
Call-by-Value Mixin Modules

?

Redution Semantis, Side E�ets, Types

Tom Hirshowitz

1

, Xavier Leroy

2

, and J. B. Wells

3

1

�

Eole Normale Sup�erieure de Lyon

2

INRIA Roquenourt

3

Heriot-Watt University

Abstrat. Mixin modules are a framework for modular programming

that supports ode parameterization, inremental programming via late

binding and rede�nitions, and ross-module reursion. In this paper, we

develop a language of mixin modules that supports all-by-value evalu-

ation, and formalize a redution semantis and a sound type system for

this language.

1 Introdution

For programming \in the large", it is desirable that the programming language

o�ers linguisti support for the deomposition and struturing of programs into

modules. A good example of suh linguisti support is the ML module system

and its powerful support for parameterized modules. Nevertheless, this system

is weak on two important points.

{ Mutual reursion: Mutually reursive de�nitions annot be split aross sepa-

rate modules. There are several ases where this hinders modularization [5℄.

{ Modi�ability: The language does not propose any mehanism for inremen-

tal modi�ation of an already-de�ned module, similar to inheritane and

overriding in objet-oriented languages.

Class-based objet-oriented languages provide exellent support for these two

features. Classes are naturally mutually reursive, and inheritane, method over-

riding and late binding answer the need for modi�ability. However, viewed as

a module system, lasses have two weaknesses: they do not o�er a general

parameterization mehanism, and the mehanisms they o�er to desribe pre-

omputations (initialization of stati and instane variables) lak generality. A

module system should allow to naturally alternate funtion de�nitions with om-

putational, possibly side-e�etive de�nitions using these funtions.

Mixin modules [2℄ (hereafter simply alled mixins) provide an alternative ap-

proah to modularity that ombines some of the best aspets of lasses and ML-

style modules. Mixins are modules with \holes" (not-yet-de�ned omponents),

where the holes an be plugged later by omposition with other mixins, follow-

ing a late-binding semantis. However, the handling of pre-omputations and

?

Partially supported by EPSRC grant GR/R 41545/01

initializations in mixins is still problemati. Most of the previous work on mix-

ins, notably by Anona and Zua [1℄ and Wells and Vestergaard [23℄, is better

suited to a all-by-name evaluation strategy. This strategy makes it impossible

to trigger omputations at initialization time.

Our goal in this paper is to de�ne a all-by-value semantis for mixins

that supports leanly the evaluation of mixin omponents into values in a

programmer-ontrolled evaluation order. In an earlier paper, Hirshowitz and

Leroy [15℄ de�ne a a typed language of mixins in a all-by-value setting, whose

semantis is given by type-direted translation into enrihed �-alulus. The

present paper improves over this �rst attempt in the following ways:

{ Redution semantis: We give a soure-to-soure, small-step redution

semantis for the mixin language. This semantis is simpler than the

translation-based semantis, and is untyped. It also simpli�es the proof of

type soundness, whih is now a standard argument by subjet redution

and progress.

{ Side e�ets: The semantis makes it easy for the programmer to (1) know

when side-e�ets our, and (2) ontrol the order in whih they our.

{ Anonymous de�nitions: Our system features anonymous de�nitions, that

is, de�nitions that are evaluated, but not exported as omponents of the

�nal module. The translation semantis �rst proposed by Hirshowitz and

Leroy annot handle anonymous de�nitions, beause it is type-direted and

anonymous de�nitions do not appear in mixin types.

{ Pratiality of mixin types: The type of a mixin must arry some dependeny

information about its ontents. Requiring the dependeny information to

math exatly between the delared type of a mixin and its atual type,

like Hirshowitz and Leroy did, is not pratial. To address this issue, we

introdue a new notion of subtyping w.r.t. dependenies, allowing a mixin

to be viewed with more dependenies than it atually has. Furthermore,

appropriate syntati sugar allows to speify the dependenies of a large

lass of mixins with low syntati overhead.

2 Overview

2.1 An operational semantis of mixins

Our entral idea for bringing mutual reursion and modi�ability to modules

is to adapt the distintion between lasses and objets to the ontext of mix-

ins. Following this idea, this paper designs a kernel language of mixins alled

MM, whih distinguishes mixins from atual modules. Mixins are dediated to

modularity operations, and feature parameterization, modi�ability and mutual

reursion. The ontents of mixins are never redued, so no omputation takes

plae at the mixin level. Modules are dediated to omputation, ontain fully

evaluated values, and an be obtained by mixin instantiation, written lose.

For the sake of simpliity,MM does not expliitly inlude a module onstrut.

Instead, modules are enoded by a ombination of reords and value binding.

Roughly, a module strut x

1

= e

1

: : : x

n

= e

n

end is implemented by let re x

1

=

e

1

: : : x

n

= e

n

in fx

1

= e

1

: : : x

n

= e

n

g. Based on previous work on value binding

in a all-by-value setting [16℄, MM features a single value binding onstrut that

expresses both reursive and non-reursive de�nitions. Basially, this onstrut

evaluates the de�nitions from left to right, onsidering variables as values.

A mixin is a pair of a set of input variables x

1

: : : x

n

, and a list of output

de�nitions y

1

= e

1

: : : y

m

= e

m

, written hx

1

: : : x

n

; y

1

= e

1

: : : y

m

= e

m

i.

Mixins are equipped with operators adapted from previous works [2, 1, 23℄.

The main operator is omposition: given two mixins e

1

and e

2

, their omposition

e

1

+ e

2

returns a new mixin whose output is the onatenation of those of e

1

and e

2

, and whose inputs are the inputs of e

1

or e

2

that have not been �lled by

any output.

When losing a mixin h;; y

1

= e

1

: : : y

m

= e

m

i without inputs (alled on-

rete), the order in whih to evaluate the de�nitions is not obvious. Indeed,

the syntati order arises from previous ompositions, and does not neessarily

reet the intention of the programmer. For instane, the expression hf ;x =

f 0i + h;; f = �x:x + 1i evaluates to h;;x = f 0; f = �x:x + 1i, whih should

be instantiated into strut f = �x:x + 1; x = f 0 end (sine de�nitions are

evaluated from left to right). Thus, the lose operator reorders de�nitions before

evaluating them, thus turning a mixin into a module. It approximates an order

in whih the evaluation of eah de�nition only needs previous de�nitions.

Unfortunately, this makes instantiation quite unintuitive in the presene of

side e�ets. For example, if we are programming a tiket-vending mahine for

buying train tikets, it is reasonable to expet that the mahine asks for the

destination before asking whether the ustomer is a smoker or not. Indeed, the

seond question is useless if the trains to the requested destination are full.

However, asking the seond question does not require any information on the

answer to the �rst one. So, if the program is built as an assembly of mixins,

dependenies do not impose any order on the two questions, whih an be a

soure of error. To handle this issue, our language of mixins provides programmer

ontrol over the order of evaluation: a de�nition an be annotated with the

name of another one, to indiate that it should be evaluated after that one. For

example, we an de�ne s = hdestination ; smoker [destination ℄ = : : :i. Intuitively,

the annotation tells the system to do as if smoker depended on destination . This

is why we all these annotations fake dependenies. Additionally, the system

provides an operation for adding suh dependenies a posteriori. For instane,

assume our mixin was initially provided without the dependeny annotation

above: s

0

= hdestination ; smoker = : : :i. It is then important to be able to add

it without modifying the soure ode. This is written s

1

= s

0

smoker[destination ℄

,

whih evaluates to the previous mixin s . Fake dependenies make MM ready

for imperative features, although the formalization given in this paper does not

inlude imperative features to keep it simpler.

2.2 Typing MM

The natural way to type-hek mixins is via sets of type delarations for input

and output omponents. For instane, letm

1

= hx; y = e

1

i andm

2

= hy;x = e

2

i,

where e

1

and e

2

denote two arbitrary expressions. It appears natural to give them

the types m

1

: hx :M

2

; y :M

1

i and m

2

: hy :M

1

;x : M

2

i, where M

1

and M

2

de-

note the types of e

1

and e

2

, respetively, and the semi-olon separates the inputs

from the outputs. The type of their omposition is then m : h;;x :M

2

; y :M

1

i.

While adequate for all-by-name mixins, this type system is not sound for all-

by-value evaluation, beause it does not guarantee that bindings generated at

lose time ontain only well-founded reursive de�nitions that an be safely eval-

uated using all-by-value. In the example above, we ould have x bound to y+1

and y bound to x+ 1, whih is not well-founded. Yet, nothing in the type of m

signals this problem.

In Set. 4, we enrih these naive mixin types with dependeny graphs desrib-

ing the dependenies between de�nitions, and we formalize a simple (monomor-

phi) type system for MM. These graphs distinguish strong dependenies, whih

are forbidden in dependeny yles, from weak dependenies, whih are allowed

in dependeny yles. For instane, x + 1 strongly depends on x, while �y:x

only weakly depends on it. The graphs are updated at eah mixin operation,

and allow to detet ill-founded reursions, while retaining most of the expressive

power of MM.

Moreover, as mixin types arry dependeny graphs, the types assigned to

inputs may also ontain graphs, and thus onstrain the future mixins �lling

these inputs to have exatly the same graph. This poliy is rather inexible.

To reover some exibility, we introdue a notion of subtyping over dependeny

graphs: a mixin module with a dependeny graph G an be viewed as having

a more onstraining graph. The type system of MM is the �rst to handle both

subtyping over dependeny graphs and anonymous de�nitions in mixins.

3 Syntax and dynami semantis of MM

3.1 Syntax

We now formally de�ne our kernel language of all-by-value mixin modules,

alled MM. Following Harper and Lillibridge [12℄, we distinguish names X from

variables x. Variables are �-onvertible, but names are not. MM expressions are

de�ned in Fig. 1. Expressions inlude variables x, reords (labeled by names)

fX

1

= e

1

: : : X

n

= e

n

g, and reord seletion e:X , whih are standard.

The basi mixins are alled mixin strutures, whih we abbreviate as simply

strutures. A struture h�; oi is a pair of an input � of the shape X

1

.x

1

: : :X

n

.x

n

,

and of an output o of the shape d

1

: : : d

m

. The input � maps external names

imported by the struture to internal variables (used in o). The output o is an

ordered list of de�nitions d. A de�nition is of the shape L[x

1

: : : x

n

℄ . x = e,

where e is the body of the de�nition, and the label L is either a name X or the

Expression: e ::= x Variable

j fX

1

= e

1

: : : X

n

= e

n

g Reord

j e:X Reord seletion

j hX

1

. x

1

: : : X

n

. x

n

; d

1

: : : d

m

i Struture

j e

1

+ e

2

Composition

j lose e Closure

j e

X[Y ℄

Fake dependeny

j let re x

1

= e

1

: : : x

n

= e

n

in e let re

De�nition: d ::= X[x

1

: : : x

n

℄ . x = e Named de�nition

j [x

1

: : : x

n

℄ . x = e Anonymous de�nition

Fig. 1. Syntax of MM

anonymous label . The possibly empty �nite list of names x

1

: : : x

n

is the list of

fake dependenies of this de�nition on other de�nitions of the struture.

We provide four representative operators over mixins: ompose e

1

+ e

2

, lose

lose e, delete e

j�X

1

:::X

n

, and fake dependeny e

X[Y ℄

. Additional operators are

formalized in Hirshowitz's PhD thesis [14℄.

Finally,MM features a single value binding onstrut let re b in e (where b is

a list of reursive de�nitions x

1

= e

1

: : : x

n

= e

n

, alled a binding). As desribed

in previous work [16℄, this onstrut enompasses ML reursive and non-reursive

binding onstruts. The binding onstrut ofMM restrits reursion syntatially

as follows.

(Bakward dependenies) In a binding b = (x

1

= e

1

: : : x

n

= e

n

), we say that

there is a bakward dependeny of x

i

on x

j

if 1 � i � j � n and x

j

2 FV(e

i

),

where FV(e

i

) denotes the set of free variables of e

i

. A bakward dependeny

of x

i

on x

j

is syntatially inorret, exept when e

j

is of preditable shape.

(Preditable shape) Expressions of preditable shape are de�ned by

e

#

2 Preditable ::= fs

v

g j h�; oi j let re b in e

#

, where s

v

ranges over

evaluated reord sequenes (see below the de�nition of values).

In the following, we assume that all bindings are syntatially orret. More-

over, we onsider expressions equivalent up to �-onversion of variables bound

in strutures and let re expressions, and assume that no variable apture o-

urs. We also onsider inputs equivalent up to reordering, and fake dependeny

lists equivalent up to reordering and repetition. Further, we assume that inputs,

bindings, outputs, and strutures (resp. inputs, reords, outputs, and strutures)

do not de�ne the same variable (resp. name) twie.

3.2 Semantis

Values and answers MM values are de�ned by

v ::= x j fs

v

g j hX

1

. x

1

: : : X

n

. x

n

; d

1

: : : d

n

i

where s

v

::= X

1

= v

1

: : : X

1

= v

1

:

Evaluation answers are values, possibly surrounded by an evaluated binding:

a ::= v j let re b

v

in v; where b

v

::= x

1

= v

1

: : : x

n

= v

n

.

Contration relation In preparation for the redution relation, we �rst de�ne a

loal ontration relation by the rules in Fig. 2. Redution will ontain the

losure of ontration under evaluation ontext.

Rule Compose de�nes the omposition of two strutures h�

1

; o

1

i and h�

2

; o

2

i.

The result is a struture h�; oi, de�ned as follows: � is the union of �

1

and �

2

, where

names de�ned in o

1

or o

2

are removed. (In the rule, Input(o) extrats an input

X . x from eah named de�nition X [y

�

℄ . x = e in o.) The result output o is

de�ned as the onatenation of o

1

and o

2

. The side ondition h�

1

; o

1

i m h�

2

; o

2

i

means that the variables bound by one of the strutures an only be mentioned

by the other if they are tied to a ommon name in both strutures. Lastly, o

1

and o

2

are required not to de�ne the same names, by means of the funtion

Names(o

1

) whih denotes dom(Input(o

1

)).

Rule Close de�nes the instantiation of a struture h�; oi. The input � must

be empty. The instantiation is in three steps.

{ First, o is reordered aording to its dependenies, to its fake dependenies,

and to its syntati ordering, thus yielding a new output o. This is done by

onsidering the syntati de�nition order in o, written B

o

, and the unlabeled

dependeny graph of o, written *

o

, whih is de�ned by the two following

inferene rules

x

0

2 FV(e)

(L[y

�

℄ . x = e); (L

0

[z

�

℄ . x

0

= e

0

) 2 o

x

0

*

o

x

(L[x

1

: : : x

n

℄ . x = e) 2 o

(L

0

[z

�

℄ . x

i

= e

0

) 2 o

x

i

*

o

x

Given an unlabeled graph* on variables, we de�ne the binary relation�

*

by fx�

*

y j x*

+

y and y*

�

=

xg. It de�nes a partial order on the variables

de�ned by o, whih respets dependenies, in the sense that if x �

+

*

y,

then x does not depend on y. The output o is then o, reordered w.r.t. the

lexiographial order (�

*

o

;B

o

). Thus, when dependenies do not impose an

order, we hoose the syntati de�nition order as a default. By onstrution,

in o, all bakward dependenies are part of yles.

{ Seond, a binding Bind(o) is generated, de�ning, for eah de�nition d =

(L[y

�

℄ . x = e) in o, the de�nition x = e, in the same order as in o. As

we only write syntatially orret expressions, the rule has an impliit side

ondition that Bind(o) be syntatially orret.

{ Third, the values of the named de�nitions of o are grouped in a reord

Reord(o), with, for eah named de�nition X [y

�

℄.x = e, a �eld X = x. This

reord is the result of the instantiation.

Rule Delete desribes how MM deletes a �nite set of names fX

1

: : :X

n

g

from a struture h�; oi. First, o is restrited to the other de�nitions (in the rule, o

is viewed as a �nite map from pairs of a label and a variable to pairs of a �nite set

Contration rules

h�

1

; o

1

i m h�

2

; o

2

i Names(o

1

) ? Names(o

2

)

h�

1

; o

1

i+ h�

2

; o

2

i h(�

1

[�

2

) n Input(o

1

; o

2

); o

1

; o

2

i

(Compose)

loseh;; oi let reBind(o) inReord(o) (Close)

h�; oi

j�X

1

:::X

n

 h�+ Input(o)

j fX

1

:::X

n

g

; o

j dom(o)n(fX

1

:::X

n

g�Vars)

i

(Delete)

(Y . y) 2 dom(h�; o

1

; X[z

�

℄ . x = e; o

2

i)

h�; o

1

; X[z

�

℄ . x = e; o

2

i

X[Y ℄

 h�; o

1

; X[yz

�

℄ . x = e; o

2

i

(Fake)

fs

v

g:X s

v

(X) (Selet)

dom(b) ? FV(L)

L [let re b in e℄ let re b in L [e℄

(Lift)

Redution rules

e e

0

E [e℄! E [e

0

℄

(Context)

E [D ℄(x) = v

E [D [x℄℄! E [D [v℄℄

(Subst)

dom(b

1

) ? fxg [dom(b

v

; b

2

) [FV(b

v

; b

2

) [FV(f)

let re b

v

; x = (let re b

1

in e); b

2

in f ! let re b

v

; b

1

; x = e; b

2

in f

(IM)

dom(b) ? (dom(b

v

) [FV(b

v

))

let re b

v

in let re b in e! let re b

v

; b in e

(EM)

Evaluation ontexts

Evaluation ontext:

E ::= F j let re b

v

in F j let re B [F ℄ in e

Lift ontext:

L ::= fSg j 2:X

j lose2 j 2

j�X

1

:::X

n

j 2

X[Y ℄

j 2 + e j v + 2

Dereferening ontext:

D ::= 2:X j lose2 j 2

j�X

1

:::X

n

j 2

X[Y ℄

j 2 + v

1

j v

2

+ 2 (v

2

is not a variable).

Nested lift ontext:

F ::= 2 j L [F ℄

Binding ontext:

B ::= b

v

; x = 2; b

Reord ontext:

S ::= s

v

; X = 2; s

Aess in evaluation ontexts

(let re b

v

in F)(x) = b

v

(x) (EA) (let re b

v

; y = F ; b in e)(x) = b

v

(x) (IA)

Fig. 2. Dynami semantis of MM

of variables and an expression). Seond, the removed de�nitions remain bound

as inputs, by adding the orresponding inputs to �.

Rule Fake desribes the fake dependeny operation, whih allows to add

a fake dependeny to a mixin a posteriori. Let dom(h�; oi) denote � + dom(o).

Given a mixin m = h�; o

1

; X [z

�

℄ . x = e; o

2

i, ontaining the name Y , bound

by the variable y, the expression m

X[Y ℄

adds a fake dependeny on y to the

de�nition of X , thus yielding h�; o

1

; X [yz

�

℄ . x = e; o

2

i.

The reord seletion rule Selet straightforwardly desribes the seletion of

a reord �eld.

Finally, in MM, there is no rule for eliminating let re. Instead, evaluated

bindings remain at top-level in the expression as a kind of run-time environment.

Bindings that are not at top-level in the expression must be lifted before their

evaluation an begin, as de�ned by rule Lift and lift ontexts L .

Redution relation We now de�ne the dynami semantis of MM by the global

redution relation !, de�ned by the rules in Fig. 2.

As mentioned above, only the top-level binding an be evaluated. As soon as

one of its de�nitions gets evaluated, evaluation an proeed with the next one,

or with the enlosed expression if there is no de�nition left. This is enfored by

the de�nition of evaluation ontexts E : evaluation happens under (if evaluated)

or inside an optional top-level binding, and a nested lift ontext F (whih is sim-

ply a series of lift ontexts). If evaluation meets a binding inside the onsidered

expression, then this binding is lifted to the top level of the expression, or just

before the top-level binding if there is one. In this ase, it is merged with the

latter, either internally or externally, as desribed by rules IM and EM, respe-

tively. External and internal substitutions (rules Subst, EA and IA) allow to

opy one of the already evaluated de�nitions of the top-level binding, when they

are needed by the evaluation, i.e. when they appear in a dereferening ontext.

The ondition that v

2

is not a variable in the grammar ensures determinism of

the redution in ases suh as x+ y. The left argument is always opied �rst.

Finally, rule Context extends ontration to evaluation ontexts.

4 Stati semantis of MM

Types are de�ned by M 2 Types ::= fOg j hI ;O;Gi, where I and O are sig-

natures, that is, �nite maps from names to types, and where G is a graph over

names, labeled by degrees. A degree � is one of/ and,, respetively representing

strong and weak dependenies. There are only two kinds of types: reord types

fOg and mixin types hI ;O;Gi. Environments � are �nite maps from variables

to types.

The type system is de�ned in Fig. 3. After the standard typing rule T-

Variable for variables, rule T-Strut de�nes the typing of strutures h�; oi.

The rule has to guess a well-formed input signature I orresponding to �, and

a well-formed type environment �

o

orresponding to o. Type, signature, and

environment well-formedness only requires that for any mixin type hI ;O;Gi,

Expressions

x 2 dom(�)

� ` x : � (x)

(T-Variable)

dom(�) = dom(I) ` I ` �

o

` �!

h�;oi

� hI Æ �

�1

+ �

o

i ` o : �

o

O = �

o

Æ Input(o)

� ` h�; oi : hI +O;O; b�!

h�;oi

i

(T-Strut)

� ` e : M

0

M

0

�M ` M

� ` e : M

(T-Sub)

� ` e

1

: hI

1

;O

1

;G

1

i � ` e

2

: hI

2

;O

2

;G

2

i

` G

1

[G

2

dom(I) = dom(I

1

) [dom(I

2

) ` I

I

j dom(I

1

)

� I

1

I

j dom(I

2

)

� I

2

(O

1

+O

2

) � I

j dom(O

1

+O

2

)

� ` e

1

+ e

2

: hI;O

1

+O

2

;G

1

[G

2

i

(T-Compose)

� ` e : hI;O;Gi dom(I) = dom(O)

� ` lose e : fOg

(T-Close)

� ` e : hI;O;Gi

� ` e

j�X

1

:::X

n

: hI;O

nfX

1

:::X

n

g

;G

j�fX

1

:::X

n

g

i

(T-Delete)

� ` e : hI;O;Gi X 2 dom(O) Y 2 dom(I) ` G

X[Y ℄

� ` e

X[Y ℄

: hI;O;G

X[Y ℄

i

(T-Fake)

` b ` �

b

� h�

b

i ` b : �

b

� h�

b

i ` e : M

� ` let re b in e : M

(T-LetRe)

8X 2 dom(s); � ` s(X) : O(X)

� ` fsg : fOg

(T-Reord)

� ` e : fOg

� ` e:X : O(X)

(T-Selet)

Sequenes

� ` � : ;

� ` e : M � ` o : �

o

� ` (L[x

�

℄ . x = e; o) : fx : Mg+ �

o

� ` e : M � ` b : �

b

� ` (x = e; b) : fx : Mg+ �

b

Fig. 3. Stati semantis of MM

G is safe, in the sense that its yles only ontain weak dependenies (labeled

by ,), and O � I

j dom(O)

, in the sense of signature subtyping, de�ned below.

Given I and �

o

, the rule heks that the de�nitions in o indeed have the types

mentioned in �

o

. The types of named de�nitions of o, obtained by omposing �

o

with Input(o), are retained both as inputs and outputs. Finally, the ondition

` �!

h�;oi

heks that the dependenies of the struture are safe. It relies on the

labeled dependeny graph of h�; oi, whih is de�ned by the two following inferene

rules.

(L

0

; x

0

) 2 dom(h�; oi)

(L[y

�

℄ . x = e) 2 o

Node(L

0

; x

0

)

Degree(x

0

;e)

�������!

h�;oi

Node(L; x)

(L

i

; x

i

) 2 dom(h�; oi)

(L[x

1

: : : x

n

℄ . x = e) 2 o

Node(L

i

; x

i

)

/

�!

h�;oi

Node(L; x)

where Node(L; x) denotes L if L is a name, and x otherwise. The edges of

this graph are labeled by degrees, whih are omputed by the Degree funtion,

de�ned if x 2 FV(e) by Degree(x; e) = , if e 2 Preditable and Degree(x; e) = /

otherwise. Finally, variables should not appear in types, so we lift the graph to

a labeled graph over names written b�!

h�;oi

. Namely, we extend edges through

anonymous omponents: for eah pathN

1

�

1

�!x

�

2

�!N

2

, we add the edgeN

1

�

�!N

2

,

where � is the minimum of �

1

and �

2

, given that / < ,. Then, b�!

h�;oi

 denotes

the restrition of the resulting graph to names.

The subsumption rule T-Sub materializes the presene of subtyping in MM.

Subtyping is de�ned by the following two rules:

I

2

� I

1

O

1

� O

2

G

1

� G

2

hI

1

;O

1

;G

1

i � hI

2

;O

2

;G

2

i

O

1

� O

2

fO

1

g � fO

2

g

where subtyping between signatures is de�ned omponent-wise. Subtyping allows

a dependeny graph to be replaed by a more onstraining graph. Setion 5

illustrates the pratial importane of subtyping between dependeny graphs.

Rule T-Compose types the omposition of two expressions. It guesses a

lower bound I of the input signatures I

1

and I

2

of its arguments, suh that

dom(I) = dom(I

1

) [dom(I

2

). This lower bound is used as the input signature

of the result. Cheking that it is a lower bound implies that ommon names

between I

1

and I

2

have ompatible types. The rule also heks that the union

of the two dependeny graphs is safe, and that no name is de�ned twie (i.e. is

not in both outputs). The result type shares the inputs and takes the union of

the outputs and of the dependeny graphs.

Rule T-Close transforms a mixin type whose inputs are all mathed by its

outputs into a reord type.

Rule T-Delete, exatly as the orresponding ontration rule, removes the

seleted names from the output types, reporting the other ones in the input signa-

ture. The abstrat graph is modi�ed aordingly by the operation G

j�fX

1

:::X

n

g

,

whih removes the edges leading to the deleted omponents.

Rule T-Fake types an expression of the shape e

X[Y ℄

. If e has a type hI ;O;Gi,

with X 2 dom(O), and Y 2 dom(I), then adding a fake dependeny of X on

Y only modi�es the graph G: G

X[Y ℄

denotes G, augmented with a strong edge

from Y to X . The rule heks that this does not make the graph unsafe.

Rule T-LetRe for typing bindings let re b in e is standard, exept for its

side ondition: ` b means that b does not ontain bakward dependenies on

de�nitions of unpreditable shape, and is well ordered with respet to its de-

pendenies, in the following sense. The dependeny graph �!

b

of b = (x

1

=

e

1

: : : x

n

= e

n

) is de�ned as the labeled dependeny graph of the equivalent out-

put ([℄ . x

1

= e

1

: : : [℄ . x

n

= e

n

). Then, we require that all paths of �!

b

whose

last edge is labeled by / are forward. This is suÆient to ensure that b ontains

no dependeny problem.

The T-Selet and T-Reord rules for typing reord onstrution and se-

letion are standard. Rule T-Selet has an impliit side-ondition that X 2

dom(O).

Finally, Fig. 3 also presents the typing of sequenes, outputs and bindings,

whih is straightforward, sine it onsists in suessively typing their de�nitions.

Theorem 1 (Soundness) A losed, well-typed expression an either not ter-

minate or reah an answer.

The proof of this theorem (via the standard subjet redution and progress

properties) an be found in Hirshowitz's PhD thesis [14℄.

5 Pratial syntati signatures and subtyping w.r.t.

dependenies

As mentioned in the introdution, enrihing mixin types with dependeny graphs

without graph subtyping would make the type system too rigid. Assuming suh

a system, onsider a mixin e whih imports a mixin X . The type of e has an

input delaration named X that assoiates a graph to X . If we later want to

use e twie in the program, omposing it with two di�erent mixins e

0

and e

00

, it

is unlikely that X has exatly the same dependeny graph in e

0

and e

00

, so we

annot attribute a graph to X in e that allows both ompositions. Furthermore,

from the standpoint of separate development, the dependeny graph is part of

the spei�ation of a mixin. It informs lients of dependenies, but also of non-

dependenies. Thus, de�nitions must depend exatly on the omponents that

the graph laims they depend on. So, if the implementation of a mixin hanges

for any reason suh as optimization, bug �x, et, then probably its spei�ation

will also have to hange. This is undesirable for separate development, whih en-

ourages the independent development of mixins, based on stable spei�ations.

Our previous type systems for mixins [15, 17℄ su�er from this drawbak: they

require the dependeny graph of an output to exatly math the one of the

input it �lls. We improve over these type systems here, by inorporating a simple

notion of subtyping in our type system forMM, whih allows to see a mixin with

dependeny graphG as a mixin with a more onstraining dependeny graph, that

is, a super graph of G. The idea is that when giving the type of an input, the

programmer (or possibly a type inferene algorithm, although we have no suh

algorithm to propose yet) hooses a reasonably onstraining dependeny graph

that remains ompatible with the uses made of the input. Subtyping, then, allows

the input to be �lled by less onstrained de�nitions.

Jmixsig � end;MK = M

Jmixsig ?X : M;Q

1

: : : Q

n

end; hI;O;GiK = Jmixsig Q

1

: : : Q

n

end;

hI + fX : Mg;O;GiK

Jmixsig !X : M;Q

1

: : : Q

n

end; hI;O;GiK = Jmixsig Q

1

: : : Q

n

end;

hI + fX : Mg;O + fX : Mg;

G [fY

/

�!X j Y 2 dom(I)giK

Jmixsig

[(!X

1

: M

1

) : : : (!X

p

: M

p

)

(?X

p+1

: M

p+1

) : : : (?X

m

: M

m

)℄;

Q

1

: : : Q

n

end;

hI;O;GiK

= Jmixsig Q

1

: : : Q

n

end;

hI + fX

1

: M

1

: : : X

m

: M

m

g;

O + fX

1

: M

1

: : : X

p

: M

p

g;

G [

[

i2f1:::pg

fY

/

�!X

i

j Y 2 dom(I)g

[

[

i2f1:::pg;j2f1:::mg

fX

j

,

�!X

i

giK

Fig. 4. Syntati sugar for writing graphs

Another related problem is that dependeny graphs, and a fortiori the on-

straining graphs mentioned above, are very umbersome to write by hand for the

programmer. To alleviate this issue, we propose the introdution of appropriate

syntati sugar. Our idea is to add a form of mixin type mixsig Q

1

: : : Q

n

end,

with

Q ::= U j [U

1

: : : U

n

℄

U ::= ?X :M j !X : M

This new onstrut is a list of enrihed spei�ations Q. An enrihed spe-

i�ation Q is either a single delaration U , or a blok of single delarations

[U

1

: : : U

n

℄. A single delaration assigns a type to a name, and has a ag ? or !,

to indiate that it is an input or an output, respetively. Bloks are onsidered

equivalent modulo the order, and they represent groups of potentially reursive

de�nitions of preditable shape. Single de�nitions alone represent omputations

of any shape.

This onstrut an be elaborated to ore MM types, as de�ned in Fig. 4. Ba-

sially, ? delarations are inputs, and ! delarations are both inputs and outputs.

A single ! delaration, is onsidered as strongly depending on all the preeding

delarations. A ! delaration in a blok is onsidered to strongly depend on the

preeding delarations, and to weakly depend on all the delarations of its blok.

Our syntati sugar allows to write mixin types almost like module types,

thus making them more pratial.

6 Related work

Mixin-based inheritane The notion of mixin originates in the objet-oriented

language Flavors [20℄, and was further investigated both as a linguisti devie

addressing many of the shortomings of inheritane [11, 9℄ and as a semanti

foundation for inheritane [4℄. Here, we all this kind of mixins mixin lasses.

An issue with mixin lasses that is generally not addressed is the treatment

of instane �elds and their initialization. Mixin lasses where instane �elds

an be initialized by arbitrary expressions raise exatly the same problems of

�nding a orret evaluation order and deteting yli dependenies that we

have addressed in this paper in the ontext of all-by-value mixins. Initialization

an also be performed by an initialization method with a standard name (say,

init), but this breaks data enapsulation.

Reursive modules Harper et al. [5, 7℄ and Russo [22℄ extend the ML module sys-

tem with reursive de�nitions of modules. This addresses the mutual reursion

issue we mentioned in introdution, but not the modi�ability (open reursion)

issue. Russo relies on lazy evaluation for the reursive de�nitions and makes

no attempt to statially detet ill-founded reursions. Harper et al. use a stan-

dard all-by-value �xed-point operator, and statially onstrain omponents of

reursively-de�ned modules to be valuable. This is less exible than our proposal,

sine module omponents an only weakly depend on the reursive variable. Re-

ent work by Dreyer [6℄ lifts this restrition by using an e�et system to trak

strong dependenies on reursively-de�ned variables.

Language designs with mixins Braha [2℄ formulated the onept of mixin-based

inheritane (omposition) independently of an objet-oriented setting. His mix-

ins do not address the initialization issue. Duggan and Sourelis [8℄ extended his

proposal and adapted it to ML. In their system, a mixin omprises a body, on-

taining only funtion and data-type de�nitions, surrounded by a prelude and

an initialization setion, ontaining arbitrary omputations. During omposi-

tion, only the bodies of the two mixins are onneted, but neither the preludes

nor the initialization setions. This ensures that mixin omposition never re-

ates ill-founded reursive de�nitions, but prevents interleaving between standard

de�nitions and omposable de�nitions.

Flatt and Felleisen [10℄ introdue the losely related onept of units. A �rst

di�erene with our proposal is that units do not feature late binding. Moreover,

the initialization problem is handled di�erently. The formalization of units in

[10, Set. 4℄ restrits de�nitions to syntati values, but inludes in eah unit

an initialization expression that an perform arbitrary omputations. Like Dug-

gan and Sourelis's approah, this approah prevents the reation of ill-founded

reursive de�nitions, but is less exible than our approah. The implementa-

tion of units for Sheme allows arbitrary omputations within the de�nitions of

unit omponents. The de�ned variables are impliitly initialized to nil before

evaluating the right-hand sides of the de�nitions and updating the de�ned vari-

ables with the results of the omputation. Ill-founded reursions are thus not

prevented statially, and result either in a run-time type error or in a value that

is not a �xed-point of the reursive de�nition.

Linking aluli and mixin aluli Cardelli [3℄ initiated the study of linking aluli.

His system is a �rst-order linking model, that is, modules are ompilation units

and annot be nested. His type system does not restrit reursion at all, but

the operational semantis is sequential in nature and does not appear to handle

ross-unit reursion. As a result, the system seems to lak the progress property.

Mahkasova and Turbak [19℄ explore a very expressive linking alulus, whih

is not onuent. Instead, it is argued that it is omputationally sound, in the

sense that all strategies lead to the same outome. The system is untyped, and

does not feature nested modules.

Anona and Zua [1℄ propose a all-by-name module system alled CMS .

As MM, CMS extends Jigsaw by allowing any kind of expressions as mixin de�-

nitions, not just values. Unlike in MM, in CMS , there is no distintion between

modules and mixin modules: in all-by-name languages, the ontents of modules

are not evaluated until seletion, so it makes sense to avoid the distintion. In

a all-by-value setting, the ontents of a module are eagerly evaluated, so CMS

does not model all-by-value modules. From the standpoint of typing, CMS is

quite lose to MM, exept that it does not ontrol reursive de�nitions. This is

onsistent with most all-by-name languages, whih generally loop or raise an

exeption in ase of ill-founded de�nitions.

As CMS , Wells and Vestergaard'sm-alulus [23℄ is targeted to all-by-name

evaluation. Nevertheless, it has a rih equational theory that allows to seeMM as

a speialization of m to all-by-value plus built-in late binding behavior (enoded

inm), expliit distintion between mixins and modules, programmer ontrol over

the order of evaluation, and a sound and exible type system.

7 Conlusion

We have presented a language of all-by-value mixin modules, equipped with a

redution semantis and a sound type system. Some open issues remain to be

dealt with, whih are related to di�erent pratial uses of mixin modules. If mixin

modules are used as �rst-lass, ore language onstruts, then the simple type

system presented here is not expressive enough. Some form of polymorphism over

mixin module types seems neessary, along the lines of type systems for reord

onatenation proposed by Harper and Piere [13℄ and by Pottier [21℄. If one

wants to build a module system based on mixin modules, then type abstration

and user-de�ned type omponents have to be onsidered. We are working on

extending the type systems for ML modules [18, 12℄ to mixin modules with type

omponents.

Referenes

1. D. Anona and E. Zua. A alulus of module systems. J. Fun. Progr., 12(2):91{

132, 2002.

2. G. Braha. The Programming Language Jigsaw: Mixins, Modularity and Multiple

Inheritane. PhD thesis, University of Utah, 1992.

3. L. Cardelli. Program fragments, linking, and modularization. In 24th symp. Prin-

iples of Progr. Lang., pages 266{277. ACM Press, 1997.

4. W. R. Cook. A Denotational Semantis of Inheritane. PhD thesis, Department

of Computer Siene, Brown University, 1989.

5. K. Crary, R. Harper, and S. Puri. What is a reursive module? In Prog. Lang.

Design and Impl., pages 50{63. ACM Press, 1999.

6. D. Dreyer. A type system for well-founded reursion. In 31st symp. Priniples of

Progr. Lang. ACM Press, 2004. To appear.

7. D. R. Dreyer, R. Harper, and K. Crary. Towards a pratial type theory for

reursive modules. Tehnial Report CMU-CS-01-112, Carnegie Mellon University,

Pittsburgh, PA, Mar. 2001.

8. D. Duggan and C. Sourelis. Mixin modules. In Int. Conf. on Funtional Progr.,

pages 262{273. ACM Press, 1996.

9. R. B. Findler and M. Flatt. Modular objet-oriented programming with units and

mixins. In Int. Conf. on Funtional Progr., pages 94{104, 1998.

10. M. Flatt and M. Felleisen. Units: ool modules for HOT languages. In Prog. Lang.

Design and Impl., pages 236{248. ACM Press, 1998.

11. M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes and mixins. In 25th symp.

Priniples of Progr. Lang., pages 171{183. ACM Press, 1998.

12. R. Harper and M. Lillibridge. A type-theoreti approah to higher-order modules

with sharing. In 21st symp. Priniples of Progr. Lang., pages 123{137. ACM Press,

1994.

13. R. Harper and B. Piere. A reord alulus based on symmetri onatenation. In

18th symp. Priniples of Progr. Lang., pages 131{142, Orlando, Florida, 1991.

14. T. Hirshowitz. Mixin modules, modules, and extended value binding in a all-by-

value setting. PhD thesis, University of Paris VII, De. 2003. Preliminary version

available on the Web, http://pauilla.inria.fr/~hirshow/phd/state.html.

15. T. Hirshowitz and X. Leroy. Mixin modules in a all-by-value setting. In D. Le

M�etayer, editor, Europ. Symp. on Progr., volume 2305 of LNCS, pages 6{20, 2002.

16. T. Hirshowitz, X. Leroy, and J. B. Wells. Compilation of extended reursion in

all-by-value funtional languages. In Prin. and Pratie of Del. Prog., pages

160{171. ACM Press, 2003.

17. T. Hirshowitz, X. Leroy, and J. B. Wells. A redution semantis for all-by-value

mixin modules. Researh report RR-4682, Inria, Jan. 2003.

18. X. Leroy. Manifest types, modules, and separate ompilation. In 21st symp. Prin-

iples of Progr. Lang., pages 109{122. ACM Press, 1994.

19. E. Mahkasova and F. A. Turbak. A alulus for link-time ompilation. In Europ.

Symp. on Progr., volume 1782 of LNCS, pages 260{274. Springer-Verlag, 2000.

20. D. A. Moon. Objet-oriented programming with Flavors. In OOPSLA, pages 1{8,

1986.

21. F. Pottier. A versatile onstraint-based type inferene system. Nordi Journal of

Computing, 7(4):312{347, Nov. 2000.

22. C. V. Russo. Reursive strutures for Standard ML. In Int. Conf. on Funtional

Progr., pages 50{61, 2001.

23. J. B. Wells and R. Vestergaard. Equational reasoning for linking with �rst-lass

primitive modules. In Europ. Symp. on Progr., volume 1782 of LNCS, pages 412{

428. Springer-Verlag, 2000.

