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Abstra
t. Mixin modules are a framework for modular programming

that supports 
ode parameterization, in
remental programming via late

binding and rede�nitions, and 
ross-module re
ursion. In this paper, we

develop a language of mixin modules that supports 
all-by-value evalu-

ation, and formalize a redu
tion semanti
s and a sound type system for

this language.

1 Introdu
tion

For programming \in the large", it is desirable that the programming language

o�ers linguisti
 support for the de
omposition and stru
turing of programs into

modules. A good example of su
h linguisti
 support is the ML module system

and its powerful support for parameterized modules. Nevertheless, this system

is weak on two important points.

{ Mutual re
ursion: Mutually re
ursive de�nitions 
annot be split a
ross sepa-

rate modules. There are several 
ases where this hinders modularization [5℄.

{ Modi�ability: The language does not propose any me
hanism for in
remen-

tal modi�
ation of an already-de�ned module, similar to inheritan
e and

overriding in obje
t-oriented languages.

Class-based obje
t-oriented languages provide ex
ellent support for these two

features. Classes are naturally mutually re
ursive, and inheritan
e, method over-

riding and late binding answer the need for modi�ability. However, viewed as

a module system, 
lasses have two weaknesses: they do not o�er a general

parameterization me
hanism, and the me
hanisms they o�er to des
ribe pre-


omputations (initialization of stati
 and instan
e variables) la
k generality. A

module system should allow to naturally alternate fun
tion de�nitions with 
om-

putational, possibly side-e�e
tive de�nitions using these fun
tions.

Mixin modules [2℄ (hereafter simply 
alled mixins) provide an alternative ap-

proa
h to modularity that 
ombines some of the best aspe
ts of 
lasses and ML-

style modules. Mixins are modules with \holes" (not-yet-de�ned 
omponents),

where the holes 
an be plugged later by 
omposition with other mixins, follow-

ing a late-binding semanti
s. However, the handling of pre-
omputations and

?
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initializations in mixins is still problemati
. Most of the previous work on mix-

ins, notably by An
ona and Zu

a [1℄ and Wells and Vestergaard [23℄, is better

suited to a 
all-by-name evaluation strategy. This strategy makes it impossible

to trigger 
omputations at initialization time.

Our goal in this paper is to de�ne a 
all-by-value semanti
s for mixins

that supports 
leanly the evaluation of mixin 
omponents into values in a

programmer-
ontrolled evaluation order. In an earlier paper, Hirs
howitz and

Leroy [15℄ de�ne a a typed language of mixins in a 
all-by-value setting, whose

semanti
s is given by type-dire
ted translation into enri
hed �-
al
ulus. The

present paper improves over this �rst attempt in the following ways:

{ Redu
tion semanti
s: We give a sour
e-to-sour
e, small-step redu
tion

semanti
s for the mixin language. This semanti
s is simpler than the

translation-based semanti
s, and is untyped. It also simpli�es the proof of

type soundness, whi
h is now a standard argument by subje
t redu
tion

and progress.

{ Side e�e
ts: The semanti
s makes it easy for the programmer to (1) know

when side-e�e
ts o

ur, and (2) 
ontrol the order in whi
h they o

ur.

{ Anonymous de�nitions: Our system features anonymous de�nitions, that

is, de�nitions that are evaluated, but not exported as 
omponents of the

�nal module. The translation semanti
s �rst proposed by Hirs
howitz and

Leroy 
annot handle anonymous de�nitions, be
ause it is type-dire
ted and

anonymous de�nitions do not appear in mixin types.

{ Pra
ti
ality of mixin types: The type of a mixin must 
arry some dependen
y

information about its 
ontents. Requiring the dependen
y information to

mat
h exa
tly between the de
lared type of a mixin and its a
tual type,

like Hirs
howitz and Leroy did, is not pra
ti
al. To address this issue, we

introdu
e a new notion of subtyping w.r.t. dependen
ies, allowing a mixin

to be viewed with more dependen
ies than it a
tually has. Furthermore,

appropriate synta
ti
 sugar allows to spe
ify the dependen
ies of a large


lass of mixins with low synta
ti
 overhead.

2 Overview

2.1 An operational semanti
s of mixins

Our 
entral idea for bringing mutual re
ursion and modi�ability to modules

is to adapt the distin
tion between 
lasses and obje
ts to the 
ontext of mix-

ins. Following this idea, this paper designs a kernel language of mixins 
alled

MM, whi
h distinguishes mixins from a
tual modules. Mixins are dedi
ated to

modularity operations, and feature parameterization, modi�ability and mutual

re
ursion. The 
ontents of mixins are never redu
ed, so no 
omputation takes

pla
e at the mixin level. Modules are dedi
ated to 
omputation, 
ontain fully

evaluated values, and 
an be obtained by mixin instantiation, written 
lose.

For the sake of simpli
ity,MM does not expli
itly in
lude a module 
onstru
t.

Instead, modules are en
oded by a 
ombination of re
ords and value binding.



Roughly, a module stru
t x

1

= e

1

: : : x

n

= e

n

end is implemented by let re
 x

1

=

e

1

: : : x

n

= e

n

in fx

1

= e

1

: : : x

n

= e

n

g. Based on previous work on value binding

in a 
all-by-value setting [16℄, MM features a single value binding 
onstru
t that

expresses both re
ursive and non-re
ursive de�nitions. Basi
ally, this 
onstru
t

evaluates the de�nitions from left to right, 
onsidering variables as values.

A mixin is a pair of a set of input variables x

1

: : : x

n

, and a list of output

de�nitions y

1

= e

1

: : : y

m

= e

m

, written hx

1

: : : x

n

; y

1

= e

1

: : : y

m

= e

m

i.

Mixins are equipped with operators adapted from previous works [2, 1, 23℄.

The main operator is 
omposition: given two mixins e

1

and e

2

, their 
omposition

e

1

+ e

2

returns a new mixin whose output is the 
on
atenation of those of e

1

and e

2

, and whose inputs are the inputs of e

1

or e

2

that have not been �lled by

any output.

When 
losing a mixin h;; y

1

= e

1

: : : y

m

= e

m

i without inputs (
alled 
on-


rete), the order in whi
h to evaluate the de�nitions is not obvious. Indeed,

the synta
ti
 order arises from previous 
ompositions, and does not ne
essarily

re
e
t the intention of the programmer. For instan
e, the expression hf ;x =

f 0i + h;; f = �x:x + 1i evaluates to h;;x = f 0; f = �x:x + 1i, whi
h should

be instantiated into stru
t f = �x:x + 1; x = f 0 end (sin
e de�nitions are

evaluated from left to right). Thus, the 
lose operator reorders de�nitions before

evaluating them, thus turning a mixin into a module. It approximates an order

in whi
h the evaluation of ea
h de�nition only needs previous de�nitions.

Unfortunately, this makes instantiation quite unintuitive in the presen
e of

side e�e
ts. For example, if we are programming a ti
ket-vending ma
hine for

buying train ti
kets, it is reasonable to expe
t that the ma
hine asks for the

destination before asking whether the 
ustomer is a smoker or not. Indeed, the

se
ond question is useless if the trains to the requested destination are full.

However, asking the se
ond question does not require any information on the

answer to the �rst one. So, if the program is built as an assembly of mixins,

dependen
ies do not impose any order on the two questions, whi
h 
an be a

sour
e of error. To handle this issue, our language of mixins provides programmer


ontrol over the order of evaluation: a de�nition 
an be annotated with the

name of another one, to indi
ate that it should be evaluated after that one. For

example, we 
an de�ne s = hdestination ; smoker [destination ℄ = : : :i. Intuitively,

the annotation tells the system to do as if smoker depended on destination . This

is why we 
all these annotations fake dependen
ies. Additionally, the system

provides an operation for adding su
h dependen
ies a posteriori. For instan
e,

assume our mixin was initially provided without the dependen
y annotation

above: s

0

= hdestination ; smoker = : : :i. It is then important to be able to add

it without modifying the sour
e 
ode. This is written s

1

= s

0

smoker[destination ℄

,

whi
h evaluates to the previous mixin s . Fake dependen
ies make MM ready

for imperative features, although the formalization given in this paper does not

in
lude imperative features to keep it simpler.



2.2 Typing MM

The natural way to type-
he
k mixins is via sets of type de
larations for input

and output 
omponents. For instan
e, letm

1

= hx; y = e

1

i andm

2

= hy;x = e

2

i,

where e

1

and e

2

denote two arbitrary expressions. It appears natural to give them

the types m

1

: hx :M

2

; y :M

1

i and m

2

: hy :M

1

;x : M

2

i, where M

1

and M

2

de-

note the types of e

1

and e

2

, respe
tively, and the semi-
olon separates the inputs

from the outputs. The type of their 
omposition is then m : h;;x :M

2

; y :M

1

i.

While adequate for 
all-by-name mixins, this type system is not sound for 
all-

by-value evaluation, be
ause it does not guarantee that bindings generated at


lose time 
ontain only well-founded re
ursive de�nitions that 
an be safely eval-

uated using 
all-by-value. In the example above, we 
ould have x bound to y+1

and y bound to x+ 1, whi
h is not well-founded. Yet, nothing in the type of m

signals this problem.

In Se
t. 4, we enri
h these naive mixin types with dependen
y graphs des
rib-

ing the dependen
ies between de�nitions, and we formalize a simple (monomor-

phi
) type system for MM. These graphs distinguish strong dependen
ies, whi
h

are forbidden in dependen
y 
y
les, from weak dependen
ies, whi
h are allowed

in dependen
y 
y
les. For instan
e, x + 1 strongly depends on x, while �y:x

only weakly depends on it. The graphs are updated at ea
h mixin operation,

and allow to dete
t ill-founded re
ursions, while retaining most of the expressive

power of MM.

Moreover, as mixin types 
arry dependen
y graphs, the types assigned to

inputs may also 
ontain graphs, and thus 
onstrain the future mixins �lling

these inputs to have exa
tly the same graph. This poli
y is rather in
exible.

To re
over some 
exibility, we introdu
e a notion of subtyping over dependen
y

graphs: a mixin module with a dependen
y graph G 
an be viewed as having

a more 
onstraining graph. The type system of MM is the �rst to handle both

subtyping over dependen
y graphs and anonymous de�nitions in mixins.

3 Syntax and dynami
 semanti
s of MM

3.1 Syntax

We now formally de�ne our kernel language of 
all-by-value mixin modules,


alled MM. Following Harper and Lillibridge [12℄, we distinguish names X from

variables x. Variables are �-
onvertible, but names are not. MM expressions are

de�ned in Fig. 1. Expressions in
lude variables x, re
ords (labeled by names)

fX

1

= e

1

: : : X

n

= e

n

g, and re
ord sele
tion e:X , whi
h are standard.

The basi
 mixins are 
alled mixin stru
tures, whi
h we abbreviate as simply

stru
tures. A stru
ture h�; oi is a pair of an input � of the shape X

1

.x

1

: : :X

n

.x

n

,

and of an output o of the shape d

1

: : : d

m

. The input � maps external names

imported by the stru
ture to internal variables (used in o). The output o is an

ordered list of de�nitions d. A de�nition is of the shape L[x

1

: : : x

n

℄ . x = e,

where e is the body of the de�nition, and the label L is either a name X or the



Expression: e ::= x Variable

j fX

1

= e

1

: : : X

n

= e

n

g Re
ord

j e:X Re
ord sele
tion

j hX

1

. x

1

: : : X

n

. x

n

; d

1

: : : d

m

i Stru
ture

j e

1

+ e

2

Composition

j 
lose e Closure

j e

X[Y ℄

Fake dependen
y

j let re
 x

1

= e

1

: : : x

n

= e

n

in e let re


De�nition: d ::= X[x

1

: : : x

n

℄ . x = e Named de�nition

j [x

1

: : : x

n

℄ . x = e Anonymous de�nition

Fig. 1. Syntax of MM

anonymous label . The possibly empty �nite list of names x

1

: : : x

n

is the list of

fake dependen
ies of this de�nition on other de�nitions of the stru
ture.

We provide four representative operators over mixins: 
ompose e

1

+ e

2

, 
lose


lose e, delete e

j�X

1

:::X

n

, and fake dependen
y e

X[Y ℄

. Additional operators are

formalized in Hirs
howitz's PhD thesis [14℄.

Finally,MM features a single value binding 
onstru
t let re
 b in e (where b is

a list of re
ursive de�nitions x

1

= e

1

: : : x

n

= e

n

, 
alled a binding). As des
ribed

in previous work [16℄, this 
onstru
t en
ompasses ML re
ursive and non-re
ursive

binding 
onstru
ts. The binding 
onstru
t ofMM restri
ts re
ursion synta
ti
ally

as follows.

(Ba
kward dependen
ies) In a binding b = (x

1

= e

1

: : : x

n

= e

n

), we say that

there is a ba
kward dependen
y of x

i

on x

j

if 1 � i � j � n and x

j

2 FV(e

i

),

where FV(e

i

) denotes the set of free variables of e

i

. A ba
kward dependen
y

of x

i

on x

j

is synta
ti
ally in
orre
t, ex
ept when e

j

is of predi
table shape.

(Predi
table shape) Expressions of predi
table shape are de�ned by

e

#

2 Predi
table ::= fs

v

g j h�; oi j let re
 b in e

#

, where s

v

ranges over

evaluated re
ord sequen
es (see below the de�nition of values).

In the following, we assume that all bindings are synta
ti
ally 
orre
t. More-

over, we 
onsider expressions equivalent up to �-
onversion of variables bound

in stru
tures and let re
 expressions, and assume that no variable 
apture o
-


urs. We also 
onsider inputs equivalent up to reordering, and fake dependen
y

lists equivalent up to reordering and repetition. Further, we assume that inputs,

bindings, outputs, and stru
tures (resp. inputs, re
ords, outputs, and stru
tures)

do not de�ne the same variable (resp. name) twi
e.

3.2 Semanti
s

Values and answers MM values are de�ned by

v ::= x j fs

v

g j hX

1

. x

1

: : : X

n

. x

n

; d

1

: : : d

n

i



where s

v

::= X

1

= v

1

: : : X

1

= v

1

:

Evaluation answers are values, possibly surrounded by an evaluated binding:

a ::= v j let re
 b

v

in v; where b

v

::= x

1

= v

1

: : : x

n

= v

n

.

Contra
tion relation In preparation for the redu
tion relation, we �rst de�ne a

lo
al 
ontra
tion relation  by the rules in Fig. 2. Redu
tion will 
ontain the


losure of 
ontra
tion under evaluation 
ontext.

Rule Compose de�nes the 
omposition of two stru
tures h�

1

; o

1

i and h�

2

; o

2

i.

The result is a stru
ture h�; oi, de�ned as follows: � is the union of �

1

and �

2

, where

names de�ned in o

1

or o

2

are removed. (In the rule, Input(o) extra
ts an input

X . x from ea
h named de�nition X [y

�

℄ . x = e in o.) The result output o is

de�ned as the 
on
atenation of o

1

and o

2

. The side 
ondition h�

1

; o

1

i m h�

2

; o

2

i

means that the variables bound by one of the stru
tures 
an only be mentioned

by the other if they are tied to a 
ommon name in both stru
tures. Lastly, o

1

and o

2

are required not to de�ne the same names, by means of the fun
tion

Names(o

1

) whi
h denotes dom(Input(o

1

)).

Rule Close de�nes the instantiation of a stru
ture h�; oi. The input � must

be empty. The instantiation is in three steps.

{ First, o is reordered a

ording to its dependen
ies, to its fake dependen
ies,

and to its synta
ti
 ordering, thus yielding a new output o. This is done by


onsidering the synta
ti
 de�nition order in o, written B

o

, and the unlabeled

dependen
y graph of o, written *

o

, whi
h is de�ned by the two following

inferen
e rules

x

0

2 FV(e)

(L[y

�

℄ . x = e); (L

0

[z

�

℄ . x

0

= e

0

) 2 o

x

0

*

o

x

(L[x

1

: : : x

n

℄ . x = e) 2 o

(L

0

[z

�

℄ . x

i

= e

0

) 2 o

x

i

*

o

x

Given an unlabeled graph* on variables, we de�ne the binary relation�

*

by fx�

*

y j x*

+

y and y*

�

=

xg. It de�nes a partial order on the variables

de�ned by o, whi
h respe
ts dependen
ies, in the sense that if x �

+

*

y,

then x does not depend on y. The output o is then o, reordered w.r.t. the

lexi
ographi
al order (�

*

o

;B

o

). Thus, when dependen
ies do not impose an

order, we 
hoose the synta
ti
 de�nition order as a default. By 
onstru
tion,

in o, all ba
kward dependen
ies are part of 
y
les.

{ Se
ond, a binding Bind(o) is generated, de�ning, for ea
h de�nition d =

(L[y

�

℄ . x = e) in o, the de�nition x = e, in the same order as in o. As

we only write synta
ti
ally 
orre
t expressions, the rule has an impli
it side


ondition that Bind(o) be synta
ti
ally 
orre
t.

{ Third, the values of the named de�nitions of o are grouped in a re
ord

Re
ord(o), with, for ea
h named de�nition X [y

�

℄.x = e, a �eld X = x. This

re
ord is the result of the instantiation.

Rule Delete des
ribes how MM deletes a �nite set of names fX

1

: : :X

n

g

from a stru
ture h�; oi. First, o is restri
ted to the other de�nitions (in the rule, o

is viewed as a �nite map from pairs of a label and a variable to pairs of a �nite set



Contra
tion rules

h�

1

; o

1

i m h�

2

; o

2

i Names(o

1

) ? Names(o

2

)

h�

1

; o

1

i+ h�

2

; o

2

i h(�

1

[ �

2

) n Input(o

1

; o

2

); o

1

; o

2

i

(Compose)


loseh;; oi let re
Bind(o) inRe
ord(o) (Close)

h�; oi

j�X

1

:::X

n

 h�+ Input(o)

j fX

1

:::X

n

g

; o

j dom(o)n(fX

1

:::X

n

g�Vars)

i

(Delete)

(Y . y) 2 dom(h�; o

1

; X[z

�

℄ . x = e; o

2

i)

h�; o

1

; X[z

�

℄ . x = e; o

2

i

X[Y ℄

 h�; o

1

; X[yz

�

℄ . x = e; o

2

i

(Fake)

fs

v

g:X s

v

(X) (Sele
t)

dom(b) ? FV(L )

L [let re
 b in e℄ let re
 b in L [e℄

(Lift)

Redu
tion rules

e e

0

E [e℄! E [e

0

℄

(Context)

E [D ℄(x) = v

E [D [x℄℄! E [D [v℄℄

(Subst)

dom(b

1

) ? fxg [ dom(b

v

; b

2

) [ FV(b

v

; b

2

) [ FV(f)

let re
 b

v

; x = (let re
 b

1

in e); b

2

in f ! let re
 b

v

; b

1

; x = e; b

2

in f

(IM)

dom(b) ? (dom(b

v

) [ FV(b

v

))

let re
 b

v

in let re
 b in e! let re
 b

v

; b in e

(EM)

Evaluation 
ontexts

Evaluation 
ontext:

E ::= F j let re
 b

v

in F j let re
 B [F ℄ in e

Lift 
ontext:

L ::= fSg j 2:X

j 
lose2 j 2

j�X

1

:::X

n

j 2

X[Y ℄

j 2 + e j v + 2

Dereferen
ing 
ontext:

D ::= 2:X j 
lose2 j 2

j�X

1

:::X

n

j 2

X[Y ℄

j 2 + v

1

j v

2

+ 2 (v

2

is not a variable).

Nested lift 
ontext:

F ::= 2 j L [F ℄

Binding 
ontext:

B ::= b

v

; x = 2; b

Re
ord 
ontext:

S ::= s

v

; X = 2; s

A

ess in evaluation 
ontexts

(let re
 b

v

in F )(x) = b

v

(x) (EA) (let re
 b

v

; y = F ; b in e)(x) = b

v

(x) (IA)

Fig. 2. Dynami
 semanti
s of MM



of variables and an expression). Se
ond, the removed de�nitions remain bound

as inputs, by adding the 
orresponding inputs to �.

Rule Fake des
ribes the fake dependen
y operation, whi
h allows to add

a fake dependen
y to a mixin a posteriori. Let dom(h�; oi) denote � + dom(o).

Given a mixin m = h�; o

1

; X [z

�

℄ . x = e; o

2

i, 
ontaining the name Y , bound

by the variable y, the expression m

X[Y ℄

adds a fake dependen
y on y to the

de�nition of X , thus yielding h�; o

1

; X [yz

�

℄ . x = e; o

2

i.

The re
ord sele
tion rule Sele
t straightforwardly des
ribes the sele
tion of

a re
ord �eld.

Finally, in MM, there is no rule for eliminating let re
. Instead, evaluated

bindings remain at top-level in the expression as a kind of run-time environment.

Bindings that are not at top-level in the expression must be lifted before their

evaluation 
an begin, as de�ned by rule Lift and lift 
ontexts L .

Redu
tion relation We now de�ne the dynami
 semanti
s of MM by the global

redu
tion relation !, de�ned by the rules in Fig. 2.

As mentioned above, only the top-level binding 
an be evaluated. As soon as

one of its de�nitions gets evaluated, evaluation 
an pro
eed with the next one,

or with the en
losed expression if there is no de�nition left. This is enfor
ed by

the de�nition of evaluation 
ontexts E : evaluation happens under (if evaluated)

or inside an optional top-level binding, and a nested lift 
ontext F (whi
h is sim-

ply a series of lift 
ontexts). If evaluation meets a binding inside the 
onsidered

expression, then this binding is lifted to the top level of the expression, or just

before the top-level binding if there is one. In this 
ase, it is merged with the

latter, either internally or externally, as des
ribed by rules IM and EM, respe
-

tively. External and internal substitutions (rules Subst, EA and IA) allow to


opy one of the already evaluated de�nitions of the top-level binding, when they

are needed by the evaluation, i.e. when they appear in a dereferen
ing 
ontext.

The 
ondition that v

2

is not a variable in the grammar ensures determinism of

the redu
tion in 
ases su
h as x+ y. The left argument is always 
opied �rst.

Finally, rule Context extends 
ontra
tion to evaluation 
ontexts.

4 Stati
 semanti
s of MM

Types are de�ned by M 2 Types ::= fOg j hI ;O;Gi, where I and O are sig-

natures, that is, �nite maps from names to types, and where G is a graph over

names, labeled by degrees. A degree � is one of/ and,, respe
tively representing

strong and weak dependen
ies. There are only two kinds of types: re
ord types

fOg and mixin types hI ;O;Gi. Environments � are �nite maps from variables

to types.

The type system is de�ned in Fig. 3. After the standard typing rule T-

Variable for variables, rule T-Stru
t de�nes the typing of stru
tures h�; oi.

The rule has to guess a well-formed input signature I 
orresponding to �, and

a well-formed type environment �

o


orresponding to o. Type, signature, and

environment well-formedness only requires that for any mixin type hI ;O;Gi,



Expressions

x 2 dom(� )

� ` x : � (x)

(T-Variable)

dom(�) = dom(I) ` I ` �

o

` �!

h�;oi

� hI Æ �

�1

+ �

o

i ` o : �

o

O = �

o

Æ Input(o)

� ` h�; oi : hI +O;O; b�!

h�;oi


i

(T-Stru
t)

� ` e : M

0

M

0

�M ` M

� ` e : M

(T-Sub)

� ` e

1

: hI

1

;O

1

;G

1

i � ` e

2

: hI

2

;O

2

;G

2

i

` G

1

[G

2

dom(I) = dom(I

1

) [ dom(I

2

) ` I

I

j dom(I

1

)

� I

1

I

j dom(I

2

)

� I

2

(O

1

+O

2

) � I

j dom(O

1

+O

2

)

� ` e

1

+ e

2

: hI;O

1

+O

2

;G

1

[G

2

i

(T-Compose)

� ` e : hI;O;Gi dom(I) = dom(O)

� ` 
lose e : fOg

(T-Close)

� ` e : hI;O;Gi

� ` e

j�X

1

:::X

n

: hI;O

nfX

1

:::X

n

g

;G

j�fX

1

:::X

n

g

i

(T-Delete)

� ` e : hI;O;Gi X 2 dom(O) Y 2 dom(I) ` G

X[Y ℄

� ` e

X[Y ℄

: hI;O;G

X[Y ℄

i

(T-Fake)

` b ` �

b

� h�

b

i ` b : �

b

� h�

b

i ` e : M

� ` let re
 b in e : M

(T-LetRe
)

8X 2 dom(s); � ` s(X) : O(X)

� ` fsg : fOg

(T-Re
ord)

� ` e : fOg

� ` e:X : O(X)

(T-Sele
t)

Sequen
es

� ` � : ;

� ` e : M � ` o : �

o

� ` (L[x

�

℄ . x = e; o) : fx : Mg+ �

o

� ` e : M � ` b : �

b

� ` (x = e; b) : fx : Mg+ �

b

Fig. 3. Stati
 semanti
s of MM



G is safe, in the sense that its 
y
les only 
ontain weak dependen
ies (labeled

by ,), and O � I

j dom(O)

, in the sense of signature subtyping, de�ned below.

Given I and �

o

, the rule 
he
ks that the de�nitions in o indeed have the types

mentioned in �

o

. The types of named de�nitions of o, obtained by 
omposing �

o

with Input(o), are retained both as inputs and outputs. Finally, the 
ondition

` �!

h�;oi


he
ks that the dependen
ies of the stru
ture are safe. It relies on the

labeled dependen
y graph of h�; oi, whi
h is de�ned by the two following inferen
e

rules.

(L

0

; x

0

) 2 dom(h�; oi)

(L[y

�

℄ . x = e) 2 o

Node(L

0

; x

0

)

Degree(x

0

;e)

�������!

h�;oi

Node(L; x)

(L

i

; x

i

) 2 dom(h�; oi)

(L[x

1

: : : x

n

℄ . x = e) 2 o

Node(L

i

; x

i

)

/

�!

h�;oi

Node(L; x)

where Node(L; x) denotes L if L is a name, and x otherwise. The edges of

this graph are labeled by degrees, whi
h are 
omputed by the Degree fun
tion,

de�ned if x 2 FV(e) by Degree(x; e) = , if e 2 Predi
table and Degree(x; e) = /

otherwise. Finally, variables should not appear in types, so we lift the graph to

a labeled graph over names written b�!

h�;oi


. Namely, we extend edges through

anonymous 
omponents: for ea
h pathN

1

�

1

�!x

�

2

�!N

2

, we add the edgeN

1

�

�!N

2

,

where � is the minimum of �

1

and �

2

, given that / < ,. Then, b�!

h�;oi


 denotes

the restri
tion of the resulting graph to names.

The subsumption rule T-Sub materializes the presen
e of subtyping in MM.

Subtyping is de�ned by the following two rules:

I

2

� I

1

O

1

� O

2

G

1

� G

2

hI

1

;O

1

;G

1

i � hI

2

;O

2

;G

2

i

O

1

� O

2

fO

1

g � fO

2

g

where subtyping between signatures is de�ned 
omponent-wise. Subtyping allows

a dependen
y graph to be repla
ed by a more 
onstraining graph. Se
tion 5

illustrates the pra
ti
al importan
e of subtyping between dependen
y graphs.

Rule T-Compose types the 
omposition of two expressions. It guesses a

lower bound I of the input signatures I

1

and I

2

of its arguments, su
h that

dom(I) = dom(I

1

) [ dom(I

2

). This lower bound is used as the input signature

of the result. Che
king that it is a lower bound implies that 
ommon names

between I

1

and I

2

have 
ompatible types. The rule also 
he
ks that the union

of the two dependen
y graphs is safe, and that no name is de�ned twi
e (i.e. is

not in both outputs). The result type shares the inputs and takes the union of

the outputs and of the dependen
y graphs.

Rule T-Close transforms a mixin type whose inputs are all mat
hed by its

outputs into a re
ord type.

Rule T-Delete, exa
tly as the 
orresponding 
ontra
tion rule, removes the

sele
ted names from the output types, reporting the other ones in the input signa-

ture. The abstra
t graph is modi�ed a

ordingly by the operation G

j�fX

1

:::X

n

g

,

whi
h removes the edges leading to the deleted 
omponents.

Rule T-Fake types an expression of the shape e

X[Y ℄

. If e has a type hI ;O;Gi,

with X 2 dom(O), and Y 2 dom(I), then adding a fake dependen
y of X on



Y only modi�es the graph G: G

X[Y ℄

denotes G, augmented with a strong edge

from Y to X . The rule 
he
ks that this does not make the graph unsafe.

Rule T-LetRe
 for typing bindings let re
 b in e is standard, ex
ept for its

side 
ondition: ` b means that b does not 
ontain ba
kward dependen
ies on

de�nitions of unpredi
table shape, and is well ordered with respe
t to its de-

penden
ies, in the following sense. The dependen
y graph �!

b

of b = (x

1

=

e

1

: : : x

n

= e

n

) is de�ned as the labeled dependen
y graph of the equivalent out-

put ( [ ℄ . x

1

= e

1

: : : [ ℄ . x

n

= e

n

). Then, we require that all paths of �!

b

whose

last edge is labeled by / are forward. This is suÆ
ient to ensure that b 
ontains

no dependen
y problem.

The T-Sele
t and T-Re
ord rules for typing re
ord 
onstru
tion and se-

le
tion are standard. Rule T-Sele
t has an impli
it side-
ondition that X 2

dom(O).

Finally, Fig. 3 also presents the typing of sequen
es, outputs and bindings,

whi
h is straightforward, sin
e it 
onsists in su

essively typing their de�nitions.

Theorem 1 (Soundness) A 
losed, well-typed expression 
an either not ter-

minate or rea
h an answer.

The proof of this theorem (via the standard subje
t redu
tion and progress

properties) 
an be found in Hirs
howitz's PhD thesis [14℄.

5 Pra
ti
al synta
ti
 signatures and subtyping w.r.t.

dependen
ies

As mentioned in the introdu
tion, enri
hing mixin types with dependen
y graphs

without graph subtyping would make the type system too rigid. Assuming su
h

a system, 
onsider a mixin e whi
h imports a mixin X . The type of e has an

input de
laration named X that asso
iates a graph to X . If we later want to

use e twi
e in the program, 
omposing it with two di�erent mixins e

0

and e

00

, it

is unlikely that X has exa
tly the same dependen
y graph in e

0

and e

00

, so we


annot attribute a graph to X in e that allows both 
ompositions. Furthermore,

from the standpoint of separate development, the dependen
y graph is part of

the spe
i�
ation of a mixin. It informs 
lients of dependen
ies, but also of non-

dependen
ies. Thus, de�nitions must depend exa
tly on the 
omponents that

the graph 
laims they depend on. So, if the implementation of a mixin 
hanges

for any reason su
h as optimization, bug �x, et
, then probably its spe
i�
ation

will also have to 
hange. This is undesirable for separate development, whi
h en-


ourages the independent development of mixins, based on stable spe
i�
ations.

Our previous type systems for mixins [15, 17℄ su�er from this drawba
k: they

require the dependen
y graph of an output to exa
tly mat
h the one of the

input it �lls. We improve over these type systems here, by in
orporating a simple

notion of subtyping in our type system forMM, whi
h allows to see a mixin with

dependen
y graphG as a mixin with a more 
onstraining dependen
y graph, that

is, a super graph of G. The idea is that when giving the type of an input, the



programmer (or possibly a type inferen
e algorithm, although we have no su
h

algorithm to propose yet) 
hooses a reasonably 
onstraining dependen
y graph

that remains 
ompatible with the uses made of the input. Subtyping, then, allows

the input to be �lled by less 
onstrained de�nitions.

Jmixsig � end;MK = M

Jmixsig ?X : M;Q

1

: : : Q

n

end; hI;O;GiK = Jmixsig Q

1

: : : Q

n

end;

hI + fX : Mg;O;GiK

Jmixsig !X : M;Q

1

: : : Q

n

end; hI;O;GiK = Jmixsig Q

1

: : : Q

n

end;

hI + fX : Mg;O + fX : Mg;

G [ fY

/

�!X j Y 2 dom(I)giK

Jmixsig

[(!X

1

: M

1

) : : : (!X

p

: M

p

)

(?X

p+1

: M

p+1

) : : : (?X

m

: M

m

)℄;

Q

1

: : : Q

n

end;

hI;O;GiK

= Jmixsig Q

1

: : : Q

n

end;

hI + fX

1

: M

1

: : : X

m

: M

m

g;

O + fX

1

: M

1

: : : X

p

: M

p

g;

G [

[

i2f1:::pg

fY

/

�!X

i

j Y 2 dom(I)g

[

[

i2f1:::pg;j2f1:::mg

fX

j

,

�!X

i

giK

Fig. 4. Synta
ti
 sugar for writing graphs

Another related problem is that dependen
y graphs, and a fortiori the 
on-

straining graphs mentioned above, are very 
umbersome to write by hand for the

programmer. To alleviate this issue, we propose the introdu
tion of appropriate

synta
ti
 sugar. Our idea is to add a form of mixin type mixsig Q

1

: : : Q

n

end,

with

Q ::= U j [U

1

: : : U

n

℄

U ::= ?X :M j !X : M

This new 
onstru
t is a list of enri
hed spe
i�
ations Q. An enri
hed spe
-

i�
ation Q is either a single de
laration U , or a blo
k of single de
larations

[U

1

: : : U

n

℄. A single de
laration assigns a type to a name, and has a 
ag ? or !,

to indi
ate that it is an input or an output, respe
tively. Blo
ks are 
onsidered

equivalent modulo the order, and they represent groups of potentially re
ursive

de�nitions of predi
table shape. Single de�nitions alone represent 
omputations

of any shape.

This 
onstru
t 
an be elaborated to 
ore MM types, as de�ned in Fig. 4. Ba-

si
ally, ? de
larations are inputs, and ! de
larations are both inputs and outputs.

A single ! de
laration, is 
onsidered as strongly depending on all the pre
eding

de
larations. A ! de
laration in a blo
k is 
onsidered to strongly depend on the

pre
eding de
larations, and to weakly depend on all the de
larations of its blo
k.

Our synta
ti
 sugar allows to write mixin types almost like module types,

thus making them more pra
ti
al.



6 Related work

Mixin-based inheritan
e The notion of mixin originates in the obje
t-oriented

language Flavors [20℄, and was further investigated both as a linguisti
 devi
e

addressing many of the short
omings of inheritan
e [11, 9℄ and as a semanti


foundation for inheritan
e [4℄. Here, we 
all this kind of mixins mixin 
lasses.

An issue with mixin 
lasses that is generally not addressed is the treatment

of instan
e �elds and their initialization. Mixin 
lasses where instan
e �elds


an be initialized by arbitrary expressions raise exa
tly the same problems of

�nding a 
orre
t evaluation order and dete
ting 
y
li
 dependen
ies that we

have addressed in this paper in the 
ontext of 
all-by-value mixins. Initialization


an also be performed by an initialization method with a standard name (say,

init), but this breaks data en
apsulation.

Re
ursive modules Harper et al. [5, 7℄ and Russo [22℄ extend the ML module sys-

tem with re
ursive de�nitions of modules. This addresses the mutual re
ursion

issue we mentioned in introdu
tion, but not the modi�ability (open re
ursion)

issue. Russo relies on lazy evaluation for the re
ursive de�nitions and makes

no attempt to stati
ally dete
t ill-founded re
ursions. Harper et al. use a stan-

dard 
all-by-value �xed-point operator, and stati
ally 
onstrain 
omponents of

re
ursively-de�ned modules to be valuable. This is less 
exible than our proposal,

sin
e module 
omponents 
an only weakly depend on the re
ursive variable. Re-


ent work by Dreyer [6℄ lifts this restri
tion by using an e�e
t system to tra
k

strong dependen
ies on re
ursively-de�ned variables.

Language designs with mixins Bra
ha [2℄ formulated the 
on
ept of mixin-based

inheritan
e (
omposition) independently of an obje
t-oriented setting. His mix-

ins do not address the initialization issue. Duggan and Sourelis [8℄ extended his

proposal and adapted it to ML. In their system, a mixin 
omprises a body, 
on-

taining only fun
tion and data-type de�nitions, surrounded by a prelude and

an initialization se
tion, 
ontaining arbitrary 
omputations. During 
omposi-

tion, only the bodies of the two mixins are 
onne
ted, but neither the preludes

nor the initialization se
tions. This ensures that mixin 
omposition never 
re-

ates ill-founded re
ursive de�nitions, but prevents interleaving between standard

de�nitions and 
omposable de�nitions.

Flatt and Felleisen [10℄ introdu
e the 
losely related 
on
ept of units. A �rst

di�eren
e with our proposal is that units do not feature late binding. Moreover,

the initialization problem is handled di�erently. The formalization of units in

[10, Se
t. 4℄ restri
ts de�nitions to synta
ti
 values, but in
ludes in ea
h unit

an initialization expression that 
an perform arbitrary 
omputations. Like Dug-

gan and Sourelis's approa
h, this approa
h prevents the 
reation of ill-founded

re
ursive de�nitions, but is less 
exible than our approa
h. The implementa-

tion of units for S
heme allows arbitrary 
omputations within the de�nitions of

unit 
omponents. The de�ned variables are impli
itly initialized to nil before

evaluating the right-hand sides of the de�nitions and updating the de�ned vari-

ables with the results of the 
omputation. Ill-founded re
ursions are thus not



prevented stati
ally, and result either in a run-time type error or in a value that

is not a �xed-point of the re
ursive de�nition.

Linking 
al
uli and mixin 
al
uli Cardelli [3℄ initiated the study of linking 
al
uli.

His system is a �rst-order linking model, that is, modules are 
ompilation units

and 
annot be nested. His type system does not restri
t re
ursion at all, but

the operational semanti
s is sequential in nature and does not appear to handle


ross-unit re
ursion. As a result, the system seems to la
k the progress property.

Ma
hkasova and Turbak [19℄ explore a very expressive linking 
al
ulus, whi
h

is not 
on
uent. Instead, it is argued that it is 
omputationally sound, in the

sense that all strategies lead to the same out
ome. The system is untyped, and

does not feature nested modules.

An
ona and Zu

a [1℄ propose a 
all-by-name module system 
alled CMS .

As MM, CMS extends Jigsaw by allowing any kind of expressions as mixin de�-

nitions, not just values. Unlike in MM, in CMS , there is no distin
tion between

modules and mixin modules: in 
all-by-name languages, the 
ontents of modules

are not evaluated until sele
tion, so it makes sense to avoid the distin
tion. In

a 
all-by-value setting, the 
ontents of a module are eagerly evaluated, so CMS

does not model 
all-by-value modules. From the standpoint of typing, CMS is

quite 
lose to MM, ex
ept that it does not 
ontrol re
ursive de�nitions. This is


onsistent with most 
all-by-name languages, whi
h generally loop or raise an

ex
eption in 
ase of ill-founded de�nitions.

As CMS , Wells and Vestergaard'sm-
al
ulus [23℄ is targeted to 
all-by-name

evaluation. Nevertheless, it has a ri
h equational theory that allows to seeMM as

a spe
ialization of m to 
all-by-value plus built-in late binding behavior (en
oded

inm), expli
it distin
tion between mixins and modules, programmer 
ontrol over

the order of evaluation, and a sound and 
exible type system.

7 Con
lusion

We have presented a language of 
all-by-value mixin modules, equipped with a

redu
tion semanti
s and a sound type system. Some open issues remain to be

dealt with, whi
h are related to di�erent pra
ti
al uses of mixin modules. If mixin

modules are used as �rst-
lass, 
ore language 
onstru
ts, then the simple type

system presented here is not expressive enough. Some form of polymorphism over

mixin module types seems ne
essary, along the lines of type systems for re
ord


on
atenation proposed by Harper and Pier
e [13℄ and by Pottier [21℄. If one

wants to build a module system based on mixin modules, then type abstra
tion

and user-de�ned type 
omponents have to be 
onsidered. We are working on

extending the type systems for ML modules [18, 12℄ to mixin modules with type


omponents.
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