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Abstrat. This paper presents a novel approah to the problem of byte-

ode veri�ation for Java Card applets. Owing to its low memory require-

ments, our veri�ation algorithm is the �rst that an be embedded on

a smart ard, thus inreasing tremendously the seurity of post-issuane

downloading of applets on Java Cards.

1 Introdution

The Java Card arhiteture for smart ards [4℄ bring two major innovations

to the smart ard world: �rst, Java ards an run multiple appliations, whih

an ommuniate through shared objets; seond, new appliations, alled ap-

plets, an be downloaded on the ard post issuane. These two features bring

onsiderable exibility to the ard, but also raise major seurity issues. A mali-

ious applet, one downloaded on the ard, an mount a variety of attaks, suh

as leaking on�dential information outside (e.g. PINs and seret ryptographi

keys), modifying sensitive information (e.g. the balane of an eletroni purse),

or interfering with other honest appliations already on the ard, ausing them

to malfuntion.

The seurity issues raised by applet downloading are well known in the area

of Web applets, and more generally mobile ode for distributed systems [23, 11℄.

The solution put forward by the Java programming environment is to exeute

the applets in a so-alled \sandbox", whih is an insulation layer preventing

diret aess to the hardware resoures and implementing a suitable aess on-

trol poliy [7℄. The seurity of the sandbox model relies on the following three

omponents:

1. Applets are not ompiled down to mahine exeutable ode, but rather to

byteode for a virtual mahine. The virtual mahine manipulates higher-

level, more seure abstrations of data than the hardware proessor, suh as

objet referenes instead of memory addresses.

2. Applets are not given diret aess to hardware resoures suh as the se-

rial port, but only to a arefully designed set of API lasses and methods

that perform suitable aess ontrol before performing interations with the

outside world on behalf of the applet.
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3. Upon downloading, the byteode of the applet is subjet to a stati analysis

alled byteode veri�ation, whose purpose is to make sure that the ode

of the applet is well typed and does not attempt to bypass protetions 1

and 2 above by performing ill-typed operations at run-time, suh as forging

objet referenes from integers, illegal asting of an objet referene from

one lass to another, alling diretly private methods of the API, jumping

in the middle of an API method, or jumping to data as if it were ode [8,

24, 10℄.

The Java Card arhiteture features omponents 1 and 2 of the sandbox model:

applets are exeuted by the Java Card virtual mahine [22℄, and the Java Card

runtime environment [21℄ provides the required aess ontrol, in partiular

through its \�rewall". However, omponent 3 (the byteode veri�er) is miss-

ing: as we shall see later, byteode veri�ation as it is done for Web applets is

a omplex and expensive proess, requiring large amounts of working memory,

and therefore believed to be impossible to implement on a smart ard.

Several approahes have been onsidered to palliate the lak of on-ard byte-

ode veri�ation. The �rst is to rely on o�-ard tools (suh as trusted ompilers

and onverters, or o�-ard byteode veri�ers) to produe well-typed byteode

for applets. A ryptographi signature then attests the well-typedness of the ap-

plet, and on-ard downloading is restrited to signed applets. The drawbak of

this approah is to extend the trusted omputing base to inlude o�-ard om-

ponents. The ryptographi signature also raises deliate pratial issues (how

to deploy the signature keys?) and legal issues (who takes liability for a buggy

applet produed by faulty o�-ard tools?).

The seond workaround is to perform type heks dynamially, during the

applet exeution. This is alled the defensive virtual mahine approah. Here,

the virtual mahine not only omputes the results of byteode instrutions, but

also keeps trak of the types of all data it manipulates, and performs additional

safety heks at eah instrution. The drawbaks of this approah is that dy-

nami type heks are expensive, both in terms of exeution speed and memory

requirements (storing the extra typing information takes signi�ant spae). Ded-

iated hardware an make some of these heks faster, but does not redue the

memory requirements.

Our approah is to hallenge the popular belief that on-ard byteode ver-

i�ation is unfeasible. In this paper, we desribe a novel byteode veri�ation

algorithm for Java Card applets that is simple enough and has low enough mem-

ory requirements to be implemented on a smart ard. A distinguishing feature of

this algorithm is to rely on o�-ard byteode transformations whose purpose is

to failitate on-ard veri�ation. Along with auxiliary onsisteny heks on the

CAP �le struture, not desribed in this paper for lak of spae, the byteode

veri�er desribed in this paper is at the heart of the Trusted Logi on-ard CAP

�le veri�er. This produt { the �rst and urrently only one of its kind { allows

seure exeution with no run-time speed penalty of non-signed applets on Java

ards.



The remainder of this paper is organized as follows. Setion 2 reviews the

traditional byteode veri�ation algorithm, and analyzes why it is not suitable

to on-ard implementation. Setion 3 presents our byteode veri�ation algo-

rithm and how it addresses the issues with the traditional algorithm. Setion

4 desribes the o�-ard ode transformations that transform any orret applet

into an equivalent applet that passes on-ard veri�ation. Setion 5 gives pre-

liminary performane results. Related work is disussed in setion 6, followed by

onluding remarks in setion 7.

2 Traditional Byteode Veri�ation

In this setion, we review the traditional byteode veri�ation algorithm devel-

oped at Sun by Gosling and Yellin [8, 24, 10℄.

Byteode veri�ation is performed on the ode of eah non-abstrat method

in eah lass of the applet. It onsists in an abstrat exeution of the ode of the

method, performed at the level of types instead of values as in normal exeution.

The veri�er maintains a stak of types and an array assoiating types to registers

(loal variables). These stak and array of registers parallel those found in the

virtual mahine, exept that they ontain types instead of values.

2.1 Straight-Line Code

Assume �rst that the ode of the method is straight line (no branhes, no ex-

eption handling). The veri�er onsiders every instrution of the method ode

in turn. For eah instrution, it heks that the stak before the exeution of the

instrution ontains enough entries, and that these entries are of the expeted

types for the instrution. It then simulates the e�et of the instrution on the

stak and registers, popping the arguments, pushing bak the types of the re-

sults, and (in ase of \store" instrutions) updating the types of the registers to

reet that of the stored values. Any type mismath on instrution arguments,

or stak underow or overow, auses veri�ation to fail and the applet to be

rejeted. Finally, veri�ation proeeds with the next instrution, until the end

of the method is reahed.

The stak type and register types are initialized to reet the state of the

stak and registers on entrane to the method: the stak is empty; registers

0; : : : ; n� 1 holding method parameters and the this argument if any are given

the orresponding types, as given by the desriptor of the method; registers

n; : : : ;m�1 orresponding to uninitialized registers are given the speial type >

orresponding to an unde�ned value.

2.2 Dealing with Branhes

Branh instrutions and exeption handlers introdue forks (exeution an on-

tinue down several paths) and joins (several suh paths join on an instrution)

in the ow of ontrol. To deal with forks, the veri�er annot in general determine



the path that will be followed at run-time. Hene, it must propagate the inferred

stak and register types to all possible suessors of the forking instrution. Joins

are even harder: an instrution that is the target of one or several branhes or

exeption handlers an be reahed along several paths, and the veri�er has to

make sure that the types of the stak and the registers along all these paths agree

(same stak height, ompatible types for the stak entries and the registers).

Sun's veri�ation algorithm deals with these issues in the manner ustom-

ary for data ow analyses. It maintains a data struture, alled a \ditionary",

assoiating a stak and register type to eah program point that is the target

of a branh or exeption handler. When analyzing a branh instrution, or an

instrution overed by an exeption handler, it updates the type assoiated with

the target of the branh in the ditionary, replaing it by the least upper bound

of the type previously found in the ditionary and the type inferred for the

instrution. (The least upper bound of two types is that smallest type that is

assignment-ompatible with the two types.) If this auses the ditionary entry to

hange, the orresponding instrutions and their suessors must be re-analyzed

until a �xpoint is reahed, that is, all instrutions have been analyzed at least

one without hanging the ditionary entries. See [10, setion 4.9℄ for a more

detailed desription.

2.3 Performane Analysis

The veri�ation of straight-line piees of ode is very eÆient, both in time and

spae. Eah instrution is analyzed exatly one, and the analysis is fast (approx-

imately as fast as exeuting the instrution in the virtual mahine). Conerning

spae, only one stak type and one set of register types need to be stored at

any time, and is modi�ed in plae during the analysis. Assuming eah type is

represented by 3 bytes, this leads to memory requirements of 3S + 3N bytes,

where S is the maximal stak size and N the number of registers for the method.

In pratie, 100 bytes of RAM suÆe. Notie that a similar amount of spae is

needed to exeute an invoation of the method; thus, if the ard has enough

RAM spae to exeute the method, it also has enough spae to verify it.

Veri�ation in the presene of branhes is muh more ostly. Instrutions may

need to be analyzed several times in order to reah the �xpoint. Experiene shows

that few instrutions are analyzed more than twie, and many are still analyzed

only one, so this is not too bad. The real issue is the memory spae required to

store the ditionary. If B is the number of distint branh targets and exeption

handlers in the method, the ditionary oupies (3S + 3N + 3) � B bytes (the

three bytes of overhead per ditionary entry orrespond to the PC of the branh

target and the stak height at this point). A moderately omplex method an

have S = 5, N = 15 and B = 50, for instane, leading to a ditionary of size

3450 bytes. This is too large to �t omfortably in RAM on urrent generation

Java ards.

Storing the ditionary in persistent rewritable memory (EEPROM or Flash)

is not an option, beause veri�ation performs many writes to the ditionary

when updating the types it ontains (typially, several hundreds, even thousands



of writes for some methods), and these writes to persistent memory take time (1-

10 ms eah); this would make on-ard veri�ation too slow. Moreover, problems

may arise due to the limited number of write yles permitted on persistent

memory.

3 Our Veri�ation Algorithm

3.1 Intuitions

The novel byteode veri�ation algorithm that we desribe in this paper follows

from a areful analysis of the shortomings of Sun's algorithm, namely that a

opy of the stak type and register type is stored in the ditionary for eah

branh target. Experiene shows that ditionary entries are quite often highly

redundant. In partiular, it is very often the ase that stak types stored in

ditionary entries are empty, and that the type of a given register is the same in

all or most ditionary entries.

These observations are easy to orrelate with the way urrent Java ompilers

work. Conerning the stak, all existing ompilers use the stak only for evalu-

ating expressions, but never store the values of Java loal variables on the stak.

Consequently, the stak is empty at the beginning and the end of every state-

ment. Sine most branhing onstruts in the Java language work at the level of

statements, the branhes generated when ompiling these onstruts naturally

our in the ontext of an empty stak. The only exeption is the onditional ex-

pression e

1

? e

2

: e

3

, whih indeed generates a branh on a non-empty stak.

As regards to registers, Java ompilers very often alloate a distint JCVM reg-

ister for eah loal variable in the Java soure. This register is naturally used

with only one type, that of the delaration of the loal variable.

Of ourse, there is no guarantee that the JCVM ode given to the veri�er

will enjoy the two properties mentioned above (stak is empty at branh points;

registers have only one type throughout the method), but these two properties

hold often enough that it is justi�ed to optimize the byteode veri�er for these

two onditions.

One way to proeed from here is to design a data struture for holding the

ditionary that is more ompat when these two onditions hold. For instane,

the \stak is empty" ase ould be represented speially, and di�erential enod-

ings ould be used to redue the ditionary size when a register has the same

type in many entries.

We deided to take a more radial approah and require that all JCVM

byteode aepted by the veri�er is suh that

{ Requirement R1: the stak is empty at all branh instrutions (after pop-

ping the branh arguments, if any), and at all branh target instrutions

(before pushing its results). This guarantees that the stak is onsistent be-

tween the soure and the target of any branh (sine it is empty at both

ends).



{ Requirement R2: eah register has only one type throughout the method

ode. This guarantees that the types of registers are onsistent between

soure and target of eah branh (sine they are onsistent between any

two instrutions, atually).

To avoid rejeting orret JCVM ode that happens not to satisfy these two

requirements, we will rely on a general o�-ard ode transformation that trans-

forms orret JCVM ode into equivalent ode meeting these two additional

requirements. The transformation is desribed in setion 4. We rely on the fat

that the violations of requirements R1 and R2 are infrequent to ensure that the

ode transformations are minor and do not ause a signi�ant inrease in ode

size.

3.2 The Algorithm

Given the two additional requirements R1 and R2, our byteode veri�ation

algorithm is a simple extension of the algorithm for verifying straight-line ode

outlined in setion 2.1. As previously, the only data struture that we need is

one stak type and one array of types for registers. As previously, the algorithm

proeeds by examining in turn every instrution in the method, in ode order,

and reeting their e�ets on the stak and register types. The omplete pseudo-

ode for the algorithm is given in Fig. 1. The signi�ant di�erenes with straight-

line ode veri�ation are as follows.

{ When heking a branh instrution, after popping the types of the argu-

ments from the stak, the veri�er heks that the stak is empty, and rejets

the ode otherwise. When heking an instrution that is a branh target,

the veri�er heks that the stak is empty. (If the instrution is a JSR target

or the start of an exeption handler, it heks that the stak onsists of one

entry of type \return address" or the exeption handler's lass, respetively.)

This ensures requirement R1.

{ When heking a \store" instrution, if � is the type of the stored value (the

top of the stak before the \store"), the type of the register stored into is not

replaed by � , but by the least upper bound of � and the previous type of the

register. This way, register types aumulate the types of all values stored

into them, thus progressively determining the unique type of the register as

it should apply to the whole method ode (requirement R2).

{ Sine the types of registers an hange following the type-heking of a

\store" instrution as desribed above, and therefore invalidate the type-

heking of instrutions that load and use the stored value, the type-heking

of all the instrutions in the method body must be repeated until the register

types are stable. This is similar to the �xpoint omputation in Sun's veri�er.

{ The dataow analysis starts, as previously, with an empty stak type and

register types orresponding to method parameters set to the types indiated

in the method desriptor. Loals not orresponding to parameters are set to

? (the subtype of all types) instead of > (the supertype of all types) for

reasons that are explained in setion 3.4 below.



Global variables:

N

r

number of registers

N

s

maximal stak size

r[N

r

℄ array of types for registers

s[N

s

℄ stak type

sp stak pointer

hg ag reording whether r hanged.

Set sp 0

Set r[0℄; : : : ; r[n � 1℄ to the types of the method arg.

Set r[n℄; : : : ; r[N

r

� 1℄ to ?

Set hg true

While hg:

Set hg false

For eah instrution i of the method, in ode order:

If i is the target of a branh instrution:

If sp 6= 0 and the previous instrution falls through, error

Set sp 0

If i is the target of a JSR instrution:

If the previous instrution falls through, error

Set s[0℄ retaddr and sp 1

If i is a handler for exeptions of lass C:

If the previous instrution falls through, error

Set s[0℄ C and sp 1

If two or more of the ases above apply, error

Determine the types a

1

; : : : ; a

n

of the arguments of i

If sp < n, error (stak underflow)

For k = 1; : : : ; n: If s[sp� n� k � 1℄ is not subtype of a

k

, error

Set sp sp� n

Determine the types r

1

; : : : ; r

m

of the results of i

If sp+m > N

s

, error (stak overflow)

For k = 1; : : : ;m: Set s[sp+ k � 1℄ r

k

Set sp sp+m

If i is a store to register number n:

Determine the type t of the value written to the register

Set r[n℄ lub(t; r[n℄)

If r[n℄ hanged, set hg true

If i is a branh instrution and sp 6= 0, error

End for eah

End while

Verifiation sueeds

Fig. 1. The veri�ation algorithm



The orretness of our veri�er was formally proved using the Coq theorem prover.

More preisely, we developed a mehanially-heked proof that any ode that

passes our veri�er does not ause any run-time type error when run through a

type-level abstrat interpretation of a defensive JCVM.

3.3 Performane Analysis

Our veri�ation algorithm has the same low memory requirements as straight-

line ode veri�ation: 3S + 3N bytes of RAM suÆe to hold the stak and

register types. In pratie, it �ts omfortably in 100 bytes of RAM. The memory

requirements are independent of the size of the method ode, and of the number

of branh targets.

Time behavior is similar to that of Sun's algorithm: several passes over the

instrutions of the method may be required; experimentally, most methods need

only two passes (the �rst determines the types of the registers and the seond

heks that the �xpoint is reahed), and quite a few need only one pass (when all

registers are parameters and they keep their initial type throughout the method).

3.4 Initialization of Registers

Unlike Sun's, our veri�ation algorithm annot guarantee that registers are ini-

tialized (stored into) before use. The reason is that sine we have only one set of

register types for the whole method, we annot analyze preisely the situation

where a register is initialized on one branh of a onditional and not on the other

branh.

The JVM and JCVM spei�ations do not require the virtual mahine to

initialize non-parameter registers on entry to a method. Hene, a method that

reads (using the ALOAD instrution) from suh a register before having stored a

valid value in it ould obtain an unspei�ed bit pattern (whatever data happens

to be in RAM at the loation of the register) and use it as an objet referene.

This is a serious seurity threat.

There are two ways to avoid this threat. One is to verify register initialization

(no reads before a store) statially, as part of the byteode veri�er. The other is

to rely on the virtual mahine to initialize, on entry to a method, all registers

that are not method parameters to the bit-pattern representing the null objet

referene. This way, inorret ode that perform a read before write on a register

does not break type safety: all instrutions operating on objet referenes test

for the null referene and raise an exeption if appropriate; integer instrutions

an operate on arbitrary bit patterns without breaking type safety. (A dynami

hek must be added to the RET instrution, however, so that a RET on a register

initialized to null will fail instead of jumping blindly to the null ode address.)

Clearing registers on method entrane is inexpensive, and it is our under-

standing that several implementations of the JCVM already do it (even if the

spei�ation does not require it) in order to redue the life-time of sensitive data

stored on the stak. In summary, register initialization is a rare example of a type



safety property that is easy and inexpensive to ensure dynamially in the virtual

mahine. Hene, we hose not to ensure it statially by byteode veri�ation.

Sine the bit pattern representing null is a orret value of any JCVM type

(short, int, array and referene types, and return addresses), it semantially

belongs to the type ? that is subtype of all other JCVM types. Hene, assuming

initialization to null in the virtual mahine, it is semantially orret to as-

sign the initial type ? to registers that are not parameters, like our veri�ation

algorithm does.

3.5 Subroutines

Subroutines are shared ode fragments built from the JSR and RET instrutions

and used for ompiling the try. . . finally onstrut in partiular [10℄. Subrou-

tines ompliate Sun-style byteode veri�ation tremendously. The reason is that

a subroutine an be alled from di�erent ontexts, where registers have di�erent

types; heking the type-orretness of subroutine alls therefore requires that

the veri�ation of the subroutine ode be polymorphi with respet to the types

of the registers that the subroutine body does not use [10, setion 4.9.6℄. This

requires a omplementary ode analysis that identi�es the method instrutions

that belong to subroutines, and math them with the orresponding JSR and

RET instrutions. See [19, 17℄ for formalizations of this approah.

All these ompliations (and potential seurity holes) disappear in our byte-

ode veri�ation algorithm: sine it ensures that a register has the same type

throughout the method ode, it ensures that the whole method ode, inluding

subroutines, is monomorphi with respet to the types of all registers. Hene,

there is no need to verify the JSR and RET instrutions in a speial, polymorphi

way: JSR is treated as a regular branh that also pushes a value of type \return

address" on the stak; and RET is treated as a branh that an go to any in-

strution that follows a JSR in the urrent method. No omplementary analysis

of the subroutine struture is required.

4 O�-ard Code Transformations

As explained in setion 3.1, our on-ard veri�er aepts only a subset of all

type-orret applets: those whose ode satis�es the two additional requirements

R1 (stak is empty at branh points) and R2 (registers have unique types). To

ensure that all orret applets pass veri�ation, we ould ompile them with a

speial Java ompiler that generates JVM byteode satisfying requirements R1

and R2, for instane by expanding onditional expressions e

1

? e

2

: e

3

into

if. . . then. . . else statements, and by assigning distint register to eah soure-

level loal variable.

Instead, we found it easier and more exible to let applet developers use

a standard Java ompiler and JavaCard onverter of their hoie, and perform

an o�-ard ode transformation on the ompiled ode to produe an equivalent
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ompiled ode that satis�es the additional requirements R1 and R2 and an

therefore pass the on-ard veri�er (see Fig. 2).

Two main transformations are performed: stak normalization (to ensure

that the stak is empty at branh points) and register realloation (to ensure

that a given register is used with only one type).

4.1 Stak Normalization

The idea underlying stak normalization is quite simple: whenever the original

ode ontains a branh with a non-empty stak, we insert stores to fresh regis-

ters before the branh, and loads from the same registers at the branh target.

This e�etively empties the stak into the fresh registers before the branh, and

restore the stak to its initial state after the branh. Consider for example the

following Java statement: C.m(b ? x : y);. It ompiles down to the JCVM

ode fragment shown below on the left.

sload Lb sload Lb

ifeq lbl1 ifeq lbl1

sload Lx sload Lx

goto lbl2 sstore Ltmp

lbl1: sload Ly goto lbl2

lbl2: invokestati C.m lbl1: sload Ly

sstore Ltmp



lbl2: sload Ltmp

invokestati C.m

Here, Lx, Ly and Lb are the numbers for the registers holding x, y and b. The

result of type inferene for this ode indiates that the stak is non-empty aross

the goto to lbl2: it ontains one entry of type short. Stak normalization

therefore rewrites it into the ode shown above on the right, where Ltmp is the

number of a fresh, unused register. The sstore Ltmp before goto lbl2 empties

the stak, and the sload Ltmp at lbl2 restore it before proeeding with the

invokestati. Sine the sload Ly at lbl1 falls through the instrution at lbl2,

we must treat it as an impliit jump to lbl2 and also insert a sstore Ltmp

between the sload Ly and the instrution at lbl2.

(Alloating fresh temporary registers suh as Ltmp for eah branh target

needing normalization may seem wasteful. Register realloation, as desribed in

setion 4.2, is able to \pak" these variables, along with the original registers of

the method ode, thus minimizing the number of registers really required.)

By lak of spae, we omit a detailed presentation of the atual stak normal-

ization transformation. It follows the approah outlined above, with some extra

ompliations due to branh instrutions that pop arguments o� the stak, and

also to the fat that a branh instrution needing normalization an be itself the

target of another branh instrution needing normalization.

4.2 Register Realloation

The seond ode transformation performed o�-ard onsists in re-alloating reg-

isters (i.e. hange the register numbers) in order to ensure requirement R2: a

register is used with only one type throughout the method ode. This an al-

ways be ahieved by \splitting" registers used with several types into several

distint registers, one per use type. However, this an inrease markedly the

number of registers required by a method.

Instead, we use a more sophistiated register realloation algorithm, derived

from the well-known algorithms for global register alloation via graph olor-

ing. This algorithm tries to redue the number of registers by reusing the same

register as muh as possible, i.e. to hold soure variables that are not live si-

multaneously and that have the same type. Consequently, it is very e�etive at

reduing ineÆienies in the handling of registers, either introdued by the stak

normalization transformation, or left by the Java ompiler.

Consider the following example (original ode on the left, result of register

realloation on the right).

sonst_1 sonst_1

sstore 1 sstore 1

sload 1 sload 1

sonst_2 sonst_2

sadd sadd

sstore 2 sstore 1

new C new C



astore 1 astore 2

... ...

In the original ode, register 1 is used with two types: �rst to hold values of

type short, then to hold values of type C. In the transformed ode, these two

roles of register 1 are split into two distint registers, 1 for the short role and 2

for the C role. In parallel, the realloation algorithm noties that, in the original

ode, register 2 and the short role of register 1 have disjoint live ranges and

have the same type. Hene, these two registers are merged into register 1 in the

transformed ode. The end result is that the number of registers stays onstant.

The register realloation algorithm is essentially idential to Briggs' variant

of Chaitin's graph oloring alloator [3, 1℄, with additional type onstraints re-

eting requirement R2. More preisely, we add edges in the interferene graph

between live ranges that do not have the same prinipal type, thus guaranteeing

that they will be assigned di�erent registers.

5 Experimental Results

5.1 O�-ard Transformation

The table below shows results obtained by transforming 6 pakages from Sun's

Java Card development kit.

Pakage Code size (bytes) Resident size (bytes) Registers

Orig. Transf. Inr. Orig. Transf. Inr.

java.lang 92 91 -1% 320 319 -0.3% 0.0%

javaard.framework 4047 4142 +2.3% 5393 5488 +1.8% +0.3%

om.sun.javaard.HelloWorld 100 99 -1% 220 219 -0.5% 0.0%

om.sun.javaard.JavaPurse 2558 2531 -1% 3045 3018 -0.8% -8.3%

om.sun.javaard.JavaLoyalty 207 203 -1.9% 365 361 -1% 0.0%

om.sun.javaard.installer 7043 7156 +1.6% 8625 8738 +1.3% -7.5%

Total 14047 14222 +1.2% 17968 18143 +0.9% -4.2%

The ode size inrease aused by the transformation is almost negligible: the

size of the Method omponent inreases by 1.2%; the resident size (total size of

all omponents that remain on the ard after installation) inreases by 0.9%.

The requirements in registers globally dereases by about 4%.

To test a larger body of ode, we used a version of the o�-ard transformer

that works over Java lass �les (instead of Java Card CAP �les) and transformed

all the lasses from the Java Runtime Environment version 1.2.2, that is, about

1.5 Mbyte of JVM ode. The results are very similar: ode size inreases by 0.7%;

registers derease by 1.3%.

The transformer performs lean-up optimizations (branh tunneling, register

oalesing) whose purpose is to redue ineÆienies introdued by other trans-

formations. These optimizations are also quite e�etive at reduing ineÆienies

left by the Java ompiler, resulting in ode size dereases of up to 1.9% for

some pakages. Similarly, the paking of registers atually redues the maximal

number of registers in most pakages.



5.2 On-ard Veri�er

We present here preliminary results obtained on an implementation of our byte-

ode veri�er running on a Linux PC. A proper on-ard implementation is in

progress, but we are not in a position to give results onerning this implemen-

tation.

Byteode veri�ation proper (ensuring that method ode is type-safe), writ-

ten in ANSI C, ompiles down to 11 kilobytes of Intel IA32 ode, and 9 kilobytes

of Atmel AVR ode. A proof-of-onept reimplementation in hand-written ST7

assembly ode �ts in 4.5 kilobytes of ode.

In addition to verifying the byteode of methods, our implementation also

heks the strutural onsisteny of CAP �le omponents. Sine the CAP �le

format is extremely omplex [22, hapter 6℄, CAP �le onsisteny heking takes

a whopping 12 kilobytes of Intel IA32 ode. However, when integrating the ver-

i�er with an atual Java Card VM, many of these onsisteny heks beome

redundant with heks already performed by the VM or the installer, or useless

beause they apply to CAP �le information that the VM ignores. Programming

triks suh as table-driven automata an also be used to redue further the ode

size of onsisteny heking, at some expense in exeution speed.

The PC implementation of the veri�er, running on a 500 Mhz Pentium III,

takes approximately 1.5 ms per kilobyte of byteode. Extrapolating this �gure

to a typial 8-byte smartard proessor (e.g. 8051 at 5 Mhz), we estimate that an

on-ard implementation should take less than 1 seond per kilobyte of byteode,

or about 2 seonds to verify an applet the size of JavaPurse. Notie that the

veri�er performs no EEPROM writes and no ommuniations, hene its speed

bene�ts linearly from higher lok rates or more eÆient proessor ores.

Conerning the number of iterations required to reah the �xpoint in the

byteode veri�ation algorithm, the 6 pakages we studied ontain 7077 JCVM

instrutions and require 11492 alls to the funtion that analyzes individual

instrutions. This indiates that eah instrution is analyzed 1.6 times on average

before reahing the �xpoint. This �gure is surprisingly low; it shows that a

\perfet" veri�ation algorithm that analyzes eah instrution exatly one, suh

as [18℄, would only be 38% faster than ours.

6 Related Work

The work most losely related to ours is the lightweight byteode veri�ation

of Rose and Rose [18℄, also found in the KVM arhiteture [20℄ and in [9℄.

Inspired by proof-arrying ode [12℄, lightweight byteode veri�ation onsists

in sending, along with the ode to be veri�ed, pre-omputed stak and register

types for eah branh target. Veri�ation then simply heks the orretness of

these pre-omputed types, using a simple variant of straight-line veri�ation,

instead of inferring them by �xpoint iteration, as in Sun's veri�er.

The interest for an on-ard veri�er is twofold. The �rst is that �xpoint it-

eration is avoided, thus making the veri�er faster. (As mentioned at the end



of setion 5.2, the performane gain thus obtained is modest.) The seond is

that the stak and register types at branh targets an be stored temporarily in

EEPROM, sine they do not need to be updated repeatedly during veri�ation.

The RAM requirements of the veri�er beome similar to those of our veri�er:

only the urrent stak type and register type need to be kept in RAM.

There are two problems with Rose and Rose's lightweight byteode veri�a-

tion. One is that it urrently does not deal with subroutines, more spei�ally

with polymorphi typing of subroutines as desribed in setion 3.5. Subroutines

are part of the JCVM spei�ation, and ould be useful as a general ode sharing

devie for reduing byteode size. The seond issue is the size of the \erti�ate",

that is, the pre-omputed stak and register types that aompany the ode. Our

experiments indiate that, using a straightforward representation, erti�ates are

about the same size as the ode. Even with a more omplex, ompressed repre-

sentation, erti�ates are still 20% of the ode size. Hene, signi�ant free spae

in EEPROM is required for storing temporarily the erti�ates during the veri-

�ation of large pakages. In ontrast, our veri�ation tehnology only requires

at most 1{2% of extra EEPROM spae.

Challenged by the lak of preision in the referene publiations of Sun's

veri�er [8, 24, 10℄, many researhers have published rational reonstrutions, for-

malizations, and formal proofs of orretness of various subsets of Sun's veri�er

[5, 16, 15, 17, 6, 13℄. These works were inuential in understanding the issues, un-

overing bugs in Sun's implementation of the veri�er, and generating on�dene

in the algorithm. Unfortunately, most of these works address only a subset of the

veri�er. In partiular, none of them proves the orretness of Sun's polymorphi

typing of subroutines in the presene of exeptions.

A di�erent approah to byteode veri�ation was proposed by Posegga [14℄

and further re�ned by Brisset [2℄. This approah is based on model heking

of a type-level abstrat interpretation of a defensive Java virtual mahine. It

trivializes the problem with polymorphi subroutines and exeptions, but is very

expensive (time and spae exponential in the size of the method ode), thus is

not suited to on-ard implementation.

7 Conlusions

The novel byteode veri�ation algorithm desribed in this paper is perfetly

suited to on-ard implementation, due to its low RAM requirements. It is su-

perior to Rose and Rose's lightweight byteode veri�ation in that it handles

subroutines, and requires muh less additional EEPROM spae (1{2% of the

ode size vs. 20{100% for lightweight byteode veri�ation).

On-ard byteode veri�ation is the missing link in the Javaard vision of

multi-appliation smart ards with seure, eÆient post-issuane downloading

of applets. We believe that our byteode veri�er is a ruial enabling tehnology

for making this vision a reality.
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