ∀α. α→ (unit→ α)× (α→ unit)

read : ∀β. unit→ (β → β)

write : ∀β. (β → β)→ unit

No type variable is dangerous here: the types do not even contain the ref constructor. Yet, the
read/write team breaks the type system just as a polymorphic reference. 2

What can we do? Type functions better. Functional values are actually data structures, with
components the values bound to their free identifiers. This is obvious when we think of functions
as closures. Yet, in contrast with the other ML data structures, the type of a functional value does
not permit to retrieve the types of its components. We are therefore going to assign more detailed
types to functional values — types that also type functions viewed as data structures. This is what
I call closure typing.

In the following examples, we shall consider function types of the form

τ ′ −〈σ1, . . . , σn〉→ τ ′′
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where the σi are the types of the identifiers free in the function. (The σi are actually type schemes,
since these identifiers can have polymorphic types.) When the function is closed, we often write
→ instead of −〈 〉→. The set {σ1, . . . , σn} is what I call a closure type: it types the data structure
part of a functional value. The variables dangerous in the function type above are naturally the
variables dangerous in one of the σi. In the last example above, we therefore have:

functional ref : ∀α. α→ (unit−〈α ref〉→ α)× (α−〈α ref〉→ unit)

That’s because the two returned functions contain one free identifier, r, with type α ref. To obtain
read and write, we specialize α to β → β, and this leads to the types:

read : unit−〈(β → β) ref〉→ (β → β)

write : (β → β)−〈(β → β) ref〉→ unit

The variable β is dangerous in the new types for read and write, since it is dangerous in the closure
type (β → β) ref. Hence we cannot generalize over β, and the example is rejected as ill-typed.

Closure typing precisely reflects how a function interleaves parameter passing and internal
computations. For instance, we have:

λ(). ref(λx. x) : unit−〈 〉→ (α→ α) ref

let r = ref(λx. x) in λ(). r : unit−〈(α→ α) ref〉→ (α→ α) ref

In the former case, α is not dangerous, hence can be generalized. This is safe, since the function
returns a fresh reference each time it is called. In the latter case, α is dangerous, and the function
remains monomorphic. Generalizing over α would be unsafe, since the reference r is shared between
all calls to the function.

3.1.3 Structure of closure types

I was asked several times why function types are annotated with sets of type schemes, instead of sets
of dangerous variables: the variables dangerous in the types of the identifiers free in the function.
This would lead to more compact type expressions. This approach raises the following issue: a
function can contain free identifiers with a polymorphic type containing no dangerous variables
(such as α list); with the approach suggested above, we will not keep track of the types of these
identifiers; but later, this polymorphic type can be instantiated to a type containing dangerous
variables (α list becomes β ref list, for instance). Here is an example that demonstrates this
situation:

let K = λx. λy. x in

let f = K(ref(λz.z)) in

f(0) := λx. x + 1;
if f(0)(true) then . . . else . . .

The fonction K is given type ∀α, β. α → (β → α). The two arrow types carry no annotation: it is
true that x is free in λy. x, but the type of x, which is α, contains no dangerous variables. Then, f
has type ∀β, γ. β → (γ → γ) ref. The variable γ is not dangerous in this type, hence it has been
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generalized. However, the remainder of the example causes a run-time type violation. The problem
is that f contains a reference to the identity function; but we have lost track of this reference at
the level of types by passing it through K.

One solution is to annotate function types not only by the variables that are already dangerous
in the type σ of a free identifier, but also by the type variables that can become dangerous by
instantiation. I call these variables the visible variables in type σ. All variables free in σ are not
necessarily visible; for instance, in α → α, the variable α can be substituted by any type without
introducing dangerous variables. The visible variables are, informally, the free variables that occur
somewhere else than in the left or right part of arrow types. In this approach, function types
are therefore adorned by a set of type variables marked either “dangerous” (written α dang), or
“visibles” (written α visi). For instance, in the example above, we obtain the following typings:

functional ref : ∀α. α→ (unit−〈α dang〉→ α)× (α−〈α dang〉→ unit)

K : ∀α, β. α→ (β −〈α visi〉→ α)

The function λy. x possesses a free identifier, x, with type α; hence the variable α is marked visible
in the function type.

The substitution rules over these closure types are unusual. When α becomes τ , the closure
type α dang becomes α1 dang, . . . , αn dang, where the αi are the variables free in τ . The closure
type α visi becomes β1 dang, . . . , βn dang, γ1 visi, . . . γm visi, where the βi are the variables
dangerous in τ , and the γj are the variables visible but not dangerous in τ . For instance, to apply
K to ref(λz. z), we instantiate α to (γ → γ) ref (dangerous variables: γ; visible variables: none).
The type of the result, f, is therefore:

f : ∀β. β −〈γ dang〉→ (γ → γ) ref

The variable γ cannot be generalized, since it is dangerous in this type.

To conclude: by annotating function types by set of variables marked “visible” or “dangerous”,
we correctly keep track of the dangerous objects contained into closures. This results in smaller
closure types, but complicates some operations over closure types — most notably, substitution.
In the following, we shall therefore stick to the initial approach, with closure types annotated by
sets of complete type schemes. This makes formalization easier, and provides a simpler semantic
interpretation for closure types.

3.1.4 Extensibility and polymorphism over closure types

In the informal discussion above, we have annotated function types by sets of type schemes. This
simple approach to closure typing is not completely satisfactory.

First of all, we must provide a notion of extensibility over closure types: an object with type
τ −〈π〉→ τ ′, where π is a set of type schemes, also belongs to the types τ −〈π′〉→ τ ′ for all supersets
π′ of π. This is semantically correct, since the only requirement over π is that it contains at
least the types of the values contained in a closure; the set π can contain more types. Without
this extension mechanism, closure typing would be restrictive to the point of being impractical.
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Consider for instance two function expressions that have the same argument type, the same result
type, but different closure types:

(f where f(x) = . . .) : int−〈α list〉→ int

(g where g(x) = . . .) : int−〈β ref〉→ int

If closure types cannot be extended, then the following phrase must be rejected as ill-typed:

if . . . then (f where f(x) = . . .) else (g where g(x) = . . .).

Clearly, this phrase is type-safe. The type system must accept it, with its natural type:

int−〈α list, β ref〉→ int

If closure types can be extended, then the expected typing is obtained by extending the types of f
and g to int−〈α list, β ref〉→ int. More generally, extensibility of closure types should ensure
that two function types are compatible if and only if they have identical argument types and result
types — just as in the usual ML type system.

Closure typing also requires another feature: closure type variables that can be universally
quantified, just like regular type variables. These are required to support higher-order functions
that take as argument any function with the correct argument type and the correct result type,
whatever its closure type is. For instance, the function

appl where appl(f) = 2 + f(1)

must apply to all values with type int−〈π〉→ int, for all closure types π. Conversely, we must not
loose track of the references contained in the closures passed to higher-order functions. Otherwise,
we could “launder” functions containing references, just by passing them through a higher-order
function. Example:

let BCCI = λf. λx. f(x) in

let f = let r = ref(λz. z) in λy. r
let g = BCCI(f) in

g(1) := (λn. n + 1); . . .

Assume the following naive typing for BCCI:

BCCI : ∀α, β. (α −〈 〉→ β)→ (α−
〈

α−〈 〉→ β
〉

→ β)

Then, we obtain the following typings for f and g:

f : ∀δ. δ −
〈

(γ → γ) ref
〉

→ (γ → γ) ref

g : ∀γ, δ. δ −〈 〉→ (γ → γ) ref

The variable γ is dangerous in the type of f, but not in the type of g. That’s because the closure type
for f does reveal the presence of a reference polymorphic over γ; but this fact has been forgotten in
the type of g. Hence, g(1) is a polymorphic reference. The problem lies within the type for BCCI.
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In this type, the two arrows −〈 〉→ type two closures that have the same components. Hence, when
one of these two closure types is extended, the other should be extended similarly. But this is not
ensured by the extension mechanism.

To solve this problem, we introduce closure type variables, with typical element u, v. These
variables are used to represent unknown closure types: the closure types for functional parameters.
Then, the correct type for BCCI is:

BCCI : ∀α, β, u. (α−〈u〉→ β)→ (α−
〈

α−〈u〉→ β
〉

→ β)

Closure type variables u can be generalized just as regular type variables t. In the type scheme
above, u can be instantiated by any closure type. The application BCCI(f) is therefore well-typed:
u becomes γ list ref, and we get as result type:

g : ∀δ. δ −
〈

δ −〈γ list ref〉→ γ list ref
〉

→ γ list ref

This type correctly keeps track of the reference: γ is dangerous there, hence cannot be generalized.

3.2 A first type system

In this section, we formalize a first type system for references, channels and continuations that
includes the ideas of dangerous variables and closure typing. The main novelty of this system with
respect to what we have described above is the use of closure type variables not only to provide
polymorphism over closure types, but also to make closure types extensible. To this end, all closure
types considered have the form:

π = {σ1, . . . , σn} ∪ u

A closure type is therefore a set of type schemes completed by a closure type variable u. The
variable u is also called an extension variable, since it suffices to instantiate u by a closure type
π′ = {σ′1, . . . , σ

′
m} ∪ u

′ to get
{σ1, . . . , σn, σ

′
1, . . . , σ

′
m} ∪ u

′,

which is an extension of π.

Context. We are actually encoding a notion of subtyping (the extension rule) with parametricity.
This approach has proved successful for the polymorphic typing of extensible records [98, 69, 39,
77, 78, 79, 32]. (What we call “extension variables” are referred to as “row variables” in the records
terminology.) This approach results in type systems that are slightly less expressive than those that
provide separate mechanisms for subtyping and for parametricity [13], but that are considerably
simpler, and easily lend themselves to type inference. The same holds for closure types. The
problems are however much simpler than in the case of extensible records: the contents of a closure
type have much less structure than the contents of a record type (thanks to the set structure and
the absence of labels). 2

In the following, we write π = σ1, . . . , σn, u for the closure type {σ1, . . . , σn} ∪ u. The comma
can be seen as a right-associative binary operator: the operator that adds a type scheme to a
closure type.
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3.2.1 Type expressions

The type variables are divided in two kinds: those ranging over types, written t; and those ranging
over closure types, written u. A variable, written α or β, is either a type variable t or a closure
type variable u.

t ∈ VarTypExp type variable
u ∈ VarTypClos closure type variable

α, β ::= t | u variable

The grammar below defines three sets of types: the set TypExp of types or more precisely
simple types, written τ ; the set TypClos of closure types, written π; and the set SchTyp of
type schemes, written σ.

τ ::= ι base type
| t type variable
| τ1 −〈π〉→ τ2 function type
| τ1 × τ2 product type
| τ ref reference type
| τ chan channel type
| τ cont continuation type

π ::= u extension variable
| σ, π addition of scheme σ to closure type π

σ ::= ∀α1 . . . αn. τ type scheme

The substitutions over this type algebra are finite mappings from type variables to types, and
from closure type variables to closure types.

Substitutions: ϕ,ψ ::= [t 7→ τ, . . . , u 7→ π, . . .]

As described in chapter 1, substitutions naturally extend to homomorphisms of types, closure types,
and type schemes. In particular, we have:

ϕ(τ1 −〈π〉→ τ2) = ϕ(τ1)−〈ϕ(π)〉→ ϕ(τ2)

ϕ(σ, π) = ϕ(σ), ϕ(π)

Type schemes are identified up to a renaming of the variables bound by ∀:

∀α1 . . . αn. τ = ∀β1 . . . βn. [α1 7→ β1, . . . , αn 7→ βn](τ).

Closure types are identified modulo the following two axioms:

σ1, σ2, π = σ2, σ1, π left commutativity
σ, σ, π = σ, π idempotence

That is, from now on, we work in the quotient sets of the sets of type expressions defined above by
those two relations. In the following, what is written τ , σ, π are representatives for elements of the
quotient sets. These axioms reflect the structure of (extensible) set that we impose over closure
types. They establish a one-to-one correspondence between closure types π and pairs (Σ, u) of a
set Σ of schemes and of an extension variable u.
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3.2.2 Free variables, dangerous variables

To each type expression τ , we associate two sets of variables: F(τ), the free variables of τ ; and
D(τ), the dangerous variables of τ . We also define F and D over closure types π and type
schemes σ. Here are their definitions, by structural induction on the type expressions:

F(ι) = Ø D(ι) = Ø
F(t) = {t} D(t) = Ø

F(τ1 −〈π〉→ τ2) = F(τ1) ∪ F(π) ∪ F(τ2) D(τ1 −〈π〉→ τ2) = D(π)
F(τ1 × τ2) = F(τ1) ∪ F(τ2) D(τ1 × τ2) = D(τ1) ∪ D(τ2)
F(τ ref) = F(τ) D(τ ref) = F(τ)
F(τ chan) = F(τ) D(τ chan) = F(τ)
F(τ cont) = F(τ) D(τ cont) = F(τ)

F(u) = {u} D(u) = Ø
F(σ, π) = F(σ) ∪ F(π) D(σ, π) = D(σ) ∪ D(π)

F(∀α1 . . . αn. τ) = F(τ) \ {α1 . . . αn} D(∀α1 . . . αn. τ) = D(τ) \ {α1 . . . αn}

It is easy to check that this definition of F and D is compatible with the axioms over type schemes
and closure types.

The following proposition shows the effect of a substitution over the free variables and the
dangerous variables.

Proposition 3.1 Let ϕ be a substitution. For all types τ , we have:

F(ϕ(τ)) =





⋃

α∈F(τ)

F(ϕ(α))









⋃

α∈D(τ)

F(ϕ(α))



 ⊆ D(ϕ(τ)) ⊆





⋃

α∈D(τ)

F(ϕ(α))



 ∪





⋃

α∈F(τ)

D(ϕ(α))





These results also hold with the type τ replaced by a closure type π or a type scheme σ.

Proof: by simultaneous structural induction over τ , π and σ. 2

3.2.3 Typing rules

We now give the inference rules that define the typing judgement E ⊢ a : τ (“under the assumptions
E, the expression a has type τ”). The environment E is a finite mapping from identifiers to type
schemes. The only rules that differ from those in chapter 1 are the rules for functions and for let.

τ ≤ E(x)

E ⊢ x : τ

As in chapter 1, the instantiation relation ≤ is defined by: τ ≤ σ if and only if σ is ∀α1 . . . αn. τ0,
and there exists a substitution ϕ, whose domain is a subset of {α1 . . . αn}, such that τ is ϕ(τ0).
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E + f 7→ (τ1 −〈E(y1), . . . , E(yn), π〉→ τ2) + x 7→ τ1 ⊢ a : τ2 {y1 . . . yn} = I(f where f(x) = a)

E ⊢ (f where f(x) = a) : τ1 −〈E(y1), . . . , E(yn), π〉→ τ2

The typing rule for functions therefore requires the closure type for the function to contain at least
the types of the free identifiers. (Even if the rule appears to require that these types appear at the
beginning of the closure type, they can actually appear anywhere in the closure type, because of
the commutativity axiom.)

E ⊢ a1 : τ2 −〈π〉→ τ1 E ⊢ a2 : τ2

E ⊢ a1(a2) : τ1

E ⊢ a1 : τ1 E ⊢ a2 : τ2

E ⊢ (a1, a2) : τ1 × τ2

E ⊢ a1 : τ1 E + x 7→ Gen(τ1, E) ⊢ a2 : τ2

E ⊢ let x = a1 in a2 : τ2

The typing rule for let is unchanged; the difference with chapter 1 lies in the definition of the Gen

operator. We now take:

Gen(τ,E) = ∀α1 . . . ∀αn. τ with {α1 . . . αn} = F(τ) \ D(τ) \ F(E).

The difference with the Gen operator used in chapter 1 is that we do not generalize the type variables
that are dangerous in τ .

τ ≤ TypCst(cst)

E ⊢ cst : τ

τ1 −〈π〉→ τ2 ≤ TypOp(op) E ⊢ a : τ1

E ⊢ op(a) : τ2

For the types of the primitives over references, channels and continuations, we keep the natural
types shown in chapter 2, enriched with trivial closure types:

TypOp(ref) = ∀t, u. t−〈u〉→ t ref

TypOp(!) = ∀t, u. t ref−〈u〉→ t

TypOp(:=) = ∀t, u. t ref× t−〈u〉→ unit

TypOp(newchan) = ∀t, u. unit−〈u〉→ t chan

TypOp(?) = ∀t, u. t chan−〈u〉→ t

TypOp(!) = ∀t, u. t chan× t−〈u〉→ unit

TypOp(callcc) = ∀t, u, u′. (t cont−〈u〉→ t)−〈u′〉→ t

TypOp(throw) = ∀t, t′, u. t cont× t−〈u〉→ t′

3.2.4 Properties of the type system

Proposition 3.2 (Typing is stable under substitution) Let a be an expression, τ be a type,
E be a typing environment and ϕ be a substitution. If E ⊢ a : τ , then ϕ(E) ⊢ a : ϕ(τ).
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Proof: by structural induction over a. I give the only case that differs from the proof of proposi-
tion 1.2.

• Case a = (let x = a1 in a2). The typing derivation ends up with:

E ⊢ a1 : τ1 E + x 7→ Gen(τ1, E) ⊢ a2 : τ2

E ⊢ let x = a1 in a2 : τ2

Take σ = ∀α1 . . . ∀αn. τ1 with {α1 . . . αn} = F(τ1) \ D(τ1) \ F(E). Let β1 . . . βn be variables out
of reach for ϕ, not free in E, with βi of the same kind as αi for all i. Define the substitution
ψ = ϕ ◦ [α1 7→ β1 . . . αn 7→ βn].

We apply the induction hypothesis twice: once to the left premise, with the substitution ψ; and
once to the right premise, with the substitution ϕ. We get proofs of:

ψ(E) ⊢ a1 : ψ(τ1) ϕ(E) + x 7→ ϕ(Gen(τ1, E)) ⊢ a2 : ϕ(τ2)

Since the αi are not free in E, we have ψ(E) = ϕ(E). It now remains to show that Gen(ψ(τ1), ψ(E))
equals ϕ(Gen(τ1, E)). Write

V = F(ψ(τ1)) \ D(ψ(τ1)) \ F(ψ(E)).

By construction of ψ and of the βi, we have ψ(αi) = ϕ(βi) = βi. Moreover, for any variable α that
is not one of the αi, none of the βi are free in the type ψ(α) = ϕ(α).

We now fix i. Since αi is free in τ1, βi is free in ψ(τ1) (proposition 3.1, first result). Since αi

is not free in E, βi is not free in ψ(E). Otherwise, we would have βi ∈ F(ψ(α)) for some α that
belongs to F(E), by proposition 3.1; but only αi meets the first requirement, and it is not free in
E. Finally, βi is not dangerous in ψ(τ1). Otherwise, we would have (by proposition 3.1, second
result) either βi ∈ F(ψ(α)) for some α ∈ D(τ1), or βi ∈ D(ψ(α)) for some α ∈ F(τ1). In both
cases, only α = αi fits the bill. Yet αi is not in D(τ1), which excludes the first alternative. And
D(ψ(αi)) = D(βi) = Ø, which excludes the other alternative. We therefore conclude that

{β1 . . . βn} ⊆ V.

We now show the converse inclusion. Let β be a variable free in ψ(τ1), and which is not one of
the βi. Take α ∈ F(τ1) such that β ∈ F(ψ(α)). The variable α cannot be one of the αi, because
otherwise β would be one of the βi. Hence either α is free in E, or α is dangerous in τ1. If α is free
in E, then β is free in ψ(E). If α is dangerous in τ1, then β is dangerous in ψ(τ1). In both cases,
β /∈ V . Hence the converse inclusion.

It follows that

Gen(ψ(τ1), ψ(E)) = ∀β1 . . . βn. ψ(τ1) = ϕ(∀α1 . . . αn. τ1) = ϕ(Gen(τ1, E)),

by definition of substitution over type schemes. And we recall that ψ(E) = ϕ(E), since the αi are
not free in E. The two derivations obtained by induction therefore allow to conclude, by the let

rule:
ϕ(E) ⊢ let x = a1 in a2 : ϕ(τ2).

That’s the expected result. 2
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Proposition 3.3 Let a be an expression, τ be a type, and E, E′ be two typing environments such
that Dom(E) = Dom(E′), and E′(x) ≥ E(x) for all x free in a — that is, all instances of E(x) are
also instances of E′(x) for all x free in a. If E ⊢ a : τ , then E′ ⊢ a : τ .

Proof: same proof as for proposition 1.3. 2

3.3 Type soundness

In this section, we show that the type system presented above is sound with respect to the three
semantics given in chapter 2: the one with references, the one with channels, and the one with
continuations. The three proofs follow the same approach as the soundness proof in chapter 1.
However, for each proof, we have to adapt the semantic typing relations to the new language
objects; then show that it is semantically correct to generalize over a non-dangerous variable;
finally, prove by induction on the evaluation derivation a soundness property that is not quite the
same as the one in chapter 1.

3.3.1 References

To take into account the value sharing (aliasing) introduced by the references, we need a new
semantic tool: the store typings. A store typing, written S, associates a type to each active
memory location.

Store typing: S ::= [ℓ1 7→ τ1, . . . , ℓn 7→ τn]

The goal of store typings is to ensure that all references to a memory location ℓ have the same
monomorphic type S(ℓ) ref, thus preventing any inconsistent use of the address ℓ [21, 92, 93]. The
store typing appears as an extra parameter to the semantic typing relation, which become:

S |= v : τ the value v, considered in a store of type S, belongs to the type τ
S |= v : σ the value v, considered in a store of type S, belongs to the type scheme

σ
S |= e : E the values contained in the evaluation environment e, considered in a

store of type S, belong to the corresponding type schemes in E
|= s : S the store s has type S.

These relations are defined as follows:

• S |= cst : unit if cst is ()

• S |= cst : int if cst is an integer

• S |= cst : bool if cst is true or false

• S |= (v1, v2) : τ1 × τ2 if S |= v1 : τ1 and S |= v2 : τ2

• S |= ℓ : τ ref if ℓ ∈ Dom(S) and τ = S(ℓ)

• S |= (f, x, a, e) : τ1 −〈π〉→ τ2 if there exists a typing environment E such that

S |= e : E and E ⊢ (f where f(x) = a) : τ1 −〈π〉→ τ2
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• S |= v : ∀α1 . . . αn. τ if none of the αi belongs to D(τ), and if S |= v : ϕ(τ) for all substitutions
ϕ whose domain is a subset of {α1 . . . αn}

• S |= e : E if Dom(E) ⊆ Dom(e), and for all x ∈ Dom(E), we have S |= e(x) : E(x)

• |= s : S if Dom(s) = Dom(S), and for all ℓ ∈ Dom(s), we have S |= s(ℓ) : S(ℓ).

Remark. In the case of functional values, we can further assume that Dom(E) is identical to
I(f where f(x) = a). That’s because E ⊢ (f where f(x) = a) : τ1 −〈π〉→ τ2 implies Dom(E) ⊇
I(f where f(x) = a), given the structure of the typing rules. By proposition 3.3, we can therefore
replace E by the restriction of E to the identifiers free in (f where f(x) = a). 2

Context. The introduction of a store typing to parameterize |= follows Tofte’s approach [92,
93]. The main difference with Tofte’s approach is the replacement of Tofte’s quaternary relation
s : S |= v : τ by the conjunction of two simpler relations, S |= v : τ and |= s : S. In other terms,
to check that v belongs to the type τ in the store s under the store typing S, I first show that v
belongs to τ assuming that the values contained in the locations ℓ1, . . . , ℓn reachable from v belong
to the corresponding types S(ℓ1), . . . , S(ℓn). Then, I show that this assumption holds, by checking
that S |= s(ℓ) : S(ℓ) for all locations ℓ.

Tofte’s quaternary relation is more synthetic than my conjunction of relations, but considerably
harder to handle. It is defined exactly like my relation S |= v : τ , except for the case where v is a
location ℓ. In this case, Tofte defines s : S |= ℓ : τ ref if S(ℓ) = τ and s : S |= s(ℓ) : τ . Here lies the
difficulty: the value s(ℓ) can be arbitrarily large, hence the definition of the quaternary predicate is
not well-founded by induction over v. Actually, there are cases where the store can contain cycles,
as in the following example:

let r =
ref(λn. n + 1) in

let fact =
λn. if n = 0 then 1 else n× !r(n− 1) in

r := fact; a

At the time a is evaluated, the location ℓ to which r is bound contains the closure for fact, and
the environment part of this closure contains the same location ℓ.

This leads Tofte to treat the pseudo-inductive definition of the relation s : S |= v : τ as a
fixpoint equation, and take for |= the greatest solution. Tofte shows that the smallest fixpoint does
not work as expected: in the example above, the value of fact does not semantically belong to the
type int→ int if |= is taken to be the smallest fixpoint. The greatest fixpoint turns out to possess
all the required properties. Unfortunately, the usual proof techniques by induction do not apply to
relations defined by greatest fixpoints; all proofs must be carried by co-induction [62, 92, 93].

My soundness proof does not require all these complications: it works perfectly by replacing
the predicate s : S |= v : τ by the conjunction of S |= v : τ and |= s : S. (This conjunction is
stronger than the quaternary predicate: it requires all memory location to contain values of the
expected types, while the condition s : S |= v : τ constraints only those locations reachable from
v.) The definition of S |= v : τ by induction over v is well-founded, since the case where v is a
memory location is a base case. 2
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We say that a store typing S′
extends another store typing S if Dom(S) ⊆ Dom(S′), and

S(ℓ) = S′(ℓ) for all ℓ ∈ Dom(S). This notion captures one aspect of program execution: more
and more memory locations are allocated, but a given location is always considered with the same
type all along. We can therefore build an increasing sequence of store typings (for the extension
ordering) that parallels the evaluation steps. Then, a semantic typing relation such as S |= v : τ
that holds at some point in the evaluation remains true afterwards.

Proposition 3.4 If S′ extends S, then S |= v : τ implies S′ |= v : τ . Similarly, S |= e : E implies
S′ |= e : E.

Proof: easy induction over v. 2

The following proposition is the key lemma for the soundness proof. It shows that the notion
of dangerous variable correctly plays its role: it is semantically correct to generalize variables that
are not dangerous.

Proposition 3.5 Let v be a value, τ be a type and S be a store typing such that S |= v : τ . Let
α1, . . . , αn be type variables such that αi /∈ D(τ) for all i. For all substitutions ϕ whose domain is
included in {α1 . . . αn}, we have S |= v : ϕ(τ). As a consequence, S |= v : ∀α1 . . . αn. τ .

Proof: by structural induction over v.

• Case v = cst. Straightforward, since τ is a closed type.

• Case v = (v1, v2) and τ = τ1 × τ2. Since D(τ1 × τ2) = D(τ1) ∪ D(τ2), we have αi /∈ D(τ1) and
αi /∈ D(τ2) for all i. By induction hypothesis, it follows that S |= v1 : ϕ(τ1) and S |= v2 : ϕ(τ2).
Hence the result.

• Case v = ℓ and τ = τ1 ref. Then, D(τ) = F(τ1). Since none of the αi is dangerous in τ , it
follows that none of the αi is free in τ1. Hence ϕ(τ1) = τ1 = S(ℓ), and the expected result.

• Case v = (f, x, a, e) and τ = τ1 −〈π〉→ τ2. Let E be a typing environment such that:

S |= e : E and E ⊢ (f where f(x) = a) : τ1 −〈π〉→ τ2.

We also assume that Dom(E) = I(f where f(x) = a), as justified by the remark above. We are
going to show that:

S |= e : ϕ(E) and ϕ(E) ⊢ (f where f(x) = a) : ϕ(τ1 −〈π〉→ τ2).

The rightmost property follows from the fact that typing is stable under substitution (proposi-
tion 3.2). Let us show the leftmost property. Let y be an identifier from the domain of E. We must
show S |= e(y) : ϕ(E(y)). Write E(y) as ∀β1 . . . βk. τ

′, with the βi taken out of reach for ϕ, and dis-
tinct from the αi. We therefore have ϕ(E)(y) = ∀β1 . . . βk. ϕ(τ ′). We must show S |= e(y) : ψ(ϕ(τ ′))
for all substitutions ψ whose domain is a subset of {β1, . . . , βk}. Let ψ be such a substitution. By
definition of |= over type schemes, we have |= e(y) : τ ′, and none of the βi are dangerous in τ ′.
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Consider the substitution ψ ◦ϕ. We have Dom(ψ ◦ϕ) ⊆ {α1, . . . , αn, β1, . . . , βk}. None of these
variables are dangerous in τ ′. The βi, by definition of |= over type schemes. The αi, because
D(τ) \ {β1 . . . βk} = D(E(y)) and the αi are not dangerous in E(y). That’s because y is free in
(f where f(x) = a), hence, according to the typing rules for function, E(y) must appear in the
closure type π. Therefore, D(E(y)) ⊆ D(π) = D(τ1 −〈π〉→ τ2). It follows that none of the αi are
dangerous in E(y).

We can therefore apply the induction hypothesis to the value e(y), the type τ ′, the variables
α1, . . . , αn, β1, . . . , βk, and the substitution ψ ◦ ϕ. We get |= e(y) : ψ(ϕ(τ ′)). This holds for all
substitutions ψ over the βi. Moreover, the βi are out of reach for ϕ; hence none of the βi are
dangerous in ϕ(τ ′), since they are not dangerous in τ ′. We conclude that |= e(y) : ∀β1 . . . βk. ϕ(τ ′),
that is, |= e(y) : ϕ(E)(y). This holds for all y. Hence S |= e : ϕ(E), and finally S |= (f, x, a, e) :
ϕ(τ). 2

We are now going to show a strong soundness property for the calculus with references, similar
to proposition 1.6 for the purely applicative calculus.

Proposition 3.6 (Strong soundness for references) Let a be an expression, τ be a type, E be
a typing environment, e be an evaluation environment, s be a store, S be a store typing such that:

E ⊢ a : τ and S |= e : E and |= s : S.

If there exists a result r such that e ⊢ a/s ⇒ r, then r 6= err; instead, r is equal to v/s′ for some
v and some s′, and there exists a store typing S′ such that:

S′ extends S and S′ |= v : τ and |= s′ : S′.

Proof: the proof is an inductive argument on the size of the evaluation derivation. We argue
by case analysis on a, and therefore on the last rule used in the typing derivation. I show all
cases for the sake of honesty; the only new case is the one for let, but it is straightforward once
proposition 3.5 has been established.

• Constants.
τ ≤ TypCst(cst)

E ⊢ cst : τ

The only possible evaluation is e ⊢ cst/s ⇒ cst/s. We check S |= cst : TypCst(cst). We conclude
with S′ = S.

• Variables.
τ ≤ E(x)

E ⊢ x : τ

From hypothesis S |= e : E it follows that x ∈ Dom(e) and S |= e(x) : E(x). The only possible
evaluation is e ⊢ x/s ⇒ e(x)/s. By definition of |= over type schemes, S |= e(x) : E(x) implies
S |= e(x) : τ . This is the expected result, taking S′ = S.
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• Functions.
E + f 7→ (τ1 −〈π〉→ τ2) + x 7→ τ1 ⊢ a : τ2

E ⊢ (f where f(x) = a) : τ1 −〈π〉→ τ2

The only possible evaluation is e ⊢ (f where f(x) = a)/s⇒ (f, x, a, e)/s. We have S |= (f, x, a, e) :
τ1 −〈π〉→ τ2 be definition of |=, taking E for the required typing environment. We conclude with
S′ = S.

• Function application.

E ⊢ a1 : τ2 −〈π〉→ τ1 E ⊢ a2 : τ2

E ⊢ a1(a2) : τ1

There are three evaluation possibilities. The first one leads to r = err because e ⊢ a1 ⇒ r1
and r1 is not (f, x, a0, e0)/s; but this contradicts the induction hypothesis applied to a1, which
says r1 = v1/s1 and |= v1 : τ2 −〈π〉→ τ1, hence v1 is a closure. The second evaluation possibility
concludes r = err from e ⊢ a2 ⇒ err; it similarly contradicts the induction hypothesis applied to
a2. Hence the evaluation derivation must end up with:

e ⊢ a1/s⇒ (f, x, a0, e0)/s1 e ⊢ a2/s1 ⇒ v2/s2 e0 + f 7→ (f, x, a0, e0) + x 7→ v2 ⊢ a0/s2 ⇒ r

e ⊢ a1(a2)/s⇒ r

By induction hypothesis applied to a1, we get a store typing S1 such that:

S1 |= (f, x, a, e) : τ2 −〈π〉→ τ1 and |= s1 : S1 and S1 extends S.

Hence there exists E0 such that S1 |= e0 : E0, and E0 ⊢ (f where f(x) = a0) : τ2 −〈π〉→ τ1. There
is only one typing rule that concludes the latter result; its premise must therefore hold:

E0 + f 7→ (τ2 −〈π〉→ τ1) + x 7→ τ2 ⊢ a0 : τ1.

Applying the induction hypothesis to a2, we get S2 such that

S2 |= v2 : τ2 and |= s2 : S2 and S2 extends S1.

Consider the environments:

e2 = e0 + f 7→ (f, x, a0, e0) + x 7→ v2 E2 = E0 + f 7→ (τ2 −〈π〉→ τ1) + x 7→ τ1

We have shown that S2 |= e2 : E2. Hence we can apply the induction hypothesis to the expression
a0, in the environments e2 and E2, and the store s2 : S2. It follows that r is equal to v/s′, with,
for some S′,

S′ |= v : τ1 and |= s′ : S′ and S′ extends S2.

That’s the expected result, since a fortiori S′ extends S.

• The let binding.
E ⊢ a1 : τ1 E + x 7→ Gen(τ1, E) ⊢ a2 : τ2

E ⊢ let x = a1 in a2 : τ2
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There are two possible evaluations. The first one corresponds to e ⊢ a1 ⇒ err. It contradicts the
induction hypothesis applied to a1. Hence the last step in the evaluation is:

e ⊢ a1/s⇒ v1/s1 e+ x 7→ v1 ⊢ a2/s1 ⇒ r

e ⊢ (let x = a1 in a2)/s⇒ r

By induction hypothesis applied to a1, we get S1 such that:

S1 |= v1 : τ1 and |= s1 : S1 and S1 extends S.

By proposition 3.5, we have S1 |= v1 : Gen(τ1, E). That’s because the Gen operator does not
generalize any dangerous variable in τ1. Writing

e1 = e+ x 7→ v1 E1 = E + x 7→ Gen(τ1, E),

we therefore have S1 |= e1 : E1. Applying the induction hypothesis to a2, e1, E1, s1, S1, it follows
that r is equal to v2/s2, and there exists S2 such that

S2 |= v2 : τ2 and |= s2 : S2 and S2 extends S1.

That’s the expected result.

• Pair construction. Same argument as for application.

• Reference creation.

τ −〈π〉→ τ ref ≤ ∀α, u. α−〈u〉→ α ref E ⊢ a : τ

E ⊢ ref(a) : τ ref

The evaluation must end up with:

e ⊢ a/s⇒ v/s1 ℓ /∈ Dom(s1)

e ⊢ ref(a)/s⇒ ℓ/(s1 + ℓ 7→ v)

(The evaluation that conclude r = err because a evaluates to err contradicts the induction hy-
pothesis.) By induction hypothesis applied to a, we get S1 such that

S1 |= v : τ and |= s1 : S1 and S1 extends S.

Take S′ = S1 + ℓ 7→ τ . Since Dom(s1) = Dom(S1), we have ℓ /∈ Dom(S1), hence S′ extends S1,
and also S. We therefore have S′ |= v : τ , hence |= s1 + ℓ 7→ v : S′ and S′ |= ℓ : τ ref, which is the
expected result.

• Dereferencing.

τ ref−〈π〉→ τ ≤ ∀α, u. α ref−〈u〉→ α E ⊢ a : τ ref

E ⊢ !a : τ
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There are three evaluation possibilities. The first one leads to err because a evaluates to an answer
that is not ℓ/s′. It contradicts the induction hypothesis applied to a. The second possibility ends
up with:

e ⊢ a/s0 ⇒ ℓ/s1 ℓ /∈ Dom(s1)

e ⊢ !a/s0 ⇒ err

By induction hypothesis applied to a, we get S1 such that S1 |= ℓ : τ ref, implying l ∈ Dom(S1),
and such that |= s1 : S1, implying Dom(s1) = Dom(S1). Hence ℓ ∈ Dom(s1), and a contradiction.
Therefore, only the third possibility remains:

e ⊢ a/s0 ⇒ ℓ/s1 ℓ ∈ Dom(s1)

e ⊢ !a/s0 ⇒ s1(ℓ)/s1

By induction hypothesis applied to a, we get S1 such that

S1 |= ℓ : τ ref and |= s1 : S1 and S1 extends S.

As a consequence, S1(ℓ) = τ , hence S1 |= s1(ℓ) : τ , and the expected result follows with S′ = S1.

• Assignment.

τ ref× τ −〈π〉→ unit ≤ ∀α, u. α ref× α−〈u〉→ unit E ⊢ a : τ ref× τ

E ⊢:= (a) : unit

As in the previous case, the evaluation must end up with:

e ⊢ a/s0 ⇒ (ℓ, v)/s1 ℓ ∈ Dom(s1)

e ⊢ :=(a)/s0 ⇒ ()/(s1 + ℓ 7→ v)

By induction hypothesis applied to a, we get S1 such that:

S1 |= (ℓ, v) : τ ref and |= s1 : S1 and S1 extends S.

This implies S1 |= v : τ and S1(ℓ) = τ . Hence |= s1 + ℓ 7→ v : S1, and obviously S1 |= () : unit.
The result follows with S′ = S1. 2

3.3.2 Communication channels

The soundness proof for channels is very close to the one for references.

We introduce the notion of channel typing: a channel typing, written Γ, assigns types to
channel identifiers c.

Channel typing: Γ ::= [c1 7→ τ1, . . . , cn 7→ τn]

We make use of the following semantic typing relations:
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Γ |= v : τ the value v belongs to the type τ
Γ |= v : σ the value v belongs to the type scheme σ
Γ |= e : E the values contained in the evaluation environment e belong to the

corresponding type schemes in E
|= w :? Γ the reception events (c ? v) contained in the event sequent w respect

the channel typing Γ
|= w :! Γ the emission events (c ! v) contained in the event sequent w respect the

channel typing Γ

These relations are defined by:

• Γ |= cst : unit if cst is ()

• Γ |= cst : int if cst is an integer

• Γ |= cst : bool if cst is true or false

• Γ |= (v1, v2) : τ1 × τ2 if Γ |= v1 : τ1 and Γ |= v2 : τ2

• Γ |= c : τ chan if c ∈ Dom(Γ) and τ = Γ(c)

• Γ |= (f, x, a, e) : τ1 −〈π〉→ τ2 if there exists a typing environment E such that:

Γ |= e : E and E ⊢ (f where f(x) = a) : τ1 −〈π〉→ τ2

• Γ |= v : ∀α1 . . . αn. τ if none of the αi belongs to D(τ), and if Γ |= v : ϕ(τ) for all substitutions
ϕ over {α1, . . . , αn}

• Γ |= e : E si Dom(E) ⊆ Dom(e), and for all x ∈ Dom(E), we have Γ |= e(x) : E(x)

• |= w :? Γ if Γ |= v : Γ(c) for all reception event c ? v belonging to the sequence w

• |= w :! Γ if Γ |= v : Γ(c) for all emission event c ! v belonging to the sequence w.

Notice that if w is the concatenation w1 . . . wn, we have |= w :! Γ if and only if |= wi :! Γ for all i.
The same holds if :! is replaced by :? in this property.

As in the case of references, the dangerous variables in a type τ have a simple semantic inter-
pretation: the dangerous variables are those variables that can be free in the type of a channel
identifier reachable from a value of type τ . It follows that it is semantically correct to generalize
over non-dangerous variables.

Proposition 3.7 Let v be a value, τ be a type and Γ be a channel typing such that Γ |= v : τ . Let
α1 . . . αn be type variables such that αi /∈ D(τ) for all i. For all substitutions ϕ over {α1 . . . αn},
we have Γ |= v : ϕ(τ). As a consequence, Γ |= v : ∀α1 . . . αn. τ .

Proof: same proof as for proposition 3.5. 2

Proposition 3.8 (Weak soundness for channels) Let a0 be an expression and τ0 be a type
such that [ ] ⊢ a0 : τ0. Let r0 be a result such that [ ] ⊢ a0 =

ε
⇒ r0. Then, r0 6= err.
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We have considered the evaluation of a complete program here, in order to define a channel
typing Γ global to the whole program evaluation. (Incrementally constructing Γ at each step of the
soundness proof, as we did for S in the proof for reference, does not work well in the presence of
parallel evaluations.) Informally, we are going to construct Γ as follows: for each occurrence of the
newchan rule in the evaluation of a0,

c is unallocated elsewhere in the derivation

e ⊢ newchan(a) =
ε
⇒ c

we take Γ(c) equal to the type τ such that τ chan is the type assigned to the expression newchan(a)
in the typing of a0. This construction is not precise enough, since the same expression newchan(a)
can occur several times in the program a0, with different types.

To make this construction precise enough, we shall take advantage of the fact that the argument
a of newchan(a) is any term with type unit, which is not evaluated. We assume given a countable
family of constants Oi, for all integers i, with type unit:

Cst ::= . . . | O1 | O2 | . . .
TypCst(Oi) = unit

Let a0 be the closed expression in the claim 3.8. We construct an expression a′0 by replacing in a0

all subterms newchan(a) by newchan(Oi), where i is chosen so that Oi appears only once in a0. It
is easy to check that [ ] ⊢ a0 : τ0 implies [ ] ⊢ a′0 : τ0. (That’s because the constants Oi do belong to
the type unit required for the arguments of newchan.) Similarly, [ ] ⊢ a0 =

ε
⇒ r0 implies [ ] ⊢ a0 =

ε
⇒ r′0

for some result r′0 equal to r0 modulo the replacement inside closures of subterms newchan(a) by
newchan(a′). (That’s because the argument a in newchan(a) is never evaluated, and can therefore
be replaced by Oi without changing the structure of the evaluation derivation.) In particular, if we
show that r′0 cannot be err, then it follows that r0 cannot be err.

We have therefore reduced proposition 3.8 to the case where all channel creations appearing in
a0 are of the form newchan(Oi), with, for any i, Oi appearing at most once in a0. In the remainder
of this section, we fix a derivation E of the evaluation [ ] ⊢ a0 =

ε
⇒ r0, and a derivation T of the

typing [ ] ⊢ a0 : τ0.

Given the typing rules, any occurrence of a subterm a of a0 is given one and exactly one type
in the typing derivation T . As a consequence, for all subterms newchan(Oi) of a, the derivation
T contains one and exactly one sub-derivation that concludes Ei ⊢ newchan(Oi) : τi chan, for
some type τi and some environment Ei. We then define Γ as the least defined channel typing
satisfying the following condition. Consider all occurrences of the evaluation rule for newchan in
the derivation E :

c is unallocated elsewhere in E

e ⊢ newchan(Oi) =
ε
⇒ c

For this channel c, we take Γ(c) equals to the type τi such that τi chan is the type assigned to
newchan(Oi) in the typing derivation T . As shown above, this type τi is unique. Moreover, two
occurrences of the evaluation rule for newchan cannot share the same channel identifier c. Hence



3.3. Type soundness 69

the condition above defines a mapping Γ from channel identifiers to term types. Moreover, this
mapping Γ is such that if

E ⊢ newchan(Oi) : τ chan and e ⊢ newchan(Oi) =
ε
⇒ c

are conclusions of sub-derivations of T and E respectively, then τ = Γ(c).

The strong soundness claim that we are now going to prove by induction is more complex than
the one for references: the conclusions describe not only the value to which an expression evaluates,
but also the values emitted over channels during evaluation; symmetrically, the assumptions revolve
not only about the evaluation environment, but also about the values received on channels during
evaluation.

Proposition 3.9 (Strong soundness for channels) Let e ⊢ a =
w
=⇒ r be the conclusion of a sub-

derivation of E, and E ⊢ a : τ be the conclusion of a sub-derivation of T , for the same expression
a. Assume Γ |= e : E.

1. If |= w :? Γ, then r 6= err. Instead, r is a value v, such that Γ |= v : τ . Moreover, |= w :! Γ.

2. If w = w′.c ! v.w′′ and |= w′ :? Γ, then Γ |= v : Γ(c).

The property (2) expresses the fact that if the evaluation of a reaches the point where it emits
a value over a channel, then this value correctly belongs to the type associated with the channel —
even if the evaluation of a causes a run-time violation later, in which case the final result is err and
(1) does not hold. The property (2) is crucial to show the soundness of the parallel composition.

Proof: the proof is by induction over the size of the evaluation sub-derivation. We argue by case
analysis on a, hence on the last rule used in the typing sub-derivation. For the sequential constructs,
(1) is proved as in the proof of proposition 3.6; hence I only show the proof of (2). I give the full
proofs for the parallelism and communication constructs.

• Constants, variables, or functions. (1) is omitted. (2) is obviously true, since w can only
be ε.

• Function application. (1) is omitted. For (2), we consider all evaluation possibilities for
a1(a2), and all decompositions of the event sequence w′.c ! v.w′′ into one, two or three sequences.
We always write w′

1, w
′
2, w

′
3 for event sequences that are well-typed for reception events: that is,

we know that |= w′
i :? Γ as a consequence of the hypothesis |= w′ :? Γ. We write w′′

1 , w′′
2 , w′′

3 for
event sequences for which we do not know anything.

e ⊢ a1 =
w′

1
.c!v.w′′

1======⇒ (f, x, a0, e0) e ⊢ a2 =
w′′

2=⇒ v2 e0 + f 7→ (f, x, a0, e0) + x 7→ v2 ⊢ a0 =
w′′

3=⇒ r0

e ⊢ a1(a2) =
w′

1
.c!v.w′′

1
.w′′

2
.w′′

3==========⇒ r0

e ⊢ a1 =
w′

1=⇒ (f, x, a0, e0) e ⊢ a2 =
w′

2
.c!v.w′′

2======⇒ v2 e0 + f 7→ (f, x, a0, e0) + x 7→ v2 ⊢ a0 =
w′′

3=⇒ r0

e ⊢ a1(a2) =
w′

1
.w′

2
.c!v.w′′

2
.w′′

3==========⇒ r0
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e ⊢ a1 =
w′

1=⇒ (f, x, a0, e0) e ⊢ a2 =
w′

2=⇒ v2 e0 + f 7→ (f, x, a0, e0) + x 7→ v2 ⊢ a0 =
w′

3
.c!v.w′′

3======⇒ r0

e ⊢ a1(a2) =
w′

1
.w′

2
.w′

3
.c!v.w′′

3==========⇒ r0

e ⊢ a1 =
w′.c!v.w′′

=====⇒ r1 r1 does not match (f, x, a0, e0)

e ⊢ a1(a2) =
w′.c!v.w′′

=====⇒ err

e ⊢ a1 =
w′

1
.c!v.w′′

1======⇒ (f, x, a0, e0) e ⊢ a2 =
w′′

2=⇒ err

e ⊢ a1(a2) =
w′

1
.c!v.w′′

1
.w′′

2========⇒ err

e ⊢ a1 =
w′

1=⇒ (f, x, a0, e0) e ⊢ a2 =
w′

2
.c!v.w′′

2======⇒ err

e ⊢ a1(a2) =
w′

1
.w′

2
.c!v.w′′

2========⇒ err

In all cases, we have a sub-evaluation e ⊢ ai =
w′

k
.c!v.w′′

k======⇒ ri, for some i and k, to which we can apply
the induction hypothesis (2). It follows that Γ |= v : Γ(c), which is the expected result.

• The let binding. (1) follows from proposition 3.7. (2) is obvious once we have enumerated all
evaluation possibilities, as in the case of function application.

• Pair construction. (1) is omitted. (2) follows from the enumeration of all evaluation possibil-
ities.

• Channel creation. We first show (1).

unit−〈π〉→ τ chan ≤ ∀α, u. unit−〈u〉→ α chan E ⊢ Oi : unit

E ⊢ newchan(Oi) : τ chan

The only possible evaluation is e ⊢ newchan(Oi) =
ε
⇒ c, for some channel c. By construction of Γ

from the derivations D et T , we have Γ(c) = τ . Hence (1).

(2) is obvious, since w = ε.

• Reception over a channel.

τ chan−〈π〉→ τ ≤ ∀α, u. α chan−〈u〉→ α E ⊢ a : τ chan

E ⊢ a? : τ

We first show (1). There are two possible evaluations. The first one ends up with:

e ⊢ a1 =
w
=⇒ r r does not match c

e ⊢ a1? =
w
=⇒ err
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It contradicts induction hypothesis (1) applied to a, since if e ⊢ a1 =
w
=⇒ r, then Γ |= r : τ chan.

Hence the evaluation derivation can only end up with:

e ⊢ a1 =
w
=⇒ c

e ⊢ a1? =
w.(c?v)
====⇒ v

Since |= w.(c ? v) :? Γ by hypothesis, we have Γ |= v : Γ(c). And since Γ |= c : τ chan, we have
τ = Γ(c). Hence Γ |= v : τ . The second result, |= w.(c ? v) :! Γ, immediately follows from |= w :! Γ,
as obtained by induction hypothesis (1) applied to a1.

Property (2) comes by examination of the two evaluation possibilities.

• Emission over a channel.

τ chan× τ −〈π〉→ unit ≤ ∀α, u. α chan× α−〈u〉→ unit E ⊢ a : τ chan× τ

E ⊢ !(a) : unit

We first show (1). The first evaluation possibility ends up with:

e ⊢ a =
w
=⇒ r r does not match (c, v)

e ⊢ !(a) =
w
=⇒ err

It contradicts induction hypothesis (1) applied to a, which impliesΓ |= r : τ chan × τ . Hence the
evaluation derivation ends up with:

e ⊢ a =
w′

=⇒ (c, v)

e ⊢ !(a) =
w′.(c!v)
====⇒ unit

We have Γ |= () : unit. By (1) applied to a, we have Γ |= (c, v) : τ chan× τ and |= w′ :! Γ. Hence
Γ(c) = τ and Γ |= v : τ . It follows that |= w′.(c ! v) :! Γ. Hence (1) for !a.

We now show (2). If the evaluation ends up with

e ⊢ a =
w
=⇒ r r does not match (c, v)

e ⊢ !(a) =
w
=⇒ err

then property (2) follows from induction hypothesis (2) applied to a. If the evaluation ends up
with:

e ⊢ a =
w
=⇒ (c, v)

e ⊢ !(a) =
w.(c!v)
====⇒ unit

we have to consider two cases, depending on how w.(c ! v) is decomposed into w′.(c′ ! v′).w′′. Either
w′′ 6= ε, and then Γ |= v′ : Γ(c′) follows by induction hypothesis (2) applied to the evaluation of a.
Or, w′′ = ε and w′ = w and c′ = c and v′ = v, in which case we do have Γ |= v : Γ(c), as shown in
the proof of (1).
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• Non-deterministic choice. (1) and (2) obviously follow from the induction hypothesis.

• Parallel composition.

E ⊢ a1 : τ1 E ⊢ a2 : τ2

E ⊢ a1 ‖ a2 : τ1 × τ2

We first show (1). The three possible evaluations have the form:

e ⊢ a1 =
w1=⇒ r1 e ⊢ a2 =

w2=⇒ r2 ⊢ w1 ‖ w2 ⇒ w

e ⊢ a1 ‖ a2 =
w
=⇒ r

We need to check that |= w1 :? Γ and |= w2 :? Γ to apply the induction hypothesis to the evaluations
of a1 and a2. This is not obvious, since w1 and w2 can contain internal events, that do not appear
in w. For instance, we can have:

w = ε w1 = c ! true. ε w2 = c ? true. ε

and it is not apparent that Γ(c) can only be equal to bool. Actually, this is true, but we need
to invoke property (2): a well-typed program would never send true over a channel that is not a
bool chan. We formalize this argument in the sub-proposition 3.10 below.

Sub-proposition 3.10 Let w′, w′
1, w

′
2 be left prefixes of w,w1, w2 respectively. If ⊢ w′

1 ‖ w
′
2 ⇒ w′,

then |= w′
1 :? Γ and |= w′

2 :? Γ.

Proof: for sub-proposition 3.10. The proof is by induction over the derivation of ⊢ w′
1 ‖ w

′
2 ⇒ w′.

The base case ⊢ ε ‖ ε⇒ ε is obvious. For the next two cases:

⊢ w′
1 ‖ w

′
2 ⇒ w′

⊢ w′
1.evt ‖ w

′
2 ⇒ w′.evt

⊢ w′
1 ‖ w

′
2 ⇒ w′

⊢ w′
1 ‖ w

′
2.evt⇒ w′.evt

we know by hypothesis that |= w′.evt :? Γ, hence if evt is a reception event, it is well-typed. Since
⊢ w′

1 :? Γ by induction hypothesis, we conclude that ⊢ w′
1.evt :? Γ, and similarly for w′

2.

It remains the following two cases:

⊢ w′
1 ‖ w

′
2 ⇒ w′

⊢ w′
1.(c ? v) ‖ w′

2.(c ! v)⇒ w′

and the symmetrical case obtained by exchanging ! and ? above. The sequences w′
1 et w′

2 are left
prefixes of w1 and w2, respectively. Applying the induction hypothesis for sub-proposition 3.10, we
get |= w′

1 :? Γ and |= w′
2 :? Γ. We apply the induction hypothesis (2) for proposition 3.9 to the

evaluation e ⊢ a2 =
w2=⇒ r2 with the decomposition w2 = w′

2.(c ! v).w′′
2 . We get Γ |= v : Γ(c). Hence

|= w′
1.(c ? v) :? Γ. The other result, |= w′

2.(c ! v) :? Γ obviously follows from |= w′
2 :? Γ. 2
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We now conclude the proof of proposition 3.9. By sub-proposition 3.10, we have |= w1 :? Γ and
|= w2 :? Γ. We can therefore apply the induction hypothesis (1) to a1 and a2. We get

r1 6= err and Γ |= r1 : τ1 and |= w1 :? Γ

r2 6= err and Γ |= r2 : τ2 and |= w2 :? Γ

The last step in the evaluation is therefore:

e ⊢ a1 =
w1=⇒ v1 e ⊢ a2 =

w2=⇒ v2 ⊢ w1 ‖ w2 ⇒ w

e ⊢ a1 ‖ a2 =
w
=⇒ (v1, v2)

We immediately have Γ |= (v1, v2) : τ1× τ2. Similarly, |= w :! Γ, since all emission events appearing
in w appear in w1 or in w2. Hence property (1) for a.

Concerning property (2), if w is decomposed as w′.c ! v.w′′ with |= w′ :? Γ, then the event c ! v
must appear in w1 or in w2. Assume that it appears in w1. Then, w1 is equal to w′

1.c ! v.w′′
1 , with

|= w′
1 :? Γ by sub-proposition 3.10. Hence, Γ |= v : Γ(c) by induction hypothesis (2) applied to a1.

2

3.3.3 Continuations

In the case of continuations, the semantic typing relations are very close to those in section 1.4. In
particular, no extra argument is required to account for sharing, as in the case of references and
channels. We just have to add a relation, |= k :: τ , for the semantic typing of continuation objects.

|= v : τ the value v belongs to the type τ
|= v : σ the value v belongs to the type scheme σ
|= e : E the values contained in the evaluation environment e belong to the

corresponding type schemes in E
|= k :: τ the continuation k accepts all values belonging to type τ

These relations are defined by structural induction on the value part, as follows:

• |= cst : unit if cst is ()

• |= cst : int if cst is an integer

• |= cst : bool if cst is true or false

• |= (v1, v2) : τ1 × τ2 if |= v1 : τ1 and |= v2 : τ2

• |= k : τ cont if |= k :: τ

• |= (f, x, a, e) : τ1 −〈π〉→ τ2 if there exists a typing environment E such that:

|= e : E and E ⊢ (f where f(x) = a) : τ1 −〈π〉→ τ2

• |= v : ∀α1 . . . αn. τ if none of the variables αi belong to D(τ), and if |= v : ϕ(τ) for all
substitutions ϕ over {α1, . . . , αn}
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• |= e : E if Dom(E) ⊆ Dom(e), and for all x ∈ Dom(E), we have |= e(x) : E(x)

• |= stop :: τ for all types τ

• |= app1c(a, e, k) :: τ1 −〈π〉→ τ2 if there exists a typing environment E such that

E ⊢ a : τ1 and |= e : E and |= k :: τ2

• |= app2c(f, x, a, e, k) :: τ if there exists a typing environment E, a type τ ′ and a closure type
π such that

E ⊢ (f where f(x) = a) : τ −〈π〉→ τ ′ and |= e : E and |= k :: τ ′

• |= letc(x, a, e, k) :: τ if there exists a typing environment E and a type τ ′ such that

E + x 7→ Gen(τ,E) ⊢ a : τ ′ and |= e : E and |= k :: τ ′

• |= pair1c(a, e, k) :: τ if there exists a typing environment E and a type τ ′ such that

E ⊢ a : τ ′ and |= e : E and |= k :: τ × τ ′

• |= pair2c(v, k) :: τ if there exists a type τ ′ such that

|= v : τ ′ and |= k :: τ ′ × τ

• |= primc(callcc, k) :: τ cont−〈π〉→ τ if |= k :: τ , for all π

• |= primc(throw, k) :: τ cont× τ for all τ .

Context. A simpler definition for |= k :: τ would be “k has type τ if, for all values v belonging to
the type τ , the continuation k applied to v does not evaluate to err”. More formally, we would
take |= k :: τ if for all values v such that |= v : τ and for all results r such that ⊢ v ⊲ k ⇒ r, we
have r 6= err. That’s the approach taken by Duba, Harper and MacQueen [25]. This definition,
although nicer than the definition given above, is unfortunately not well-founded by induction over
v, since it quantifies over an arbitrary complex value with type τ . This is not a problem in the
setting of Duba, Harper and MacQueen, since they define |= over functional values with the usual
continuity condition (see section 1.4.1, first context), hence their definition of |= is well-founded by
induction on the type component. But I have to use Tofte’s condition (“there exists E such that
E ⊢ (f where f(x) = a) : τ1−〈π〉→ τ2 and . . . ”), and this condition leads to a definition of |= that
is not well-founded by induction over the type, since E can generally be more complex than the
function type τ1 −〈π〉→ τ2.

1 Hence the definition of |= k :: τ by structural induction over k and
frequent appeal to the typing predicate given above. 2

1In the type system of the present chapter, it turns out that the definition of |= using Tofte’s condition is also
well-founded by induction over the type, thanks to closure typing: the relevant parts of E, that is E(y) for all y free
in (f where f(x) = a), necessarily appear in the closure type π, hence are subterms of the function type τ1 −〈π〉→ τ2.
However, this property does not hold anymore in the systems in chapters 4 and 6; that’s why I don’t rely on it here.
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Remark. On this definition of the semantic typing predicate, the difficulty with polymorphic
continuations is clearly apparent. The predicate |= k :: τ is not stable by substitutions of type
variables inside τ : in the case for letc, from the hypothesis E + x 7→ Gen(τ,E) ⊢ a : τ ′, we cannot
deduce in general ϕ(E) + x 7→ Gen(ϕ(τ), ϕ(E)) ⊢ a : ϕ(τ ′).

Example. We have

|= letc(x, x(x), [ ], stop) : t−〈u〉→ t

since x(x) is well-typed under the assumption x : ∀t, u. t−〈u〉→ t, but we don’t have

|= letc(x, x(x), [ ], stop) : int−〈u〉→ int,

since the self-application is ill-typed under the assumption x : ∀u. int−〈u〉→ int. 2

That’s why it is not semantically correct to generalize over any type variables, unlike in the
purely applicative calculus (proposition 1.5). 2

The semantic interpretation of the dangerous variables is as follows: the variables dangerous
in the type τ of a value v are those variables that can be free in the type of a continuation object
reachable from v. As a consequence, it is semantically correct to generalize over non-dangerous
variables.

Proposition 3.11 Let v be a value and τ be a type such that |= v : τ . Let α1 . . . αn be type variables
such that αi /∈ D(τ) for all i. For all substitutions ϕ over {α1 . . . αn}, we have |= v : ϕ(τ). As a
consequence, |= v : ∀α1 . . . αn. τ .

Proof: the proof is a structural induction over v, essentially identical to the proof of proposition 3.5.
The only difference is the base case where v is a continuation k.

• Case v = k. Then, τ is equal to τ1 cont. Since D(τ) = F(τ1), it follows that none of the αi is
free in τ . Hence ϕ(τ) = τ , and the expected result. 2

Proposition 3.12 (Weak soundness for continuations)

1. Let a be an expression, τ be a type, e be an evaluation environment, E be a typing environment,
k be a continuation and r be a result such that

E ⊢ a : τ and |= e : E and |= k :: τ and e ⊢ a; k ⇒ r.

Then r 6= err.

2. Let v be a value, k be a continuation, τ be a type and r be a result such that

|= v : τ and |= k :: τ and ⊢ v ⊲ k ⇒ r.

Then r 6= err.



76 Chapter 3. Dangerous variables and closure typing

Context. I will not give a strong soundness result (“a program with type int evaluates to an
integer”) for the calculus with continuations. It is still an open issue to prove the strong soundness
of a type system with respect to a continuation semantics [25]. (See [101] for a proof of strong
soundness with respect to a rewriting semantics.) Don’t worry: strong soundness is not required
to prove weak soundness for the calculus with continuations. Now that we have made explicit the
current continuation at each evaluation step, we can directly prove the weak soundness result by
induction over the evaluation.

Proving just the weak soundness of Milner’s type system with respect to a continuation seman-
tics is a premiere by itself. As Milner himself writes [60]:

When I was working on the original soundness proof of ML typing, wrt a denotational
semantics (using ideals), I tried to get the proof to work using a continuation semantics,
having worked it out for a direct semantics. The amusing thing was that the proof didn’t
work. The annoying part is that I can’t find the notes. But the memory I have of it is
that it was a real crunch point, and that anyone who cares to try to adapt the original
proof to a continuation semantics will run into the same difficulty.

I ascribe the difficulty mentioned by Milner to the semantic typing of functional values. Since he
used denotational semantics, he was certainly using the classical continuity condition (f : τ1 → τ2 if
for all values v : τ1 and for all continuations k :: τ2, we have f(v)(k) 6= wrong), which has no reasons
to be stable under type instantiation. In contrast, since I have used an operational framework, I
can use Tofte’s condition (section 1.4.1, first context), that is stable under instantiation. 2

Proof: we prove (1) and (2) at the same time by induction over the size of the evaluation derivations
(of e ⊢ a; k ⇒ r and of ⊢ v ⊲k ⇒ r respectively). We argue by case analysis over a for (1), and over
k for (2).

• (1), constants.
τ ≤ TypCst(cst)

E ⊢ cst : τ

The only valid evaluation is:
⊢ cst ⊲ k ⇒ r

e ⊢ cst; k ⇒ r

We have |= cst : τ , given the definition of TypCst. Since |= k :: τ , applying induction hypothesis
(2) to the evaluation ⊢ cst ⊲ k ⇒ r, we get r 6= err.

• (1), variables.
τ ≤ E(x)

E ⊢ x : τ

From hypothesis |= e : E it follows that x ∈ Dom(e) and |= e(x) : E(x). The only valid evaluation
is therefore:

x ∈ Dom(e) ⊢ e(x) ⊲ k ⇒ r

e ⊢ cst; k ⇒ r
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Since |= e(x) : E(x), we have |= e(x) : τ , hence r 6= err by (2) and hypothesis |= k :: τ .

• (1), functions.

E + f 7→ (τ1 −〈π〉→ τ2) + x 7→ τ1 ⊢ a : τ2

E ⊢ (f where f(x) = a) : τ1 −〈π〉→ τ2

There is only one valid evaluation:

⊢ (f, x, a, e) ⊲ k ⇒ r

e ⊢ (f where f(x) = a); k ⇒ r

We have |= (f, x, a, e) : τ1−〈π〉→τ2 by definition of |= (taking E for the required typing environment).
Since |= k :: τ1 −〈π〉→ τ2, it follows r 6= err by (2).

• (1), function applications.

E ⊢ a1 : τ2 −〈π〉→ τ1 E ⊢ a2 : τ2

E ⊢ a1(a2) : τ1

The last evaluation step can only be:

e ⊢ a1; app1c(a2, e, k)⇒ r

e ⊢ a1(a2); k ⇒ r

We have |= app1c(a2, e, k) :: τ2 −〈π〉→ τ1 by definition of |= over app1c continuations, taking E for
the required typing environment. Applying the induction hypothesis (1) to the premise of the last
evaluation step, it follows r 6= err.

• (1), let bindings.

E ⊢ a1 : τ1 E + x 7→ Gen(τ1, E) ⊢ a2 : τ2

E ⊢ let x = a1 in a2 : τ2

The last evaluation step can only be:

e ⊢ a1; letc(x, a2, e, k)⇒ r

e ⊢ (let x = a1 in a2); k ⇒ r

We have |= letc(x, a2, e, k) :: τ1 by definition of |= over letc continuations, taking E for the
required typing environment, and τ2 for the required type. The result r 6= err follows from
induction hypothesis (1).

• (1), pair construction. Same reasoning as for applications.
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• (1), callcc primitive.

(τ cont−〈π′〉→ τ)−〈π〉→ τ ≤ ∀t, u, v. (t cont−〈u〉→ t)−〈v〉→ t E ⊢ a : τ cont−〈π′〉→ τ

E ⊢ callcc(a) : τ

The last evaluation step is:
e ⊢ a; primc(callcc, k)⇒ r

e ⊢ callcc(a); k ⇒ r

We have |= primc(callcc, k) : τ cont−〈π′〉→ τ , since |= k :: τ . Hence r 6= err by (1).

• (1), throw primitive. Same reasoning as for callcc.

• (2), stop continuations. The only valid evaluation is ⊢ v ⊲ stop⇒ v, hence r equals v, hence
r is not err.

• (2), app1c continuations. We have k = app1c(a1, e1, k1). By hypothesis |= k :: τ , the type τ
is equal to τ1 −〈π〉→ τ2, with

E1 ⊢ a1 : τ1 and |= e1 : E1 and |= k1 :: τ2

for some environment E. By hypothesis |= v : τ , the value v is a closure (f, x, a, e), and there exists
a typing environment E such that

|= e : E (3) and E ⊢ (f where f(x) = a) : τ1 −〈π〉→ τ2 (4).

This excludes the first evaluation possibility: the one that concludes r = err because v is not a
closure. Hence the last evaluation step can only be:

e1 ⊢ a1; app2c(f, x, a, e, k)⇒ r

⊢ (f, x, a, e) ⊲ app1c(a1, e1, k1)⇒ r

From (3) and (4), we get |= app2c(f, x, a, e, k) :: τ1 by definition of |= over appc2 continuations.
Applying the induction hypothesis (1) to the evaluation of e1 ⊢ a1; app2c(f, x, a, e, k) ⇒ r, it follows
that r 6= err, as expected.

• (2), app2c continuations. We have k = app2c(f, x, a, e, k). By hypothesis |= k :: τ , we have

E ⊢ (f where f(x) = a) : τ −〈π〉→ τ ′ (3) and |= e : E (4) and |= k :: τ ′ (5)

for some environment E and some types τ ′ and π. The last step in the evaluation can only be

e+ f 7→ (f, x, a, e) + x 7→ v2 ⊢ a; k ⇒ r

⊢ v2 ⊲ app2c(f, x, a, e, k)⇒ r

Consider the environments

e1 = e+ f 7→ (f, x, a, e) + x 7→ v and E1 = e+ f 7→ (τ −〈π〉→ τ ′) + x 7→ τ.
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By (3) and (4), we have |= (f, x, a, e) : τ −〈π〉→ τ ′. Combined with hypothesis |= v : τ and with (4),
this fact implies |= e1 : E1. Moreover, there is only one typing rule that concludes (3); hence its
premise must hold: E1 ⊢ a : τ ′. We can therefore apply induction hypothesis (1) to the evaluation
e1 ⊢ a; k ⇒ r. We get the expected result: r 6= err.

• (2), letc continuations. The continuation k is equal to letc(x, a, e, k′). By hypothesis
|= k :: τ , we have

E + x 7→ Gen(τ,E) ⊢ a : τ ′ and |= e : E and |= k′ :: τ ′

for some typing environment E and some type τ ′. The last evaluation step must be:

e+ x 7→ v ⊢ a; k′ ⇒ r

⊢ v ⊲ letc(x, a, e, k′)⇒ r

By hypothesis, we have |= v : τ . Since Gen does not generalize variables that are dangerous in τ , it
follows that |= v : Gen(τ,E) by proposition 3.11. Hence:

|= (e+ x 7→ v) : (E + x 7→ Gen(τ,E)).

We can therefore apply the induction hypothesis (1) to the evaluation e + x 7→ v ⊢ a; k′ ⇒ r. We
get r 6= err, which is the expected result

• (2), pair1c continuations. Similar to the case for app1c.

• (2), pair2c continuations. Straightforward.

• (2), primc(callcc, k′) continuations. By hypothesis |= k :: τ , we have τ equal to τ ′ cont−〈π〉→
τ ′, and |= k′ :: τ ′. By hypothesis |= v : τ , we therefore have, for some E,

v = (f, x, a, e) and |= e : E (3) and E ⊢ (f where f(x) = a) : τ ′ cont−〈π〉→ τ ′ (4)

There are two evaluation possibilities. The first one leads to r = err because v is not a closure; it
contradicts the hypothesis |= v : τ . The other one ends up with:

e+ f 7→ (f, x, a, e) + x 7→ k ⊢ a; k ⇒ r

⊢ (f, x, a, e) ⊲ primc(callcc, k)⇒ r

From (3) and from the hypothesis over v and k, it follows that

|= (e+ f 7→ (f, x, a, e) + x 7→ k) : (E + f 7→ (τ ′ cont−〈π〉→ τ ′) + x 7→ τ ′ cont).

From (4) and from the typing rule for functions, we get

E + f 7→ (τ ′ cont−〈π〉→ τ ′) + x 7→ τ ′ ⊢ a : τ ′.

Hence we can apply the induction hypothesis (1) to the evaluatione + f 7→ (f, x, a, e) + x 7→ k ⊢
a; k ⇒ r. We get, as expected, r 6= err.
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• (2), primc(throw, k1) continuations. Since |= k :: τ , we have τ = τ ′ cont×τ ′. The hypothesis
|= v : τ therefore implies

v = (k′, v′) and |= k′ :: τ ′ and |= v′ : τ ′.

This rules out the first evaluation possibility: the one that concludes r = err because v does not
match (k′, v′). It remains the second possibility:

⊢ v′ ⊲ k′ ⇒ r

⊢ (k′, v′) ⊲ primc(throw, k1)⇒ r

We apply the induction hypothesis (2) to the evaluation ⊢ v′ ⊲ k′ ⇒ r. We get r 6= err. This
concludes the proof. 2

3.4 Type inference

In this section, we show that any well-typed expression possesses a principal type, and we give a
type inference algorithm — an adaptation of the Damas-Milner algorithm — that computes this
principal type.

3.4.1 Unification issues

The type system of the present chapter does not naturally lend itself to type inference. That’s
because the type algebra does not enjoy the principal unifier property, as a consequence of the
commutativity and idempotence axioms over closure types.

Example. Consider the types:

τ1 = t−〈int, bool, u〉→ t τ2 = t−〈int, char, v〉→ t

Here are two unifiers of τ1 and τ2:

ϕ1 = [u 7→ char, w; v 7→ bool, w]

ϕ2 = [u 7→ char, int, w; v 7→ bool, w]

We do have, by idempotence and left commutativity:

ϕ2(int, bool, u) = int, bool, char, int, w = int, bool, char, w = ϕ2(int, char, v).

Yet ϕ1 and ϕ2 are incompatible: there are no substitutions θ such that ϕ1 = θ ◦ϕ2 or ϕ2 = θ ◦ϕ1.
2

Example. Consider the types:

τ1 = t−〈t ref, u〉→ t τ2 = t−〈int ref, v〉→ t.

The two substitutions below are unifiers of τ1 and τ2:

ϕ1 = [u 7→ int ref, w; v 7→ t ref, w] ϕ2 = [t 7→ int; u 7→ w; v 7→ w].
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We have

ϕ1(t ref, u) = t ref, int ref, t ref, v = t ref, int ref, v = ϕ1(int ref, u)

by idempotence and commutativity. Yet the two substitutions ϕ1 and ϕ2 are incompatible. 2

In the first example above, the two unifiers both map τ1 and τ2 to t −〈int, bool, char, w〉→
t, which is, intuitively, the most general common instance of the two types. The only way to
distinguish ϕ1 from ϕ2 is to apply these substitutions to closure types ending with u; in addition,
these closure types must not contain int. In particular, ϕ1 and ϕ2 are indistinguishable if, among
the closure types considered, the only ones that end with u are always equal to int, bool, u.

It turns out that this hypothesis always holds in a principal typing: two closure types ending in
the same expansion variable are always equal. Here is an intuitive explanation for this phenomenon.
Closure types are always created with fresh, different expansion variables. The sole operation that
leads to share an expansion variable between two closure types is the identification of two function
types τ1 −〈π〉→ τ2 and τ ′1 −〈π

′〉→ τ ′2. But this operation completely identifies π and π′: they will
now share the same expansion variable, but this variable will follow the same set of type schemes
in both closure types.

I shall use the adjective “homogeneous” to refer to this situation where two different closure
types never share the same expansion variable. (In the remainder of this section, we shall define
more precisely this homogeneity property.) We are now going to consider only unification problems
between two homogeneous types, whose solutions will be only applied to types that are homogeneous
with the two initial types.

3.4.2 Homogeneous types

A classification, written K, is a finite mapping from extension variables (the closure type vari-
ables) to sets of type schemes. We now define what it means for a type, a type scheme or a closure
type to be homogeneous with K, or K-homogeneous. This homogeneity relation is written :: K.
First of all, a closure type σ1, . . . , σn, u is homogeneous with K if K assigns the set {σ1, . . . , σn} to
the extension variable u. Moreover, the σi themselves must be K-homogeneous.

{σ1 . . . σn} = K(u) σ1 :: K . . . σn :: K

σ1, . . . , σn, u :: K

A type is K-homogeneous if all closure types contained in it are K-homogeneous.

ι :: K t :: K
τ1 :: K τ2 :: K

τ1 × τ2 :: K

τ1 :: K π :: K τ2 :: K

τ1 −〈π〉→ τ2 :: K

τ :: K

τ ref :: K

τ :: K

τ chan :: K

τ :: K

τ cont :: K
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Finally, a type scheme is K-homogeneous if there exists an extension K ′ of K to the expansion vari-
ables universally quantified in the scheme such that the type inside the scheme is K ′-homogeneous.

{u1 . . . um} = {α1, . . . , αn} ∩ VarTypClos τ :: K + u1 7→ Σ1 + · · ·+ um 7→ Σm

(∀α1 . . . αn. τ) :: K

We immediately extend the relation :: K to typing environments by taking E :: K if and only if
E(x) :: K for all x ∈ Dom(E).

Remark. If τ :: K, then the domain of K contains all the expansion variables free in τ . This
property also holds if the type τ is replaced by a type scheme or a closure type. 2

Let ϕ be a substitution. We say that ϕ is homogeneous from K to K ′, and we write
ϕ :: K ⇒ K ′, if for all types τ such that τ :: K, we have ϕ(τ) :: K ′.

Remark. If ϕ :: K ⇒ K ′ and ϕ′ :: K ′ ⇒ K ′′, we immediately have ϕ′ ◦ ϕ :: K ⇒ K ′′. 2

3.4.3 Unification

In this section, we give a unification algorithm between K-homogeneous types, and we show that
it computes a principal unifier of these types. In the following, we write Q for a set of equations
between simple types (τ1 = τ2) and between closure types (π1 = π2). Hence Q never contains
meaningless equations such as τ = π. (We therefore work in a two-sorted algebra: one sort is the
simple types, the other is the closure types.)

Algorithm 3.1 Let K be a classification. Let Q be a set of equations between simple types and
closure types, such that all types appearing in Q are K-homogeneous. We define a substitution
mgu(Q) by:

If Q = Ø:
mgu(Q) = [ ]

If Q = {π = π′} ∪Q′:
write π = σ1, . . . , σn, u and π′ = σ′1, . . . , σ

′
m, u

′

if u = u′, then mgu(Q) = mgu(Q′)
if u ∈ F(π′) ou u′ ∈ F(π), then mgu(Q) is not defined
else take mgu(Q) = mgu(ϕ(Q′)) ◦ ϕ
with ϕ = [u 7→ (σ′1, . . . , σ

′
m, u), u

′ 7→ (σ1, . . . , σn, u)]
If Q = {t1 = t2} ∪Q

′ and t1 = t2:
mgu(Q) = mgu(Q′)

If Q = {t = τ} ∪Q′ or Q = {τ = t} ∪Q′:
if t ∈ F(τ) then mgu(Q) is undefined
else mgu(Q) = mgu(ϕ(Q′)) ◦ ϕ with ϕ = [t 7→ τ ]

If Q = {ι1 = ι2} ∪Q
′ and ι1 = ι2:

mgu(Q) = mgu(Q′)
If Q = {τ1 −〈π〉→ τ2 = τ ′1 −〈π

′〉→ τ ′2} ∪Q
′:

mgu(Q) = mgu({τ1 = τ ′1, π = π′, τ2 = τ ′2} ∪Q
′)
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If Q = {τ1 × τ2 = τ ′1 × τ
′
2} ∪Q

′:
mgu(Q) = mgu({τ1 = τ ′1, τ2 = τ ′2} ∪Q

′)
If Q = {τ ref = τ ′ ref} ∪Q′

or Q = {τ chan = τ ′ chan} ∪Q′

or Q = {τ cont = τ ′ cont} ∪Q′:
mgu(Q) = mgu({τ = τ ′} ∪Q′)

In all other cases, the substitution mgu(Q) is undefined.

Remark. The algorithm always terminates, since at each step the sum of the height of the types
in Q strictly decreases (the height being defined as h(t) = 1, h(τ1 × τ2) = 1 + max(h(τ1), h(τ2)),
and so on). 2

Remark. The substitution mgu(Q) does not introduce new variables with respect to Q: any vari-
able that is not free in Q is out of reach for mgu(Q). 2

Proposition 3.13 Let Q be a set of K-homogeneous equations. If µ = mgu(Q) is defined, then µ
is a unifier of Q, moreover there exists a classification K ′ such that µ :: K ⇒ K ′.

Proof: by step induction on the algorithm. Except the case π = π′, all cases are similar to those
in the proof of Robinson’s algorithm [85]. Classification handling is trivial in these cases: since no
extension variables are instantiated, mgu is recursively applied to sets of equations that are also
K-homogeneous, and we can take for K ′ the K ′ obtained by the induction hypothesis. Therefore,
I detail only the new case.

• Case Q = {π = π′} ∪ Q′. Write π = σ1, . . . , σn, u et π′ = σ′1, . . . , σ
′
m, u

′. By K-homogeneity
hypothesis, we have {σ1, . . . , σn} = K(u) and {σ′1, . . . , σ

′
m} = K(u′).

If u = u′, we therefore have {σ1, . . . , σn} = {σ′1, . . . , σ
′
m}, hence π = π′ by application of

the commutativity and idempotence axioms. Since mgu(Q′) is a unifier of Q′, as the induction
hypothesis shows, mgu(Q′) is also a unifier of Q.

If u 6= u′, the algorithm guarantees that u /∈ F(π′) and u′ /∈ F(π). The substitution ϕ defined
in the algorithm is therefore such that:

ϕ(π) = ϕ(σ1), . . . , ϕ(σn), ϕ(u)

= ϕ(σ1), . . . , ϕ(σn), σ′1, . . . , σ
′
m, u

= σ1, . . . , σn, σ
′
1, . . . , σ

′
m, u

That’s because ϕ(σi) = σi for all i, since neither u nor u′ are free in σi. If u′ was free in σi,
this would contradict the hypothesis u′ /∈ F(π). If u was free in σi, this would contradict the
K-homogeneity hypothesis: u can only appear in σi following the same schemes σ1, . . . , σn, which
is impossible since π has finite size. By symmetry, we also have

ϕ(π′) = σ′1, . . . , σ
′
m, σ1, . . . , σn, u.

The substitution ϕ is therefore a unifier of π and π′. Define

K1 = ϕ(K) + u 7→ {σ1, . . . , σn, σ
′
1, . . . , σ

′
m}.
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We have ϕ :: K ⇒ K1. That’s because, for all closure types π, one of the following three
cases hold. Either π ends with u, and then π = σ1, . . . , σn, u by K-homogeneity, hence ϕ(π) =
σ1, . . . , σn, σ

′
1, . . . , σ

′
m, u is K1-homogeneous. Or π ends with u′, and then π = σ′1, . . . , σ

′
m, u

′, and
we conclude as in the previous case. Or π ends with an expansion variable v that is neither u nor
u′. Hence K1(v) = ϕ(K(v)), and ϕ(π) :: ϕ(K) implies ϕ(π) :: K1.

It follows that ϕ(Q′) is K1-homogeneous. The induction hypothesis proves that mgu(ϕ(Q′))
is a unifier of ϕ(Q′), and that there exists K ′ tel que mgu(ϕ(Q′)) :: K1 ⇒ K ′. It follows that
mgu(ϕ(Q′)) ◦ ϕ is a unifier of Q, and mgu(ϕ(Q′)) ◦ ϕ :: K ⇒ K ′. This is the expected result. 2

We are now going to show that mgu(Q) is a principal unifier of Q when we consider only K-
homogeneous types. To formalize this idea, we say that two substitutions ϕ1 and ϕ2 are K-equal,

and we write ϕ1
K
= ϕ2, if ϕ1(τ) = ϕ2(τ) for all types τ that are K-homogeneous, and similarly for

all type schemes σ and all closure types π instead of τ .

Proposition 3.14 Let Q be a set of K-homogeneous equations. If there exists a substitution ψ that

is a unifier of Q, then µ = mgu(Q) is defined, and there exists a substitution θ such that ψ
K
= θ ◦ µ.

Proof: we proceed by induction over the sum of the sizes of the types in Q. Except the case
π = π′, all cases are proved as for Robinson’s algorithm.

• Case Q = {π = π′} ∪ Q′. Write π = σ1, . . . , σn, u et π′ = σ′1, . . . , σ
′
m, u

′. If u = u′, we have
π = π′ by K-homogeneity, and the result immediately follows from the induction hypothesis. Hence
we now assume u 6= u′. First of all, we have u /∈ F(π′). Otherwise, by K-homogeneity, the whole
closure type π would appear as a strict subterm of π′; then, ψ(π) is a strict subterm of ψ(π′), which
contradicts ψ(π) = ψ(π′). Symmetrically, we also have u′ /∈ F(π). Consider the substitution ϕ
built by the algorithm:

ϕ = [u 7→ (σ′1, . . . , σ
′
m, u), u

′ 7→ (σ1, . . . , σn, u)]

We now show that ψ
K
= ψ ◦ ϕ. Let π1 :: K be a closure type. We show ψ(π1) = ψ(ϕ(π1)) by

induction over π1. If π1 ends with u, then π1 = π. But then,

ψ(ϕ(π)) = ψ(σ′1, . . . , σ
′
m, σ1, . . . , σn, u) = ψ(σ′1), . . . , ψ(σ′m), ψ(π) = ψ(π).

That’s because the closure type ψ(π) contains at least ψ(σ′1), . . . , ψ(σ′m), since ψ(π) = ψ(π′). If
π1 ends up with u′, then π1 = π′, and we similarly have ψ(ϕ(π′)) = ψ(π′). In all other cases,
π1 ends with an expansion variable v that is neither u nor u′. Hence, ϕ(v) = v. Moreover, by
induction hypothesis, the schemes that appear before v, being K-homogeneous, are mapped to the
same scheme by ψ and by ψ ◦ ϕ. Hence ψ(π1) = ψ(ϕ(π1)) for all π1 :: K.

Moreover, since ψ
K
= ψ ◦ϕ, the substitution ψ is a unifier of ϕ(Q′), and ϕ :: K → K1, where the

classification K1 is defined as in the proof of proposition 3.13. Hence, ϕ(Q′) isK1-homogeneous. Ap-

plying the induction hypothesis, it follows that mgu(ϕ(Q′)) is defined, and that ψ
K1= θ ◦mgu(ϕ(Q′))

for some substitution θ. We conclude that mgu(Q) = mgu(ϕ(Q′)) ◦ ϕ is well-defined, and

ψ
K
= ψ ◦ ϕ

K
= ψ ◦ mgu(ϕ(Q′)) ◦ ϕ = θ ◦ mgu(Q).

This is the expected result. 2
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3.4.4 The type inference algorithm

Now that we have defined a satisfactory notion of principal unifier, it is easy to adapt the Damas-
Milner algorithm to type inference in the presence of closure types. The algorithm takes as input
an expression a, a typing environment E and an infinite set of “fresh” variables V . It returns a
type τ (the most general type for a), a substitution ϕ (representing the instantiations that have
been performed in E), and a subset V ′ of V (the “fresh” variables that have not been used).

We write Inst(σ, V ) for a trivial instance of the type scheme σ. That is, writing σ = ∀α1 . . . αn. τ ,
we choose n variables β1 . . . βn in V , with βi of the same sort as αi for all i, and we take

Inst(σ, V ) = ([α1 7→ β1, . . . , α1 7→ β1](τ), V \ {β1 . . . βn}).

Inst(σ, V ) is defined up to a renaming of the variables in V into variables in V .

Algorithm 3.2 Infer(E, a, V ) is the triple (τ, ϕ, V ′) defined by:

If a est x and x ∈ Dom(E):
(τ, V ′) = Inst(E(x), V ) and ϕ = [ ]

If a est cst:
(τ, V ′) = Inst(TypCst(cst), V ) and ϕ = [ ]

If a est (f where f(x) = a1):
let t and t′be two type variables and u an extension variable, taken from V
let {x1, . . . , xn} be the free identifiers of (f where f(x) = a1)
let π = E(x1), . . . , E(xn), u
let (τ1, ϕ1, V1) = Infer(a1, E + f 7→ (t−〈π〉→ t′) + x 7→ t, V \ {t, t′, u})
let µ = mgu(ϕ1(t

′), τ1)
then τ = µ(ϕ1(t−〈π〉→ t′)) and ϕ = µ ◦ ϕ1 and V ′ = V1

If a est a1(a2):
let (τ1, ϕ1, V1) = Infer(a1, E, V )
let (τ2, ϕ2, V2) = Infer(a2, ϕ1(E), V1)
let t ∈ V2 be a type variable and u ∈ V2 be an extension variable
let µ = mgu(ϕ2(τ1), τ2 −〈u〉→ t)
then τ = µ(t) and ϕ = µ ◦ ϕ2 ◦ ϕ1 and V ′ = V2 \ {t, u}

If a est let x = a1 in a2:
let (τ1, ϕ1, V1) = Infer(a1, E, V )
let (τ2, ϕ2, V2) = Infer(a2, ϕ1(E) + x 7→ Gen(τ1, ϕ1(E)), V1)
then τ = τ2 and ϕ = ϕ2 ◦ ϕ1 and V = V2

If a est (a1, a2):
let (τ1, ϕ1, V1) = Infer(a1, E, V )
let (τ2, ϕ2, V2) = Infer(a2, ϕ1(E), V1)
then τ = τ1 × τ2 and ϕ = ϕ2 ◦ ϕ1 and V ′ = V2

If a est op(a1):
let (τ1, ϕ1, V1) = Infer(a1, E, V )
let (τ2, V2) = Inst(TypOp(op), V1)
let t ∈ V2 be a type variable and u ∈ V2 be an extension variable
let µ = mgu(τ1 −〈u〉→ t, τ2)
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then τ = µ(t) and ϕ = µ ◦ ϕ1 and V ′ = V2 \ {t, u}

We take that Infer(a,E, V ) is undefined if, at some point, no case applies; in particular, if
we try to unify two types that are not unifiable. Infer(a,E, V ) is defined up to a renaming of
variables from V into variables from V .

Proposition 3.15 (Correctness of type inference) Let a be an expression, E be a typing en-
vironment and V be an infinite set of type variables. If (τ, ϕ, V ′) = Infer(a,E, V ) is defined, then
we can derive ϕ(E) ⊢ a : τ .

Proof: the proof follows exactly that for proposition 1.8, and relies essentially on the stability of
the typing judgement under substitution (proposition 3.2). 2

Proposition 3.16 (Completeness of type inference) Let K be a classification, a be an ex-
pression, E :: K be a typing environment, and V a set of variables containing infinitely many type
variables and infinitely many closure type variables, and such that V ∩F(E) = Ø. If there exists a
type τ ′ and a substitution ϕ′ such that ϕ′(E) ⊢ a : τ ′, then (τ, ϕ, V ′) = Infer(a,E, V ) is defined,
and there exists a substitution ψ such that

τ ′ = ψ(τ) and ϕ′ K
= ψ ◦ ϕ outside V.

(That is, ϕ′(τ) = ψ(ϕ(τ)) for all types τ :: K such that F(τ) ∩ V = Ø.)

Proof: first, notice that if (τ, ϕ, V ′) = Infer(a,E, V ) is defined, then there exists K ′ such that
τ :: K ′ and ϕ :: K ⇒ K ′. Moreover, V ′ ⊆ V , and the variables in V ′ are not free in τ and are out of
reach for ϕ. This can easily be shown by step induction over the algorithm, using proposition 3.13
and the fact that the unifier mgu(τ1, τ2) does not introduce new variables. As a consequence of
these remarks, ϕ(E) :: K ′ and V ′ ∩ F(ϕ(E)) = Ø.

The proof of the proposition is an inductive argument on the derivation of ϕ′(E) ⊢ a : τ ′, and
by case analysis over a. The proof proceeds exactly as that of proposition 1.9, with some additional
classification handling. I detail one case, to illustrate the use of the K-homogeneity hypothesis.

• Case a = a1(a2). The initial derivation ends up with

ϕ′(E) ⊢ a1 : τ ′′ −〈π′〉→ τ ′ ϕ′(E) ⊢ a2 : τ ′′

ϕ′(E) ⊢ a1(a2) : τ ′

We apply the induction hypothesis to a1, E :: K, V , τ ′′ −〈u′〉→ τ ′ and ϕ′. It follows that

(τ1, ϕ1, V1) = Infer(a1, E, V ) and τ ′′ −〈π′〉→ τ ′ = ψ1(τ1) and ϕ′ K
= ψ1 ◦ ϕ1 outside V and

τ1 :: K1 and ϕ1 :: K ⇒ K1.

In particular, ϕ′(E) = ψ1(ϕ1(E)) and ϕ1(E) :: K1. We apply the induction hypothesis to a2,
ϕ1(E) :: K1, V1, τ and ψ1. We have F(ϕ1(E)) ∩ V1 = Ø as required, by the remark at the
beginning of the proof. It follows that:

(τ2, ϕ2, V2) = Infer(a2, ϕ1(E), V1) and τ ′′ = ψ2(τ2) and ψ1
K1= ψ2 ◦ ϕ2 outside V1 and
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τ2 :: K2 and ϕ2 :: K1 ⇒ K2.

We have F(τ1) ∩ V1 = Ø, hence ψ1(τ1) = ψ2(ϕ2(τ1)). Take

ψ3 = ψ2 + t 7→ τ ′ + u 7→ π′ K3 = K2 + u 7→ Σ′ avec (Σ′, u′) = π′.

The variables t and u, taken from V2, are out of reach for ψ2, hence ψ3 extends ψ2. Similarly, we
can assume u /∈ Dom(K2), hence K3 extends K2. It follows that:

ψ3(ϕ2(τ1)) = ψ2(ϕ2(τ1)) = ψ1(τ1) = τ ′′ → τ ′

ψ3(τ2 → α) = ψ2(τ2)→ τ ′′ = τ ′′ → τ ′

The substitution ϕ3 is therefore a unifier of ϕ2(τ1) and τ2−〈u〉→t. Moreover, these two types are K3-
homogeneous. The principal unifier of these two types, µ, therefore exists, and Infer(a1(a2), E, V )
is well-defined. Moreover, we have µ :: K3 ⇒ K4 and ψ3 = ψ4 ◦ µ for some substitution ψ4 and
some classification K4. We now show that ψ = ψ4 and K ′ = K4 give the expected result. With
the same notations as in the algorithm, we have:

ψ(τ) = ψ4(µ(α)))) = ψ3(α) = τ ′.

Moreover, for all τ :: K such that F(τ) ∩ V = Ø (hence a fortiori F(τ) ∩ V1 = Ø, β /∈ V2, β 6= α):

ψ(ϕ(τ)) = ψ4(µ(ϕ2(ϕ1(τ)))) by definition of ϕ
= ψ3(ϕ2(ϕ1(τ))) by definition of ψ4

= ψ2(ϕ2(ϕ1(τ))) because t /∈ F(τ) and t is out of reach for ϕ1 and for ϕ2

= ψ1(ϕ1(τ)) because ϕ1(τ) :: K1 and F(τ) ∩ V1 = Ø
= ϕ′(τ) because τ :: K and F(τ) ∩ V = Ø.

Finally, we immediately have ϕ :: K ⇒ K4. This concludes the proof of the expected result. 2
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Chapter 4

Refined closure typing

In the present chapter, we introduce and study a variant of the type system presented in chapter 3,
which relies on the same concepts of dangerous variables and closure typing, but which performs
closure typing more finely. Closure typing as implemented by the system in chapter 3, turns out
to be too weak in some cases, as we shall now illustrate; the goal of this second type system is to
palliate these weaknesses.

4.1 Non-conservativity of the first type system

The type system proposed in chapter 3, though ensuring type safety at run-time, is not entierly
satisfactory. The problem is that this system rejects as ill-typed some purely applicative programs
(that is, programs that do not use any reference, channel, or continuation) that are well-typed
in ML. I name “conservativity” this property that a type system for some algorithmic extensions
of ML accepts all programs that are well-typed in the purely applicative core ML language. The
conservativity property is strong evidence that the proposed type system is a proper extension of
the ML one.

The non-conservativity of the type system in chapter 3 does not come from the restriction of
generalization to non-dangerous variables: no variable is dangerous in a purely applicative program.
The problem lies within closure typing: even in a purely applicative program, closure typing leads
to function types that are richer, hence possibly more selective, on the one hand, and on the other
hand that may contain more free variables, which can prevent the generalization of some variables
in other types.

4.1.1 Recursive closure types

Closure typing leads to assign different types to functions that have the same type in ML. For
instance, two functions from integers to integers can have the two different types int−〈σ1, u〉→ int

and int −〈σ2, v〉→ int, while in ML they have the same type int → int. Most often, this causes
no trouble: we can identify most closure types by proper instantiation of their extension variable.
In the previous example, if u and v do not occur in σ1 nor in σ2, we can identify the two types

89



90 Chapter 4. Refined closure typing

by replacing u by σ2, w and v by σ1, w. Unfortunately, identification is not always possible when
the extension variables of the closure types also occur inside the closure types, in one of the type
schemes. For instance, there is no common instance for the two types

τ1 −〈u〉→ τ2 and τ1 −〈τ1 −〈u〉→ τ2, v〉→ τ2.

However, if f has type the leftmost type, then the rightmost type is the type of the eta-expansed
form of f, that is λx. f(x). Hence, since these types are incompatible, this means that the following
phrase is ill-typed:

λf. if . . . then f else λx. f(x).

It is perfectly correct, however — and well-typed in ML.

We can circumvent this problem by allowing recursive closure types: closure types of the form
µu. π, standing for the possibly infinite type solution of π = u. In the eta-expansion example, the
two previously incompatible types now have the common instance

τ1 −〈µu. τ1 −〈u〉→ τ2, v〉→ τ2,

obtained by substituting u by µu. τ1 −〈u〉→ τ2, v in the rightmost type, and by the equivalent form
τ1 −〈µu. τ1 −〈u〉→ τ2, v〉→ τ2, v in the leftmost type. This common instance represents the following
infinite type:

τ1 −〈τ1 −〈τ1 −〈τ1 −〈. . . , v〉→ τ2, v〉→ τ2, v〉→ τ2, v〉→ τ2.

More generally, we can show that, with recursive closure types, any two closure types always admit
a common instance. Hence, two functions have compatible types if and only if the types of their
arguments are compatible, as well as the types of their results, just as in the case of the ML type
system. (In the remainder of this chapter, we shall give a different presentation of closure types,
that does not make use of infinite type such as µu. π. This alternate presentation also enjoys the
property that any two closure types always possess a common instance.)

4.1.2 Variable capture in closure types

Even if we arrange that any two closure types are always compatible, there remains “pure” ML
programs that are no longer well-typed when performing closure typing. There is indeed another
reason why closure typing can lead to typings less general than in ML: some type variables can
occur free in a function type with closure type, while they are not free in the corresponding ML
type. For instance, t is free in int−〈t list, u〉→ int, while it is not free in int→ int. If the type
int−〈t list, u〉→ int belongs to the current typing environment, this means that the variable t is
not generalizable, while it would be generalizable in the ML type system. Here is an example that
demonstrates this phenomenon:

λf. let id = λy. either(f)(λz.y; z); y in id(id)

where the either function is defined as:

let either = λx. λy. if . . . then x else y
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and is intended to force its two arguments to have the same type. Let us try to typecheck this
phrase, under the hypothesis y : t1. The function λz. y; z has type t2 −〈t1, u〉→ t2. This type is
also the type of f, because of the constraint imposed by either. The left-hand part of the let,
λy . . ., has a type of the form t1 −〈π

′〉→ t1. At the time we generalize this latter type, the typing
environment is

f : t2 −〈t1, u〉→ t2.

The variable t1 is free in this environment, and therefore not generalizable in t1 −〈π
′〉→ t1. As

a consequence, id remains monomorphic, and the self-application id(id) is ill-typed. The same
phrase is well-typed in ML, since, without closure typing, t1 does not occur in the type of f.

This phenomenon of variable capture through the closure types is considerably harder to elim-
inate than the incompatibility phenomenon between closure types. A first approach for avoiding
it is to ignore, when computing the free variables of a function type τ1 −〈π〉→ τ2, all variables
that are free in π, but not in τ1 nor in τ2. An alternate approach is, when assigning the type
τ1−〈π〉→ τ2 to a function (f where f(x) = a), to avoid recording in π the type of an identifier free
in (f where f(x) = a) if this type does not have any free variable in common with the argument
type τ1 or the result type τ2.

It might seem that we are loosing track of some polymorphic references hidden inside closures
by doing so. For instance, in a functional value of type α−〈β ref, u〉→ α, there is a reference with
type β ref. With the two approaches for avoiding variable capture proposed above, we are going
to ignore the fact that β is dangerous in that type, and hence allow the generalization of β, thus
assigning a polymorphic type to a reference. Is that unsafe? No, it is not, because we cannot access
this reference. Given its type, the function cannot store (parts of) its argument inside this reference,
since the argument has type α while the reference contents have type β. The function cannot either
return the reference in its result since the result has type α while the reference has type β ref.
Finally, the function cannot store the reference in another reference, this one reachable, because
this reference should have type β ref ref and be reachable from the environment, hence β would
have been considered dangerous at generalization-time.

The idea behind this reasoning is as follows: if we can type an expression under the hypothesis
x : α and y : β (two distinct type variables), then, during the evaluation of the expression, no
communication can take place between the values of x and y. This intuition is the basis of some
adaptations of the Damas-Milner algorithm to the static inference of sharing properties [5]. I don’t
know any precise formulation of this result (how can we characterize communication?), let alone
any proof.

4.1.3 Importance of conservativity

The conservativity property is highly desirable. The ML type system is generally considered as
satisfactory for a purely applicative language. It is therefore preferable not to be more restrictive
than the ML type system. Also, it is intellectually comforting to see that the typing mechanisms
added to control the imperative extensions do not interfere when we do not use these extensions.
From this standpoint, the type system presented in chapter 3 is not satisfactory.

From a more pragmatic standpoint, it should be noticed that the non-conservativity of this
system shows up only on artificial, complicated examples. In particular, I haven’t yet encountered
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a realistic program that demonstrate a variable capture through closure types. To support this
claim, I have equipped Caml Light [49], my ML compiler, with the type system described in
chapter 3, and I have fed it about ten thousand lines of ML source code; the variable capture
phenomenon did not show up. I therefore claim that the system in chapter 3 is conservative for
most, if not all, practical purposes.

This kind of claim does not, however, possess the mathematical rigor that is expected from
a doctorate dissertation in Fundamental Computer Science from university Paris 7. My tests are
obviously not exhaustive; I have considered only relatively simple programs, leaving aside a number
of idioms using higher-order functions intensively, such as those that appear in programs extracted
from proofs [24], or in clever encodings of weird data structures [23].

I therefore spent a lot of time looking for a type system featuring dangerous variables and
closure types that enjoys the conservativity property. The remainder of this chapter presents the
result of this research. To achieve conservativity and avoid the capture phenomenon, a fine control
over generalization is required — much finer than in the system in chapter 3. Therefore I had to
abandon the fairly classical presentation of the ML type system followed in chapters 1 and 3, and
to adopt a rather unusual graph-based presentation.

4.2 The indirect type system

4.2.1 Presentation

The type system in the present chapter differs from the system in chapter 3 in two points: the
representation of closure types and the representation of polymorphic types.

4.2.1.1 Labels and constraints instead of closure types

The starting point for this system is to add an extra indirection level in the association function
type/closure type. Instead of directly annotating function types by the extensible sets of type
schemes that represent the closure types, we simply annotate function types τ1 → τ2 by a single
variable, called a label, and written u. Function types therefore has the form τ1−〈u〉→τ2. Outside
the type expressions, in a separate environment, we associate to each label u a set of type schemes:
the types of the values possibly contained in the closures labeled u. This separate environment is
presented as a set of constraints σ1 ⊳ u1, . . . , σn ⊳ un. The constraint σ ⊳ u reads “any closure
labeled u can contain a value of type σ”.

We are therefore going to manipulate pairs (τ, C) of a type expression τ , whose function types
are annotated by labels, and of a set of constraints C defining the contents of the labels. We shall
write τ / C for these pairs, and call them constrained types. A constrained type plays roughly
the same role as a type expression in the system in chapter 3: the constrained type

τ1 −〈u〉→ τ2 / C

corresponds, in the type algebra of chapter 3, to the direct type

τ1 −〈σ1, . . . , σn, u〉→ τ2
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where σ1 . . . σn are the type schemes associated with u in C (that is, those type schemes σ such
that the constraint σ ⊳ u appears in C).

This indirect representation for types turns out to be more powerful than the direct represen-
tation in several ways. First of all, closure types can naturally be recursive: in a constraint σ ⊳ u,
the label u can appear again in σ. For instance, the constrained type

τ1 −〈v〉→ τ2 / τ1 −〈v〉→ τ2 ⊳ v

represents the infinite type that was required in the eta-expansion example,

τ1 −〈τ1 −〈τ1 −〈. . . , v〉→ τ2, v〉→ τ2, v〉→ τ2.

Also, this representation syntactically ensures that the closure types are always homogeneous, in
the sense of section 3.4.2. This simplifies the proofs of the type inference algorithms: there is no
need to manipulate sorts anymore.

Context. This representation was suggested to me by Didier Rmy, at the beginning of 1990. It
seems to be inspired by the treatment of subtyping hypothesis in type inference systems with
subtypes [65, 28]. Since its publication in [52], this indirect representation of type has been applied
to the type inference problem for effect systems [90, 100]. 2

4.2.1.2 Generic types instead of type schemes

Second difference between the system presented below and the one previously seen: type schemes are
now represented by marking specially the variables that are to be generalized, instead of universally
quantifying them. We therefore partition the variables in two classes, the generic variables (written
with a g subscript), and the non-generic variables (written with a n subscript). Type schemes are
represented by generic types, still written σ: types that can contain generic variables. Simple types
are represented by non-generic types, still written τ : types whose variables are all non-generic.
The instantiation operation consists in substitution the generic variables of a generic type by non-
generic types, resulting in a non-generic type. The generalization operation consists in renaming
non-generic variables into generic variables.

Example. The simple type α×int, in the old notation, becomes the non-generic type τ = αn×int.
The schema ∀β. α× β becomes the generic type σ = αn × βg. It is true that τ is an instance of σ,
by substitution of βg by int. 2

Context. This representation is used (with minor differences) in some implementations of the
Damas-Milner algorithm [11]. It makes it possible to have a common representation for types and
for schemes, and to determine locally whether a variable is generic or not. In his thesis [78, chapter
3], Didier Rmy reformulates the ML typing in terms of generic/non-generic types, and show the
equivalence of this formulation with the classical formulation in terms of simple types/type schemes.

2

The strength of this representation for schemes is that the generic variables have global, un-
limited scope, while universally quantified variables are generic only in the scope of the ∀. This
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limited scope of quantification is problematic when closure types are represented indirectly. On the
one hand, it matters that the constraints describing the contents of the labels be shared between
all types. This requires a typing judgement of the form (E ⊢ a : τ) /C, where the constraints in C
apply both to the type τ and to the type schemes contained in E. On the other hand, some con-
straints must be considered as being parts of one of the schemes in E, and therefore must contain
generalized variables. But these constraint fall out of the scope of the universal quantifiers that
could appear in E.

The use of generic variables solves this difficulty: a given generic variable can appear both in
a generic type in E and in the current constraint set C; when we take an instance of this generic
type, we substitution the generic variable by a non-generic type both in the generic type and in
the constraint set C.

Context. It is possible to combine universal quantification with indirect types, by considering type
schemes of the form ∀α1 . . . αn. (τ / C), where C is a local set of constraints over the universally
quantified variables, that is added to the global constraint set when taking an instance of the schema.
That’s the approach taken in a first version of the work presented here [52]. However, these local
constraints raise technical difficulties when we try to avoid the variable capture phenomenon. 2

4.2.2 The type algebra

4.2.2.1 Type variables

We assume given four infinite sets of type variables:

tn ∈ VarTypExpNongen non-generic type variable
tg ∈ VarTypExpGen generic type variable
un ∈ EtiqNongen non-generic labels
ug ∈ EtiqGen generic labels

We name the pairwise unions of these sets of variables as follows:

t ∈ VarTypExp = VarTypExpNongen∪ VarTypExpGen
type variables, generic or not

u ∈ Etiq = EtiqNongen∪ EtiqGen
labels, generic or not

αn ∈ VarTypNongen = VarTypExpNongen∪ EtiqNongen
non-generic variables (type variables or labels)

αg ∈ VarTypGen = VarTypExpGen∪ EtiqGen
generic variables (type variables or labels)
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4.2.2.2 Type expressions

The set TypGen of generic types (written σ) is defined by the following grammar.

σ ::= ι base type
| t type variable (generic or not)
| σ1 −〈u〉→ σ2 labeled function type
| σ1 × σ2 product type
| σ ref reference type
| σ chan channel type
| σ cont continuation type

The set TypNongen of non-generic types (written τ) is the subset of the generic types that do
not contain any generic type variable. This subset is described by the following grammar.

τ ::= ι base type
| tn non-generic variable
| τ1 −〈un〉→ τ2 labeled function type
| τ1 × τ2 product type
| τ ref reference type
| τ chan channel type
| τ cont continuation type

The constraints are pairs of a generic type and a label (generic or not). They are written σ ⊳ u
(read: “σ is in u”). Sets of constraint are written C.

C ::= {σ1 ⊳ u1, . . . , σn ⊳ un} constraint sets

4.2.2.3 Substitutions

The substitutions over this type algebra are finite mappings of type variables to types, and of labels
to labels:

Substitutions: ϕ,ψ ::= [t 7→ σ, . . . , u 7→ u′, . . .]

We will often need to precise the domain or the range of a substitution. To this end, we write
ϕ : V ⇒ T to express that ϕ is a substitution whose domain is included in the set of variables V ,
and whose codomain is included in the set of types and labels T . Similarly, we write ϕ : V ⇔ V ′ to
express that ϕ is a renaming of all variables in V into variables in V ′. A renaming is an injective
substitution whose codomain contains only variables. Any renaming ϕ : V ⇔ V ′ has an inverse,
written ϕ−1.
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A substitution ϕ naturally extends to a morphism ϕ of types and labels, in the following way:

ϕ(α) = ϕ(α) if α ∈ Dom(ϕ)
ϕ(α) = α if α /∈ Dom(ϕ)

ϕ(ι) = ι
ϕ(σ1 −〈u〉→ σ2) = ϕ(σ1)−〈ϕ(u)〉→ ϕ(σ2)

ϕ(σ1 × σ2) = ϕ(σ1)× ϕ(σ2)
ϕ(σ ref) = ϕ(σ) ref
ϕ(σ chan) = ϕ(σ) chan
ϕ(σ cont) = ϕ(σ) cont

For constraint sets, we take:

ϕ(C) = {(ϕ(σ) ⊳ ϕ(u)) | (σ ⊳ u) ∈ C}.

From now on, we do not distinguish anymore ϕ from its extension ϕ, and we write ϕ for both.

4.2.2.4 Free variables, dangerous variables

Let σ be a generic type. We define the set F(σ) of variables directly free in the type σ, and the set
D(σ) of variables directly dangerous in the type σ as follows.

F(ι) = Ø D(ι) = Ø
F(t) = {t} D(t) = Ø

F(σ1 −〈u〉→ σ2) = F(σ1) ∪ F(u) ∪ F(σ2) D(σ1 −〈u〉→ σ2) = D(u)
F(σ1 × σ2) = F(σ1) ∪ F(σ2) D(σ1 × σ2) = D(σ1) ∪ D(σ2)
F(σ ref) = F(σ) D(σ ref) = F(σ)
F(σ chan) = F(σ) D(σ chan) = F(σ)
F(σ cont) = F(σ) D(σ cont) = F(σ)

F(u) = {u} D(u) = Ø

Here is how the directly free and directly dangerous variables evolve when a substitution is applied.

Proposition 4.1 Let σ be a generic type, and ϕ be a substitution. We have:

F(ϕ(σ)) =
⋃

α∈F(σ)

F(ϕ(α))

D(ϕ(σ)) ⊇
⋃

α∈D(σ)

F(ϕ(α))

D(ϕ(σ)) ⊆





⋃

α∈D(σ)

F(ϕ(α))



 ∪





⋃

α∈F(σ)

D(ϕ(α))





The same results obviously hold with the type σ replaced by a label u.

Proof: easy induction over σ. 2
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We write Fg for the free generic variables, Fn for the free non-generic variables, Dg for the
dangerous generic variables, and Dn for the dangerous non-generic variables:

Fg(σ) = F(σ) ∩ VarTypGen Dg(σ) = D(σ) ∩ VarTypGen
Fn(σ) = F(σ) ∩ VarTypNongen Dn(σ) = D(σ) ∩ VarTypNongen

The definitions of F and D given above do not take into account the constraints over the labels
appearing in the type τ . In the following, we also need a notion of free or dangerous variable in
a constrained type σ / C, either directly, either indirectly through a constraint. We will call these
variables recursively free or recursively dangerous in σ / C, by contrast with the directly free or
directly dangerous variables in σ defined above.

The intuition is that a label u should be considered as a node whose sons are the generic types
attached to u in the constraint set C. In particular, to make closure typing work as intended, we
must express that a variable is recursively free (or dangerous) in σ1−〈u〉→ σ2 /C if it is recursively
free (or dangerous) in σ / C, for some σ such that the constraint σ ⊳ u appears in C. Translating
directly this intuition, we define:

F(ι / C) = Ø
F(t / C) = {t}

F(σ1 −〈u〉→ σ2 / C) = F(σ1 / C) ∪ F(u / C) ∪ F(σ2 / C)
F(σ1 × σ2 / C) = F(σ1 / C) ∪ F(σ2 / C)
F(σ ref / C) = F(σ / C)
F(σ chan / C) = F(σ / C)
F(σ cont / C) = F(σ / C)

F(u / C) = {u} ∪
⋃

(σ⊳u)∈C

F(σ / C)

Similarly for dangerous variables:

D(ι / C) = Ø
D(t / C) = Ø

D(σ1 −〈u〉→ σ2 / C) = D(u / C)
D(σ1 × σ2 / C) = D(σ1 / C) ∪D(σ2 / C)
D(σ ref / C) = F(σ / C)
D(σ chan / C) = F(σ / C)
D(σ cont / C) = F(σ / C)

D(u / C) =
⋃

(σ⊳u)∈C

D(σ / C)

The equalities above do not constitute a well-founded definition. In the case for F(u / C) or
D(u / C), one of the types σ over which we take the union can contain as a sub-term a function
type labeled by u. In other terms, nothing prevents the constraint set from being cyclic. Hence,
the “definition” above must be understood as a set of equations, for which we must find a smallest
solution. It is easy to check that the solutions are exactly the fixpoints of an increasing, bounded
operator; hence there exists a smallest solution defining F(σ / C) and D(σ / C).
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We are now going to give an alternate characterization of F and D, that turns out to be more
convenient for proofs. For all integers n, we define:

F0(σ) = Ø
Fn+1(ι / C) = Ø
Fn+1(t / C) = {t}

Fn+1(σ1 −〈u〉→ σ2 / C) = Fn(σ1 / C) ∪ Fn(u / C) ∪ Fn(σ2 / C)
Fn+1(σ1 × σ2 / C) = Fn(σ1 / C) ∪ Fn(σ2 / C)
Fn+1(σ ref / C) = Fn(σ / C)
Fn+1(σ chan / C) = Fn(σ / C)
Fn+1(σ cont / C) = Fn(σ / C)

Fn(u / C) = {u} ∪
⋃

(σ⊳u)∈C

Fn(σ / C)

For dangerous variables, we take:

D0(σ) = Ø
Dn+1(ι / C) = Ø
Dn+1(t / C) = Ø

Dn+1(σ1 −〈u〉→ σ2 / C) = Dn(u / C)
Dn+1(σ1 × σ2 / C) = Dn(σ1 / C) ∪ Dn(σ2 / C)
Dn+1(σ ref / C) = F(σ / C)
Dn+1(σ chan / C) = F(σ / C)
Dn+1(σ cont / C) = F(σ / C)

Dn(u / C) =
⋃

(σ⊳u)∈C

Dn(σ / C)

Proposition 4.2 For all constrained types σ / C, we have:

F(σ / C) =
⋃

n≥0

Fn(σ / C) D(σ / C) =
⋃

n≥0

Dn(σ / C).

Proof: we first show that
⋃

n≥0 F
n(σ/C) and

⋃

n≥0D
n(σ/C) satisfy the equations whose smallest

solutions are F and D. This establishes the inclusion ⊆. For the converse inclusion, let F ′ and D′ be
any solutions of these equations. We show that Fn(σ/C) ⊆ F ′(σ/C) and that Dn(σ/C) ⊆ D′(σ/C)
for all n and for all σ, by induction over n. This establishes the converse inclusions, and the equalities
claimed above. 2

Here is the usual technical lemma that describes the effect of a substitution over the recursively
free and dangerous variables in a type.

Proposition 4.3 Let σ be a generic type, C a set of constraint, and ϕ a substitution. We have:

F(ϕ(σ) / C) ⊇
⋃

α∈F(σ/C)

F(ϕ(α))

F(ϕ(σ) / C) =
⋃

α∈F(σ)

F(ϕ(α) / C)
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D(ϕ(σ) / C) ⊇
⋃

α∈D(σ)

F(ϕ(α) / C)

D(ϕ(σ) / C) ⊆





⋃

α∈D(σ)

F(ϕ(α) / C)



 ∪





⋃

α∈F(σ)

D(ϕ(α) / C)





Proof: for the first line, we show the corresponding inclusion for Fn, by induction over n, and we
conclude by proposition 4.2. For the last three lines, we proceed by structural induction over σ,
and application of the equalities defining D and F . 2

4.2.3 Equivalence between constrained types

The presentation of types in two parts (a type expression plus a set of constraints) has one drawback:
since the constraint set is shared with other types (e.g. the types in the typing environment), it can
contain some constraints that do not concern any of the labels reachable fron the type expression.
These extra constraints do not change the semantic properties of the type; but they can change
its syntactic properties. For instance, if we substitute in τ / C a type variable α that is not free
in τ / C, we get a constrained type τ / C ′, where C ′ may differ from C: the variable α can indeed
occur in C, inside constraints over labels that are not reachable from τ .

Example. After performing t 7→ int in the type int−〈u〉→int/t⊳v, we get int−〈u〉→int/int⊳v,
which is syntactically different from the original type. 2

We are now going to introduce an equivalence between constrained types that captures the fact
that two constrained types, while syntactically different, describe the same graph. Let σ be a type
and C be a constraint set. We define the connected component of σ in C, written C |̀ σ, as the
set of those constraints in C that concern a label which is free in σ / C:

C |̀ σ = {(σ′ ⊳ u) ∈ C | u ∈ F(σ / C)}.

We define similarly C |̀E, the connected component of a typing environment E, and C |̀ {σ1, . . . , σn},
the connected component of a set of types.

Let σ1 /C1 and σ2 /C2 be two constrained types. We say that σ1 /C1 is equivalent to σ2 /C2,
and we write σ1 / C1 ≡ σ2 / C2, if σ1 = σ2 and C1 |̀ σ1 = C2 |̀ σ2. The relation ≡ is obviously an
equivalence relation.

The remainder of this section is devoted to some properties of the connected components and
of the relation ≡.

Proposition 4.4 For all constrained type σ / C, we have

F(σ / C) = F(σ / (C |̀ σ)) and D(σ / C) = D(σ / (C |̀ σ)).

As a consequence, if σ1 /C1 ≡ σ2 /C2, then F(σ1 /C1) = F(σ2 /C2) and D(σ1 /C1) = D(σ2 /C2).

Proof: we show the corresponding equalities for Fn and Dn, for all n, by induction over n. We
conclude by proposition 4.2. 2
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Proposition 4.5 Let σ / C be a constrained type, and ϕ a substitution. We have

ϕ(C |̀ σ) ⊆ ϕ(C) |̀ ϕ(σ).

Proof: if a label u is free in σ /C, then the label ϕ(u) is free in ϕ(σ)/ϕ(C) (proposition 4.3). The
result follows. 2

The inclusion can be proper, because the substitution can identify two labels, and therefore
introduce additional constraints in the connected component of a type.

Example. The connected component of int−〈u〉→ int in bool ⊳ u, string ⊳ v is bool ⊳ u. But if
we apply the substitution [v 7→ u], the connected component becomes bool ⊳ u, string ⊳ u. 2

As a consequence, the equivalence relation between constrained types is not stable under sub-
stitution.

Example. We have

int−〈u〉→ int / bool ⊳ u, string ⊳ v ≡ int−〈u〉→ int / bool ⊳ u, char ⊳ v.

But if we apply the substitution [v 7→ u] on both sides, we obtain two constrained types that are
no longer equivalent. 2

There is however an important class of substitutions that commute with the “connected compo-
nent” operation, and therefore preserve the equivalence between constrained types: the renamings.

Proposition 4.6 For all renamings θ, we have

θ(C |̀ σ) = θ(C) |̀ θ(σ).

As a consequence, σ1 / C1 ≡ σ2 / C2 implies θ(σ1) / θ(C1) ≡ θ(σ2) / θ(C2).

Proof: by proposition 4.5 applied to θ and to θ−1, we have

C |̀ σ = θ−1(θ(C |̀ σ)) ⊆ θ−1(θ(C) |̀ θ(σ)) ⊆ θ−1(θ(C)) |̀ θ−1(θ(σ)) = C |̀ σ.

Hence θ−1(θ(C) |̀ θ(σ)) = C |̀ σ, and the desired equality by applying θ on both sides. 2

In chapters 1 and 3, we made heavy use of the following property, which holds in all usual type
algebras: if F(τ) and Dom(ϕ) are disjoint, then ϕ(τ) is identical to τ . This property does not hold
for the type algebra in this chapter: we can have F(σ /C) and Dom(ϕ) disjoint, yet ϕ(σ) /ϕ(C) is
not equivalent to σ / C. That’s because the substitution ϕ can “graft” additional constraints over
labels that are free in σ / C.

Example. . Consider the type σ = int −〈u〉→ int under the constraints C = bool ⊳ v. The
label v is not free in σ / C. Nonetheless, after substituting v by u, we get the constrained type
int−〈u〉→ int / bool ⊳ u, which is not equivalent to σ / C. 2

However, the expected property holds if the substitution is a renaming.
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Proposition 4.7 Let θ be a renaming and σ /C be a constrained type. If Dom(θ)∩F(σ /C) = Ø,
then θ(σ) / θ(C) ≡ σ / C.

Proof: we have θ(σ) = σ, since, a fortiori, Dom(θ) ∩ F(σ) = Ø. Moreover, by proposition 4.6,
θ(C) |̀ θ(σ) = θ(C |̀ σ). Let σ′ ⊳ u be a constraint of C |̀ σ. All variables free in σ′ ⊳ u are free in
σ / C, and therefore invariant by θ. Hence θ(σ′ ⊳ u) = σ′ ⊳ u. It follows that θ(C) |̀ θ(σ) = C |̀ σ.
Hence the expected result. 2

4.2.4 Typing rules

In the indirect system, the typing predicate has the form E ⊢ a : τ /C, read: “in the environment E,
the expression a has the non-generic type τ , relative to the constraints over labels appearing in C”.
The environment E is a finite mapping from identifiers to generic types. The generic variables in
E(x) are considered universally quantified.

The typing rules are essentially a reformulation of the rules in section 3.2.3, with direct types
replaced by indirect types plus a constraint set, and the type schemes replaced by generic types.
The main differences are: first, the generalization step in the let rule, and second, the introduction
of a simplification rule over constraint sets.

τ ≤ E(x) / C

E ⊢ x : τ / C

The instantiation relation between a generic type and a non-generic type is defined as follows:
τ ≤ σ / C if and only if there exists a substitution ϕ : Fg(E(x)) ⇒ TypNongen ∪ EtiqNongen such
that ϕ(σ) = τ and ϕ(C) ⊆ C. Instantiating a generic type therefore corresponds to a substitution
of the generic variables of this type by non-generic types and labels. This substitution is also
applied to the constraints: C can contain constraints over generic labels that appear in σ. The
condition ϕ(C) ⊆ C expresses the fact that C correctly keeps track of those constraints after the
instantiation.

E + f 7→ (τ1 −〈un〉→ τ2) + x 7→ τ1 ⊢ a : τ2 / C

(E(y) ⊳ un) ∈ C for all y ∈ I(f where f(x) = a)

E ⊢ (f where f(x) = a) : τ1 −〈un〉→ τ2 / C

The typing rule for functions requires that the label un be associated in C to the types of the
identifiers free in the function.

E ⊢ a1 : τ2 −〈un〉→ τ1 / C E ⊢ a2 : τ2 / C

E ⊢ a1(a2) : τ1 / C

E ⊢ a1 : τ1 / C E ⊢ a2 : τ2 / C

E ⊢ (a1, a2) : τ1 × τ2 / C

E ⊢ a1 : τ1 / C1 (σ,C) = Gen(τ1, C1, E) E + x 7→ σ ⊢ a2 : τ2 / C

E ⊢ let x = a1 in a2 : τ2 / C
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The generalization relation is defined as follows: (σ,C) = Gen(τ1, C1, E) if and only if there exists
a renaming θ of F(τ1 / C1) \ D(τ1 / C1) \ Fn(E) \ D(E / C1) to generic variables that are not free
in E nor in C1 such that σ = θ(τ1) and C = θ(C1).

In other terms, the domain of θ is composed of those non-generic variables in the type τ1 that
we want to generalize. To do so, we rename these variables to fresh generic variables. The renaming
is also applied to the current constraint set.

In contrast with the system in chapter 3, we now allow the generalization of variables that are
recursively free in E / C1, provided they are neither directly free in E, nor dangerous in E / C1.
In other terms, we ignore the non-dangerous variables that are captured by the closure types in E.
(See the example below.)

The rules for constants and operators are classical:

τ ≤ TypCst(cst) / C

E ⊢ cst : τ / C

τ1 −〈un〉→ τ2 ≤ TypOp(op) / C E ⊢ a : τ1 / C

E ⊢ op(a) : τ2 / C

The last typing rule is a simplification rule, that allows removing constraints that are useless in the
typing derivation, and replacing these constraints by similar constraints:

E′ ⊢ a : τ ′ / C ′ τ / C ≡ τ ′ / C ′ E | I(a) / C ≡ E
′ | I(a) / C

′

E ⊢ a : τ / C

The intuition behind this rule is that only those constraints that belong to the connected component
of τ and of the restriction of E to the identifiers occurring free in a are relevant in the typing of
the expression. The remaining constraints can freely be erased, or replaced by other unconnected
constraints.

The types of the primitive operators over references, channels and continuations are those of
section 3.2.3, rewritten with labels instead of expansion variables, and generic variables instead of
quantified variables.

TypOp(ref) = tg −〈ug〉→ tg ref

TypOp(!) = tg ref−〈ug〉→ tg

TypOp(:=) = tg ref× tg −〈ug〉→ unit

TypOp(newchan) = unit−〈ug〉→ tg chan

TypOp(?) = tg chan−〈ug〉→ tg

TypOp(!) = tg chan× tg −〈ug〉→ unit

TypOp(callcc) = (tg cont−〈ug〉→ tg)−〈u
′
g〉→ tg

TypOp(throw) = tg cont× tg −〈ug〉→ t′g
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Example. Consider again the non-conservativity example from section 4.1.2.

λf. let id = λy. either(f)(λz.y; z); y in id(id)

The principal typing for the left part of the let results in:

[f : tn −〈un〉→ tn] ⊢ (λy. either(f)(λz. y; z); y) : t′n −〈u
′
n〉→ t′n / t

′
n ⊳ un, (tn −〈un〉→ tn) ⊳ u′n.

The variables that can be generalized are t′n and u′n. That’s because t′n is not directly free in the
typing environment, though it is free in a constraint reachable from that environment. Hence we
can generalize t′n to tg and u′n to ug, and the self-application id(id) is well-typed. 2

4.2.5 Properties of the typing rules

In this section, we show that the typing predicate is, under certain conditions, stable by substitution
of type variables and by addition of constraints.

Proposition 4.8 (Typing is stable under substitution) Let a be an expression, τ be a non-
generic type, E be a typing environment, C be a constraint set. For all substitutions ϕ : VarNongen⇒
TypNongen ∪ EtiqNongen of non-generic types for non-generic variables, if we have E ⊢ a : τ / C,
then we have ϕ(E) ⊢ a : ϕ(τ) / ϕ(C).

Proposition 4.9 (Typing is stable under addition of constraints) Let a be an expression,
τ be a non-generic type, E be a typing environment, C be a constraint set such that E ⊢ a : τ / C.
Let C ′ be a constraint set that does not contain any of the generic variables free in E(y) for all y
free in a. That is:

({u} ∪ F(σ)) ∩ Fg(E(y)) = Ø for all (σ ⊳ u) ∈ C ′, y ∈ I(a).

Then, E ⊢ a : τ / C ∪C ′.

The two propositions are proved simultaneously, by induction on the height of the derivation of
E ⊢ a : τ /C, and by case analysis on the last rule employed. Since the proof is lengthy, I prefer to
present it as follows: I prove each proposition separately, assuming that the other holds. I also show
that the derivations obtained (of ϕ(E) ⊢ a : ϕ(τ) / ϕ(C) for proposition 4.8, of E ⊢ a : τ / C ∪ C ′

for proposition 4.9) have the same height as the initial derivation (of E ⊢ a : τ / C). This ensures
that the simultaneous induction is well-founded, because the other proposition is always applied to
derivations strictly smaller than the original derivation.

Proof: for proposition 4.8. We easily check on each case that the derivation of ϕ(E) ⊢ a : ϕ(τ) /
ϕ(C) built has the same height as the initial derivation of E ⊢ a : τ / C.

• Instantiation rule. We have a = x and τ ≤ E(x) / C. Let ψ : Fg(E(x)) ⇒ TypNongen ∪
EtiqNongen be a substitution such that ψ(E(x)) = τ and ψ(C) ⊆ C. We define a substitution θ
by θ(αg) = ϕ(ψ(αg)) for all generic variables αg. We have:

θ(ϕ(αg)) = θ(αg) = ϕ(ψ(αg)) for all generic variables αg

θ(ϕ(αn)) = ϕ(αn) = ϕ(ψ(αn)) for all non-generic variables αn
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Hence θ ◦ ϕ = ϕ ◦ ψ. As a consequence, θ(ϕ(E(x))) = ϕ(ψ(E(x))) = ϕ(τ), and similarly
θ(ϕ(C)) = ϕ(ψ(C)) ⊆ ϕ(C). Finally, since ϕ operates only on non-generic variables and does not in-
troduce fresh generic variables, we have Fg(ϕ(E(x))) = Fg(E(x)), and therefore θ : Fg(ϕ(E(x))) ⇒
TypNongen ∪ EtiqNongen. This establishes ϕ(τ) ≤ ϕ(E(x)) / ϕ(C). Hence we can derive ϕ(E) ⊢
x : ϕ(τ) / ϕ(C).

• The where rule. The derivation ends up with:

E + f 7→ (τ1 −〈un〉→ τ2) + x 7→ τ1 ⊢ a : τ2 / C
(E(y) ⊳ un) ∈ C for all y ∈ I(f where f(x) = a)

E ⊢ (f where f(x) = a) : τ1 −〈un〉→ τ2 / C

By induction hypothesis applied to a, we get a proof of:

ϕ(E + f 7→ (τ1 −〈un〉→ τ2) + x 7→ τ1) ⊢ a : ϕ(τ2) / ϕ(C).

By definition of substitution over constraints, we have (ϕ(σ)⊳ϕ(un)) ∈ ϕ(C) as soon as (σ⊳un) ∈ C.
This holds in particular if σ is E(y) for some y free in a. Hence we can derive the expected result:

ϕ(E) ⊢ (f where f(x) = a) : ϕ(τ1)−〈ϕ(un)〉→ ϕ(τ2) / ϕ(C).

• The let rule. The derivation ends up with:

E ⊢ a1 : τ1 / C1 (σ,C) = Gen(τ1, C1, E) E + x 7→ σ ⊢ a2 : τ2 / C

E ⊢ let x = a1 in a2 : τ2 / C

Define {α1 . . . αk} = F(τ / C1) \ D(τ / C1) \ Fn(E) \ D(E / C1). (The αi are non-generic. The n
subscript is omitted for the sake of readability.) Let θ : {α1 . . . αk} ⇔ VarTypGen be the renaming
such that σ = θ(τ1) and C = θ(C1). Let β1 . . . βk be non-generic variables, pairwise distinct, not
free in E, not free in C1, and out of reach for ϕ, with βi of the same kind as αi for all i. Define the
substitution

ψ = ϕ ◦ [α1 7→ β1 . . . αk 7→ βk].

We have ψ(E) = ϕ(E), since the αi are not free in E. We apply twice the induction hypothesis, once
to the left premise, with the substitution ϕ, and once to the right premise, with the substitution
ϕ. We obtain proofs of:

ψ(E) ⊢ a1 : ψ(τ1) / ψ(C1) ϕ(E) + x 7→ ϕ(σ) ⊢ a2 : ϕ(τ2) / ϕ(C).

Take V = F(ψ(τ1) / ψ(C1)) \ D(ψ(τ1) / ψ(C1)) \ Fn(ψ(E)) \ D(ψ(E) / ψ(C1)). We are now going
to show that V = {β1 . . . βk}. By construction of ψ and of the βi, we have ψ(αi) = βi, and
βi ∈ F(ψ(α)) for some variable α implies α = αi.

We now fix i. Since αi is free in τ1 / C1, we have βi free in ψ(τ1) / ψ(C1) (prop. 4.3, case 1).
Since αi is not free in E, we have βi /∈ Fn(ψ(E)). Otherwise, we would have βi ∈ F(ψ(α)) for some
α ∈ F(E) (prop 4.1, case 1); but by definition of ψ, this α can only be αi, which is not free in E.
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Moreover, βi /∈ D(ψ(τ1) / ψ(C1)). Otherwise, we would have either βi ∈ F(ψ(α) / ψ(C1)) for some
α in D(τ1), or βi ∈ D(ψ(α) / ψ(C1)) for some α in F(τ1) (prop 4.3, case 4). The first possibility
is excluded, since by construction of the βi, it implies α = αi; but αi is not dangerous in τ1 / C1,
hence a fortiori it is not directly dangerous in τ1. The other possibility implies similarly α = αi,
but

D(ψ(αi) / ψ(C1)) = D(βi / ψ(C1)) = Ø

which is a contradiction. In the same way, we show βi /∈ D(ψ(E) / ψ(C1)). We therefore conclude
that

{β1 . . . βk} ⊆ V.

We now show the converse inclusion. Let β be a non-generic variable that is free in ψ(τ1) / ψ(C1),
and that is not one of the βi. Let α ∈ F(τ1 /C1) be a non-generic variable such that β ∈ F(ψ(α)).
The variable α cannot be one of the αi, since otherwise β would be one of the βi. Hence either α is
directly free in E, or α is dangerous in τ1 /C1, or α is dangerous in E /C1. If α is free in E, then β
is free in ψ(E) (prop 4.1, case 1). If α is dangerous in τ1 / C, then β is dangerous in ψ(τ1) / ψ(C1)
(prop 4.3, case 3). Finally, if α is dangerous in E/C, then β is dangerous in ψ(E)/ψ(C1) (prop 4.3,
case 3). In all three cases, β /∈ V . Hence the converse inclusion.

Define the renaming ξ = [β1 7→ θ(α1), . . . , βk 7→ θ(αk)]. We have ξ : {β1, . . . , βk} ⇔ VarTypGen.
Moreover, for all i:

ξ(ψ(αi)) = ξ(βi) by definition of ψ
= θ(αi) by definition of ξ
= ϕ(θ(αi)) since ϕ does not change generic variables.

In addition, for all variables α that are neither one of the αi, nor one of the βi:

ξ(ψ(α)) = ξ(ϕ(α)) by definition of ψ
= ϕ(α) because α /∈ {β1 . . . βk} and the βi are out of reach for ϕ
= ϕ(θ(α)) because θ(α) = α since α /∈ {α1 . . . αk}.

Since the βi are not free in τ1 nor in C1, it follows that ξ(ψ(τ1)) = ϕ(θ(τ1)) = ϕ(τ) and ξ(ψ(C1)) =
ϕ(θ(C1)) = ϕ(C). We have therefore established that:

(ϕ(σ), ϕ(C)) = Gen(ψ(τ1), ψ(C1), ϕ(E)).

Combining this fact with the two derivations obtained by applying the induction hypothesis:

ϕ(E) ⊢ a1 : ψ(τ1) / ψ(C1) ϕ(E) + x 7→ ϕ(σ) ⊢ a2 : ϕ(τ2) / ϕ(C),

we deduce, by the let rule, the expected result:

ϕ(E) ⊢ let x = a1 in a2 : ϕ(τ2) / ϕ(C).

• Simplification rule. The initial derivation ends up with:

E ⊢ a : τ / C τ / C ≡ τ / C ′ E | I(a) / C ≡ E
′ | I(a) / C

′

E′ ⊢ a : τ / C ′
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The proof of this case is delicate, because we do not necessarily have ϕ(τ) / ϕ(C) ≡ ϕ(τ) / ϕ(C ′)
and ϕ(E | I(a)) / ϕ(C) ≡ ϕ(E′ | I(a)) / ϕ(C ′). For instance, we have

int−〈u〉→ int / bool ⊳ v ≡ int−〈u〉→ int /Ø,

but this equivalence does not hold anymore if v is substituted by u. We’ll solve this difficulty by
massive renaming. Let U be the set of the labels free in τ / C or in E | I(a) / C. We decompose C
as C0 ∪C1 and C ′ as C0 ∪C

′
1, where C0 constraints only labels u1 . . . uk belonging to U , while the

labels v1 . . . vm constrained in C1 and the labels v′1 . . . v
′
p constrained in C ′

1 do not belong to U . Let
w1 . . . wm and w′

1 . . . w
′
p be fresh distinct labels, out of reach for ϕ, and not belonging to U . Define

the two substitutions θ and ψ as follows:

θ = [v′1 7→ w′
1, . . . , v

′
p 7→ w′

p]

ψ = ϕ+ v1 7→ w1 + · · ·+ vm 7→ wm + w′
1 7→ ϕ(v′1) + · · ·+ w′

p 7→ ϕ(v′p)

By construction, none of the variables free in E | I(a) appears in the constraints in θ(C ′
1). Applying

proposition 4.9, we obtain a derivation of

E ⊢ a : τ / C ∪ θ(C ′
1)

with the same height as the derivation of E ⊢ a : τ / C. We can therefore apply the induction
hypothesis to the derivation obtained. We get a derivation of

ψ(E) ⊢ a : ψ(τ) / ψ(C ∪ θ(C ′
1))

which also has the same height as the derivation of E ⊢ a : τ / C. Since the vi and the w′
j are

not free in τ , we have ψ(τ) = ϕ(τ). Similarly, ψ(E | I(a)) = ϕ(E′ | I(a)). Finally, ψ(C0) = ϕ(C0)
since all labels free in one of the constraints of C0 belong to U . Moreover, ψ(θ(C ′

1)) = ϕ(C ′
1) by

construction. Hence:

ψ(C ∪ θ(C ′
1)) = ψ(C0 ∪ C1 ∪ θ(C

′
1)) = ϕ(C0) ∪ ψ(C1) ∪ ϕ(C ′

1) = ϕ(C ′) ∪ ψ(C1).

Notice also that the constraints in ψ(C1) only concern the labels w1 . . . wm, that are not free in
ϕ(τ) / ϕ(C ′) ∪ ψ(C1), nor in ϕ(E′ | I(a)) / ϕ(C ′) ∪ ψ(C1), since the antecedents of these labels,
v1 . . . vm, are not free in E′ | I(a) / C

′, nor in τ / C ′. We have therefore established that:

ψ(E) ⊢ a : ψ(τ) / ϕ(C ′) ∪ ψ(C1)
ψ(τ) / ϕ(C ′) ∪ ψ(C1) ≡ ϕ(τ) / ϕ(C ′)

ψ(E | I(a)) / ϕ(C ′) ∪ ψ(C1) ≡ ϕ(E′ | I(a)) / ϕ(C ′)

From these premises, we can conclude, by the simplification rule:

ϕ(E′) ⊢ a : ϕ(τ) / ϕ(C ′)

and the derivation thus obtained has the same height as the initial derivation of E′ ⊢ a : τ / C. 2

Proof: of proposition 4.9. We give the cases that do not follow immediately from the induction
hypothesis. Once more, we easily check on each case that the derivation of E ⊢ a : τ /C ′ we obtain
has the same height as the initial derivation of E′ ⊢ a : τ / C ′.
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• Instantiation rule. The derivation is:

τ ≤ E(x) / C

E ⊢ x : τ / C

Let ϕ : Fg(E(x))⇒ TypNongen∪EtiqNongen be the substitution such that ϕ(σ) = τ and ϕ(C) ⊆ C.
Since ϕ modifies only the generic variables free in E, we have ϕ(C ′) = C ′ by hypothesis over C ′,
and therefore

ϕ(C ∪ C ′) = ϕ(C) ∪ ϕ(C ′) = ϕ(C) ∪ C ′ ⊆ C ∪ C ′.

Hence τ ≤ E(x) / C ∪ C ′, and the instantiation rule concludes E ⊢ x : τ / C ∪ C ′.

• The let rule. The initial derivation ends up with:

E ⊢ a1 : τ1 / C1 (σ,C) = Gen(τ1, C1, E) E + x 7→ σ ⊢ a2 : τ2 / C

E ⊢ let x = a1 in a2 : τ2 / C

Take {α1 . . . αk} = F(τ1 /C1) \D(τ1 /C1) \Fn(E). We can assume that the αi do not occur in C ′,
by renaming αi to fresh variables βi in the first premise. The derivation remains valid, as shown
in the proof for the let case in proposition 4.8.

We apply the induction hypothesis to the two premises. We get proofs for:

E ⊢ a1 : τ1 / C1 ∪ C
′ E + x 7→ σ ⊢ a2 : τ2 / C ∪ C

′

To conclude, it remains to show that

Gen(τ1, C1 ∪ C
′, E) = (σ,C ∪C ′).

First of all, we have

F(τ1 / C1) \ D(τ1 / C1 ∪ C
′) \ Fn(E) \ D(E / C1 ∪ C

′) = {α1 . . . αk}.

That’s because D(τ1 / C1 ∪ C
′) contains at least D(τ1 / C1). And also αi does not belong to

D(τ1 / C1 ∪ C
′), since αi does not belong to D(τ1 / C1), and αi does not belong to C ′. Same

reasoning for D(E / C1 ∪ C
′).

Let θ : {α1 . . . αk} ⇔ VarTypGen be the renaming such that σ = θ(τ1) and C = θ(C1). Since
the αi do not appear in C ′, we have θ(C ′) = C ′, hence θ(C1 ∪ C

′) = θ(C1) ∪ C
′ = C ∪ C ′. It is

therefore true that
Gen(τ1, C1 ∪ C

′, E) = (σ,C ∪C ′).

Combining this fact with the two derivations obtained by applying the induction hypothesis, we
conclude, by the let rule:

E ⊢ let x = a1 in a2 : τ2 / C ∪ C
′.

• Simplification rule. The initial derivation ends up with:

E1 ⊢ a : τ / C1 τ / C1 ≡ τ / C E1 | I(a) / C1 ≡ E | I(a) / C

E ⊢ a : τ / C
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We apply the induction hypothesis to the premise E1 ⊢ a : τ / C1. We get a proof of E1 ⊢ a :
τ /C1 ∪C

′. Obviously, τ /C1 ≡ τ /C implies τ /C1 ∪C
′ ≡ τ /C ∪C ′, and similarly for E | I(a) and

E1 | I(a). Applying the simplification rule to these premises, it follows that E ⊢ a : τ / C ∪C ′. 2

Proposition 4.10 (Typing is stable under substitution, 2) Let a be an expression, τ be a
non-generic type, E be a typing environment, C be a constraint set. For all substitutions ϕ :
VarNongen⇒ TypNongen ∪ EtiqNongen of non-generic types for non-generic variables, if we have
E ⊢ a : τ / C and ϕ(C) ⊆ C, then we have ϕ(E) ⊢ a : ϕ(τ) / C.

Remark. Proposition 4.10 is unfortunately not a consequence of propositions 4.8 and 4.9: even if
ϕ(C) ⊆ C, the set C ′ = C \ ϕ(C) does not necessarily satisfy the hypothesis of proposition 4.9. 2

Proof: the proof is very similar to the proof of proposition 4.8. The only difference is for the
instantiation rule.

• Instantiation rule. We have a = x and τ ≤ E(x) / C. Let ψ : Fg(E(x)) ⇒ TypNongen ∪
EtiqNongen be the substitution such that ψ(E(x)) = τ and ψ(C) ⊆ C. Define the substitution θ
by θ(αg) = ϕ(ψ(αg)) for all generic αg. We have:

θ(ϕ(αg)) = θ(αg) = ϕ(ψ(αg))
θ(ϕ(αn)) = ϕ(αn) = ϕ(ψ(αn))

Hence θ◦ϕ = ϕ◦ψ. It follows that θ(ϕ(E(x))) = ϕ(ψ(E(x))) = ϕ(τ). Moreover, θ(C) = ϕ(ψ(C)) ⊆
ϕ(C) ⊆ C. Finally, since ϕ modifies only non-generic variables and does not introduce fresh generic
variables, we have Fg(ϕ(E(x))) = Fg(E(x)), hence θ : Fg(ϕ(E(x))) ⇒ TypNongen ∪ EtiqNongen.
This shows that ϕ(τ) ≤ ϕ(E(x)) / C. We can therefore derive ϕ(E) ⊢ x : ϕ(τ) / C. 2

4.3 Soundness proofs

In this section, we show that the indirect type system proposed in the present chapter is sound with
respect to the three semantics given in chapter 2: for references, for channels, and for continuations.

4.3.1 References

The semantic typing predicates we shall use are essentially identical to those in section 3.3.1,
expressed with indirect types and generic types instead of direct types and type schemes. The
store typings, ranged over by S, now map memory locations to constrained types.

Store typings: S ::= [ℓ1 7→ τ1 / C1, . . . , ℓn 7→ τn / Cn]

As in section 3.3.1, the purpose of the store typings is to ensure that all references to a given
memory location ℓ has the same monomorphic type τ ref / C, where τ / C is identical to S(ℓ).
This prevents all inconsistent uses of the location ℓ. Actually, we slightly weaken the condition
above, by only requiring that τ / C be equivalent to S(ℓ), in the sense of section 4.2.3. Here are
the relations we’ll use:
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S |= v : τ / C the value v, considered in a store of type S, belongs to the
non-generic type τ in the context C

S |= v : σ / C the value v, considered in a store of typee S, belongs to the
generic type σ in the context C

S |= e : E / C the values contained in the evaluation environment e, considered
in a store of type S, belong to the corresponding types in the
typing environment E

|= s : S the values contained in the store s belong to the corresponding
types in S.

These relations are defined as follows:

• S |= cst : unit / C if cst is ()

• S |= cst : int / C if cst is an integer

• S |= cst : bool / C if cst is true or false

• S |= (v1, v2) : τ1 × τ2 / C if S |= v1 : τ1 / C and S |= v2 : τ2 / C

• S |= ℓ : τ1 ref / C if ℓ ∈ Dom(S) and S(ℓ) ≡ τ1 / C.

• S |= (f, x, a, e) : τ1 −〈un〉→ τ2 / C if there exists a typing environment E such that

S |= e : E / C and E ⊢ (f where f(x) = a) : τ1 −〈u〉→ τ2.

• S |= v : σ / C if σ / C contains no dangerous generic variables, and if S |= v : ρ(σ) / ρ(C) for
all renamings ρ of the generic variables of σ into non-generic variables.

• S |= e : E / C if Dom(E) ⊆ Dom(e), and for all x in Dom(E), we have S |= e(x) : E(x) / C.

• |= s : S if Dom(s) = Dom(S), and for all ℓ ∈ Dom(s), we have S |= s(ℓ) : S(ℓ).

Remark. As in section 3.3, in the case of functional values, we can always assume Dom(E) =
I(f where f(x) = a). If this is not the case, it suffices to apply the simplification rule to restrict E
to the identifiers free in (f where f(x) = a). 2

We easily check that the semantic typing predicates defined above are stable under store exten-
sion, that is, by replacing the store typing S by an extension S′ of S.

Proposition 4.11 Let v be a value, S be a store typing, and τ / C and τ ′ / C ′ be two non-generic
constrained types. If τ / C ≡ τ ′ / C ′, then S |= v : τ / C is equivalent to S |= v : τ ′ / C ′.

Proof: given the symmetry of ≡, and the fact that τ = τ ′, it suffices to show that S |= v : τ / C
implies S |= v : τ / C ′. We proceed by structural induction over v.

• Case v = cst. Obviously true.
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• Case v = (v1, v2). We then have τ = τ1 × τ2, with S |= v1 : τ1 / C and S |= v2 : τ2 / C. Since
τ1 and τ2 are subterms of τ , we have τ1 / C ≡ τ1 / C

′; the same for τ2. By induction hypothesis
applied to v1 and v2, it follows S |= v1 : τ1 / C

′ and S |= v2 : τ2 / C
′; hence the expected result.

• Case v = ℓ. We then have τ = τ1 ref, with τ1 / C ≡ S(ℓ). Since τ1 is subterm of τ , we have
τ1 / C ≡ τ1 / C

′. By transitivity of ≡, it follows that τ1 / C
′ ≡ S(ℓ), and therefore S |= ℓ : τ / C ′.

• Case v = (f, x, a, e). Then, τ = τ1 −〈un〉→ τ2, and there exists a typing environment E such
that

S |= e : E / C and E ⊢ (f where f(x) = a) : τ1 −〈un〉→ τ2 / C.

Let E be such an environment. Let y ∈ Dom(E). By the remark above, we can assume that y is
free in (f where f(x) = a). Given the typing rules for functions, the constraint E(y) ⊳ un appears
in C. It follows that F(E(y) / C) ⊆ F(un / C) ⊆ F(τ / C). Hence, E(y) / C ≡ E(y) / C ′ for all y
in the domain of E. This has two consequences. First of all, for all y ∈ Dom(E), we can apply the
induction hypothesis to e(y) and E(y); it follows that S |= e(y) : E(y) / C ′. Hence S |= e : E / C ′.
Second consequence, E /C ≡ E /C ′. Applying the simplification rules with the following premises:

E ⊢ (f where f(x) = a) : τ1−〈un〉→τ2/C τ1−〈u〉→τ2/C ≡ τ1−〈un〉→τ2/C
′ E/C ≡ E/C ′,

we deduce that

E ⊢ (f where f(x) = a) : τ1 −〈un〉→ τ2 / C
′.

This concludes the proof of the expected result: S |= (f, x, a, e) : τ1 −〈u〉→ τ2 / C
′. 2

We now give two results of stability under substitution for the semantic typing relations.

Proposition 4.12 Let v be a value, τ be a non-generic type, C be a constraint set and S be a
store typing such that S |= v : τ /C. Let θ be a renaming of non-generic variables into non-generic
variables such that Dom(θ) ∩ D(τ / C) = Ø. Then, S |= v : θ(τ) / θ(C).

Proof: by structural induction over v.

• Case v = cst. Obvious, since τ is then a base type, hence θ(τ) = τ .

• Case v = (v1, v2) and τ = τ1 × τ2. Since D(τ / C) = D(τ1 / C) ∪ D(τ2 / C), we have
Dom(ϕ) ∩ D(τ1 / C) = Ø and Dom(ϕ) ∩ D(τ2 / C) = Ø. By induction hypothesis, it follows that
S |= v1 : θ(τ1) / θ(C) and S |= v2 : θ(τ2) / θ(C). Hence S |= (v1, v2) : θ(τ1 × τ2) / θ(C).

• Case v = ℓ and τ = τ1 ref. By definition of |=, we have S(ℓ) ≡ τ1 /C. Since D(τ1 ref /C) =
F(τ1 / C), we have Dom(θ) ∩ F(τ1 / C) = Ø. Hence θ(τ1) / θ(C) ≡ τ1 / C by proposition 4.6. By
transitivity of ≡, it follows that S(ℓ) ≡ θ(τ1) / θ(C), hence S |= ℓ : θ(τ1 ref) / θ(C), as expected.

• Case v = (f, x, a, e) and τ = τ1 −〈un〉→ τ2. Let E be a typing environment such that

S |= e : E / C and E ⊢ (f where f(x) = a) : τ1 −〈un〉→ τ2 / C.
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By proposition 4.8, we get:

θ(E) ⊢ (f where f(x) = a) : θ(τ1 −〈un〉→ τ2) / θ(C).

It remains to show that
S |= e : θ(E) / θ(C). (1)

Take y in the domain of E. We can assume y free in f where f(x) = a. Let us show S |= e(y) :
θ(E(y)) / θ(C). Let ρ be a renaming of the generic variables of θ(E(y)) into non-generic variables.
We can decompose ρ ◦ θ as θ′ ◦ ρ, where ρ′ is a renaming of the generic variables of E(y) into
non-generic variables, and θ′ is a renaming of non-generic variables into non-generic variables, with
Dom(ρ′) = Dom(ρ) and Dom(θ′) ⊆ Dom(θ) ∪ Codom(ρ′). From hypothesis S |= e(y) : E(y) / C
and from the definition of |= over type schemes, it follows that S |= e(y) : ρ′(E(y)) / ρ′(C). Since
E(y)/C does not contain dangerous generic variables, we have Dom(θ′)∩D(ρ′(E(y))/ρ′(C)) = Ø.
Applying the induction hypothesis to e(y), il follows that S |= e(y) : θ′(ρ′(E(y))) / θ′(ρ′(C)), that
is, S |= e(y) : ρ(θ(E(y))) / ρ(θ(C)). This holds for all ρ, hence S |= e(y) : θ(E(y)) / θ(C). This
establishes (1), and the expected result. 2

Proposition 4.13 Let v be a value, τ / C be a non-generic constrained type, and S be a store
typing such that S |= v : τ / C. Let ϕ : VarNongen ⇒ TypNongen ∪ EtiqNongen be a substitution
such that Dom(ϕ) ∩D(τ / C) = Ø and ϕ(C) ⊆ C. Then, S |= v : ϕ(τ) / C.

Proof: by structural induction over v.

• Case v = cst. Obvious, since τ is then a base type, hence ϕ(τ) = τ .

• Case v = (v1, v2) and τ = τ1 × τ2. Since D(τ / C) = D(τ1 / C) ∪ D(τ2 / C), we have
Dom(ϕ) ∩ D(τ1 / C) = Ø and Dom(ϕ) ∩ D(τ2 / C) = Ø. By induction hypothesis, we have
S |= v1 : ϕ(τ1) / C and S |= v2 : ϕ(τ2) / C. Hence S |= (v1, v2) : ϕ(τ1 × τ2) / C.

• Case v = ℓ and τ = τ1 ref. By definition of |=, we have S(ℓ) ≡ τ1 /C. Since D(τ1 ref /C) =
F(τ1 / C), we have ϕ(τ1) = τ1. Hence S(ℓ) ≡ ϕ(τ1) / C, and therefore S |= ℓ : ϕ(τ1 ref) / C, as
expected.

• Case v = (f, x, a, e) and τ = τ1 −〈u〉→ τ2. Let E be a typing environment such that

S |= e : E / C and E ⊢ (f where f(x) = a) : τ1 −〈u〉→ τ2 / C.

By proposition 4.10, we get:

ϕ(E) ⊢ (f where f(x) = a) : ϕ(τ1 −〈u〉→ τ2) / C.

It remains to show that
S |= e : ϕ(E) / C. (1)

Take y in Dom(E). Let ρ be a renaming of the generic variables of ϕ(E(y)) into non-generic
variables. We must show that S |= e(y) : ρ(ϕ(E(y))) / ρ(C). Let ξ be a renaming of the generic
variables of E(y) into non-generic variables out of reach for ϕ. Since S |= e(y) : E(y)/C, we already
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know S |= e(y) : ξ(E(y)) / ξ(C). Since Codom(ξ) is out of reach for ϕ, the two substitutions ϕ and
ξ commute. Hence, ϕ(ξ(C)) = ξ(ϕ(C)) ⊆ ξ(C). Moreover,

Dom(ϕ) ∩ D(ξ(E(y)) / ξ(C)) = Ø.

Indeed, if α were dangerous in ξ(E(y))/ξ(C) and in the domain of Dom(ϕ), we would have ξ(α) = α
by hypothesis Codom(ξ) out of reach for ϕ, and therefore α would be both dangerous in E(y) / C
and inside the domain of ϕ, contradicting the hypothesis Dom(ϕ)∩D(τ /C) = Ø. We can therefore
apply the induction hypothesis to e(y) with type ξ(E(y)) / ξ(C), and to the substitution ϕ. It
follows:

S |= e(y) : ϕ(ξ(E(y))) / ξ(C).

Let θ = ρ ◦ ξ−1. Since the generic variables free in E(y) are the same as the generic variables free
in ϕ(E(y)), the substitution θ is a renaming of non-generic variables into non-generic variables.
Moreover,

Dom(θ) ∩ D(ϕ(ξ(E(y))) / ξ(C)) = Ø,

because Dom(θ), which is equal to Codom(ξ) since Dom(ρ) = Dom(ξ), is out of reach for ϕ, and
because Dom(θ) ∩ D(ξ(E(y)) / ξ(C)) = Ø. Applying proposition 4.12, we get:

S |= e(y) : θ(ϕ(ξ(E(y)))) / θ(ξ(C)).

By construction, θ◦ξ = ρ. Hence θ◦ϕ◦ξ = θ◦ξ◦ϕ = ρ◦ϕ. The result provided by proposition 4.12
therefore reads:

S |= e(y) : ρ(ϕ(E(y))) / ρ(C).

This holds for all renamings ρ. Hence S |= e(y) : ϕ(E(y)) / C. This holds for all y. Hence (1), and
the expected result. 2

As corollaries of those two stability properties, it follows that the generalization and instantia-
tion operations are semantically sound.

Proposition 4.14 (Semantic generalization) Let S be a store typing, v1 be a value and τ1 /C1

be a non-generic constrained type such that S |= v : τ1 / C1. For all renamings ξ of non-generic
variables not dangerous in τ1 / C1 into generic variables, we have S |= v : ξ(τ1) / ξ(C1). As a
corollary, for all E, if (σ,C) = Gen(τ1, C1, E), then S |= v : σ / C.

Proof: let ρ be a renaming of the generic variables of ξ(τ1) into non-generic variables. We must
show that

S |= v : ρ(ξ(τ1)) / ρ(ξ(C1)). (1)

Define θ = ρ ◦ ξ. Since Codom(ξ) = Dom(ρ), the substitution θ is a renaming of non-generic
variables into non-generic variables. Moreover, Dom(θ)∩D(τ1 /C1) = Ø, since Dom(θ) = Dom(ξ).
Applying proposition 4.12, it follows S |= v : θ(τ1)/θ(C1), that is, (1). This holds for all renamings
ρ, hence S |= v : ξ(τ1) / ξ(C1).

The corollary immediately follows by definition of Gen. 2

Proposition 4.15 (Semantic instantiation) Let v be a value, σ / C be a generic constrained
type and S be a store typing such that S |= v : σ/C. Then, S |= v : τ /C for all instances τ ≤ σ/C.
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Proof: let τ ≤ σ / C. Let θ : Fg(σ) ⇒ TypNongen ∪ EtiqNongen be a substitution such that
τ = θ(σ) and θ(C) ⊆ C. Let ρ be a renaming of the generic variables of σ into non-generic
variables out of reach for θ. Define ϕ = θ ◦ ρ−1. We have θ = ϕ ◦ ρ, and ϕ is a substitution of
non-generic types for non-generic variables. By hypothesis S |= v : σ / C, it follows that

S |= v : ρ(σ) / ρ(C).

By construction of ρ, we have ρ−1 ◦ ϕ ◦ ρ = ϕ ◦ ρ. Hence, the hypothesis θ(C) ⊆ C, that is,
ϕ(ρ(C)) ⊆ C, implies ϕ(ρ(C)) ⊆ ρ(C). Moreover, the generic variables of σ are not dangerous in
σ / C. Since ρ is a renaming, this implies that the variables in Codom(ρ) are not dangerous in
ρ(σ) / ρ(C). Hence, taking into account Dom(ϕ) = Codom(ρ),

Dom(ϕ) ∩ F(ρ(σ) / ρ(C)) = Ø.

Applying proposition 4.13 to the substitution ϕ, it follows that

S |= v : ϕ(ρ(σ)) / ρ(C).

Consider the renaming ρ−1. This is a renaming of non-generic variables into generic variables.
Moreover, the variables in Dom(ρ−1), that is in Codom(ρ), are not dangerous in ϕ(ρ(σ)) / ρ(σ).
That’s because if α ∈ Codom(ρ) was dangerous in ϕ(ρ(σ)) / ρ(C), it would also be dangerous
in ρ(σ) / ρ(C), since α is out of reach for ϕ; but this is impossible, as shown above. Applying
proposition 4.14 to the renaming ρ−1, it follows that

S |= v : ρ−1(ϕ(ρ(σ))) / ρ−1(ρ(C)),

that is, S |= v : θ(σ) /C, taking into account ρ−1 ◦ϕ ◦ ρ = ϕ ◦ ρ = θ. That’s the expected result. 2

Once these preliminary results are established, we can now show the strong soundness property.

Proposition 4.16 (Strong soundness for references) Let a be an expression, τ be a non-
generic type, E be a typing environment, C be a constraint set, e be an evaluation environment, s
be a store and S be a store typing such that

E ⊢ a : τ / C and S |= e : E | I(a) / C and |= s : S.

If there exists a response r such that e ⊢ a/s ⇒ r, then r 6= err; instead, r is equal to v/s′ for
some v and s′, and there exists a store typing S′ such that:

S′ extends S and S′ |= v : τ / C and |= s′ : S′.

Proof: the proof is by induction on the size of the evaluation derivation and, in case of ties, on
the size of the typing derivation. We argue by case analysis on the last rule used in the typing
derivation. The proof closely follows the proof of proposition 3.6. I show the cases that are not
completely similar.

• Instantiation rule.
τ ≤ E(x) / C

E ⊢ x : τ / C
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By hypothesis, S |= e : E | I(x) / C, hence x ∈ Dom(e) and S |= e(x) : E(x) / C. The only possible
evaluation is therefore e ⊢ x/s⇒ e(x)/s. By proposition 4.15, we have S |= e(x) : τ /C as expected.

• Function rule.
E + f 7→ τ1 −〈un〉→ τ2 + x 7→ τ1 ⊢ a : τ2 / C

(E(y) ⊳ un) ∈ C for all y free in f where f(x) = a

E ⊢ (f where f(x) = a) : τ1 −〈un〉→ τ2 / C

The only possible evaluation is e ⊢ (f where f(x) = a)/s⇒ (f, x, a, e)/s. We have S |= (f, x, a, e) :
τ1 −〈un〉→ τ2 / C by definition of |=, taking E | I(a) for the required typing environment.

• Application rule.
E ⊢ a1 : τ2 −〈un〉→ τ1 / C E ⊢ a2 : τ2 / C

E ⊢ a1(a2) : τ1 / C

We have three evaluation possibilities. The first one concludes r = err because e ⊢ a1 ⇒ r1
and r1 does not match (f, x, a0, e0)/s

′; but it contradicts the induction hypothesis applied to a1,
which says that r1 = v1/s1 and |= v1 : τ2 → τ1 / C, hence a fortiori v1 is a closure. The second
evaluation possibility concludes r = err because e ⊢ a2 ⇒ err; it similarly contradicts the induction
hypothesis applied to a2. Hence we are in the third case:

e ⊢ a1/s⇒ (f, x, a0, e0)/s1 e ⊢ a2/s1 ⇒ v2/s2 e0 + f 7→ (f, x, a0, e0) + x 7→ v2 ⊢ a0/s2 ⇒ r

e ⊢ a1(a2)⇒ r

By induction hypothesis applied to a1, we get a store typing S1 such that:

S1 |= v1 : τ2 −〈un〉→ τ1 / C and |= s1 : S1 and S1 extends S.

By definition of |=, there exists E0 such that

S1 |= e0 : E0 and E0 ⊢ (f where f(x) = a0) : τ2 −〈un〉→ τ1 / C.

Only one typing rule allows to derive the rightmost judgement; hence the first premise of this rule
holds:

E0 + f 7→ (τ2 −〈un〉→ τ1) + x 7→ τ2 ⊢ a0 : τ1 / C.

Applying the induction hypothesis to a2, we get S2 such that

S2 |= v2 : τ2 / C and |= s2 : S2 and S2 extends S1.

Consider the environments:

e2 = e0 + f 7→ (f, x, a0, e0) + x 7→ v2 E2 = E0 + f 7→ (τ2 −〈un〉→ τ1) + x 7→ τ2

The identifiers free in a0 are x, f , and the identifiers free in (f where f(x) = a0). Hence S2 |= e2 :
E2 | I(a0) / C. We can therefore apply the induction hypothesis to a0, in the environments e2 and
E2, and the store s2 : S2. It follows that r = v/s′. Moreover, there exists S′ such that:

S′ |= v : τ1 and |= s′ : S′ and S′ extends S2.
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This is the expected result, since S′ extends S a fortiori.

• The let rule.

E ⊢ a1 : τ1 / C1 (σ,C) = Gen(τ1, C1, E) E + x 7→ σ ⊢ a2 : τ2 / C

E ⊢ let x = a1 in a2 : τ2 / C

For starters, let us show that S |= e : E | I(a1) / C1. By definition of Gen, we have C = θ(C1) and
E = θ(E) for some renaming θ of variables not dangerous in E/C1 into generic variables. Let y be an
identifier free in a1. We need to show that S |= e(y) : E(y)/C1. Let ρ be a substitution of the generic
variables of E(y) into non-generic variables. We need to show that S |= e(y) : ρ(E(y)) / ρ(C1).
The substitution ρ ◦ θ−1 is a renaming of the generic variables of E(y) into non-generic variables.
From hypothesis S |= e : E / C it therefore follows that S |= e(y) : ρ(θ−1(E(y))) / ρ(θ−1(C)), that
is, S |= e(y) : ρ(E(y)) / ρ(C1). This holds for all ρ and for all y, hence S |= e : E | I(a1) / C1 as
expected.

We have two possible evaluations for the let expression. The first one corresponds to e ⊢ a1 ⇒
err. It contradicts the induction hypothesis applied to a1 and to e with type E / C1. Hence the
last step in the evaluation is:

e ⊢ a1/s⇒ v1/s1 e+ x 7→ v1 ⊢ a2/s1 ⇒ r

e ⊢ (let x = a1 in a2)/s⇒ r

By induction hypothesis applied to a1, we get S1 such that:

S1 |= v1 : τ1 / C1 and |= s1 : S1 and S1 extends S.

By proposition 4.14, it follows that S1 |= v1 : σ / C. Take

e1 = e+ x 7→ v1 E1 = E + x 7→ σ.

For all y free in a2, either y = x, or y is free in a; in both cases, we have S1 |= e1(y) : E1(y) / C.
Hence S1 |= e1 : E1 | I(a2) /C. Applying the induction hypothesis to a2 considered in environments
e1 and E1, and in the store s1 : S1, we obtain that r is v/s′, and there exists S′ such that

S′ |= v : τ2 / C and |= s′ : S′ and S′ extends S1.

That’s the expected result.

• Primitives rule, case ref.

τ −〈un〉→ τ ref ≤ tg −〈ug〉→ tg ref / C E ⊢ a : τ / C

E ⊢ ref(a) : τ ref / C

There are two evaluation possibilities. One leads to r = err because a evaluates to err; it contra-
dicts the induction hypothesis applied to a. Hence we are in the second evaluation case for ref(a),
ending up with:

e ⊢ a/s0 ⇒ v/s1 ℓ /∈ Dom(s1)

e ⊢ ref(a)/s0 ⇒ ℓ/(s1 + ℓ 7→ v)
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By induction hypothesis applied to a, we get S1 such that

S1 |= v : τ / C and |= s1 : S1 and S1 extends S.

Define:
s′ = s1 + ℓ 7→ v and S′ = S1 + ℓ 7→ (τ / C).

Since Dom(s1) = Dom(S1), we have ℓ /∈ Dom(S1). Hence S′ extends S1, and S too. We therefore
have S′ |= v : τ / C, that is, S′ |= s′(ℓ) : S′(ℓ). It follows |= s′ : S′ and S′ |= ℓ : τ ref / C, as
expected.

• Primitives rule, case !.

τ ref−〈un〉→ τ ≤ tg ref−〈ug〉→ tg / C E ⊢ a : τ ref / C

E ⊢ !(a) : τ / C

We have three evaluation possibilities. One leads to err because a evaluates to a response that
does not match ℓ/s′. It contradicts the induction hypothesis applied to a. The second possibility
ends up with:

e ⊢ a/s0 ⇒ ℓ/s1 ℓ /∈ Dom(s1)

e ⊢ !a/s0 ⇒ err

By induction hypothesis applied to a, we get S1 such that S1 |= ℓ : τ ref and |= s1 : S1. This
implies ℓ ∈ Dom(s1); contradiction. There remains the third possibility:

e ⊢ a/s0 ⇒ ℓ/s1 ℓ ∈ Dom(s1)

e ⊢ !a/s0 ⇒ s1(ℓ)/s1

By induction hypothesis applied to a, we get S1 such that

S1 |= ℓ : τ ref / C and |= s1 : S1 and S1 extends S.

Hence S1(ℓ) ≡ τ / C and S1 |= s1(ℓ) : S1(ℓ). By proposition 4.11, it follows that S1 |= s1(ℓ) : τ / C;
taking S′ = S1, that’s the expected result.

• Primitives rule, case :=.

τ ref× τ −〈un〉→ unit ≤ tg ref× tg −〈ug〉→ unit / C E ⊢ a : τ ref× τ / C

E ⊢ := (a) : unit

As in the case of the ! primitive, evaluation must end up with:

e ⊢ a/s0 ⇒ (ℓ, v)/s1 ℓ ∈ Dom(s1)

e ⊢ :=(a)/s0 ⇒ ()/(s1 + ℓ 7→ v)

By induction hypothesis applied to a, we get S1 such that

S1 |= (ℓ, v) : τ ref× τ / C and |= s1 : S1 and S1 extends S.
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Take s′ = s1+ℓ 7→ v and S′ = S1. Since S1(ℓ) ≡ τ /C, we have S′ |= s′(ℓ) : S′(ℓ) by proposition 4.11.
And, obviously, S′ |= () : unit / C. Hence the expected result.

• Simplification rule.

E ⊢ a : τ / C τ / C ≡ τ ′ / C ′ E | I(a) / C ≡ E
′ | I(a) / C

′

E′ ⊢ a : τ ′ / C ′

By proposition 4.11, S |= e : E′ | I(a) / C
′ implies S |= e : E | I(a) / C. We apply the induction

hypothesis to the same evaluation derivation, and to the derivation of E ⊢ a : τ / C as typing
derivation. If follos that r = v/s′ and there exists a store typing S′ such that

S′ extends S and S′ |= v : τ / C and |= s′ : S′.

Since τ / C ≡ τ ′ / C ′, we also have S′ |= v : τ ′ / C ′ by proposition 4.11. That’s the expected result.
2

4.3.2 Communication channels

The soundness proof for the calculus with channels is essentially identical to the one in section 3.3.2,
with technical lemmas similar to those in section 4.3.1. I just define the semantic typing predicates,
and sketch the steps of the proof. We assume given a channel typing Γ that associates a non-generic
constrainted type to each channel identifier c.

Channle typing: Γ ::= [c1 7→ τ1 / C1, . . . , cn 7→ τn / Cn]

Here are the semantic typing predicates used:

Γ |= v : τ / C the value v belongs to the non-generic type τ in the
context C

Γ |= v : σ / C value v belongs to the generic type σ in the context C
Γ |= e : E / C the values contained in the evaluation environment e

belong to the corresponding type schemes in E / C
|= w :? Γ the reception events (c ? v) contained in the event

sequence w respect the channel types given by Γ
|= w :! Γ the emission events (c ! v) contained in the event

sequence w respect the channel types given by Γ

Here is their precise definition:

• Γ |= cst : unit / C if cst is ()

• Γ |= cst : int / C if cst is an integer

• Γ |= cst : bool / C if cst is true or false

• Γ |= (v1, v2) : τ1 × τ2 / C if Γ |= v1 : τ1 / C, and Γ |= v2 : τ2 / C

• Γ |= c : τ1 chan / C if Γ(c) ≡ τ1 / C
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• Γ |= (f, x, a, e) : τ1 −〈un〉→ τ2 / C if there exists a typing environment E such that

Γ |= e : E / C and E ⊢ (f where f(x) = a) : τ1 −〈un〉→ τ2.

• Γ |= v : σ / C if σ / C contains no dangerous generic variables, and if Γ |= v : ρ(σ) / ρ(C) for
all renamings ρ of the generic variables of σ into non-generic variables.

• Γ |= e : E / C if Dom(E) ⊆ Dom(e), and for all x in Dom(E), we have Γ |= e(x) : E(x) / C.

• |= w :? Γ if Γ |= v : Γ(c) for all reception events c ? v belonging to the sequence w

• |= w :! Γ if Γ |= v : Γ(c) for all emission events c ! v belonging to the sequence w.

The following propositions are the main lemmas for the soundness proof.

Proposition 4.17 (Stability under equivalence) Let v be a value, Γ be a channel typing, and
τ / C and τ ′ / C ′ be two non-generic constrained types. If τ / C ≡ τ ′ / C ′, then Γ |= v : τ / C is
equivalent to Γ |= v : τ ′ / C ′.

Proof: same proof as for proposition 4.11. 2

Proposition 4.18 (Semantic generalization) Let Γ be a channel typing, v1 be a value and
τ1 /C1 be a non-generic constrained type such that Γ |= v : τ1 /C1. If (σ,C) = Gen(τ1, C1, E), then
Γ |= v : σ / C.

Proof: same proof as for proposition 4.14. We use a lemma showing that |= is stable under
renaming of non-dangerous variables similar to proposition 4.12. 2

Proposition 4.19 (Semantic instantiation) Let v be a value, σ / C be a generic constrained
type and Γ be a channel typing such that Γ |= v : σ / C. Then, Γ |= v : τ / C for all instances
τ ≤ σ / C.

Proof: same proof as for proposition 4.15. We use a lemma showing that |= is stable under
substitution of non-dangerous variables similar to proposition 4.13. 2

We now proceed to show the strong soundness property. As in section 3.3.2, we assume given
a closed, well-typed term a0, where all newchan(a) subexpressions are distinct. We take a typing
derivation T for a0, and an evaluation derivation E for a0. We construct a channel typing Γ adapted
to T and E as described in section 3.3.2.

Proposition 4.20 (Strong soundness for channels) Let e ⊢ a =
w
=⇒ r be the conclusion of a

sub-derivation in E, and E ⊢ a : τ / C be the conclusion of a sub-derivation in T , for the same
expression a. Assume Γ |= e : E | I(a) / C.

1. If |= w :? Γ, then r 6= err; instead, r is a value v such that Γ |= v : τ / C, and in addition
|= w :! Γ.

2. If w = w′.c ! v.w′′ and |= w′ :? Γ, then Γ |= v : Γ(c).

Proof: the proof is almost identical to the one for proposition 3.9. We use lemma 4.19 for the
case of identifiers, lemma 4.18 for the case of let bindings, and lemma 4.17 for the case of the
primitives ! and ?, and for the case of the simplification rule. The other cases are exactly the same
as in the proof of proposition 3.9. 2
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4.3.3 Continuations

The proof of soundness for the calculus with continuation combines most of sections 3.3.3 (for
the soundness proof) and 4.3.1 (for the technical lemmas). We use the following semantic typing
relations:

|= v : τ / C the value v belongs to the non-generic type τ in context C
|= v : σ / C the value v belongs to the generic type σ in context C
|= e : E / C the values contained in the evaluation environment e

belong to the corresponding types in E / C
|= k :: τ / C the continuation k accepts all values belonging to the type

τ / C

Here are their precise definitions:

• |= cst : unit / C if cst is ()

• |= cst : int / C if cst is an integer

• |= cst : bool / C if cst is true or false

• |= (v1, v2) : τ1 × τ2 / C if |= v1 : τ1 / C and |= v2 : τ2 / C

• |= k : τ1 cont / C if |= k :: τ1 / C

• |= (f, x, a, e) : τ1 −〈un〉→ τ2 / C if there exists a typing environment E such that

|= e : E / C and E ⊢ (f where f(x) = a) : τ1 −〈un〉→ τ2.

• |= v : σ / C if σ / C contains no dangerous generic variables, and if |= v : ρ(σ) / ρ(C) for all
renamings ρ of the generic variables of σ into non-generic variables.

• |= e : E / C if Dom(E) ⊆ Dom(e), and for all x in Dom(E), we have |= e(x) : E(x) / C.

• |= stop :: τ / C for all types τ / C

• |= app1c(a, e, k) :: τ1 −〈un〉→ τ2 / C if there exists a typing environment E such that

E ⊢ a : τ1 / C and |= e : E / C and |= k :: τ2 / C

• |= app2c(f, x, a, e, k) :: τ / C if there exists a typing environment E, a type τ ′ and a label un

such that

E ⊢ (f where f(x) = a) : τ −〈un〉→ τ ′ / C and |= e : E / C and |= k :: τ ′ / C

• |= letc(x, a, e, k) :: τ / C if there exists a typing environment E and a type τ ′ such that

E + x 7→ Gen(τ,E) ⊢ a : τ ′ / C and |= e : E / C and |= k :: τ ′ / C

• |= pair1c(a, e, k) :: τ / C if there exists a typing environment E and a type τ ′ such that

E ⊢ a : τ ′ / C and |= e : E / C and |= k :: τ × τ ′ / C
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• |= pair2c(v, k) :: τ / C if there exists a type τ ′ such that

|= v : τ ′ / C and |= k :: τ ′ × τ / C

• |= primc(callcc, k) :: τ cont−〈un〉→ τ / C if |= k :: τ / C

• |= primc(throw, k) :: τ cont× τ / C for all τ .

The following propositions are the main lemmas for the soundness proof.

Proposition 4.21 (Stability under equivalence) Let τ /C and τ ′ /C ′ be two non-generic con-
strained types such that τ / C ≡ τ ′ / C ′. For all values v, |= v : τ / C is equivalent to |= v : τ ′ / C ′.
For all continuations k, |= k :: τ / C is equivalent to |= k :: τ ′ / C ′.

Proof: the proof is by structural induction over v and k. The cases are similar to those for
proposition 4.11. 2

Proposition 4.22 (Semantic generalization) Let v1 be a value and τ1 / C1 be a non-generic
constrained type such that |= v : τ1 / C1. If (σ,C) = Gen(τ1, C1, E), then |= v : σ / C.

Proof: same proof as for proposition 4.14. We use a lemma similar to proposition 4.12: if |= v : τ/C
and if θ is a renaming of variables not dangerous in τ / C, then |= v : θ(τ) / θ(C). This lemma
is proved as lemma 4.12. The only case that differs is v = k. In this case, τ = τ1 cont and
D(τ /C) = F(τ1 /C). Hence τ1 /C ≡ θ(τ1) / θ(C) by proposition 4.6. Since |= k :: τ1 /C, it follows
from proposition 4.21 that |= k :: θ(τ1) / θ(C). Hence |= k : θ(τ) cont / θ(C), as expected. 2

Proposition 4.23 (Semantic instantiation) Let v be a value and σ/C be a generic constrained
type such that Γ |= v : σ / C. Then |= v : τ / C for all instances τ ≤ σ / C.

Proof: same proof as for proposition 4.15. We use a lemma similar to proposition 4.13: if |= v : τ/C
and if ϕ is a substitution of non-dangerous variables by non-generic types such that ϕ(C) ⊆ C,
then |= v : ϕ(τ) / C. This result is proved exactly as lemma 4.13. 2

Proposition 4.24 (Weak soundness for continuations)

1. Let a be an expression, τ be a non-generic type, C be a constraint set, E be a typing environ-
ment, k be a continuation and r be a response such that

E ⊢ a : τ / C and |= e : E | I(a) / C and |= k :: τ / C and e ⊢ a; k ⇒ r.

Then r 6= err.

2. Let v be a value, k be a continuation, τ be a non-generic type, C be a constraint set and r be
a response such that

|= v : τ / C and |= k :: τ / C and ⊢ v ⊲ k ⇒ r.

Then r 6= err.

Proof: the proof mimics exactly the one for proposition 3.12. The case where a is an identifier is
settled by lemma 4.23; the case where k is a continuation letc, by lemma 4.22. The other cases
are identical to those in proposition 3.12. 2
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4.4 Type inference

In this section, we show that all well-typed programs in the indirect type system admit a principal
type, and we give an algorithm that computes this principal type.

4.4.1 Unification

The Damas-Milner algorithm easily adapts to the indirect type system. That’s because the type
algebra enjoys the principal unifier property.

Proposition 4.25 If two types τ1 and τ2 are unifiable, then they admit a principal unifier. We
write mgu(τ1, τ2) for a principal unifier of τ1 and τ2, if it exists.

Proof: the claim follows from the fact that type expressions belong to a two-sorted free algebra
(the two sorts being the types and the labels). Moreover, mgu(τ1, τ2) can be obtained by one of
the well-known unification algorithm between terms of a free algebra, such as Robinson’s algorithm
[85]. 2

As in section 1.5, we impose the following condition over mgu(τ1, τ2) in the remainder of this
section: all variables not free in τ1 nor in τ2 are out of reach for mgu(τ1, τ2). This condition has two
useful consequences. First of all, if τ1 and τ2 are non-generic types, then the substitution mgu(τ1, τ2)
is a substitution of non-generic types for non-generic type variables. Furthermore, the principal
unifier does not “graft” extra constraints on the types being unified. This property can be stated
more formally as follows:

Proposition 4.26 Let τ1, τ2 be two types, T be a set of types, and C be a constraint set. If µ is
the unifier mgu(τ1, τ2) defined above, then

µ(C |̀ ({τ1, τ2} ∪ T )) = µ(C) |̀ ({µ(τ1)} ∪ µ(T )).

(As in section 4.2.3, we write C |̀ T , where T is a set of types, for the connected component of the
types from T in C, that is, the restriction of the constraint set C to those labels that are free in
τ / C for some τ ∈ T .)

Proof: the ⊆ inclusion is a consequence of proposition 4.5. Assume that this inclusion is proper.
Then, C contains a constraint over a label u that is not free in any of the σ / C (σ being either τ1,
or τ2, or one of the types in T ), but such that µ(u) is free in one of the µ(σ) / µ(C). This requires
µ(u) 6= u. Hence u is directly free in τ1 or in τ2, since all variables not free in τ1 or in τ2 are out of
reach for µ. But then u is free in τ1 / C or in τ2 / C, and this is contradictory. 2

4.4.2 The type inference algorithm

The type inference algorithm takes as inputs an expression a, a typing environments E, an initial
constraint set C, and an infinite set of “fresh” non-generic variables V . It returns a non-generic
type τ (the most general type for a), a substitution ϕ (representing the instantiations that had to
be performed over E), a constraint set C ′, and a subset V ′ of V .
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We write Inst(σ,C, V ) for a trivial instance of the generic type σ /C: defining θ as a renaming
of the generic variables of σ into non-generic variables from V , we take:

Inst(σ,C, V ) = (θ(σ), θ(C) ∪C, V \ Codom(θ)).

Algorithm 4.1 We take Infer(a,E,C, V ) to be the 4-tuple (τ, C ′, ϕ, V ′) defined by:

If a is x:
(τ, C ′, V ′) = Inst(E(x), C, V ) and ϕ = [ ]

If a is cst:
(τ, C ′, V ′) = Inst(TypCst(cst), C, V ) and ϕ = [ ]

If a is f where f(x) = a1:
let t1 ∈ V and t2 ∈ V be two non-generic variables
and u ∈ V be a non-generic label
let C0 = C ∪ {E(y) ⊳ u | y ∈ I(a)}
let (τ1, C1, ϕ1, V1) = Infer(a1, E + f 7→ (t2 −〈u〉→ t1) + x 7→ t2, C0, V \ {t1, t2, u})
let µ = mgu(ϕ1(t1), τ1)
then τ = µ(ϕ1(t2 −〈u〉→ t1)) and ϕ = µ ◦ ϕ1 and C ′ = µ(C1) and V ′ = V1

If a is a1(a2):
let (τ1, C1, ϕ1, V1) = Infer(a1, E,C, V )
let (τ2, C2, ϕ2, V2) = Infer(a2, ϕ1(E), C1, V1)
let t ∈ V be a non-generic type variable and u ∈ V be a non-generic label
let µ = mgu(ϕ2(τ1), τ2 −〈u〉→ t)
then τ = µ(t) and ϕ = µ ◦ ϕ2 ◦ ϕ1 and C ′ = µ(C2) and V ′ = V2 \ {t, u}

If a is let x = a1 in a2:
let (τ1, C1, ϕ1, V1) = Infer(a1, E,C, V )
let (σ,C0) = Gen(τ1, C1, ϕ1(E))
let (τ2, C2, ϕ2, V2) = Infer(a2, ϕ1(E) + x 7→ σ, C0, V1)
then τ = τ2 and ϕ = ϕ2 ◦ ϕ1 and C ′ = C2 and V ′ = V2

If a is (a1, a2):
let (τ1, C1, ϕ1, V1) = Infer(a1, E,C, V )
let (τ2, C2, ϕ2, V2) = Infer(a2, ϕ1(E), C1, V1)
then τ = τ1 × τ2 and ϕ = ϕ2 ◦ ϕ1 and C ′ = C2 and V ′ = V2

If a is op(a1):
let (τ0, C0, V0) = Inst(TypOp(op), C, V )
let (τ1, C1, ϕ1, V1) = Infer(a1, E,C0, V0)
let t ∈ V1 be a non-generic variable and u ∈ V1 be a non-generic label
let µ = mgu(τ1 −〈u〉→ t, τ0)
then τ = µ(t) and ϕ = µ ◦ ϕ1 and C ′ = µ(C1) and V ′ = V1 \ {t, u}

We take that Infer(a,E,C, V ) is undefined if, at some point during the computation, none of
the cases match; in particular, if mgu is applied to non-unifiable types.

A few remarks on the output of the algorithm. If (τ, C ′, ϕ, V ′) = Infer(a,E,C, V ), and if
F(E) ∩ V = Ø, and if F(C) ∩ V = Ø, then:

1. ϕ is a substitution of non-generic types for non-generic variables
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2. V ′ ⊆ V

3. the variables in V ′ are not free in τ ′, nor in C ′

4. the variables in V ′ are out of reach for ϕ, hence not free in ϕ(E)

5. C ′ ⊇ ϕ(C)

6. no generic variable free in ϕ(E) is free in C ′ \ ϕ(C).

Proposition 4.27 (Correctness of type inference) Let a be an expression, E be a typing envi-
ronment, C be a constraint set, and V be a set of non-generic type variables such that F(E)∩V = Ø
and F(C) ∩ V = Ø. If (τ, ϕ,C ′, V1) = Infer(a,E,C, V ) is defined, then we can derive ϕ(E) ⊢ a :
τ / C1.

Proof: the proof is by structural induction over a, and closely resembles the proof of proposi-
tion 1.8, with additional handling of constraint sets. The proof essentially relies over the fact that
typing is stable under substitution (proposition 4.8) and under addition of constraints (proposi-
tion 4.9). I show one base case and two inductive steps; the other cases are similar.

• Case a = x. We have (τ, C ′, V ′) = Inst(E(x), C, V ). By definition of Inst, we have τ ≤
E(x) / C ′. Hence we can derive E ⊢ x : τ / C ′.

• Case a = (f where f(x) = a1). With the same notations as in the algorithm, the induction
hypothesis leads to a proof of:

ϕ1(E + f 7→ (t1 −〈u〉→ t2) + x 7→ t1) ⊢ a1 : τ1 / C1.

By proposition 4.8, writing ϕ = µ ◦ ϕ1, we get a proof of:

ϕ(E) + f 7→ (ϕ(t1)−〈ϕ(u)〉→ ϕ(t2)) + x 7→ ϕ(t1) ⊢ a1 : µ(τ1) / µ(C1).

The substitution µ is a unifier of ϕ1(t2) and τ1. Hence ϕ(t2) = µ(ϕ1(t2)) = µ(τ1). We therefore
have shown that:

ϕ(E) + f 7→ (ϕ(t1)−〈ϕ(u)〉→ ϕ(t2)) + x 7→ ϕ(t1) ⊢ a1 : ϕ(t2) / µ(C1).

Moreover, C1 contains ϕ1(C0) by remark (5), hence a fortiori the constraints ϕ1(E(y)) ⊳ ϕ1(u) for
all y free in a. Hence, µ(C1) contains the constraints ϕ(E(y)) ⊳ ϕ(u) for all y free in a, and we can
apply the typing rule for functions, obtaining:

ϕ(E) ⊢ (f where f(x) = a1) : ϕ(t1 −〈u〉→ t2) / µ(C1).

This is the expected result.

• Case a = a1(a2). We apply the induction hypothesis to the two recursive calls to Infer. We
get proofs of:

ϕ1(E) ⊢ a1 : τ1 / C1 ϕ2(ϕ1(E)) ⊢ a2 : τ2 / C2.
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We apply the substitutions µ ◦ ϕ2 to the leftmost judgement, and µ to the rightmost judgement.
By proposition 4.8, we get proofs of:

µ(ϕ2(ϕ1(E))) ⊢ a1 : µ(ϕ2(τ1)) / µ(ϕ2(C1)) µ(ϕ2(ϕ1(E))) ⊢ a2 : µ(τ2) / µ(C2).

We then extend µ(ϕ2(C1)) to µ(C2). By remark (5), we have µ(ϕ2(C1)) ⊆ µ(C2). By remark (6),
none of the generic variables free in µ(ϕ2(ϕ1(E))) is free in µ(C2) \ µ(ϕ2(C1)). (The substitution
µ does not introduce new generic variables.) Hence, by proposition 4.9:

µ(ϕ2(ϕ1(E))) ⊢ a1 : µ(ϕ2(τ1)) / µ(C2).

Moreover, µ is a unifier of ϕ2(τ1) and τ2−〈u〉→t. Taking τ = µ(t) and ϕ = µ◦ϕ2 ◦ϕ1 et C ′ = µ(C2),
as in the algorithm, we have therefore established that:

ϕ(E) ⊢ a1 : µ(τ2)−〈µ(u)〉→ τ / C ′ ϕ(E) ⊢ a2 : µ(τ2) / C
′.

The expected result follows by the typing rule for function applications:

ϕ(E) ⊢ a1(a2) : τ / C ′.

2

Proposition 4.28 (Completeness of type inference) Let a be an expression, E be a typing
environment, C be a constraint set, and V be a set of non-generic variables containing infinitely
many type variables and infinitely many labels, and such that F(E) ∩ V = Ø and F(C) ∩ V = Ø.
If there exists a type τ , a substitution ϕ of non-generic types for non-generic type variables, and a
constraint set C such that

ϕ(E) ⊢ a : τ / C and ϕ(C) ⊆ C and Fg(ϕ(E)) ∩ Fg(C \ ϕ(C)) = Ø,

then (τ, C ′, ϕ, V ′) = Infer(a,E,C, V ) is defined, and there exists a substitution ψ such that

τ = ψ(τ) and C ⊇ ψ(C ′ |̀ {τ, ϕ(E)}) and ϕ = ψ ◦ ϕ outside V.

(That is, ϕ(αn) = ψ(ϕ(αn)) for all non-generic variables αn /∈ V .)

Proof: the proof is by induction on the derivation of ϕ(E) ⊢ a : τ / C, and by case analysis on
the last rule used. The proof closely follows the proof of proposition 1.9, with some additional
constraint handling. I show four representative cases.

• Instantiation rule.
τ ≤ ϕ(E(x)) / C

ϕ(E) ⊢ x : τ / C

Infer(x,E,C, V ) is defined, since x ∈ Dom(e), and returns τ = θ(E(x)) and C ′ = θ(C) ∪ C
and ϕ = [ ] and V ′ = V \ Codom(ϕ), for some renaming θ : Fg(E(x)) ⇔ V . By definition of
the instantiation relation, we have τ ′ = ρ(ϕ(E(x))) for some substitution ρ : Fg(ϕ(E(x))) ⇒
TypNongen, and moreover ρ(C) ⊂ C. Define ψ = ρ ◦ ϕ ◦ θ−1. First of all, we have:

ψ(τ) = ρ(ϕ(θ−1(τ))) = ρ(ϕ(E(x))) = τ ′.
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Then, for all variables αn /∈ V , we have α /∈ Dom(θ−1), hence ψ(αn) = ρ(ϕ(αn)) = ϕ(αn), since
ϕ(αn) is a non-generic type. Finally, let us show that ψ(C ′) ⊆ C. We have:

ψ(C ′) = ψ(C) ∪ ψ(θ(C)) = ρ(ϕ(θ−1(C))) ∪ ρ(ϕ(C)) = ρ(ϕ(C)) ∪ ρ(ϕ(C)),

since V ∩ F(C) = Ø and Dom(θ−1) ⊆ V . On the other hand, we know that:

ρ(ϕ(C)) ⊆ ρ(C) ⊆ C.

The expected result follows.

• Function abstraction rule.

ϕ(E) + f 7→ τ2 −〈u〉→ τ1 + x 7→ τ2 ⊢ a1 : τ1 / C

(ϕ(E(y)) ⊳ u) ∈ C for all y ∈ I(f where f(x) = a)

ϕ(E) ⊢ (f where f(x) = a1) : τ2 −〈u〉→ τ1 / C

Let t1 and t2 be two non-generic type variables taken from V , and u be a non-generic label taken
from V . Consider the environment

E1 = E + f 7→ (t2 −〈u〉→ t1) + x 7→ t2

and the substitution
ϕ1 = ϕ+ t1 7→ τ1 + t2 7→ τ2 + u 7→ u.

The first premise of the typing rule above also reads ϕ1(E1) ⊢ a : τ1 / C. We apply the induction
hypothesis to this premise. This shows that

(τ1, C1, ϕ1, V1) = Infer(a1, E1, C, V \ {t1, t2, u})

is defined. Moreover, we get a substitution ψ1 such that:

τ1 = ψ1(τ1) and C ⊇ ψ1(C1 |̀ {τ1, ϕ1(E1)}) and ϕ1 = ψ1 ◦ ϕ1 outside V \ {t1, t2, u}.

We have ψ1(ϕ1(t1)) = ϕ1(t1) = τ1 = ψ1(τ1). The types ϕ1(t1) and τ1 therefore admit ψ1 as a
unifier. Hence µ = mgu(ϕ1(t1), τ1) exists. It follows that Infer(E, a,C, V ) is defined. Moreover, we
have ψ1 = ψ◦µ for some substitution ψ. The algorithm takes ϕ = µ◦ϕ1 and τ = µ(ϕ1(t2−〈u〉→t1)).
We have:

ψ(τ) = ψ(µ(ϕ1(t2 −〈u〉→ t1))) = ψ1(ϕ1(t2 −〈u〉→ t1)) = ϕ1(t2 −〈u〉→ t1) = τ2 −〈u〉→ τ1 = τ .

(That’s because t1, t2 and u do not belong to V \ {t1, t2, u}, hence these variables have the same
image under ϕ1 and under ψ1 ◦ ϕ1.) Similarly, for all αn /∈ V ′, we have a fortiori αn /∈ V and
α /∈ {t1, t2, u}, hence

ψ(ϕ(αn)) = ψ(µ(ϕ1(αn))) = ψ1(ϕ1(αn)) = ϕ1(αn) = ϕ(αn).

Finally, let us show that C ⊇ ψ(C ′ |̀ {τ, ϕ(E)}). By proposition 4.26, we get

µ(C1 |̀ {τ1, ϕ1(E1)}) = µ(C1) |̀ {µ(τ1), µ(ϕ1(E1))}.
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Moreover, by definition of E1,

µ(C1) |̀ {µ(τ1), µ(ϕ1(E1))} = µ(C1) |̀ {µ(τ1), µ(ϕ1(E))} = µ(C1) |̀ {τ, ϕ(E)}.

That’s because the type variables free in µ(ϕ1(E1)) / µ(C1) but not free in µ(ϕ1(E)) / µ(C1) are a
subset of the variables free in µ(ϕ1(t2−〈u〉→ t1))/µ(C1), that is, free in τ /µ(C1). And by induction
hypothesis we know that

C ⊇ ψ(µ(C1 |̀ {τ1, ϕ1(E1)})).

Hence

C ⊇ ψ(µ(C1) |̀ {τ, ϕ(E)}).

Moreover, given the typing rule for where, we know that

(ϕ(E(y)) ⊳ u) ∈ C for all y ∈ I(f where f(x) = a).

We have ϕ(E) = ψ(ϕ(E)), since the free variables of E are outside V . Hence

(ψ(ϕ(E(y))) ⊳ u) ∈ C for all y ∈ I(f where f(x) = a).

Since, by definition, C ′ = µ(C1) ∪ {ϕ(E(y)) ⊳ ϕ(u) | y ∈ I(a)}, we have shown that

C ⊇ ψ(C ′ |̀ {τ, ϕ(E)}).

This completes the proof in the case of function abstraction.

• The let rule.

ϕ(E) ⊢ a1 : τ1 / C1 (σ,C) = Gen(τ1, C1, ϕ(E)) ϕ(E) + x 7→ σ ⊢ a2 : τ2 / C

ϕ(E) ⊢ let x = a1 in a2 : τ2 / C

By the induction hypothesis applied to the left premise, it follows that

(τ1, C1, ϕ1, V1) = Infer(a1, E,C, V )

is defined, and there exists a substitution ψ1 such that

τ1 = ψ1(τ1) and C1 ⊇ ψ1(C1 |̀ {τ1, ϕ1(E)}) and ϕ = ψ1 ◦ ϕ1 outside V.

In particular, we have ϕ(E) = ψ1(ϕ1(E)).

Let (σ,C0) = Gen(τ1, C1, ϕ1(E)). It is easy to check that all instances of σ /C are also instances
of ψ1(σ) / C. From the right premise of the let typing rule, we therefore obtain a proof of

ψ1(ϕ1(E) + x 7→ σ) ⊢ a2 : τ2 / C.

We apply the induction hypothesis to this judgement. It follows that

(τ2, C2, ϕ2, V2) = Infer(a2, ϕ1(E) + x 7→ σ, C0, V1)
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is defined, and there exists a substitution ψ2 such that

τ2 = ψ2(τ2) and C ⊇ ψ2(C2 |̀ {τ2, ϕ2(ϕ1(E))}) and ψ1 = ψ2 ◦ ϕ2 outside V1.

We then show that ψ = ψ2 meets the conditions of the claim, as in the case of functions.

• Simplification rule.

ϕ(E) ⊢ a : τ / C
′

τ / C ≡ τ / C
′

ϕ(E) / C ≡ ϕ(E) / C
′

ϕ(E) ⊢ a : τ / C

We apply the induction hypothesis to the derivation of ϕ(E) ⊢ a : τ / C
′
. It follows that

(τ, ϕ,C ′, V ′) = Infer(a,E,C, V ) is defined, and, for some substitution ψ, we have

τ = ψ(τ) and C
′
⊇ ψ(C |̀ {τ, ϕ(E)}) and ϕ = ψ ◦ ϕ outside V.

To obtain the expected result, it suffices to show C ⊇ ψ(C |̀ {τ, ϕ(E)}). The following inclusions
hold:

ψ(C |̀ {τ, ϕ(E)}) ⊆ ψ(C) |̀ {ψ(τ), ψ(ϕ(E))} = ψ(C) |̀ {τ , ϕ(E)} ⊆ C
′
|̀ {τ , ϕ(E)}.

According to the second and third premises of the simplification rule, the rightmost set is equal to
C |̀ {τ , ϕ(E)}, which is a subset of C. Hence the expected result. 2

4.5 Conservativity

In this section, we show that the indirect type system is a proper extension of Milner’s type system
(chapter 1): any program that does not use references, channels, or continuations, and is well-typed
in Milner’s type system, is also well-typed in the indirect type system.

In this section, what we call a “pure expression” is an expression a that does not use any of the
operators over references, channels, and continuations introduced in chapter 2. A pure expression
can be typed in two ways: either in Milner’s type system (the type system for the purely applicative
calculus in chapter 1); or in the indirect type system with dangerous variables and closure typing
(the indirect system, for short) introduced in the present chapter. The goal of this section is to
show that all pure expressions that are well-typed in Milner’s system are also well-typed in the
indirect system; in other terms, that the indirect system is a conservative extension of Milner’s
system.

Proposition 4.29 Let a be a pure expression and ι be a base type. If we can prove that [ ] ⊢ a : ι
in Milner’s type system (section 1.3.5), then, there exists a constraint set C such that we can prove
[ ] ⊢ a : ι / C in the indirect system (section 4.2.4).

To prove this claim, the natural approach is to take a typing derivation in Milner’s system and
to transform it into a typing derivation in the indirect system. The problem with this approach is
that we have to annotate the function types and synthesize a constraint set in a globally consistent
way. This can be done, but duplicates large parts of the type inference algorithm for the indirect
system and of its correctness proof.
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Remark. On the other hand, the technique outlined above works well for showing the converse
result: all pure programs that are well-typed in the indirect system are also well-typed in Milner’s
type system. That’s because it suffices to erase the labels and the constraints from a typing
derivation in the indirect system, and transform generic types into type schemes, to obtain a valid
typing derivation in Milner’s system. 2

The approach followed in this section requires less work. It consists in comparing the type
inference algorithms for the two systems, and showing that if the inference algorithm for Milner’s
system terminates successfully, then the inference algorithm for the indirect system terminates
successfully. The idea is that these two algorithms perform nearly identical operations over nearly
identical data, and that unification between two indirect types cannot fail because of the labels
(which are mere variables, hence always unifiable).

To precisely relate the two type inference algorithms, we define a label erasing operation, written
⇓, that maps type expressions from the indirect system back to type expression from Milner’s type
system. The type σ⇓ is called the skeleton of σ.

ι⇓ = ι

t⇓ = t

(σ1 −〈u〉→ σ2)⇓ = σ1⇓ → σ2⇓

(σ1 × σ2)⇓ = σ1⇓ × σ2⇓

Similarly, if V is a set of labels and type variables, we write V ⇓ for the set V without the labels.
We define a variant of ⇓, written ⇓s, that turns an indirect generic type into a type scheme from
Milner’s type system:

σ⇓s = ∀t1, . . . , tn. σ⇓ with {t1 . . . tn} = Fg(σ)⇓.

We extend ⇓ and ⇓s to substitutions and to typing environments, pointwise. It is easy to check
that (ϕ ◦ ψ)⇓ = ϕ⇓ ◦ ψ⇓ for all substitutions ϕ and ψ.

The ⇓ operator is not defined over types of the form σ ref, σ chan ou σ cont. That’s because
all type expressions considered below do not contain any of the constructors ref, chan ou cont.
It is easy to convince oneself that the type inference algorithm for the indirect system does not
produce any type containing ref, chan ou cont when it is applied to a pure expression.

The following property of the indirect type algebra is crucial to the conservativity proof:

Proposition 4.30 Two types τ1 et τ2 are unifiable if and only if their skeletons τ1⇓ and τ2⇓ are
unifiable. In this case, mgu(τ1, τ2)⇓ is equal, up to a renaming, to mgu(τ1⇓, τ2⇓).

Proof: if ϕ is a unifier of τ1 and τ2, we obviously have

ϕ⇓(τ1⇓) = (ϕ(τ1))⇓ = (ϕ(τ2))⇓ = ϕ⇓(τ2⇓)

hence τ1⇓ and τ2⇓ are unifiable, and ϕ⇓ is one of their unifiers. Taking ϕ to be the principal unifier
of τ1 and τ2, we obtain that mgu(τ1, τ2)⇓ is less general than mgu(τ1⇓, τ2⇓).
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Conversely, let ψ be a unifier of τ1⇓ and τ2⇓. Let u be some arbitrary label. We define a lifting
operator ⇑ that maps Milner types to indirect types as follows:

ι⇑ = ι

t⇑ = t

(τ1 → τ2)⇑ = τ1⇑ −〈u〉→ τ2⇑

(τ1 × τ2)⇑ = τ1⇑ × τ2⇑

We obviously have τ⇑⇓ = τ for all Milner type τ . Consider the substitution ϕ defined by

ϕ = ψ⇑ + u1 7→ u+ · · · + un 7→ u,

where u1, . . . , un are the labels free in τ1 or in τ2. It is easy to check that ϕ is a unifier of τ1 and τ2.
Moreover, ϕ⇓ = ψ⇑⇓ = ψ. Now, take ϕ to be the principal unifier of τ1⇓ and τ2⇓. The associated
substitution ϕ is necessarily equal to ξ ◦ mgu(τ1, τ2) for some ξ. Hence

mgu(τ1⇓, τ2⇓) = ϕ⇓ = ξ⇓ ◦ mgu(τ1, τ2)⇓.

Hence mgu(τ1⇓, τ2⇓) is less general than mgu(τ1, τ2)⇓. It follows that these two substitutions are
equal up to a renaming. 2

We are now going to parallel the two type inference algorithms: the Damas-Milner algorithm
and the algorithm for the indirect system. To avoid ambiguities, we write W (a,E, V ) for the result
of the Damas-Milner algorithm (algorithm 1.1) and I(a,E,C, V ) for the result of the algorithm for
the indirect system (algorithm 4.1)

Proposition 4.31 Let a be a pure expression, E be a typing environment from the indirect sys-
tem, V be an infinite set of variables and labels, and C be a constraint set. If (τw, ϕw, Vw) =
W (a,E⇓s, V ⇓) is defined, then (τi, Ci, ϕi, Vi) = I(a,E,C, V ) is also defined, and the following
equalities hold:

τi⇓ = τw and ϕi⇓ = ϕw and Vi⇓ = Vw

up to a renaming of the variables in Vi to variables in Vi.

Proof: the proof is by structural induction over a. We show three representative cases; the re-
maining cases are similar.

• Case a = x. Since W (E⇓s, x) is defined, we have x ∈ Dom(E⇓s) = Dom(E), hence I(x,E,C, V )
is defined. Moreover, we have (τw, Vw) = Inst(x,E(x)⇓s, V ⇓) and (τi, Ci, Vi) = Inst(x,E(x)⇓, V ⇓).
Taking {t1, . . . , tn, u1, . . . , um} = Fg(E(x)), we have E(x)⇓s = ∀t1 . . . tn. E(x)⇓. Hence τw is equal
to [t1 7→ t′1, . . . , tn 7→ t′n](E(x)⇓) for some variables t′i taken from V . Taking θ = [t1 7→ t′1, . . . , tn 7→
t′n, u1 7→ u′1, . . . , um 7→ u′m] as the instantiation substitution for E(x), we have as expected:

τi⇓ = θ(E(x))⇓ = θ⇓(E(x)⇓) = τw.

Similarly,
Vi⇓ = (V \ {t′1, . . . , t

′
n, u

′
1, . . . , u

′
m})⇓ = V ⇓ \ {t′1, . . . , t

′
n} = Vw.



130 Chapter 4. Refined closure typing

Finally, ϕi = ϕw = [ ]. The expected result follows.

• Case a = (f where f(x) = a1). Let t1 and t2 be the fresh variables chosen by the algorithm
W . After renaming if necessary, we can assume that the algorithm I chooses the same variables.
We know that

(τw1, ϕw1, Vw1) = W (a1, E⇓s + f 7→ t1 → t2 + x 7→ t1, V ⇓ \ {t1, t2})

is defined. Applying the induction hypothesis to the expression a1, it follows that

(τi1, Ci1, ϕi1, Vi1) = I(a1, E + f 7→ t1 −〈u〉→ t2 + x 7→ t1, C, V \ {t1, t2, u})

is well-defined. Moreover, after renaming some variables from V to variables from V if necessary,
we have τi1⇓ = τw1, and ϕi1⇓ = ϕw1, and Vi1⇓ = Vw1. Moreover, we know that ϕw1(t2) and τw1 are
unifiable. But ϕw1(t2) = (ϕi1(t2))⇓ and τw1 = τi1⇓. Hence, by proposition 4.30, ϕi1(t2) and τi1 are
unifiable. This shows that I(a,E,C, V ) is well-defined. Moreover, defining µw = mgu(ϕ1w(t2), τw1)
and µi = mgu(ϕi1(t2), τi1), we have µw = µi⇓. Hence, taking into account the definition of τw and
τi:

τi⇓ = µi(ϕi1(t1 −〈u〉→ t2))⇓ = µi⇓(ϕi1⇓((t1 −〈u〉→ t2)⇓)) = µw(ϕw1(t1 → t2)) = τw.

Similarly,

ϕi⇓ = (µi ◦ ϕi1)⇓ = µi⇓ ◦ ϕi1⇓ = µw ◦ ϕw1 = ϕw

Vi⇓ = (Vi1 ∪ {t1, t2, u})⇓ = Vw1 ∪ {t1, t2} = Vw.

• Case a = (let x = a1 in a2). We know that (τw1, ϕw1, Vw1) = W (a1, E⇓s, V ⇓) is defined.
Hence, by induction hypothesis, (τi1, ϕi1, C1, Vi1) = I(a1, E,C, V ) is defined, and τi1⇓ = τw1, and
ϕi1⇓ = ϕw1. Define (σi, Ci) = Gen(τi1, ϕi1(E), Ci1), and σw = Gen(τw1, ϕw1(E⇓s)). We now
show that σ′ = σ⇓s. First of all, F(τw1) = F(τi1⇓) = F(τi1)⇓, and similarly F(ϕi1(E⇓s)) =
Fn(ϕi1(E))⇓. Then, D(τi1 /C1) = Ø. That’s because a1 is a pure expression, hence the constrained
type τi1/C1 returned by I contains no sub-term of the form τ ref, ou τ chan, ou τ cont. Similarly,
D(ϕi1(E) / C1) = Ø. Hence, the variables generalized by I are 1- the type variables generalized
by W , plus 2- some labels, plus 3- some type variables indirectly free in τi1 / Ci1, but not directly
free in τw1. Hence, given the axioms over type schemes from section 1.3.3, σw = σi⇓s. Since
(τw2, ϕw2, Vw2) = W (a2, E⇓s + x 7→ σw, V1⇓) is defined by hypothesis, the induction hypothesis
shows that (τi2, ϕi2, C2, Vi2) = I(a2, E + x 7→ σi, Ci, Vi1) is defined. Moreover, τi2⇓ = τw2 and
ϕi2⇓ = ϕi2 and Vi2⇓ = Vw2. Hence we conclude that I(a,E,C, V ) is defined, and the following
equalities hold:

τi⇓ = τi2⇓ = τw2 = τw

ϕi⇓ = (ϕi2 ◦ ϕi1)⇓ = ϕi2⇓ ◦ ϕi1⇓ = ϕw2 ◦ ϕw1 = ϕw

Vi⇓ = Vi2⇓ = Vw2 = Vw.

This is the expected result. 2

Proposition 4.29 immediately follows from the result above:
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Proof: of proposition 4.29. We recall the hypotheses. Let a be a pure expression and ι be a base
type. We assume that we can derive [ ] ⊢ a : ι in Milner’s system. From the completeness of
algorithm W (proposition 1.9), it follows that W ([ ], a) is defined, and returns (ι, ϕ′) for some ϕ′

as result. By proposition 4.31, we deduce that (τ, ϕ,C) = I([ ], a) is defined. Moreover, τ⇓ = ι.
The only possibility is τ = ι. And, since algorithm I is correct (proposition 4.27), we can derive
[ ] ⊢ a : ι / C in the indirect system. This is the expected result. 2

Remark. Using the same techniques, one can show that the indirect type system in the present
chapter is an extension of the direct system in chapter 3: all programs (pure or not) that are
well-typed in the system in chapter 3 are also well-typed in the indirect system. 2
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Chapter 5

Comparisons

In this chapter, we compare the type systems studied in chapters 3 and 4 with other proposed
polymorphic type systems for ML enriched with references. (Some of these systems have been
applied to other extensions of ML, besides references. The comparison is carried only for references,
the common feature of all these systems.) The comparison criterias are expressiveness (how many
correct programs are recognized as well-typed?), on the one hand, and on the other hand, the
practicality of these systems, in particular with respect to modular programming.

Concerning expressiveness, it turns out that there are generally no proper inclusions between
these systems: in most cases, there exists one example that is well-typed in one system, but ill-
typed in another. Hence the comparison can only be carried on examples that are representative
of actual programming situations. I therefore start by presenting the test programs used, before
commenting the results obtained with the various type systems.

5.1 Presentation of the test programs

The first test measures the capacity of the systems to polymorphically type functions that operate
on mutable data structures. The first test is the typing of the function

let make ref = λx. ref(x)

The make ref function is the paradigm of most generic functions over arrays, matrices, hash tables,
B-trees, in-place balanced trees, and so on. A good system must absolutely give a generic type to
the make ref function. Failure, here, means that we cannot implement these useful but complex
data structures once and for all, in a library.

The second test determines whether it is possible to write generic functions in a non-purely
applicative style, for instance by using local references to accumulate intermediate results. The
test consists in typing the function

let imp map = λf. λl.
let arg = ref(l) and res = ref([ ]) in

133



134 Chapter 5. Comparisons

while not null(!arg) do

res := f(head(!arg)) :: !res;
arg := tail(!arg)

done;
reverse(!res)

then, its application to the identity function and to the empty list, imp map id [ ]. We also compare
the type of imp map with the type of the equivalent, but purely applicative function:

let rec appl map = λf. λarg.
if null(arg) then [ ] else

f(head(arg)) :: appl map f (tail(arg))

Many functions over graphs, for instance (depth-first or breadth-first search, computation of the
connex components, computation of a shortest path, topological sort, etc [88, chapters 29–34])
typecheck in the same way as the imp map function. A good type system must give the same type to
the two functions imp map et appl map; the application imp map id [ ] must have the polymorphic
type ∀α.α list. If a type system does not pass this test, this means that polymorphism does not
interact satisfactorily with the non-purely applicative features in this system.

The third test measures the compatibility between functions over mutable structures and higher-
order functions. It consists in applying the identity function to the make ref function defined above:

id (make ref)

A more realistic variant of this test consists in partially applying the appl map functional defined
above to the make ref function. Finally, we also test the partial application of the imp map func-
tional to the identity function. A good system must assign the same type to id make ref and to
make ref, and must give a generic type to map make ref and to imp map id. Otherwise, we can
conclude that the type system does not correctly handle full functionality.

The fourth tests is more artificial and more specific to the approach taken in this disserta-
tion. It detects the problems mentioned at the beginning of chapter 4: infinite type expressions
(section 4.1.1) and variable capture through the environment (section 4.1.2). For each of the two
problems, we give two variants of the test, one without references, the other with references. For
the problem of infinite types, we consider:

let eta = λf. either f (λx. f(x))

where the either function is defined as:

let either = λa. λb. if cond then a else b

where cond is any boolean expression. The either function is intended to constraint its two
arguments to have the same type. Here is the variant with references of this test:

let eta ref = λf.
let r = ref(f) in

either f (λx. !(either r (ref(f)))(x))
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The program that exercises variable capture is the counterexample from section 4.1.2:

let capt id = λf.
let id = λy. (either f (λz. y; z)); y

in id(id)

Here is the variant with a few references added:

let capt id ref = λf.
let id = λy.

let r = ref(y) in

either f (λz. either r (ref(y)); z);
y

in id(id)

A good system must be a proper extension of the ML type system, and therefore it must accept
the “pure” versions of these two programs. The variants with references are semantically correct,
and therefore should be accepted, though failure to detect this fact is not too serious in practice.

The final test is highly artificial, too. It mimics the creation of a polymorphic reference as far
as types are concerned, without actually creating a reference:

let fake ref = (raise An exception : α ref)

We have used an exception and a type constrait for the sake of clarity, but these two features are
not essential. Here is a similar example that does not use them:

let fake ref = (λx. !x; x)(loop(0) where loop(x) = loop(x))

This test illustrates the difference between detecting the creation of references, by an extra analysis
superimposed over typing, and detecting the presence of references, by mere examination of the
types: the former approach correctly concludes that nothing dangerous is happening; the latter
approach notices that the result has type α ref, and incorrectly concludes that we might be
creating a polymorphic reference here.

5.2 Comparison with other type systems

The results of the tests are summarized in figure 5.1. We follow the convention that all examples
are toplevel phrases, and therefore their types must be closed. A dash means that the example
is rejected because some type variables are not generalizable in its type, and thus its type cannot
be closed. A smiley . .

⌣lmeans that the type can be closed, and therefore the example is accepted.

5.2.1 Weak variables

A first approach to the control of polymorphic references consists in typing specially the primitives
that create references, in order to mark the type variables that are free in the type of the reference
created. These marked variables are called weak variables, or imperative variables, and are subject
to generalization conditions more restrictive than those for the regular variables. This approach is
followed by the first three systems presented below, with various restrictions over generalization,
from the strongest to the weakest.
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5.2.1.1 Caml

The simplest restriction consists in never generalizing weak variables. Then, a reference can never
be assigned a polymorphic type, because 1- its type at creation-time contains only weak variables,
2- the type of any object that gets in touch with the reference is similarly weakened (by unification),
and 3- weak variables are never generalized later.

History. This idea seems to have occurred independently to several persons when references
subsumed the mutable variables of the original LCF-ML [31, page 52]. No presentation of this idea
has been published, nor formal typing rules, nor a soundness proof. This approach is still being
employed in the Caml system, for the typing of mutable objects [19, page 41] [99, page 79].

Results. This approach turns out to be extremely restrictive in practice. The classical data
structures (hash tables, etc) cannot be implemented as libraries of generic functions: the type
system tolerates only monomorphic versions of the functions that create these structures. A fortiori,
most generic functions cannot allocate mutable structures holding intermediate results. Hence,
genericity and imperative programming are completely incompatible in this system.

5.2.1.2 Standard ML

The next step consists in allowing the generalization of weak variables in the type of non-expansive
expressions: those expressions whose evaluation does not create fresh references. Tofte proposed
the following syntactic approximation of non-expansiveness: an expression is non-expansive if it is
a variable, a constant, or a function λx. a. All other kinds of expressions are taken to be expansive.
Consider the expression λx. ref(x), which has the weak type α∗ → α∗ list. (Weak variables are
written with a star superscript.) The variable α is marked weak, because this function creates a
reference with type α. However, the expression λx. ref(x) is non-expansive, according to Tofte’s
classification. Hence, α∗ can be generalized in the remainder of the program. Thus, the following
example is well-typed:

let make ref = λx. ref(x) in

. . . make ref(1) . . . make ref(true) . . .

The body of the let is indeed typed under the assumption make ref : ∀α∗. α∗ → α∗ list. In this
type scheme, the weak generic variable α∗ can only be instantiated by weak types, that is, types
that contain only weak variables. This ensures type safety:

let make ref = λx. ref(x) in

let r = make ref(λx. x) in . . .

Here, the application make ref(λx. x) has type (β∗ → β∗) ref. The variable β is necessarily weak,
since the type by which α∗ is instantiated must be weak. Moreover, this expression is taken to
be expansive, since it is an application, not a constant, variable or function. Hence β∗ is not
generalized, thus avoiding the inconsistent use of r.

History. This system was introduced by Tofte in 1987, then incorporated into Standard ML.
It is therefore employed by all ML implementations that follow the Standard (Edinburgh ML, Poly
ML, Poplog ML). It is described in Tofte’s thesis [92, 93] and in the definition of Standard ML
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[64, 63]. Tofte [92, 93] gives a proof of the soundness of this system for ML with references, using
relational semantics and semantic typing predicates. Wright and Felleisen [101] give soundness
proofs for this system applied to ML with references, ML with exceptions, and ML with callcc,
using reduction semantics and the fact that reductions preserve typing.

Results. This system is a considerable improvement over the one of Caml: we can at last define
generic functions that create mutable structures; this allows providing implementations for many
data structures in libraries (see [7] for an example of such a library).

However, this system has two major weaknesses. First of all, the non-expansiveness criterion
is naive, and fails to recognize as non-expansive many expressions that, semantically, are non-
expansive; these expressions remain monomorphic, while they should be given a polymorphic type.
This phenomenon occurs frequently when we combine higher-order functions with functions that
create references. In the example

let make ref2 = (λx. x)(make ref) in . . .

the type of make ref2 remains monomorphic in the body of the let: the variable α∗ is not
generalizable in its type, α∗ → α∗ ref, since the expression (λx. x)(make ref) is expansive, ac-
cording to Tofte’s criterion. Obviously, make ref2 should be given the same weakly polymorphic
type as make ref, since both identifiers have the same value. Similarly, the partial application
map make ref has the type α∗ list → α∗ ref list, in which α∗ cannot be generalized, since
the expression map make ref is expansive according to Tofte’s criterion. Nonetheless, the eta-
expanded form λl. map make ref l can have a weakly polymorphic type, since this expression is
non-expansive.

Weakness number two: the fact that some references have a limited scope is not taken into
account. If an object a gets in touch with an object b whose type contains weak type variables, then
the corresponding type variables in the type of a are automatically weakened; weak variables thus
propagate through the types, even if the reference in which type they appear has long disappeared.
For instance, imp map is given the weakly polymorphic type

∀α∗, β∗. (α∗ → β∗)→ α∗ list→ β∗ list,

while appl map, which computes the same function, is given the fully polymorphic type

∀α, β. (α→ β)→ α list→ β list.

This difference is apparent when we apply those two functions to polymorphic arguments, such as
the identity function and the empty list: appl map id [ ] has type β list with β generalizable,
while imp map id [ ] has type β∗ list with β∗ not generalizable, since the expression is expan-
sive. Similarly, most generic function built on top of imp map possesses a less general type than
if appl map has been employed instead — even though those two functions have the same seman-
tics. The reason for this discrepancy is that imp map internally creates two references with types
α∗ list ref and β∗ list ref, thus requiring the variables α∗ and β∗ to be weak in the type
of imp map. The fact that those two references are local to each call to the function is not taken
into account: the result of imp map id [ ] has type β∗ list, where β∗ is still marked weak; yet,
the reference with type β∗ list created by the function imp map has became unreachable, and
therefore there is no need to restrict the generalization of β∗ any longer.
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5.2.1.3 Standard ML of New Jersey

In order to detect more precisely the time when references are created inside curried functions,
MacQueen proposed an extension of Tofte’s system where variables, instead of being partitioned
into weak and non-weak variables, are associated to an integer, their “weakness degree” or more
exactly their “strength”. The degree of a variable measures the number of function applications
that must be performed before a reference whose type contains this variable is allocated. Variables
that do not appear in the type of a ref have degree +∞. Variables that do appear in the type of
a ref have a degree equal to the number of function abstractions that separate the introduction of
the variable from the occurrence of the ref. Variables with degree 0 are not generalizable; variables
with degree n > 0 are generalizable; each function application decrements the degree of variables
in the result type. For instance, in MacQueen’s system, the function:

let f = λx. λy. ref(x, y)

is given type ∀α2, β2. α2 → β2 → (α2 × β2) ref. The partial application f(1) has type β1 →
(int × β1) ref, in which β is still generalizable, since it has degree 1. As a consequence, the
following example is well-typed, while it is rejected by Tofte’s system:

let f = λx. λy. ref(x, y) in

let g = f(1) in

. . . g(true) . . . g(2) . . .

History. This system is used in the Standard ML of New Jersey implementation. It is briefly
described in the reference manual for this implementation [3]. The typing rules have never been
published; neither have soundness proofs. The system seems to have slightly changed in a recent
release.

Results. In practice, this system turns out to be not much more expressive than Tofte’s.
Only one of my examples (the partial application of imp map to the identity function) is recog-
nized correct by MacQueen’s system, but not by Tofte’s. Other examples of partial applications
(appl map make ref) are still wrongly rejected as ill-typed, indicating that full functionality is still
not handled correctly. Also, the fact that some references have local scope is still not taken into
account (imp map).

5.2.2 Effect systems

The three systems I shall now describe rely, for controlling polymorphic references, over the addition
of an effect system to the type system. In the same way as the type of an expression approximates
the value of the expression, the effect of an expression approximates the side-effects performed
during its evaluation. The typing judgements now have the form:

E ⊢ a : τ, F

where F ranges over an effect algebra to be specified later. The computation of types and the
computation of effects interfere in two points. First of all, the type of a function is annotated by its
latent effect, that is, by a description of the side-effects it performs when applied. Function types
therefore have the format τ1 −〈F 〉→ τ2, where F is the latent effect. (In spite of the similarities in
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notations, there is a major difference between closure typing and effect systems: the closure type is
a static information: it describes what the functional value already contains; while the latent effect
is a dynamic information: it describes what the function will do once applied.) The typing rule for
functions illustrates this interference:

E, x : τ1 ⊢ a : τ2, F

E ⊢ λx. a : (τ1 −〈F 〉→ τ2),Ø

(We write Ø for the empty effect: the effect given to expressions that have no side-effects.)

Interference number two: the effect of an expression is taken into account when generalizing
its type, so as to avoid the creation of polymorphic references. As we shall now see, various
generalization criteria, more or less precise, can be applied, depending on the effect algebra used.

Context. The presentation of effect systems given above is incomplete, and considers only the
aspect “polymorphic reference control” in a type inference framework. The effect systems were
introduced by Lucassen and Gifford in their FX language [29, 54], mainly to aid in automatically
parallelizing imperative programs: two expressions without side-effects, or whose side-effects are
performed on disjoint sets of references, can be evaluated concurrently without changing the be-
havior of the program. Moreover, the FX language is originally a language with type and effects
explicit in the source program; the problem of inferring types and effects have not been considered
until much later [40, 90], and have imposed additional restrictions over the algebra of types and
effects. In the following discussion, I consider only those effect systems for which a type inference
algorithm exists. 2

5.2.2.1 Simple effects

In the simplest case, an effect is a set of constants and effect variables:

F ::= {f1, . . . , fn} ∪ ς1 ∪ . . . ∪ ςk

f ::= alloc | read | write

Here, the alloc constant means that the expression creates references; read, that it reads refer-
ences; write, that it modifies references. We write ς for effect variables, which introdce a notion
of polymorphism over effects similar to the polymorphism over types found in ML. With the effect
algebra above, the computation of effects is a slightly refined variant of the purity analysis (“does
this expression perform side-effects?”). The generalization of the type of an expression is permitted,
then, only if the expression is pure, that is, if it has effect Ø:

E ⊢ a1 : τ1,Ø {α1 . . . αn} = F(τ1) \ F(E) E + x 7→ ∀α1 . . . αn. τ1 ⊢ a2 : τ2, F

E ⊢ let x = a1 in a2 : τ2, F

E ⊢ a1 : τ1, F1 F1 6= Ø E + x 7→ τ1 ⊢ a2 : τ2, F2

E ⊢ let x = a1 in a2 : τ2, (F1 ∪ F2)
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The simple typing of references is sound, then: with the restriction above over generalization, the
value whose type is generalized cannot contain newly created references; hence, we never generalize
over a type variable which is free in the type of a reference.

History. The system described above is close to the one described by Gifford and Lucassen in
[29]. Jouvelot and Gifford [40] study type inference for a similar system. They claim that type
inference in the presence of the two let rules above requires backtracking, and therefore opt for
an even simpler type system, where only non-expansive expressions (in the sense of Tofte) can
be generalized. Clearly, “non-expansive” implies “has effect Ø”, but the converse does not hold.
Hence, this restriction makes the effect system behave just as poorly as the SML type system, as far
as polymorphic type references are considered. I do not apply this restriction in the comparisons.

Results. The system described above gives better results than the systems based on weak vari-
ables on the examples involving higher-order functions. For instance, the application id make ref

is correctly recognized as pure, and therefore its type can be generalized. (The function id has
no latent effect, and its argument is a pure expression.) Annotating function types by their latent
effect allows to detect more precisely when references are created. For instance, the type given to
appl map is:

appl map : ∀α, β, ς. (α−〈ς〉→ β)−〈Ø〉→ α list−〈ς〉→ β list.

(Effect variables are generalized exactly in the same way as type variables.) The partial application
appl map make ref therefore has effect Ø, and its type can be generalized.

On the other hand, the generic functions that allocate local references are handled just as poorly
as in SML. The allocation, though purely local, is witnessed in the latent effect. Hence, the type
of these functions differs from the type of equivalent purely applicative functions. For instance:

appl map : ∀α, β, ς. (α−〈ς〉→ β)−〈Ø〉→ α list−〈ς〉→ β list

imp map : ∀α, β, ς. (α−〈ς〉→ β)−〈Ø〉→ α list−〈{alloc} ∪ ς〉→ β list

Hence, imp map id [ ] is given effect {alloc}, preventing the generalization of its type.

Although this does not appear in figure 5.1, this first effect system is sometimes less powerful
than the systems based on weak variables. For instance,

let id = (ref [ ]); (λx. x) in id(id)

is accepted in SML, but rejected in this effect system: the expression (ref [ ]); (λx. x) has effect
{alloc}, hence its type cannot be generalized.

5.2.2.2 Typed allocation effects

To correct the weakness above, we can enrich the effect algebra so as to record not only the fact
that an expression creates a reference, but also the type of the reference created.

F ::= {f1 . . . fn} ∪ ς1 ∪ . . . ∪ ςk

f ::= alloc(τ) | read | write
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The modified generalization rule is: the variables that are free in an allocation effect of the expres-
sion cannot be generalized.

E ⊢ a1 : τ1, F1 {α1 . . . αn} = F(τ1) \ F(F1) \ F(E) E + x 7→ ∀α1 . . . αn. τ1 ⊢ a2 : τ2, F2

E ⊢ let x = a1 in a2 : τ2, (F1 ∪ F2)

History. A recent paper by Wright [100] studies a similar system. Wright does not keep track
of the read and write effects (that are useless for the control of references), and replaces the effect
alloc(τ) by the set of the type variables free in τ (that are all we need to implement the let rule
above). In his system, an effect is thus a set of effect variables and type variables: the variables
free in the types of the references created. His system gives the same results as the one described
in this section.

Results. On my tests, this system behaves exactly like the first effect system: good handling
of full functionality, poor handling of references with local scope. It accepts in addition a few
anecdotic examples, such as

let id = (ref [ ]); (λx. x) in id(id)

With typed allocation effects, the expression (ref [ ]); (λx. x) is given type α −〈Ø〉→ α and effect
{alloc(β list ref)}. The variable α can therefore be generalized, since it is not free in the effect.

5.2.2.3 Damas’ system

One of the very first type systems for references in ML, proposed by Damas in 1985, can be viewed
as a simplified allocation effect system. In Damas’ system, function type schemes are annotated
by a set of type variables, the variables possibly free in the types of the references allocated by the
function. In contrast with Wright’s system, the function types located inside type expressions are
not annotated. More precisely, Damas’ type algebra is as follows:

Types τ ::= α type variable
| τ1 → τ2 simple function type
| . . .

Schemes σ ::= ∀α1 . . . αn. τ regular scheme
| ∀α1 . . . αn. τ1 −〈β1, . . . βk〉→ τ2 function scheme,

annotated by its allocation effect

The motivation for this restriction seems to be that having no effects inside type expressions makes
type inference considerably easier.

History. This system is studied in Damas’ thesis [21]. Damas gives a soundness proof for this
system, with respect to a denotational semantics, and proposes a type inference algorithm. This
work is fairly hard to read. In particular, the soundness proof requires complicated constructions
of domains and ideals. Tofte [92] claims that this proof is not complete. Damas’ system has never
been implemented in an ML compiler, to the best of my knowledge.

Results. Damas’ system gives basically the same results as the SML system. Since effects are
omitted inside the types, the examples involving higher-order functions are not handled correctly
(appl map make ref). The scope of references is not taken into account (imp map).
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5.2.2.4 Typed allocation effects plus regions

To take into account the fact that references can disappear (more exactly, become unreachable)
when leaving the scope of the identifiers to which they were bound, we can introduce the notion of
region inside types and inside effects. A region stands for a set of references. The reference types
now indicate not only the type of the referenced object, but also the region to which the reference
belongs. Similarly, effects now keep track of the region involved.

τ ::= τ refρ type of a reference belonging to region ρ
| τ1 −〈F 〉→ τ2 function type
| . . .

F ::= {f1, . . . , fn} ∪ ς1 ∪ . . . ∪ ςk effect

f ::= allocρ(τ) allocation of a τ ref in region ρ
| readρ dereferencing of a reference from region ρ
| writeρ modification of a reference from region ρ

From the standpoint of typing, regions are treated like type variable. In particular, identifying
two reference types τ refρ et τ refρ′ causes the identification of ρ and ρ′, that is, the merging of
the two regions. Also, if two references have types τ refρ and τ ′ refρ′ with ρ 6= ρ′, this means
that the two references cannot be aliases (they cannot point to the same memory location). This
is valuable information for efficient compilation and automatic parallelization. Regions similarly
indicate when a reference becomes unreachable. If, at some point during evaluation, the current
evaluation context contains no references belonging to region ρ, this means that all references
previously allocated in region ρ are now unreachable. Hence, we can ignore the effects concerning
region ρ: these effects have no influence on the remainder of the computation. This is expressed
by the following effect simplification rule:

E ⊢ a : τ, F

E ⊢ a : τ, Observe(F,E, τ)

The Observe operator returns the subset of F composed of those effects over regions free in E or τ .
These effects can possibly be “observed” from the outside world. The other effects can be erased,
since they concern unreachable references, and therefore cannot be observed anymore.

History. The notion of region and the effect masking rule above are described in [54], for an
explicitly typed language where regions are explicitly declared and associated to the references
created in the program. Recently, Talpin and Jouvelot [90] have shown how to infer regions and
effects for an ML-like source language.

Results. Thanks to effect masking, generic functions can now have the same type, whether
they internally use references or not. For instance, the principal typing for imp map leads to a type
of the form:

imp map : (α−〈ς〉→ β)−〈Ø〉→ α list−〈ς ∪ {allocρ(α), allocρ′(β)}〉→ β list

where, provided that the typing is principal, ρ and ρ′ are two “fresh” regions, that do not appear
anywhere else; this is due to the fact that the two references created by imp map are never passed
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as argument to another function. Then, the masking rule allows erasing the two allocation effects,
leading to the type

imp map : (α−〈ς〉→ β)−〈Ø〉→ α list−〈ς〉→ β list,

which is exactly the principal type for appl map.

The properties of this type system are close to the ones of the system in chapter 3. It is
therefore no surprise that the problems mentioned in section 4.1 appear also for this system: the
eta ref example illustrates the need for infinite (recursive) effects; the capt id ref example shows
a phenomenon of variable capture through the effects. Let us detail those two examples.

let eta ref = λf.
let r = ref(f) in

either f (λx. !(either r (ref(f)))(x))

When typing the outer either, we have:

f : α−〈ς〉→ α

r : (α−〈ς〉→ α) refρ

The second argument to either, (λx. !(either r (ref(f)))(x)), has type:

α−〈ς ∪ {allocρ(α−〈ς〉→ α)}〉→ α.

Indeed, this function allocates a reference to f, and this reference must belong to the same region
ρ as r, because of the typing of the inner either. Since ρ is reachable from the environment, the
allocation effect is not maskable. But there is no (finite) effect that is a common instance of ς and
of ς ∪ {allocρ(α−〈ς〉→ α)}.

The second kind of failures comes from a phenomenon of variable capture through the effects,
that prevents the generalization of the captured variables, as explained in section 4.1.2.

let capt id ref = λf.
let id = λy.

let r = ref(y) in

either f (λz. either r (ref(y)); z);
y

in id(id)

Before typing the outer either, we have the following types:

f : α−〈ς〉→ α

y : β

r : β refρ

(λz. either r (ref(y)); z) : γ −〈allocρ(β)〉→ γ



5.2. Comparison with other type systems 145

The function λz . . . allocates a reference to y, in the same region ρ as r, because of the inner either.
The allocation effect is not maskable, since ρ is reachable through r. Identifying the types of f and
λz . . . leads to the following types:

f : α−〈ς ∪ {allocρ(β)}〉→ α

y : β

r : β refρ

The expression bound to id therefore has type β−〈F 〉→β, for some effect F , in the typing environ-
ment f : α−〈ς ∪ {allocρ(β)}〉→α. The variable β is free in this environment, and therefore cannot
be generalized. Hence id remains monomorphic, and the self-application id(id) fails.

Remark. At first sight, it might seem that effect masking suffices to eliminate the variable capture
via latent effect problem. This is not the case, as demonstrated above. The effect masking rule
is a “garbage collection” rule: we can ignore everything that happens in a region if this region
is mentioned nowhere in the current typing context (environment and type). It does not reflect
the abstraction properties of functions: a function can reference a given region internally, without
making this region accessible from outside. The variable capture phenomenon comes from the fact
that this abstraction property is not reflected in the typing rules. In contrast, the simplification
operation over closure types described in section 4.1.2 does take this abstraction property into
account, and therefore essentially differs from a “garbage collection” operation like effect masking.

2

5.2.3 The systems proposed in this Thesis

I now comment the results obtained with the approach I propose: dangerous variables plus closure
typing.

Results. In contrast with the previous approaches, this approach does not try to gather infor-
mation on the dynamic behavior of evaluation (“this function does this and that”); just like the
regular ML typing, it only gather purely static information (“this value contains this and that”).
Because of this fact, it remains much closer to a conventional type system.

As a consequence, it is no surprise that full functionality causes absolutely no difficulties:
id make ref naturally has the same type as make ref; about appl map make ref, the typing
says that this is a functional value whose closure contains no references, hence it is given a fully
polymorphic type.

Similarly, the fact that some references have only local lifespan can easily be seen on the types:
if a function creates a reference, but this reference does not appear in the return value, nor in
other reachable references — this can easily be checked on the types —, then these references are
clearly local. Hence, imp map has the very same type as appl map, and can be employed in place
of appl map in any program.

The technical examples (eta, eta ref, capt id, capt id ref) reveal some weaknesses of the
type system described in chapter 3. The system in chapter 4, while keeping the good behavior
of the system in chapter 3 over the practical examples, fixes most of these weaknesses: recursive
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closure types do not cause type errors anymore (eta and eta ref); and the capture of variables
through closure types is avoided in the capt id example. As the capt id ref example shows, this
capture phenomenon still appears in some non-purely functional programs.

let capt id ref = λf.
let id = λy.

let r = ref(y) in

either f (λz. either r (ref(y)); z);
y

in id(id)

The principal typing of λy . . . under the assumption f : tn−〈un〉→ tn results in the type t′n−〈u
′
n〉→ t′n

under the constraints
t′n ref ⊳ un, (tn −〈un〉→ tn) ⊳ u′n

The variable t′n is dangerous in the typing environment, and therefore cannot be generalized. I think
that this capture phenomenon could be avoided as in chapter 4: just as we can ignore the variables
free in the closure type part of a function type if these variables are not free in the argument type
or in the result type, I believe that it is correct to ignore the variables dangerous in the closure
type part of a function type if these variables are not free in the argument type or in the result
type. More formally, we would take:

D(σ1 −〈u〉→ σ2 / C) = D(u / C) ∩ (F(τ1) ∪ F(τ2)).

The intuition behind this definition is that the omitted dangerous variables correspond to references
that are not accessible from outside the function. For instance, in the capt id ref example, t′n
would no longer be dangerous in the typing environment at generalization time. I haven’t attempted
to proof the soundness of this refinment of the system in chapter 4.

The fake ref example, which consists in constraining the type of an exception to mimic the
creation of a polymorphic reference, is rejected by my systems, but accepted by all others. This
has absolutely no practical significance, but outlines the difference between a purely type-based
approach, that leads to the rejection of those expressions whose type looks exactly like the type of
a polymorphic reference creation, and the other approaches, that add various mechanisms to the
type system to precisely better distinguish reference creation.

5.3 Ease of use and compatibility with modular programming

Programming in a typed language requires the programmer to have a good understanding of the
type system: to write type declarations in the source code; to understand the type errors reported
by the compiler; finally, to write type specifications in module interfaces. This argument favors type
systems that are as simple as possible. It sets a limit to the search for more and more expressive
type systems, that naturally tends to result in complicated type systems. (The progression from
the system in chapter 1 to the system in chapter 4 illustrates this tendency; the other systems
presented at the beginning of this chapter also follow this tendency.)

Type inference, as in ML, may seem to resolve this tension: if the types are left implicit in
the source code and reconstructed by the compiler, then the programmer is unaffected by the
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complexity of the type system. In fact, type inference makes the problem less acute, but does not
make it disappear. Indeed, there remains a number of situations where the programmer must read
or write type expressions directly.

First of all, when a type error is reported, the programmer has to decipher the inferred types,
understand why they conflict, and locate where the error originates. The latter is often difficult,
even with a simple type system. A more complex type system makes things worse, though not des-
perate. The compiler can indeed simplify the type expressions presented to the user, as long as the
simplified types still reveal the type conflict. For instance, in the case of the systems that annotate
function types with extra information (such as those in chapters 3 and 4, and also such as the effect
systems presented above), this extra information need not be printed when reporting an application
of a function to an object of the wrong type — the most common type error, by far. Moreover, truly
subtle type errors, in particular those related to polymorphic references/channels/continuations,
are unfrequent, both from novice programmers (who generally do not know how to mix full func-
tionality with non-applicative features) and from experienced programmers (who scarcely do type
errors). We can therefore tolerate that these subtle but unfrequent errors require some thinking
from the programmer.

The situations where programmers must write type expressions by hand raise more serious
issues. In ML, this occurs when declaring data structures (concrete types), since the programmer
must give the types of the arguments to the constructors and labels, and also when writing module
interfaces (or “signatures”), since the programmer must specify the types of the global identifiers
exported by the module. In the case where only function types are enriched, as in all systems
considered above, the problem with concrete type declarations is minor: in practice, concrete types
containing functional values are unfrequent. The problem with module interfaces, however, is
crucial: most values exported by a module are functions.

The issue of the practicality of the type systems considered here therefore reduces to the follow-
ing issue: how hard is it to completely specify, in a module interface, the type of a function whose
implementation is not known? (In the case where we write the implementation before the interface,
we can always run the type inference system on the implementation, then copy the inferred type
into the interface by “cutting and pasting”. This practice goes against the principles of modular
programming [70, 12], that require specifying before implementing. At any rate, it does not apply
to the writing of interfaces for the parameters of parameterized modules, or “functors”.)

On the systems presented in the previous section, it appears that this difficulty is roughly pro-
portional to the expressiveness of the system: the more expressive the system, the more its type
expressions reflect how a function is implemented, and the more difficult specifying an unimple-
mented function is.

This progression is striking in the case of the systems based on weak type variables. The CAML
type system, the most restrictive of all, uses the same type algebra as the core ML language, and
therefore turns out to be just as convenient for writing interfaces. The Standard ML system,
more expressive, distinguishes between applicative and imperative variables; hence, to specify the
type of a polymorphic function, one must know beforehand whether it will be implemented in the
applicative style (in which case all variables in its type can be applicative) or in the imperative
style (in which case some variables must be imperative). The introduction of weakness degrees,
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as in SML-NJ, makes this problem even more acute: these levels highly depend on how curried
functions interleave computations and parameter passing; as a consequence, the type specification
of a curried, imperative, polymorphic function not only imposes the implementation style, but also
the order in which computations and parameter passing are performed. Clearly, it is difficult to
figure out these properties before the implementation is written.

Effect systems appear to follow a similar progression.1 With a simple effect algebra, the type
specification for a function reveals not only its implementation style, but also, in the case of
higher-order functions, the time when the functional arguments are applied (this is apparent in
the positions of the effect variables that stand for the latent effects of those functional arguments).
With an effect algebra enriched with regions, the type specification must in addition specify the
aliasing properties of the implementation. That’s because the region parts of types express precisely
how an implementation shares references between arguments and results. These sharing properties
are highly dependent on the implementation, and therefore seems inappropriate for inclusion in the
type specification.

My approach — closure typing — also adds major difficulties to the writing of module interfaces.
Generally speaking, it is hard to imagine which closure types to put over the arrows in the type
of a function not yet implemented. Moreover, two implementations of a curried function can opt
for different interleavings of computations and parameter passing, resulting in two different types
for two implementations that we would like to be equivalent. Notice that this problem does not
occur in the case of monomorphic functions, the most frequent case by far. That’s because we can
omit all closed types from closure type specifications; hence, the specification of a monomorphic
function contains only trivial closure types. This problem does not occur either for polymorphic,
but uncurried functions: functions of the form let f (x, y, z) = a, where a does not return a
functional value. Trivial closure types suffices for these functions, too. But I must admit that
non-trivial (and even complicated) closure types are required for polymorphic curried functions,
and in particular for those which take functional arguments. A quick look at some ML libraries
[7, 99, 51] shows that many useful functions belong to this category. Most of these functions could
be uncurried; but the curried form seems to be preferred by ML programmers. (I sympathize: I
have myself loudly argued in favor of currying [49], and designed the Caml Light execution model
so that curried functions are more efficient than their uncurried forms.) For this kind of functions,
closure typing clearly conflicts with the requirements of modular programming.

1Since I was unable to get some practical experience with an implementation of a language with an effect system,
I can only give a priori feelings here. The vast literature on effect systems [29, 54, 40, 100, 90] does not say anything
about the problems related to modular programming.



Chapter 6

Polymorphism by name

In this chapter, we show that the difficulties encountered with the polymorphic typing of references,
channels, and continuations are specific to the ML semantics for generalization and specialization:
if these constructs are given alternate semantics, which I call polymorphism by name, the naive
typing rules for references, channels, and continuations turn out to be sound. This result suggests
that a variant of ML with polymorphism by name would probably be a better polymorphic language
for references, channels, and continuations than ML. The end of the chapter discusses the pros and
cons of this variant from a practical standpoint.

6.1 Informal presentation

6.1.1 The two semantics of polymorphism

Polymorphism is introduced by two basic operations: generalization, that transforms a term with
type τ [α], where α is a type parameter, into a term with type ∀α. τ [α]; and specialization, that
transforms a term with type ∀α. τ [α] into a term with type τ [τ ′], for any given type τ ′. In ML,
these two operations are not explicit in the source program: they are performed implicitly at certain
program points (the let construct, in the case of generalization; when accessing a variable, in the
case of specialization). In other languages, these operations are explicit in the source program:
the language provides syntactic constructs to generalize and to specialize. For instance, in the
polymorphic lambda-calculus of Girard [30] and Reynolds [82], generalization is presented as an
abstraction over a type variable. It is written Λα. a, by analogy with the notation for functions
λx. a. Symmetrically, specialization is presented as the application of a term to a type. It is written
a〈τ〉, by analogy with function application. Some programming languages, such as Poly [57] and
Quest [12], follow this approach.

Regardless of their syntactic presentation (explicit or implicit), generalization and specialization
can be given two different semantics. The first possibility is to consider that these constructs have
no computational content. Using the polymorphic lambda-calculus notation, this amounts to say
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that Λα. a evaluates like a, and similarly a〈τ〉 evaluates like a:

e ⊢ a⇒ r

e ⊢ Λα. a⇒ r

e ⊢ a⇒ r

e ⊢ a〈τ〉 ⇒ r

Using the ML notation, and assuming strict semantics, this amounts to say that the expression
let x = a1 in a2 evaluates a1 once and for all, and shares the resulting value between all occur-
rences of x in a2. This is so in ML, and in the small language studied in the previous chapters.

The alternate semantics consist in interpreting generalization as functional abstraction, and
specialization as function application. In other terms, generalization suspends the evaluation of the
expression whose type is generalized, and each specialization re-evaluates this expression. Using
the polymorphic lambda-calculus notation, this means that Λ is interpreted as an actual abstrac-
tion (that builds a suspension), and 〈·〉 is interpreted as an actual application (that evaluates the
suspension):

e ⊢ Λα. a⇒ Susp(a, e)
e ⊢ a⇒ Susp(a′, e′) e′ ⊢ a′ ⇒ r

e ⊢ a〈τ〉 ⇒ r

That’s the approach retained in Quest, for instance. The “generics” of CLU [53] or Ada [95], viewed
as a restricted form of polymorphism, also follow this semantics.

I call polymorphism by value the former interpretation, and polymorphism by name the
latter, by analogy with the two well-known semantics for function application: call-by-value and
call-by-name (as in Algol 60). 1

6.1.2 Polymorphism by name in ML

At first sight, it might seem that polymorphism-by-name semantics requires polymorphism to be
explicit in the syntax. In this chapter, I shall demonstrate that this is not true, by studying
a variant of ML — with implicit polymorphism and type inference — where polymorphism is
interpreted following the by-name semantics. (Rouaix has considered a similar language to study
dynamic overloading [87, 86].) The starting point is to separate the two roles of the ML let

construct: (1) introducing polymorphic types, (2) sharing the value of of an expression between
several utilizations. Hence, we replace the let construct by two separate constructs. The first
construct is a strict binding that performs no generalization:

let val x = a1 in a2.

1In modern languages, call-by-name is often replaced by one of its variants, call-by-need (also called “lazy evalu-
ation”), where the function arguments are evaluated the first time their values are needed, but the resulting values
are reused for subsequent accesses. This strategy is used by most implementations of purely applicative languages,
such as Haskell, Miranda, or Lazy ML [4, 72]. This strategy is more efficient than call-by-need, yet semantically
equivalent to call-by-need in a purely applicative language. This is not true in a language with imperative features.
In the remainder of this chapter, which studies polymorphism by name for a non-purely applicative language, it is
crucial to re-evaluate polymorphic objects at each specialization, without sharing the values obtained between several
specializations.
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This construct evaluates a1 exactly once, and shares the result between all occurrences of x in a2.
But it does not generalize the type of a1. Hence, the let val expression above is just syntactic
sugar for (λx. a2)(a1). (We shall keep the let val notation in the examples, for the sake of
readability.) The other construct is a non-strict binding that performs generalization:

let poly x = a1 in a2.

This construct generalizes the type of a1 in the same way as the ML let. But it does not evaluate
a1 once and for all; instead, a1 is re-evaluated each time x is accessed in a2. In other terms, the
let poly expression above evaluates as the textual substitution [x 7→ a1](a2).

Context. The let poly expression could also be typed (almost) as the textual substitution [x 7→
a1](a2). That’s because of a well-known property of Milner’s type system: in the non-degenerate
case where x appears in a2, the expression let x = a1 in a2 has type τ if and only if the textual
substitution [x 7→ a1](a2) has type τ [66, section 4.7.2]. Some authors rely on this property to give
a simplified presentation of Milner’s type system that does not make use of type schemes [44, 101].
I chose not to follow this presentation in this work, because it does not directly lead to a reasonably
efficient type inference algorithm. 2

6.1.3 Polymorphism by name and imperative features

When polymorphism is interpreted according to the by-name semantics, the problems with the poly-
morphic typing of imperative constructs such as references, channels, and continuations disappear:
the naive polymorphic typing for these constructs turns out to be sound. (“Naive typing” refers
to the typings proposed in sections 2.1.3, 2.2.3 and 2.3.3.) The problems with combining polymor-
phism and imperative features are caused by the fact that a given reference/channel/continuation
object can be used with several different types. But this cannot happen with polymorphism by
name. To use one object with several different types, this object must be bound to a variable (so
that we can reference it several times). If the object is bound by a λ or by a let val, the type of
the variable remains monomorphic, hence the variable is always accessed with the same type. If the
object is bound by a let poly, each access to the variable re-evaluates the expression to which it
is bound, re-creating a different reference/channel/continuation object each time; hence, this does
not allow accessing the same object with different types.

To illustrate these generalities, we are now going to reconsider some of the examples from
chapters 2 and 3, in the setting of polymorphism by name.

Example. For starters, consider the pons asinorum of polymorphic references:

let r = ref(λx.x) in

r := (λn. n + 1);
if (!r)(true) then . . . else . . .

With polymorphism by name, the original let must be replaced either by a let val or by a
let poly. If it is replaced by a let val, the type of r, (α → α) ref, is not generalized before
typing the body of the let val. Typing the assignment instantiates α to int, hence the application
(!r)(true) is rejected at compile-time as ill-typed. If we put a let poly instead, the program is well
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typed (with r having type ∀α. (α→ α) ref in the body of the let poly). But, at run-time, each
of the two accesses to r re-evaluates the expression ref(λx. x), resulting in two distinct references
to the identity function. The assignment modifies one of these references, but the application
(!r)(true) dereferences the other, which still points to the identity function. The example therefore
evaluates without errors. 2

Polymorphism by name prohibits pathological uses of polymorphic references. But this seman-
tics does not preclude the consistent use of references inside generic functions.

Example. The function that reverses a list iteratively can be written as follows:

let poly reverse = λl.
let val arg = ref(l) in

let val res = ref(nil) in

while not is null(!arg) do

res := cons(head(!arg), !res);
arg := tail(!arg)

done;
!res

All accesses to arg must always return the same reference, and similarly for res; this is ensured by
the two let val. All occurrences of arg and res inside the loop have the same type α list ref

(assuming α list to be the type of l); the loop is therefore well-typed. The outer let poly

assigns the expected polymorphic type to reverse: ∀α.α list → α list. The fact that the
closure for λl . . . is recomputed each time reverse is used, instead of being shared as in the case
of polymorphism by value, does not affect the behavior of reverse. 2

Example. The counterexample based on channels is similar to the one based on references:

let c = newchan() in (c!true) ‖ (1 + c?)

If the let is turned into a let val, the program above is rejected as ill-typed. If the let is turned
into a let poly, the two accesses to c return two different channels, hence the two processes cannot
communicate: they remain blocked forever. The point is that no type violation occurs at run-time.
(The deadlock situation is of course not what the author of the program had in mind; but this
program is clearly erroneous, after all.) 2

Example. Finally, consider again Harper and Lillibridge’s counterexample for continuations:

let later =
callcc(λk.

(λx. x),
(λf. throw(k, (f, λx. ())))

in

print string(first(later)("Hello!"));
second(later)(λx. x+ 1)
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The program is not statically well-typed if let is replaced by let val. If let is replaced by
let poly, the callcc expression is evaluated twice (each time later is accessed) instead of once
(just before evaluating the body of the let), as in the case of polymorphism by value. The
first evaluation of the callcc expression captures the continuation λlater. print string . . .; this
continuation is never activated. The second evaluation captures the continuation

λlater. second(later)(λx. x+ 1).

The evaluation of second(later)(λx. x+ 1) restarts this continuation on the value (λx. x+1, λx. ()).
Hence this will re-evaluate second(later)(λx. x+ 1), this time in an environment where later is
bound to (λx. x + 1, λx. ()) — actually, to a suspension that evaluates into this pair of functions.
The evaluation terminates by returning (). No run-time type violation has occurred. 2

Context. It is fairly easy to convince oneself that the polymorphic typing of imperative constructs
is sound if polymorphism is given the by-name semantics. It is not difficult to prove this result,
as shown by the next section. Yet, this result seems often overlooked. It is alluded to in Gifford
and Lucassen [29]. Cardelli also mentions this fact in his description of the Quest language Quest
[12]. Both papers discuss languages with explicit polymorphism, and both tend to confuse explicit
polymorphism with polymorphism by name. For instance, Cardelli writes [12, p. 24]:

Mutability [in Quest] interacts very nicely with all the quantifiers, including polymor-
phism, showing that the functional-style approach suggested by type theory does not
prevent the design of imperative languages.

(Well said.) And in a terse footnote, he adds:

The problems encountered in ML are avoided by the use of explicit polymorphism.

This is not correct: if mutable data structures cause no difficulties in Quest, that’s because poly-
morphism is interpreted following the by-name semantics, not because it is explicit in the source
code. This confusion between the syntax and the semantics of polymorphism is encouraged by the
fact that the by-name and by-value semantics for polymorphism are undistinguishable in the poly-
morphic lambda-calculus, due to the strong normalization property; the differences between the two
semantics appear only when general recursion or non-purely applicative features are introduced. 2

6.2 Operational semantics

In this section, we formally define the operational semantics for the three calculus (with references,
with channels and with continuations) when polymorphism is interpreted by name. The three
semantics are very close to the ones given in chapter 2. To simplify the presentation, we split
variable identifiers into two classes: the strict identifiers (set SVar, typical element xs), which are
bound by function abstraction (fs where fs(xs) = a), and the delayed identifiers (set RVar, typical
element xr), which are bound by the let poly construct.

Concerning the semantic objects, the main change is in the evaluation environments: they now
map strict identifiers to values, and delayed identifiers to suspensions, that is, a pair (a, e) of an
unevaluated expression a and an evaluation environment e. Concerning the evaluation rules, the
only rules that differ from those in chapter 2 are the rules for the let binding and for variable
access.
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6.2.1 References

Here is a summary of the semantic objects used:

Responses: r ::= v/s normal response
| err error response

Values: v ::= cst base value
| (v1, v2) value pair
| (fs, xs, a, e) functional value
| ℓ memory location

Environments: e ::= [xs 7→ v, . . . , xr 7→ (a, e), . . .]

Stores: s ::= [ℓ1 7→ v1, . . . , ℓn 7→ vn]

The evaluation predicate is defined by the same rules as in section 2.1.2, with the exception of the
rules for the variables and the rule for the let construct. The two rules for variables are replaced
by the four rules below:

xs ∈ Dom(e)

e ⊢ xs/s⇒ e(xs)/s

x /∈ Dom(e)

e ⊢ x/s⇒ err
(x is xs or xr)

xr ∈ Dom(e) e(xr) = (a0, e0) e0 ⊢ a0/s⇒ r

e ⊢ xr/s⇒ r

xr ∈ Dom(e) e(xr) does not match (a, e)

e ⊢ xr/s⇒ err

The two rules for the let construct are replaced by the following rule:

e+ xr 7→ (a1, e) ⊢ a2/s⇒ r

e ⊢ (let poly xr = a1 in a2)/s⇒ r

6.2.2 Channels

Summary of the semantic objects used:

Responses: r ::= v normal response (a value)
| err error response

Valeurs: v ::= cst base value
| (v1, v2) pair of values
| (fs, xs, a, e) functional value (closure)
| c channel identifier

Environments: e ::= [xs 7→ v, . . . , xr 7→ (a, e), . . .]

Events: evt ::= c ? v emission of a value
| c ! v reception of a value

Event sequences:: w ::= ε the empty sequence
| evt . . . evt
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The evaluation rules are those from section 2.2.2, with the exception of the two rules for variable
accesses, which now become:

xs ∈ Dom(e)

e ⊢ xs =
ε
⇒ e(xs)

x /∈ Dom(e)

e ⊢ x =
ε
⇒ err

xr ∈ Dom(e) e(xr) = (a0, e0) e0 ⊢ a0 =
u
⇒ r

e ⊢ xr =
u
⇒ r

xr ∈ Dom(e) e(xr) does not match (a, e)

e ⊢ xr =
ε
⇒ err

and of the two rules for the let, which are replaced by:

e+ xr 7→ (a1, e) ⊢ a2 =
u
⇒ r

e ⊢ let poly xr = a1 in a2 =
u
⇒ r

6.2.3 Continuations

Summary of the semantic objects used:

Responses: r ::= v normal response (a value)
| err error response

Values: v ::= cst base value
| (v1, v2) pair of values
| (fs, xs, a, e) functional value
| k continuation

Environments: e ::= [x1 7→ v1, . . . , xn 7→ vn]

Continuations: k ::= stop end of the program
| primc(op, k) before a primitive application
| app1c(a, e, k) after the function part of an application
| app2c(fs, xs, a, e, k) after the argument part of an application
| pair1c(a, e, k) after the first component of a pair
| pair2c(v, k) after the second component of a pair

Remark. The continuation letc(x, a, e, k) is no longer needed. 2

The evaluation rules are those in section 2.3.2, except for the rules for variable accesses, which
are replaced by:

xs ∈ Dom(e) ⊢ e(x) ⊲ k ⇒ r

e ⊢ xs; k ⇒ r

x /∈ Dom(e)

e ⊢ x; k ⇒ err
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xr ∈ Dom(e) e(xr) = (a0, e0) e0 ⊢ a0; k ⇒ r

e ⊢ xr; k ⇒ r

xr ∈ Dom(e) e(xr) does not match (a, e)

e ⊢ xr ⇒ err

and for the rule for the let construct, which becomes:

e+ xr 7→ (a1, e) ⊢ a2; k ⇒ r

e ⊢ (let poly xr = a1 in a2); k ⇒ r

6.3 Soundness proofs

In this section, we show that the type system presented in chapter 1 is sound with respect to the
three semantics given in the previous section. The proofs are an adaptation of the soundness proofs
in section 3.3 to the by-name semantics for let and variable access. The overall approach is the
same, but the proofs are considerably simplified by the fact that all values are now monomorphic:
only suspensions can be considered with several types. As a consequence, we no longer need the
(difficult) semantic generalization lemma.

6.3.1 References

We use the following semantic typing relations:

S |= v : τ the value v, considered in a store of type S, belongs to the type τ
S |= (a, e) : σ the suspension (a, e), considered in a store of type S, belongs to all

instances of the schema σ
S |= e : E the values and suspensions contained in the evaluation environment e,

considered in a store of type S, belong to the corresponding types and
tupe schemes in E

|= s : S the store s belongs to the store typing S.

Here are their formal definitions:

• S |= cst : unit if cst is ()

• S |= cst : int if cst is an integer

• S |= cst : bool if cst is true or false

• S |= (v1, v2) : τ1 × τ2 if S |= v1 : τ1 and S |= v2 : τ2

• S |= ℓ : τ ref if ℓ ∈ Dom(S) and τ = S(ℓ)

• S |= (fs, xs, a, e) : τ1 → τ2 if there exists a typing environment E such that

S |= e : E and E ⊢ (fs where fs(xs) = a) : τ1 → τ2
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• S |= (a, e) : ∀α1 . . . αn. τ if for all substitutions ϕ whose domain is included in {α1 . . . αn},
there exists a typing environment E such that

S |= e : E and E ⊢ a : ϕ(τ)

• S |= e : E if Dom(e) = Dom(E), and for all xs ∈ Dom(e), E(xs) is a simple type τ such that
S |= e(xs) : τ , and for all xr ∈ Dom(e), E(xr) is a type scheme σ such that S |= e(xr) : σ.

• |= s : S if Dom(s) = Dom(S), and for all ℓ ∈ Dom(s), we have S |= s(ℓ) : S(ℓ).

Proposition 6.1 (Strong soundness for references) Let a be an expression, τ be a type, E be
a typing environment, e be an evaluation environment, s be a store, S be a store typing such that:

E ⊢ a : τ and S |= e : E and |= s : S.

If there exists a result r such that e ⊢ a/s ⇒ r, then r 6= err; instead, r is equal to v/s′ for some
v and s′, and there exists a store typing S′ such that:

S′ extends S and S′ |= v : τ and |= s′ : S′.

Proof: the proof is an inductive argument over the size of the evaluation derivation. We argue by
case analysis over a, and therefore over the last typing rule used in the typing derivation. We just
show the cases that differ from the corresponding cases in the proof of proposition 3.6.

• Strict variables.
τ ≤ E(xs)

E ⊢ xs : τ

By the typing, we know that xs belongs to the domain of E, which is the same as the domain of e.
Hence, the only possible evaluation is e ⊢ xs/s ⇒ e(xs)/s. By hypothesis over e and E, we have
S |= e(xs) : E(xs). Since E(xs) is a simple type, we have τ = E(xs). Hence S |= e(x) : τ . We take
S′ = S.

• Delayed variables.
τ ≤ E(xr)

E ⊢ xr : τ

Write E(xr) = ∀α1 . . . αn. τx. Let ϕ be the substitution over the αi such that τ = ϕ(τx). By
hypothesis over e and E, we have e(xr) = (a0, e0), and there exists E0 such that S |= e0 : E0 and
E0 ⊢ a0 : τ . Since e(xr) is a suspension, the evaluation must end up with:

e(xr) = (a0, e0) e0 ⊢ a0/s⇒ r

e ⊢ xr/s⇒ r

We apply the induction hypothesis to the expression a0, with type τ , in the environments e0, E0,
s, S. It follows that r = v′/s′ and there exists S′ extending S such that

S′ |= v′ : τ and |= s′ : S′.
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This is the expected result.

• let poly bindings.

E ⊢ a1 : τ1 E + xr 7→ Gen(τ1, E) ⊢ a2 : τ2

E ⊢ let poly xr = a1 in a2 : τ2

The only evaluation rule that applies is:

e+ xr 7→ (a1, e) ⊢ a2/s⇒ r

e ⊢ (let poly xr = a1 in a2)/s⇒ r

We first show S |= (a1, e) : Gen(τ1, E). We have Gen(τ1, E) = ∀α1 . . . αn. τ1, for some variables
αi that are not free in E. Let ϕ be a substitution over the αi. By proposition 1.2, we have
ϕ(E) ⊢ a1 : ϕ(τ1). Since ϕ(E) = E and S |= e : E by hypothesis, we can take E as the environment
required by the definition of |= over schemes. Hence S |= (a1, e) : Gen(τ1, E). Taking

e1 = e+ x 7→ v1 E1 = E + x 7→ Gen(τ1, E),

we therefore have S1 |= e1 : E1. We apply the induction hypothesis to a2, e1, E1, s1, S1. We get
that r is equal to v2/s2, for some v2 and s2, and there exists S2 such that

S2 |= v2 : τ2 and |= s2 : S2 and S2 extends S1.

That’s the expected result. 2

6.3.2 Channels

The semantic typing relations used are as follows (Γ is a channel typing):

Γ |= v : τ the value v belongs to the type τ
Γ |= (a, e) : σ the suspension (a, e) belongs to the type scheme σ
Γ |= e : E the values and the suspensions contained in the evaluation

environment e belong to the corresponding types and
schemes in E

|= u :? Γ the reception events (c ? v) contained in the event sequence
u match the channel typing Γ

|= u :! Γ the emission events (c ? v) contained in the event sequence
u match the channel typing Γ

These relations are defined as follows:

• Γ |= cst : unit if cst is ()

• Γ |= cst : int if cst is an integer

• Γ |= cst : bool if cst is true or false
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• Γ |= (v1, v2) : τ1 × τ2 if Γ |= v1 : τ1 and Γ |= v2 : τ2

• Γ |= c : τ chan if c ∈ Dom(Γ) and τ = Γ(c)

• |= (fs, xs, a, e) : τ1 → τ2 if there exists a typing environment E such that

Γ |= e : E and E ⊢ (fs where fs(xs) = a) : τ1 → τ2

• Γ |= (a, e) : ∀α1 . . . αn. τ if for all substitutions ϕ whose domain is included in {α1 . . . αn},
there exists a typing environment E such that Γ |= e : E and E ⊢ a : ϕ(τ)

• S |= e : E if Dom(e) = Dom(E), and for all xs ∈ Dom(e), E(xs) is a simple type τ such that
S |= e(xs) : τ , and for all xr ∈ Dom(e), E(xr) is a type scheme σ such that S |= e(xr) : σ.

• |= u :? Γ if for all reception event c ? v in the sequence u, we have Γ |= v : Γ(c)

• |= u :! Γ if for all reception event c ! v in the sequence u, we have Γ |= v : Γ(c).

As in section 3.3.2, we assume given a closed, well-typed term a0, where all newchan(a) subex-
pressions are distinct. Let T be a typing derivation for a0, and E be an evaluation derivation for
a0. We construct a channel typing Γ suited to T and E as explained in section 3.3.2.

Proposition 6.2 (Strong soundness for channels) Let e ⊢ a =
w
=⇒ r be the conclusion of a sub-

derivation of E, and E ⊢ a : τ be the conclusion of a sub-derivation of T , for the same expression
a. Assume Γ |= e : E.

1. If |= w :? Γ, then r 6= err; instead, r is a value v such that Γ |= v : τ , and moreover |= w :! Γ.

2. If w = w′.c ! v.w′′ and |= u′ :? Γ, then Γ |= v : Γ(c).

Proof: by induction over the size of the evaluation derivation. We argue by case analysis over a,
and thus over the last rule used in the typing derivation. Most cases are identical to those in the
proof of proposition 3.9. The cases that differ are shown below.

• Strict variables.
τ ≤ E(xs)

E ⊢ xs : τ

By typing, we know that x ∈ Dom(E) = Dom(e), hence the only evaluation rule that applies is
e ⊢ xs =

ε
⇒ e(xs). By hypothesis over e and E, we have Γ |= e(xs) : E(xs). Since E(xs) is a simple

type, we have τ = E(xs). Hence (1). (2) is trivially true, because w = ε necessarily.

• Delayed variables.

τ ≤ E(xr)

E ⊢ xr : τ
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Take E(xr) = ∀α1 . . . αn. τx. Let ϕ be the substitution over the αi such that τ = ϕ(τx). By
hypothesis over e and E, we know that e(xs) = (a0, e0), and there exists E0 such that S |= e0 : E0

and E0 ⊢ a0 : τ . Since e(xr) is a suspension, only one evaluation rule applies:

e(xr) = (a0, e0) e0 ⊢ a0 =
w
=⇒ r

e ⊢ xr =
w
=⇒ r

We apply the induction hypothesis to the expression a0, with type τ , in the environments e0, E0,
and under the event sequence w. We obtain properties (1) and (2) for the evaluation of a0; hence
(1) and (2) for the evaluation of xr.

• let poly bindings.

E ⊢ a1 : τ1 E + xr 7→ Gen(τ1, E) ⊢ a2 : τ2

E ⊢ let poly xr = a1 in a2 : τ2

There’s only one applicable rule:

e+ xr 7→ (a1, e) ⊢ a2 =
w
=⇒ r

e ⊢ let poly xr = a1 in a2 =
w
=⇒ r

We show Γ |= (a1, e) : Gen(τ1, E) as in the proof of proposition 6.1. Taking

e1 = e+ x 7→ v1 E1 = E + x 7→ Gen(τ1, E),

we therefore have Γ |= e1 : E1. We apply the induction hypothesis to a2, e1, E1 and w. The
expected properties (1) and (2) follow. 2

6.3.3 Continuations

We employ the following semantic typing relations:

|= v : τ the value v belongs to the type τ
|= (a, e) : σ the suspension (a, e) belongs to all instances of the schema σ
|= e : E the values and suspensions contained in the evaluation environment e

belong to the corresponding types and schemes in the typing
environment E

|= k :: τ the continuation k accepts all values belonging to the type τ

These relations are defined by:

• |= cst : unit if cst is ()

• |= cst : int if cst is an integer

• |= cst : bool if cst is true or false

• |= (v1, v2) : τ1 × τ2 if |= v1 : τ1 and |= v2 : τ2
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• |= k : τ cont if |= k :: τ

• |= (fs, xs, a, e) : τ1 → τ2 if there exists a typing environment E such that:

|= e : E and E ⊢ (fs where fs(xs) = a) : τ1 → τ2

• |= (a, e) : ∀α1 . . . αn. τ if for all substitution ϕ whose domain is included in {α1 . . . αn}, there
exists a typing environment E such that |= e : E and E ⊢ a : ϕ(τ)

• |= e : E if Dom(e) = Dom(E), and for all xs ∈ Dom(e), E(xs) is a simple type τ such that
|= e(xs) : τ , and for all xr ∈ Dom(e), E(xr) is a schema σ such that |= e(xr) : σ.

• |= stop :: τ for all types τ

• |= app1c(a, e, k) :: τ1 → τ2 if there exists a typing environment E such that

E ⊢ a : τ1 and |= e : E and |= k :: τ2

• |= app2c(fs, xs, a, e, k) :: τ if there exists a typing environment E and a type τ ′ such that

E ⊢ (fs where fs(xs) = a) : τ → τ ′ and |= e : E and |= k :: τ ′

• |= pair1c(a, e, k) :: τ if there exists a typing environment E and a type τ ′ such that

E ⊢ a : τ ′ and |= e : E and |= k :: τ × τ ′

• |= pair2c(v, k) :: τ if there exists a type τ ′ such that

|= v : τ ′ and |= k :: τ ′ × τ

• |= primc(callcc, k) :: τ cont→ τ if |= k :: τ

• |= primc(throw, k) :: τ cont× τ for all τ .

Proposition 6.3 (Weak soundness for continuations)

1. Let a be an expression, τ be a type, e be an evaluation environment, E be a typing environment,
k be a continuation and r be a response such that

E ⊢ a : τ and |= e : E and |= k :: τ and e ⊢ a; k ⇒ r.

Then r 6= err.

2. Let v be a value, k be a continuation, τ be a type and r be a response such that

|= v : τ and |= k :: τ and ⊢ v ⊲ k ⇒ r.

Then r 6= err.
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Proof: the proof is an inductive argument over the size of the evaluation derivation. We argue,
for (1), by case analysis over a and thus over the last typing rule used, and for (2), by case analysis
over k. I only show the cases that are not identical to those in the proof of proposition 3.12.

• (1), strict variables.
τ ≤ E(xs)

E ⊢ xs : τ

The typing ensures that xs belongs to the domain of E, hence by hypothesis |= e : E we have
Dom(E) = Dom(e). Hence, the only evaluation possibility is:

xs ∈ Dom(e) ⊢ e(xs) ⊲ k ⇒ r

e ⊢ cst; k ⇒ r

By hypothesis, we know that |= e(xs) : E(xs), and E(xs) = τ since E(xs) is a simple type. Hence
|= e(xs) : τ . Applying the induction hypothesis (2) to the evaluation ⊢ e(xs) ⊲ k ⇒ r, we get
r 6= err.

• (1), delayed variables.
τ ≤ E(xr)

E ⊢ xr : τ

Write E(xr) = ∀α1 . . . αn. τx. Let ϕ be the substitution over the αi such that τ = ϕ(τx). By
hypothesis over e and E, we know that e(xs) = (a0, e0), and there exists E0 such that |= e0 : E0

and E0 ⊢ a0 : τ . Since e(xr) is a suspension, the evaluation must end up with:

xr ∈ Dom(e) e(xr) = (a0, e0) e0 ⊢ a0; k ⇒ r

e ⊢ xr; k ⇒ r

We apply the induction hypothesis (1) to a0; k in E0 and e0. The expected result follows: r 6= err.

• (1), let poly bindings.

E ⊢ a1 : τ1 E + xr 7→ Gen(τ1, E) ⊢ a2 : τ2

E ⊢ let poly xr = a1 in a2 : τ2

The evaluation must end up with:

e+ xr 7→ (a1, e) ⊢ a2; k ⇒ r

e ⊢ (let poly xr = a1 in a2); k ⇒ r

We show |= (a1, e) : Gen(τ1, E) as in the proof of proposition 6.1. Writing

e1 = e+ xr 7→ (a1, e) E1 = E + xr 7→ Gen(τ1, E),

we have |= e1 : E1. Applying the induction hypothesis (1) to a2; k, e1, and E1, it follows that
r 6= err, as expected. 2
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6.4 Discussion

Switching to polymorphism by name allows to correctly type references, channels, and continuations
while keeping the ML typing rules and type algebra, which are simple and easy to understand —
unlike the type systems for polymorphism by value, which require a richer type algebra and more
complex typing rules. In particular, writing types by hand in module interfaces remains easy, while
this is difficult in the systems proposed in chapters 3 and 4, or in the effect systems presented in
chapter 5. MLN, the variant of ML with polymorphism by name studied here, therefore looks like
an interesting alternative to ML when non-purely applicative features are considered.

However, this variant is less expressive than ML on one point: it is not possible to define a
polymorphic object once and for all, and have its value shared between all uses of the object. This
can result in changes in semantics or in efficiency. The remainder of this chapter discusses the
practical importance of these changes.

6.4.1 Semantic changes

Some programs do not have the same behavior in ML and in MLN: all programs where the com-
putation of a polymorphic object has side-effects, or depends on the state. In the former case, the
side-effects are performed once, at creation time, in ML, but zero, one, or several times in ML, once
for each use of the object. Example: in ML, evaluating the following program:

let f = print(”Hi!”); λx. x in f(f(f))

prints “Hi!” only once, while the corresponding MLN phrase,

let poly f = print(”Hi!”); λx. x in f(f(f))

prints “Hi!” three times. Here is another example, that assumes defined a stamp generator gensym:

let stamper =
let stamp = gensym() in λx. (x, stamp)

in . . .

In ML, the stamper function thus defined takes as argument any object and pairs it with the mark
already obtained — the same mark for each call. The straightforward translation to MLN behaves
differently:

let poly stamper =
let val stamp = gensym() in λx. (x, stamp)

in . . .

Each call to stamper causes the re-evaluation of gensym(). Hence, a different mark is assigned
each time. To keep the behavior of the original program, the program must be restructured as
follows:

let val stamp = gensym() in

let poly stamper = λx. (x, stamp) in . . .
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In more complex (and more artificial) examples, deeper transformations might be required. My
practical experience is that the situation shown above (defining a polymorphic object by an ex-
pression with side-effects) is very unfrequent. I have run about 10000 lines of ML through an
experimental MLN compiler (see below, section 6.4.3), without encountering this situation. To
translate the compiled programs, it has been sufficient to replace let by let val or let poly; no
other transformation (as in the stamper example) was necessary.

Context. A language combining side-effects with a non-strict construct such as let poly might
seem to encourage some programming errors: those where a side-effect does not occur at the
expected time. It is often said that the most intuitive semantics for a language with side-effects
is strict semantics with left-to-right evaluation, since this is the semantics where the sequencing of
side-effects is closest to the order in which the side-effects appear in the source code. Some existing
imperative languages do not follow this approach, however. The famous Algol 60 language uses
call-by-name; so do some recent studies (Reynold’s Forsythe language [84]). The Caml language
mixes side-effects with lazy evaluation (with sharing of the evaluations) [99, chap. 4], making it
very hard to predict when a side-effect inside a delayed expression occurs. In Caml, there’s also
the a where x = b construct, where b is evaluated before a, even though it occurs after a in the
source code. Finally, languages such as C, C++, Modula-3, Scheme, and even Caml Light, leave
unspecified the order in which the subexpressions of an arithmetic expression are evaluated. My
practical experience with C and Caml Light shows that this under-specification sometimes leads to
tough errors, but has a beneficial effect on the readability of programs: it forces programmers to
clearly indicate the side-effects, and the order in which they must occur. Adopting the non-strict
semantics for polymorphism should have similar practical consequences. 2

6.4.2 Efficiency changes

The two languages ML and MLN are equivalent when they are restricted to programs where all
polymorphic objects are defined by expressions that always terminate, do not depend on the state,
and have no observable side-effects. However, even in this case, we can observe differences in
efficiency: in MLN, the polymorphic objects are not shared, but recomputed at each use; we might
therefore fear that execution is slower than in ML.

In most programs, all polymorphic objects are function abstractions λx. a. Evaluating these
objects boils down to constructing a closure, which takes low, constant time. Reconstructing the
closure each time the corresponding polymorphic identifier is used is therefore not costly, and
does not change the time complexity of the program. Moreover, these extra closure constructions
can be avoided in most cases by using the usual uncurrying techniques. Uncurrying consists in
transforming (at compile-time) curried functions into functions with several arguments, which can
be called more efficiently [2, section 6.2]. Here is a commonly encountered programming idiom:

let poly f = λx. a in

. . . f(1) . . . f(true) . . .

With polymorphism by name, the program above is compiled exactly like the ML program below:

let f = λ(). λx. a in

. . . f()(1) . . . f()(true) . . .
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The uncurrying optimization transforms f into a function with two arguments, () and x; the two
applications of f are turned into two direct calls to f, almost as efficient as the simple applications
f(1) and f(true). The only additional cost comes from the passing of () as an extra argument;
this cost drops to zero with some data representation techniques [50].

Some situations where curried functions are partially applied can result in polymorphic objects
that are expensive to recompute, however. That’s because a curried function can perform computa-
tions between the reception of its first argument and of its second argument. Binding (with a let)
the result of a partial application can therefore result in the sharing of these intermediate compu-
tations. With polymorphism by name, this sharing is lost if the result of the partial application
must remain polymorphic. Here is an almost realistic example that demonstrates this situation;
this is the only example I was able to come up with.

Example. Consider a function that sorts (key,data) pairs in increasing order of the keys. Assume
that the keys and the associated data are not provided together, as an array of pairs for instance,
but separately, as an array of keys and an array of data. The result of the function is the sorted
array of data. To take advantage of partial application, the clever way to write this function is to
compute the sorting permutation (an array of integers) as soon as the array of keys is passed, then
return a function that simply applies the permutation over the given array of data:

let weird sort =
λorder. λkeys.

let permut = . . . in λitems. apply permut(permut)(items)

This convoluted implementation is more efficient if we have to sort several arrays of data following
the same array of keys:

let f = weird sort (prefix <) (lots of integers) in

. . . f(lots of strings) . . . f(lots of booleans) . . .

In the phrase above, the intermediate function f is polymorphic (with type ∀α. α array →
α array), and therefore can be applied to arrays of different types — without having to sort again
the array of keys. This last point holds in ML, but not in MLN: in order for f to be polymorphic,
it must be bound by a let poly construct; then, each application f(t) evaluates as

weird sort (prefix <) (lots of integers) (t)

Hence, all benefits of partial application are lost. On examples of this kind, MLN might turn out
to be clearly less efficient than ML. 2

6.4.3 An implementation

In an attempt at estimating the practical importance of the efficiency issue presented above, I have
implemented a prototype compiler for MLP (ML with polymorphism by name), derived from my
Caml Light system [51]. I then compared the efficiency of the code produced by this prototype com-
piler with the efficiency of the code produced by the original Caml Light system, which implements
the by-value semantics for polymorphism.
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6.4.3.1 The Caml Light execution model

Before commenting the results obtained, I briefly describe the Caml Light execution model, and
how it can be adapted to polymorphism by name. (For more details, the reader is referred to [49,
chapter 3].) The Caml Light execution model has a distinctive treatment of multiple applications,
whose goal is to perform uncurrying “on-the-fly”. I first show the compilation of the functional
kernel of ML (with polymorphism by value), then extend these techniques to polymorphism by
name.

The compilation process is formalized as two compilation schemes: the first, CT (a), applies to
expressions a in tail-call position; the other, CN(a), applies to expressions not in tail-call position.
A variable is compiled as an access instruction in the environment. (The actual structure of the
environment is left unspecified in this presentation.)

CT (x) = Access(x) CN(x) = Access(x)

A function application to n (curried) arguments is compiled as follows:

CT (a(a1) . . . (an)) = CN(an); Push; . . . ;CN(a1); Push;CN(a); Appterm

CN(a(a1) . . . (an)) = Pushmark;CN(an); Push; . . . ;CN(a1); Push;CN(a); Apply

For a non-tail call, we first push a special value, the “mark”, which separates the arguments passed
to a from the other values on the stack. Then, we evaluate the arguments, from right to left, and
push their values. Finally, the function part is evaluated into a closure, and control is transferred
to the code part of this closure. For a tail call, we do not need to push a mark: the arguments
passed to a are just added to the arguments that are already on the stack.

CT (λx. a) = Grab(x);CT (a)

CN(λx. a) = Clos(CT (λx. a); Return)

An abstraction over x in tail-call position translates to a Grab(x) instruction. (For the sake of
simplicity, I do not deal with recursive functions here.) At run-time, this instruction pops and
tests the top of the argument stack. If the top of stack is a mark, this means that no more
arguments have been provided to the function. The Grab(x) instruction then builds a closure of
the code Grab(x);CT (a) with the current environment, and returns this closure to the caller. If
the top of stack is not a mark, then it is the argument to which the abstraction is being applied.
The Grab(x) instruction then binds this value to the identifier x in the current environment, and
proceeds sequentially with the evaluation of a (the body of the lambda-abstraction).

An abstraction not in tail-call position is never immediately applied, hence we compile a Clos

instruction, that builds a closure of the code for λx. a with the current environment. The Return

instruction that terminates the function code behaves symmetrically with Grab: if the top of the
argument stack is a mark, this means that all arguments have been consumed, and the computed
value is returned to the caller; if the top of stack is not a mark, some arguments remain to be
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consumed, hence Return applies (with a tail-call) the computed value (which can only be a closure)
to the remaining arguments.

CT (let x = a1 in a2) = CN(a1); Bind(x);CT (a2)

CN(let x = a1 in a2) = CN(a1); Bind(x);CN(a2); Unbind(x)

The let binding is compiled classically in the two instructions Bind and Unbind, that add or remove
a binding in the environment, without testing for a mark as Grab does.

The strength of this execution mechanism is its good behavior with respect to curried functions.
For instance, the code fragment below executes without building any intermediate closure, and with
only one jump/return between the caller and the callee.

let f = λx. λy. λz. x + y + z

in f(2)(3)(4)

In a more conventional model, such as for instance the SECD machine [46], we would have con-
structed two intermediate closures (corresponding to the partial applications f(1) and f(1)(2)),
and we would have performed three jumps/returns. The Caml Light execution model therefore
achieves almost the same efficiency as the compile-time uncurrying techniques: the three argu-
ments to the curried application are passed to the function in one batch. (The only performance
penalty is the tests on the top of stack performed by Grab.) This model turns out to be more
powerful than compile-time uncurrying on curried functions that interleave parameter passing and
internal computations:

let f = λx. let u = fib(x) in λy. let v = fact(y) in λz. u + v+ z

in f(2)(3)(4)

In the example above, the three arguments are still passed in one batch, and only one jump/return
is performed. The compile-time uncurrying techniques generally do not apply to the complex
situation illustrated above.

6.4.3.2 Adaptation to polymorphism by name

The execution model summarized above clearly distinguishes between suspending the evaluation
(instruction Clos) and passing a parameter (instruction Grab). It therefore provides good support
for suspensions, and easily adapts to polymorphism by name.

The let poly binding is naturally compiled as creating a suspension and adding it to the
environment.

CT (let poly xr = a1 in a2) = Clos(CT (a1); Return); Bind(xr);CT (a2)

CN(let poly xr = a1 in a2) = Clos(CT (a1); Return); Bind(xr);CN(a2); Unbind(xr)

Accessing a variable bound by a let poly is compiled as an application to zero arguments.

CT (xr) = Access(xr); Appterm

CN(xr) = Pushmark; Access(xr); Appterm
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Test By-value By-name Slowdown Amount of
program semantics semantics by name/by value polymorphism

Fibonacci 5.9 s 6.3 s 6 % none
Church integers 2.5 s 2.9 s 16 % high
Sieve 3.2 s 3.4 s 6 % moderate
Word count 6.4 s 6.7 s 4 % none
Boyer 16.0 s 18.0 s 12 % low
Knuth-Bendix 7.9 s 8.3 s 5 % moderate
Lexer generator 2.1 s 2.3 s 9 % low
Caml Light compiler 7.1 s 8.3 s 16 % low

Figure 6.1: Experimental comparison between polymorphism by name and polymorphism by value

If this variable is immediately applied (which is often the case), we can combine the evaluation of
the suspension and the application of the resulting value into a single application:

CT (xr(a1) . . . (an)) = CN(an); Push; . . . ;CN(a1); Push; Access(xr); Appterm

CN(xr(a1) . . . (an)) = Pushmark;CN(an); Push; . . . ;CN(a1); Push; Access(xr); Apply

The first line is an instance of the general rules for accessing a delayed variable and for tail function
calls. The second line is not an instance of the general rules; it is a special optimization that avoid
pushing two marks, and therefore to needlessly interrupt the evaluation of the suspension.

As a consequence, applying a polymorphic function is just as efficient with polymorphism by
name and with polymorphism by value. Consider the typical code fragment:

let poly f = λx. a in

. . . f(1) . . .

. . . f(true) . . .

The compiled code is:

Clos(Grab(x); CT (a)); Bind(f);
. . . ; Pushmark; Const(1); Push; Access(f); Apply; . . .
. . . ; Pushmark; Const(true); Push; Access(f); Apply; . . .

This code is exactly identical to the code produced by the compilation scheme for polymorphism
by value when applied to the equivalent ML program:

let f = λx. a in

. . . f(1) . . .

. . . f(true) . . .

In this very common case, the by-name semantics for polymorphism introduces no performance
penalty with respect to the by-value semantics.
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6.4.3.3 Experimental results

Figure 6.1 compares the execution time of the modified Caml Light with polymorphism by
name and the original Caml Light with polymorphism by value. The test programs comprise: some
well-known toy programs (the Fibonacci sequence, operations on Church integers, Eratosthene’s
sieve over lists, a word counter); two medium-sized (100 and 500 lines) programs performing mostly
symbolic processing, Boyer’s simplified theorem prover and an implementation of the Knuth-Bendix
completion algorithm; and two pieces of the Caml Light environment, ported to polymorphism by
name and “bootstrapped”, the lexical analyzer generator (1000 lines) and the compiler itself (8000
lines). Some of these programs are completely monomorphic (Fibonacci, word count). Others use
polymorphic functions intensively (Church integers). The more realistic programs operate mostly
on monomorphic data structures, but make frequent use of generic functions over lists, hash tables,
etc.

The execution times show that all programs, including the completely monomorphic ones, are
slowed down when switching to polymorphism by name. The reason is that a minor optimization
in the compiler no longer applies when we use the compilation scheme for polymorphism by name
given above. Without polymorphism by name, all functions are always applied to at least one
argument; hence, the initial Grab at the beginning of each function is omitted, and the Apply and
Appterm instructions systematically add the first argument to the environment by themselves. With
polymorphism by name, this is no longer the case: functions can be applied to zero arguments,
hence the Grab at the beginning of each function cannot be omitted. This results in a performance
penalty of about 5%, as can be deduced from the running times for the completely monomorphic
examples (Fibonacci and word count).

In addition to this 5% slowdown for all programs, the programs that make use of polymorphism
encounter a performance penalty from 1% to 10%, which represents the actual cost of polymorphism
by name. There is no obvious correlation between the amount of polymorphic functions used in
the program and the observed slowdown. A mostly monomorphic program such as the compiler is
slowed down more than other programs that make heavy use of polymorphic functionals, such as the
Knuth-Bendix implementation. It is true that I have estimates the static frequency of polymorphic
functions (how many polymorphic function calls appear in the source code), but not the dynamic
frequency (how many polymorphic function calls occur at run-time), which I was unable to measure.

These preliminary experimental results are encouraging: they demonstrate that an execution
model initially designed for polymorphism by value can easily be adapted to polymorphism by
name, without major efficiency lost. I believe these results are not specific to Caml Light, but
should apply to any ML compiler equipped with good uncurrying mechanisms. At any rate, these
results suffices to show that polymorphism by name cannot be dismissed easily on the grounds of
inefficiency [29].
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Conclusions

Having reached the end of this work, the least I can say is that polymorphic typing as in the ML
language does not naturally extend from a purely applicative language to a language equipped
with imperative features such as updatable data structures, communication channels as first-class
values, or continuation objects.

This study reveals three desirable properties of such an extension which, empirically, seems
very difficult to reconcile. First of all, the type system should be expressive. In particular, the
non-applicative features should benefit from the full power of polymorphic typing. Second, the type
algebra should remain simple enough to support the decomposition of programs into modules. In
particular, the type specification for a function should indicate what result the function computes,
but not how it computes this result. Finally, it would be nice to keep the ML semantics for
polymorphism, that is, the by-value semantics. This semantics seems to be the most intuitive for
a language with implicit polymorphism; it is also the most efficient in terms of execution speed.

All known approaches meet two of the requirements above, but not all three. The “historical”
approach, followed by the standard ML, preserves the by-value semantics for polymorphism as well
as reasonable compatibility with modular programming, but it sacrifices the expressiveness of the
type system, making it unable to assign the most general polymorphic types to many useful generic
functions. The type systems based on dangerous variables and closure typing, as introduced in
this dissertation, as well as the most advanced effect systems, turn out to be highly expressive,
and retain the by-value semantics for polymorphism; however, we can foresee major difficulties
with modular programming, since the function types are much more precise than the ML types,
hence they reveal too much information on how a function is implemented. Finally, polymorphism
by name, as in chapter 6, is fully satisfactory from the standpoint of expressiveness and from
the standpoint of modular programming, but it assigns a different semantics to polymorphism, a
semantics that programmers might find less intuitive than the ML semantics.

A stool with three uneven legs is stable but uncomfortable. Similarly, each of the three partial
solutions above is suited to many programming situations, but does not consitute a general solution.
Sacrificing the expressiveness of the polymorphic typing of imperative constructs is acceptable for
a “mostly applicative” programming style, where the non-applicative features are used rarely and
locally. Complicating the type specifications is suited to the quick prototyping of small to medium-
sized programs, for which the modular decomposition does not need to be made completely explicit.
Finally, switching to by-name semantics for polymorphism is acceptable if full compatibility with
ML is not required, and if we do not mind some efficiency loss in complicated situations. However,
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the initial problem remains open: to propose a natural a fully satisfactory extension of the ML
type system to the major features of algorithmic languages.

The present dissertation nonetheless contains two relatively important contributions to this
problem. The first contribution is the type system based on dangerous variables and closure typ-
ing. In the setting of polymorphism by value, this system is, at the time of this writing, the most
expressive of all known polymorphic type systems for references and continuations. Even more
important than the fact that this system is highly expressive (the effect systems with regions and
effect masking seems to give similar results on practical examples) is the way this expressiveness
is obtained. This system relies only on the fact that type expressions describe what the values
contain. Actually, this fact does not hold in the conventional type systems, and that’s why closure
typing had to be added. Yet, even when they are enriched by closure types, the type expressions
still express only static properties of the expressions (“here is an approximation of what this ex-
pression computes”), but no dynamic properties of the expressions (“here is an approximation of
how this expression computes”). The other approaches, from the imperative variables in Standard
ML to the latest effect systems, all reflect in the types some information on the dynamic behavior
of the expressions. I think this practice goes against some of the fundamental ideas behind type
systems; in particular, it immediately leads to over-specification by the types in module interfaces.
I am therefore glad to have demonstrated that it is not necessary to reflect the dynamic behav-
ior of expressions in their types to correctly keep track of polymorphic references, channels, and
continuations. (Unfortunately, this does not suffices to avoid the over-specification problem.)

The other contribution of this dissertation is to clearly propose polymorphism by name as
an interesting alternative to ML when non-purely applicative features are considered. I do not
claim originality for noticing that the polymorphic typing of references and continuations does
not compromise soundness when polymorphism is given by-name semantics. This idea has been
around for some time. The only merit I claim is to have written down the soundness proofs,
thereby confirming the intuition, and to have demonstrated that polymorphism by name integrates
pretty well in practice within an ML-like language. Yes, the by-name semantics for polymorphism
is compatible with the implicit syntax and with type inference; we do not have to switch to the
explicit syntax to benefit from polymorphism by name. No, polymorphism by name cannot be
dismissed on the grounds of inefficiency: polymorphism by name can be compiled just as efficiently
as polymorphism by value in most practical cases. It is true that the resulting language is not
exactly ML; but it is a simple and highly practical solution to the problem of typing an algorithmic
language with polymorphic types.

To finish with, I would like to conclude on the techniques I used to obtain these results. First
of all, I have been able to reason about three features that are not easy to describe, since they
are strongly “non-functional”, by using only elementary techniques: the mathematical structures
are term algebras; the specification tools are inference rules; the proof techniques are structural
inductions. This approach is arguably less elegant than other formalisms that are mathematically
richer; yet it results in proofs that are reasonably easy to follow, and that can be adapted to various
settings. Just as relational semantics can almost directly be executed on a computer, I believe that
the proofs I gave can almost directly be checked on a computer.

The methods leading to this results are simple: introducing indirections to describe cyclic situa-
tions (stores, for references; constraint sets, for closure types) by finite terms; arguing by structural
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induction over the values; and treating closures and continuations as suspended expressions, whose
semantic typing is essentially identical to their syntactic typing, instead of as value transformers,
whose semantic typing relies on the continuity condition. Parts of these techniques can be found
in Tofte’s thesis [92]; I think I have carried them further, in particular by suppressing all proofs by
co-induction.

This work has also revealed a few weaknesses of this approach based on relational semantics,
however. For instance, it is not straightforward to add garbage collection rules to the calculus with
references, describing the reclamation of unused memory cells. Also, proving a strong soundness
property for a calculus with callcc in this formalism is still an open question. One may argue that
the weak soundness property is sufficient evidence that the type system is sound; however, that’s
the strong soundness property which is at the basis of some type-based compilation techniques [50].

The main technical difficulty encountered in this work is the non-conservativity problem that
is addressed in chapter 4. A similar problem appears with the effect systems that type allocation
effects. I suspect this problem shows up each time function types are annotated by informations on
the types of some of the objects appearing inside the function. The solution to this problem has a
fairly simple semantic intuition, which essentially relies on the following claim: if an expression is
well-typed assuming that two of its subexpressions have different types, then these subexpressions
do not “communicate” at run-time; in particular, they cannot evaluate to the same reference.
This property is obviously true if the two subexpressions belong to two different base types, such
as int and bool; more interestingly, this property seems to hold even if the two subexpressions
have types α and β (two distinct type variables). This “non-communication theorem” justifies the
simplification operation over closure types consisting in erasing the closure type informations over
type variables that are not free in the argument type or in the result type of the function.

What is surprising is that this non-communication result and the corresponding simplification
operation over closure types do not appear anywhere in chapter 4. The system in chapter 4 relies
on a refinement of type generalization, whose justification is purely syntactical. The labels put over
function types can be viewed as type constructors with variable arity, and whose arguments can
appear in any order. In contrast with the usual type constructors, with fixed arity, it is therefore
correct to generalize over type variables that lie below a non-generalizable label. Each instantiation
of the resulting generic type simply adds the produced instance to the non-generalizable label. The
soundness proof essentially consists in checking that this operation correctly keeps track of all the
types with which the values in the environment part of a closure are considered. The proof is a bit
on the long side because the type system in chapter 4 is highly bureaucratic, yet that’s the only
result it establishes: I cannot see a non-communication result there, even between the lines.

It would certainly be illuminating to reformulate the conservative type system in chapter 4 in
a way that remains closer to the initial semantic intuition. I have made several attempts in this
direction, but they have all failed on the following point: the type systems obtained are not stable
under substitution. That’s because if the two variables α and β are identified, two expressions
with types α and β respectively, which therefore are detected as non-communicating, now have
the same type after substitution, and therefore appear to be communicating. In other terms, the
non-communication criteria is most precise when principal typings are considered; it becomes less
and less precise when the typings are weakened. To the best of my knowledge, it is an open issue
to take into account the fact that a typing is principal for the proof of a semantic property.
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[74] Vincent Poirriez. Intégration de fonctionnalités logiques dans un langage fonctionnel forte-
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[79] Didier Rémy. Type inference for records in a natural extension of ML. In Carl A. Gunter and
John C. Mitchell, editors, Theoretical Aspects of Object-Oriented Programming. MIT Press,
1993.

[80] John H. Reppy. First-class synchronous operations in Standard ML. Technical Report TR
89-1068, Cornell University, 1989.

[81] John H. Reppy. CML: a higher-order concurrent language. SIGPLAN Notices, 6(26):293–305,
1991.

[82] John C. Reynolds. Toward a theory of type structure. In Programming Symposium, Paris,
1974, volume 19 of Lecture Notes in Computer Science, pages 408–425. Springer, 1974.



180 Bibliography

[83] John C. Reynolds. Three approaches to type structure. In Mathematical Foundations of
Software Development (TAPSOFT 85), volume 185 of Lecture Notes in Computer Science,
pages 97–138. Springer, 1985.

[84] John C. Reynolds. Preliminary design of the programming language Forsythe. Technical
report CMU-CS-88-159, Carnegie Mellon University, 1988.

[85] J.A. Robinson. A machine-oriented logic based on the resolution principle. Journal of the
ACM, 12(1):23–41, 1965.

[86] François Rouaix. ALCOOL-90: Typage de la surcharge dans un langage fonctionnel. Thèse
de doctorat, Université Paris 7, 1990.
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