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The ML module system provides powerful parameterization facilities, but lacks the ability to split
mutually recursive definitions across modules and provides insufficient support for incremental
programming. A promising approach to solve these issues is Ancona and Zucca’s mixin module
calculus CMS. However, the straightforward way to adapt it to ML fails, because it allows arbitrary
recursive definitions to appear at any time, which ML does not otherwise support. In this paper,
we enrich CMS with a refined type system that controls recursive definitions through the use of
dependency graphs. We then develop and prove sound a separate compilation scheme, directed
by dependency graphs, that translates mixin modules down to a call-by-value λ-calculus extended
with a non-standard let rec construct.
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1. INTRODUCTION

Modular programming and code reuse are easier if the programming language pro-
vides adequate features to support them. Three important such features are (1)
parameterization, which allows reusing a module in different contexts; (2) overrid-
ing and late binding, which supports incremental programming by refinement of
existing modules; and (3) cross-module recursion, which allows definitions to be
spread across several modules, even if they mutually refer to each other. Many pro-
gramming languages provide two of these features, but not all three: class-based
object-oriented languages provide (2) and (3), but are weak on parameterization (1);
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conventional linkers, as well as linking calculi [Cardelli 1997], have cross-module re-
cursion built in, and sometimes provide facilities for overriding, but lack parameter-
ization; finally, ML functors and Ada generics provide powerful parameterization
mechanisms, but prohibit cross-module recursion and offer no direct support for
late binding.

The concept of mixins, first introduced as a generalization of inheritance in class-
based OO languages [Bracha and Cook 1990], then extended to a family of module
systems [Duggan and Sourelis 1996; Ancona and Zucca 2002; Flatt and Felleisen
1998; Wells and Vestergaard 2000], offers a promising and elegant solution to this
problem. A mixin is a collection of named components, either defined (bound
to a definition) or deferred (declared without definition). The basic operation on
mixins is the sum, which takes two mixins and connects the defined components
of one with the similarly-named deferred components of the other; this provides
natural support for cross-mixin recursion. A mixin is named and can be summed
several times with different mixins; this allows powerful parameterization, including
but not restricted to an encoding of ML functors. Finally, the mixin calculus of
Ancona and Zucca [2002] supports both late binding and early binding of defined
components, along with deleting and renaming operations, thus providing excellent
support for incremental programming.

Our long-term goal is to extend the ML module system with mixins, taking the
CMS calculus [Ancona and Zucca 2002] as a starting point. There are two main
issues: one, which we leave for future work, is to support type components in
mixins; the other, which we address in this paper, is to equip CMS with a call-by-
value semantics consistent with that of the core ML language. Shifting CMS from
its original call-by-name semantics to a call-by-value semantics requires a precise
control of recursive definitions created by mixin sum. The call-by-name semantics of
CMS puts no restrictions on recursive definitions, allowing ill-founded ones such as
let rec x = 2 * y and y = x + 1, causing the program to diverge if the value
of x or y is needed. This issue was not present in the original concept of mixin,
which allowed only syntactic values as mixin components. We call mixins with
arbitrary components mixin modules, hereafter simply referred to as mixins when
there is no ambiguity.

In an ML-like, call-by-value setting, recursive definitions are statically restricted
to syntactic values, e.g. let rec f = λx... and g = λy... This approach pro-
vides stronger guarantees (ill-founded recursions are detected at compile-time rather
than at run-time), and supports more efficient compilation of recursive definitions.
Extending these two desirable properties to mixin modules in the presence of sepa-
rate compilation [Cardelli 1997; Leroy 1994] is challenging: illegal recursive defini-
tions can appear a posteriori when we take the sum A + B of two mixin modules,
at a time where only the signatures of A and B are known, but not their implemen-
tations.

The solution we develop here is to enrich the CMS type system, adding graphs in
mixin signatures to represent the dependencies between the components. The re-
sulting typed calculus, called CMSv, guarantees that recursive definitions created
by mixin sum evaluate correctly under a call-by-value regime, yet leaves consid-
erable flexibility in composing mixins. We then provide a type-directed, separate
ACM Transactions on Programming Languages and Systems, Vol. 27, No. 5, September 2005.
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compilation scheme for CMSv. The target of this compositional translation is λB , a
simple call-by-value λ-calculus with a non-standard let rec construct in the style
of Boudol [2003]. Finally, we prove that the compilation of a type-correct CMSv

mixin is well typed in a sound, non-standard type system for λB that generalizes
that of Boudol [2003], thus establishing the soundness of our approach.

The remainder of the paper is organized as follows. Section 2 gives a high-level
overview of the CMS and CMSv mixin calculi, and explains the recursion problem.
Section 3 defines the syntax and typing rules for CMSv, our call-by-value mixin
calculus. The compilation scheme (from CMSv to λB) is presented in section 4.
In section 5, we equip λB with a type system guaranteeing the proper call-by-
value evaluation of recursive definitions, and use it to show the correctness of the
compilation scheme. We review related work in section 6, and conclude in section 7.
Detailed proofs are provided in appendix.

2. OVERVIEW

2.1 The CMS calculus of mixins

We start this paper by an overview of the CMS module calculus of Ancona and
Zucca [2002], using an ML-like syntax for readability. A basic mixin is similar to
an ML structure, but may contain “holes”:

mixin Even = mix
? val odd: int -> bool (* odd is deferred *)
let even = λx. x = 0 or odd(x-1) (* even is defined *)

end

In other terms, a mixin consists of defined components, let-bound to an expression,
and deferred components, declared but not yet defined. The fundamental operator
on mixins is the sum, which combines the components of two mixins, connecting
defined and deferred components having the same names. For example, if we define
Odd as

mixin Odd = mix
? val even: int -> bool
let odd = λx. x > 0 and even(x-1)

end

the result of mixin Nat = Even + Odd is equivalent to writing

mixin Nat = mix
let even = λx. x = 0 or odd(x-1)
let odd = λx. x > 0 and even(x-1)

end

As in class-based languages, all defined components of a mixin are mutually recur-
sive by default; thus, the above should be read as the ML structure

module Nat = struct
let rec even = λx. x = 0 or odd(x-1)

and odd = λx. x > 0 and even(x-1)
end

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 5, September 2005.



4 · T. Hirschowitz and X.Leroy

Another commonality with classes is that defined components are late bound by
default: the definition of a component can be overridden later, and other definitions
that refer to this component will “see” the new definition. The overriding is achieved
in two steps: first, deleting the component via the \ operator, then redefining it
via a sum. For instance,

mixin Nat’ = (Nat \ even) + (mix let even = λx. x mod 2 = 0 end)

is equivalent to the direct definition

mixin Nat’ = mix
let even = λx. x mod 2 = 0
let odd = λx. x > 0 and even(x-1)

end

Early binding (definite binding of a defined name to an expression in all other com-
ponents that refer to this name) can be achieved via the “!” operator (pronounced
“freeze”). For instance, Nat ! odd is equivalent to

mix
let even = let odd = λx. x > 0 and even(x-1) in

λx. x = 0 or odd(x-1)
let odd = λx. x > 0 and even(x-1)

end

For convenience, our CMSv calculus also provides a close operator that freezes all
components of a mixin in one step. Projections (extracting the value of a mixin
component) are restricted to closed mixins, to ensure that they do not need to
trigger any computations.

A component of a mixin can itself be a mixin. Not only does this provide ML-
style nested mixins, but it also supports a general encoding of ML functors [Ancona
and Zucca 1999]. Consider the following ML functor definition and applications.

module F = functor (X : S) -> struct ... end
module R = F(A)
module S = F(B)

We can achieve the same effect in CMSv by representing F as a mixin with a deferred
mixin component representing its formal parameter, then summing it twice with
the actual arguments A and B.

mixin F = mix
? mixin Arg : S
mixin X = Arg
mixin Res = mix ... end

end
mixin R = close(F + mix mixin Arg = A end).Res
mixin S = close(F + mix mixin Arg = B end).Res

This encoding extends to curried and higher-order functors. For instance, the
curried functor

module G = functor (X : S) -> functor (Y : S’) -> struct ... end

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 5, September 2005.



Mixin modules in a call-by-value setting · 5

is encoded as follows:

mixin G = mix
? mixin Arg : S
mixin X = Arg
mixin Res = mix

? mixin Arg : S’
mixin Y = Arg
...

end
end

In the latter example, the need for the additional bindings X = Arg and Y = Arg
becomes clear: the formal parameter of a functor must be bound to a fixed, conven-
tional name (here Arg) so that clients of the functor can apply it without knowing
the name of its formal parameter; at the same time, a functor body (the ... in the
example above) may need to refer to several functor parameters, requiring them to
have distinct, α-convertible names. A similar trick is used to encode the λ-calculus
into the ς-calculus of Abadi and Cardelli [1996].

2.2 Controlling recursive definitions

It is well known that general recursive definitions, whose right-hand sides involve
arbitrary computation, require call-by-name or call-by-need (lazy) evaluation, via
on-demand unfolding. If the recursive definition is not well founded, as in let rec
x = y + 1 and y = 2 * x, the program will diverge the first time the value of
x or y is needed. In contrast, call-by-value evaluation of recursive definitions is
usually allowed only if the right-hand sides are syntactic values (e.g. λ-abstractions
or constants), thus ruling out the example above. In return, the programmer ob-
tains the guarantee that the recursive definition is well-founded, evaluates in one
step, and will not cause divergence nor re-computation when the recursively-defined
identifiers are used.

This semantic issue is exacerbated by mixins, which are in essence big mutual
let rec definitions. Worse, ill-founded recursive definitions such as the above can
appear not only when defining a basic mixin such as

mixin Bad = close(mix let x = y + 1 let y = x * 2 end)

but also a posteriori when combining two innocuous-looking mixins:

mixin OK1 = mix ? val y : int let x = y + 1 end
mixin OK2 = mix ? val x : int let y = x * 2 end
mixin Bad = close(OK1 + OK2)

Although OK1 and OK2 contain no ill-founded recursions, the sum OK1 + OK2 con-
tains one. If the definitions of OK1 and OK2 are known when we type-check and
compile their sum, we can simply expand OK1 + OK2 into an equivalent monolithic
mixin and reject the faulty recursion. But in a separate compilation setting, OK1
+ OK2 can be compiled in a context where the definitions of OK1 and OK2 are not
known, but only their signatures are. Then, the ill-founded recursion cannot be
detected. This is the major problem we face in extending ML with mixins.
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A partial solution to this problem is to detect ill-founded recursions at execution
time, and generate a run-time error. This can be achieved by lazy evaluation of
the right-hand sides of recursive definitions. Operationally, to evaluate a recursive
definition x1 = e1 and . . . and xn = en, each xi is bound to a thunk for ei; these
thunks are then evaluated in sequence, memoizing their values; if the evaluation
of ei needs the value of xj and the thunk ej is not yet computed, its evaluation
is performed and memoized at that time; finally, the ill-founded case where the
evaluation of ei requires its own value via a reference to xi is detected and reported
as a run-time error. This approach is used for evaluating recursive modules in
Moscow ML [Russo 2001]. A simplification of this approach is used to evaluate
the letrec construct of Scheme: the recursively-defined variables xi are initialized
with a special “do not use” value; the right-hand sides ei are evaluated in sequence,
raising an error if a variable evaluates to the “do not use” value; and finally the
initial variable values are updated in place with the values of the right-hand sides.
While practical and easy to implement, these approaches have the drawback that
ill-founded recursive definitions (as in the Bad example above) are not detected until
run-time. To increase program safety, we would much prefer to detect ill-founded
definitions statically, at compile time.

To achieve this goal, our approach consists in enriching mixin signatures with
graphs representing the dependencies between components of a mixin, and rely on
these graphs to detect statically ill-founded recursive definitions. For example, the
Nat and Bad mixins shown above have the following dependency graphs:

Nat: even
1

33 odd
1ss

Bad: x
0

66 y
0

vv

An edge X
χ−→ Y expresses that X is used by the definition of Y . Edges labeled

0 represent an immediate dependency: the value of the source node is needed to
compute that of the target node. Edges labeled 1 represent a delayed dependency,
occurring under at least one λ-abstraction; thus, the value of the target node can be
computed without knowing that of the source node. Ill-founded recursions manifest
themselves as cycles in the dependency graph involving at least one “0” edge. Thus,
the correctness criterion for a mixin is, simply: all cycles in its dependency graph
must be composed of “1” edges only. Hence, Nat is correct, while Bad is rejected.

(Notice that the weaker criterion “all cycles contain at least one edge labeled 1”
is incorrect, since it would allow ill-founded definitions such as let rec f = λx.
x + y and y = f 0.)

The power of dependency graphs becomes more apparent when we consider mix-
ins that combine recursive definitions of functions and immediate computations that
sit outside the recursion. (This situation typically arises when a module involved
in a mutually recursive definition needs to perform initializing computations.)

mixin M1 = mix mixin M2 = mix
? val g : ... ? val f : ...
let f = λx. ...g... let g = λx. ...f...
let u = f 0 let v = g 1

end end
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Core terms: C ::= x | cst variable, constant
| λx.C | C1 C2 abstraction, application
| E.X component projection

Mixin terms: E ::= C core term
| 〈ι; o〉 mixin structure
| E1 + E2 sum
| E[X ← Y ] rename X to Y
| E ! X freeze X
| E \X delete X
| close(E) close

Input assignments: ι ::= xi
i∈I7→ Xi ι injective

Output assignments: o ::= Xi
i∈I7→ Ei

Core types: τ ::= int | bool | τ → τ

Mixin types: T ::= τ core type
| {I;O;D} mixin signature

Type assignments: I,O ::= Xi
i∈I7→ Ti

Dependency graphs: D (see section 3.2)

Fig. 1. Syntax of CMSv

The dependency graph for the sum M1 + M2 is:

u f
0oo

1
(( g 0 //

1

hh v

It satisfies the correctness criterion, thus this definition is accepted. Other systems
that record a global “valuability” flag on each signature, such as the recursive
modules of [Crary et al. 1999], would reject this definition.

3. THE CMSV CALCULUS

We now define formally the syntax and typing rules of CMSv, our call-by-value
variant of CMS .

3.1 Syntax

The syntax of CMSv terms and types is defined in Figure 1. Here, x ranges over
a countable set Vars of (α-convertible) variables, while X ranges over a countable
set Names of (non-convertible) names used to identify mixin components.

Although our module system is largely independent of the core language, for the
sake of specificity we use a standard simply-typed λ-calculus with constants as core
language. Core terms can refer by name to a component of a mixin structure, via
the notation E.X.

Mixin terms include core terms (proper stratification of the language is enforced
by the typing rules), structure expressions building a mixin from a collection of
components, and the various mixin operators mentioned in section 2: sum, rename,
freeze, delete and close.

A mixin structure 〈ι; o〉 is composed of an input assignment ι and an output
ACM Transactions on Programming Languages and Systems, Vol. 27, No. 5, September 2005.
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Free variables:

FV (x) = {x} FV (cst) = ∅
FV (λx.C) = FV (C) \ {x} FV (C1 C2) = FV (C1) ∪ FV (C2)

FV (〈ι; o〉) = FV (o) \ dom(ι) FV (Xi
i∈I7→ Ei) =

[

i∈I

FV (Ei)

FV (E1 + E2) = FV (E1) ∪ FV (E2) FV (E ! X) = FV (E)
FV (E.X) = FV (E) FV (E[X ← Y ]) = FV (E)

FV (E \X) = FV (E) FV (close(E)) = FV (E)

Substitution:

y{x← E} = E if y = x, y otherwise
cst{x← E} = cst

λy.C{x← E} = λy.C{x← E} if y /∈ FV (E) ∪ {x}
(C1 C2){x← E} = C1{x← E} C2{x← E}
〈ι; o〉{x← E} = 〈ι; o{x← E}〉 if x /∈ dom(ι)

(Xi
i∈I7→ Ei){x← E} = Xi

i∈I7→ Ei{x← E}
(E1 + E2){x← E} = E1{x← E}+ E2{x← E}

E′[X ← Y ]{x← E} = E′{x← E}[X ← Y ]
E′ \X{x← E} = E′{x← E} \X
E′ ! X{x← E} = E′{x← E} ! X
E′.X{x← E} = E′{x← E}.X

close(E′){x← E} = close(E′{x← E})

Fig. 2. Operations on CMSv terms

y /∈ FV (C)
(core-alpha)

λx.C ≡ λy.C{x← y}
y /∈ FV (o) ∪ dom(ι)

(mixin-alpha)
〈ι + {x 7→ X}; o〉 ≡ 〈ι + {y 7→ X}; o{x← y}〉

Fig. 3. Structural equivalence between CMSv terms

assignment o. The input assignment associates internal variables to names of im-
ported components, while the output assignment associates expressions to names
of exported components. These expressions can refer to imported components via
their associated internal variables. This explicit distinction between names and
internal variables allows internal variables to be renamed by α-conversion, while
external names remain immutable, thus making projection by name unambiguous
[Lillibridge 1997; Ancona and Zucca 1999; Wells and Vestergaard 2000].

The notation xi
i∈I7→ Xi denotes the finite map ι such that dom(ι) = {xi | i ∈ I}

and for all i ∈ I, ι(xi) = Xi. It is valid only if for all i, j ∈ I, if i 6= j, then xi 6= xj .

Then, cod(ι) is {Xi | i ∈ I}. The finite maps Xi
i∈I7→ Ei and Xi

i∈I7→ Ti are defined
similarly.

The notions of free and bound variables, and of substitution are standard; they
are defined in Figure 2.

Terms are identified up to structural equivalence, as defined in Figure 3. The
equivalence rule (core-alpha) is standard α-conversion on λ-bound variables. Rule
(mixin-alpha) expresses that variables bound by the input assignment of a mixin
structure can be renamed if no capture occurs. In this rule, we write ι1 + ι2 for
ACM Transactions on Programming Languages and Systems, Vol. 27, No. 5, September 2005.
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the unique finite map ι such that for all x ∈ dom(ι1), ι(x) = ι1(x) and for all
x ∈ dom(ι2), ι(x) = ι2(x). This map is defined only if ι1(x) = ι2(x) for all
x ∈ dom(ι1) ∩ dom(ι2).

Due to late binding, a virtual (defined but not frozen) component of a mixin is
both imported and exported by the mixin: it is exported with its current definition,
but is also imported so that other exported components refer to its final value at
the time the component is frozen or the mixin is closed, rather than to its current
value. In other terms, a component X of 〈ι; o〉 is deferred when X ∈ cod(ι)\dom(o),
virtual when X ∈ cod(ι) ∩ dom(o), and frozen when X ∈ dom(o) \ cod(ι).

For example, consider the following mixin, expressed in the ML-like syntax of
section 2:

mix ?val x: int let y = x + 2 let z = y + 1 end

It is expressed in CMSv syntax as the structure 〈ι; o〉, where

ι = [x 7→ X; y 7→ Y ; z 7→ Z]
o = [Y 7→ x + 2; Z 7→ y + 1].

The names X, Y , Z correspond to the variables in the ML-like syntax, while the
variables x, y, z bind them locally. Here, X is only an input, but Y and Z are both
inputs and outputs, since these components are virtual. The definition of Z refers
to the imported value of Y , thus allowing later redefinition of Y to affect Z.

3.2 Types and dependency graphs

Types T are either core types (those of the simply-typed λ-calculus) or mixin
signatures {I;O;D}. The latter are composed of two mappings I and O from
names to types, one for input components, the other for output components, and
a safe dependency graph D.

A dependency graph D is a directed multi-graph whose nodes are external names
of imported or exported components, and whose edges carry a valuation χ ∈ {0, 1}.
An edge X

1−→ Y means that the term E defining Y refers to the value of X, but
in such a way that it is safe to put E in a recursive definition that simultaneously
defines X in terms of Y . An edge X

0−→ Y means that the term E defining Y cannot
be put in such a recursive definition: the value of X must be entirely computed
before E is evaluated. It is generally undecidable whether a dependency is of
the 0 or 1 kind, so we take the following conservative approximation: if E is an
abstraction λx.C, then all dependencies for Y are labeled 1; in all other cases, they
are all labeled 0. (Other, more precise approximations are possible, but this one
works well enough and is consistent with core ML.)

More formally, for x ∈ FV (E), we define ν(x, E) = 1 if E = λy.C and ν(x, E) =
0 otherwise. Given the mixin structure s = 〈ι; o〉, we then define its dependency
graph D(s) as follows: its nodes are the names of all components of s, and it
contains an edge X

χ−→ Y if and only if there exist E and x such that o(Y ) = E
and ι(x) = X and x ∈ FV (E) and χ = ν(x, E). We then say that a dependency
graph D is safe, and write ` D, if all cycles of D are composed of edges labeled 1.
This captures the idea that only dependencies of the “1” kind are allowed inside a
mutually recursive definition.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 5, September 2005.
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In order to type-check mixin operators, we must be able to compute the de-
pendency graph for the result of the operator given the dependency graphs for its
operands. We now define the graph-level operators corresponding to the mixin
operators.
Sum: the sum D1 +D2 of two dependency graphs is simply their union:

D1 +D2 = {X χ−→ Y | (X χ−→ Y ) ∈ D1 or (X
χ−→ Y ) ∈ D2}.

Rename: assuming Y is not mentioned in D, the graph D[X ← Y ] is the graph D
where the node X, if any, is renamed Y , keeping all edges unchanged.

D[X ← Y ] = {A{X ← Y } χ−→ B{X ← Y } | (A χ−→ B) ∈ D}.
Delete: the graph D \X is the graph D where we remove all edges leading to X.

D \X = D \ {Y χ−→ X | Y ∈ Names, χ ∈ {0, 1}}.
Freeze: operationally, the effect of freezing the component X in a mixin structure
is to replace X by its current definition E in all definitions of other exported
components. At the dependency level, this causes all components Y that previously
depended on X to now depend on the names on which E depends. Thus, paths

Y
χ1−→ X

χ2−→ Z in the original graph become edges Y
min(χ1,χ2)−−−−−−−→ Z in the result

graph.

D ! X = (D ∪Daround) \ Dremove

where Daround = {Y min(χ1,χ2)−−−−−−−→ Z | (Y χ1−→ X) ∈ D, (X
χ2−→ Z) ∈ D}

and Dremove = {X χ−→ Y | Y ∈ Names, χ ∈ {0, 1}}.
The sum of two safe graphs is not necessarily safe (unsafe cycles may appear);

thus, the typing rules explicitly check the safety of the sum. Remarkably, all other
graph operations preserve safety.

Lemma 3.1. If D is a safe dependency graph, then the graphs D[X ← Y ], D\X
and D ! X are safe.

The proof is given in appendix A.

3.3 Typing rules

The typing rules for CMSv are shown in Figure 4. The typing environment Γ is a
finite map from variables to types. We assume given a mapping TC from constants
to core types. All dependency graphs appearing in the typing environment and in
input signatures are assumed to be safe.

The rules resemble those of Ancona and Zucca [2002], with additional manipu-
lations of dependency graphs. Projection of a structure component requires that
the structure has no input components. Structure construction type-checks every
output component in an environment enriched with the types assigned to the input
components; it also checks that the corresponding dependency graph is safe. For the
sum operator, both mixins must agree on the types of common input components,
and must have no output components in common; again, we need to check that the
dependency graph of the sum is safe, to make sure that the sum introduces no ille-
gal recursive definitions. Freezing a component requires that its type in the input
ACM Transactions on Programming Languages and Systems, Vol. 27, No. 5, September 2005.
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Γ ` x : Γ(x) (var) Γ ` c : TC(c) (const)
Γ + {x : τ1} ` C : τ2

(abstr)
Γ ` λx.C : τ1 → τ2

Γ ` C1 : τ ′ → τ Γ ` C2 : τ ′
(app)

Γ ` C1 C2 : τ

Γ ` E : {∅;O; ∅}
(select)

Γ ` E.X : O(X)

` D〈ι; o〉 dom(o) = dom(O)
Γ + {x : I(ι(x)) | x ∈ dom(ι)} ` o(X) : O(X) for X ∈ dom(o)

(struct)
Γ ` 〈ι; o〉 : {I;O;D〈ι; o〉}

Γ ` E1 : {I1;O1;D1} Γ ` E2 : {I2;O2;D2} ` D1 +D2

dom(O1) ∩ dom(O2) = ∅ I1(X) = I2(X) for all X ∈ dom(I1) ∩ dom(I2)
(sum)

Γ ` E1 + E2 : {I1 + I2;O1 +O2;D1 +D2}
Γ ` E : {I;O;D} I(X) = O(X)

(freeze)
Γ ` E ! X : {I\X ;O;D ! X}

Γ ` E : {I;O;D} X ∈ dom(O)
(delete)

Γ ` E \X : {I;O\X ;D \X}
Γ ` E : {I;O;D} Y /∈ dom(I) ∪ dom(O)

(rename)
Γ ` E[X ← Y ] : {I ◦ [Y 7→ X];O ◦ [Y 7→ X];D[X ← Y ]}

Γ ` E : {I;O;D} dom(I) ⊆ dom(O) I(X) = O(X) for all X ∈ dom(I)
(close)

Γ ` close(E) : {∅;O; ∅}

Fig. 4. Typing rules for CMSv

signature and in the output signature of the structure are identical, then removes it
from the input signature. (The notation I\X denotes the finite map obtained from
I by removing the binding for X.) In contrast, deleting a component removes it
from the output signature. Finally, closing a mixin is equivalent to freezing all its
input components, and results in an empty input signature and dependency graph.

Continuing the example at the end of section 3.1, the mixin 〈ι; o〉, where ι =
[x 7→ X; y 7→ Y ; z 7→ Z] and o = [Y 7→ x + 2; Z 7→ y + 1], has type {I;O;D},
where

I = [X 7→ int;Y 7→ int;Z 7→ int]
O = [Y 7→ int;Z 7→ int]

D = X
0−→ Y

0−→ Z.

For simplicity, the rules (sum), (freeze) and (close) require strict syntactic equal-
ity of types. Although we will not do it here, it is possible to introduce a notion of
subtyping [Ancona and Zucca 2002] corresponding to adding input components, re-
moving output components, and adding “fake” dependencies in dependency graphs.

Our goal is to translate well-typed terms of CMSv into a simple calculus with
let rec, relying on the dependency graphs. To do this in a sound way, it is crucial
to only have to deal with safe dependency graphs. For this purpose, we define
the notion of a well-formed type, as described in Figure 5. A core type is always
well-formed, whereas a mixin type {I;O;D} is well-formed if D as well as the
graphs appearing in I and O are safe, and moreover Sources(D) and Sinks(D),
the set of nodes possessing at least one outgoing (respectively, incoming) edge, are
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` τ (core)

Sources(D) ⊂ dom(I) Sinks(D) ⊂ dom(O)
` I(X) for all X ∈ dom(I) ` O(X) for all X ∈ dom(O) ` D

(mixin)
` {I;O;D}

Fig. 5. Well-formed CMSv types

included in dom(I) (respectively, dom(O)). Our type system satisfies the following
well-formedness property.

Lemma 3.2. If Γ ` E : T is derivable, and ` Γ(x) for all x ∈ dom(Γ), then ` T .

Proof. The proof is a simple induction on the proof tree, relying on the con-
dition that all the dependency graphs appearing in the environment and in input
signatures are safe, on lemma A.1, and on the safety checks in the rules (sum) and
(struct).

4. COMPILATION

We now present a compilation scheme translating CMSv terms into call-by-value
λ-calculus extended with records and a let rec binding. This compilation scheme
is compositional and type-directed, thus supporting separate compilation.

4.1 Overview

A mixin structure is translated into a record with one field per output component
of the structure. Each field corresponds to the expression defining the output
component, but λ-abstracts all input components on which it depends, that is, all
its direct predecessors in the dependency graph. These extra parameters account
for the late binding semantics of virtual components. Consider again the M1 and
M2 example at the end of section 2. These two structures are translated to:

m1 = { f = λg.λx. ...g...; u = λf. f 0 }
m2 = { g = λf.λx. ...f...; v = λg. g 1 }

The sum M = M1 + M2 is then translated into a record that takes the union of the
two records m1 and m2:

m = { f = m1.f; u = m1.u; g = m2.g; v = m2.v }
Later, we close M. This requires connecting the formal parameters representing input
components with the record fields corresponding to the output components. To do
this, we examine the dependency graph of M, identifying the strongly connected
components and performing a topological sort. We thus see that we must first take
a fixpoint over the f and g components, then compute u and v sequentially. Thus,
we obtain the following code for close(M):

let rec f = m.f g and g = m.g f in
let u = m.u f in
let v = m.v g in
{ f = f; g = g; u = u; v = v }

Notice that the let rec definition we generate is unusual: it involves function
applications in the right-hand sides, which is usually not supported in call-by-value
ACM Transactions on Programming Languages and Systems, Vol. 27, No. 5, September 2005.
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Values

v ::= x | λx.M | 〈. . . Xi = vi . . .〉 | c
Evaluation contexts

E ::= [ ] M | v [ ] | [ ].X
| let rec . . . xi−1 = vi−1 and xi = [ ] and . . . xn = Mn in M
| let x = [ ] in M
| 〈. . . ; Xi−1 = vi−1; Xi = [ ]; Xi+1 = Mi+1; . . .〉

Parallel substitution by ρ = . . . xi ←Mi . . .

x{ρ} = Mi if x = xi

x{ρ} = x otherwise
(λx.M){ρ} = λx.(M{ρ}) if x /∈ Si({xi} ∪ FV (Mi))

(M1 M2){ρ} = M1{ρ} M2{ρ}
(let rec . . . yk = Nk . . . in M){ρ} = let rec . . . yk = Nk{ρ} . . . in M{ρ}

if (
S

k{yk}) ∩
S

i({xi} ∪ FV (Mi)) 6= ∅
〈. . . Xi = Mi . . .〉{ρ} = 〈. . . Xi = Mi{ρ} . . .〉

Reduction rules

(λx.M) v → M{x← v} (beta)
let x = v in M → M{x← v} (bind)

〈X1 = v1 . . . Xn = vn〉.Xi → vi (select)
let rec x1 = v1 . . . xn = vn in M → M{x1 ←M1 . . . xn ←Mn} (mutrec)

where Mj = let rec x1 = v1 . . . xn = vn in vj for j = 1, . . . , n.

M →M ′
(context)

E [M ]→ E [M ′]

Fig. 6. Dynamic semantics of λB

λ-calculi. Fortunately, Boudol [2003] has already developed a non-standard call-
by-value calculus that supports such let rec definitions; we adopt a variant of his
calculus as our target language.

4.2 The target language

The target language for our translation is the λB calculus, a variant of the λ-calculus
with records and recursive definitions introduced by Boudol [2003]. Its syntax is as
follows:

M ::= x | cst | λx.M |M1 M2

| 〈X1 = M1; . . . ;Xn = Mn〉 |M.X
| let x = M1 in M
| let rec x1 = M1 and . . . and xn = Mn in M

Compared with Boudol’s calculus, ours lacks references and extensible records,
but features mutual recursion. The dynamic semantics of this calculus is given by
Boudol’s reduction rules [Boudol 2003]. Although they implement a call-by-value
strategy, these rules are able to evaluate correctly recursive definitions involving
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14 · T. Hirschowitz and X.Leroy

J(E : T ′).X : T K = JE : T ′K.X
J〈ι; o〉 : {I;O;D}K =

〈X = ~λι−1(D−1(X)). Jo(X) : O(X)K | X ∈ dom(O)〉
J(E1 : {I1;O1;D1}) + (E2 : {I2;O2;D2}) : {I;O;D}K =

let e1 = JE1 : {I1;O1;D1}K in let e2 = JE2 : {I2;O2;D2}K in

〈X = e1.X | X ∈ dom(O1);

Y = e2.Y | Y ∈ dom(O2)〉
J(E : {I′;O′;D′}) \X : {I;O;D}K =

let e = JE : {I′;O′;D′}K in 〈Y = e.Y | Y ∈ dom(O)〉
J(E : {I′;O′;D′})[X ← Y ] : {I;O;D}K =

let e = JE : {I′;O′;D′}K in

〈Z{X ← Y } = ~λ D−1(Z{X ← Y }). (e.Z D′−1(Z)){X ← Y } | Z ∈ dom(O′)〉
J(E : {I′;O′;D′}) ! X : {I;O;D}K =

let e = JE : {I′;O′;D′}K in

〈Z = e.Z | Z ∈ dom(O), X /∈ D′−1(Z);

Y = ~λ D−1(Y ). let rec X = e.X D′−1(X) in e.Y D′−1(Y ) | X ∈ D′−1(Y )〉
Jclose(E : {I′;O′;D′}) : {∅;O; ∅}K =

let e = JE : {I′;O′;D′}K in

let rec X1
1 = e.X1

1 D′−1(X1
1 ) and . . . and X1

n1
= e.X1

n1
D′−1(X1

n1
) in

. . .

let rec Xp
1 = e.Xp

1 D′−1(Xp
1 ) and . . . and Xp

np = e.Xp
np
D′−1(Xp

np ) in

〈X = X | X ∈ dom(O)〉
where ({X1

1 . . . X1
n1
}, . . . , {Xp

1 . . . Xp
np}) is a serialization of dom(O′) against D′

Fig. 7. The translation scheme from CMSv to λB

function applications, such as:

let rec x = (λyz.(zy)) x in x → let rec x = λz.(zx) in x
→ let rec x = λz.(zx) in λz.(zx)
→ λz.(z(let rec x = λz.(zx) in λz.(zx))).

The dynamic semantics of the calculus is defined in Figure 6. The only difference
from standard call-by-value evaluation is that variables are considered values. Thus,
applications such as (λyz.(zy)) x are redexes, and recursive definitions such as the
one above can be reduced. Notice that the (mutrec) rule crucially relies on parallel
capture-avoiding substitution, also defined in Figure 6.

4.3 The translation

The translation scheme for our language is defined in Figure 7. The translation,
written JE : T K is type-directed and operates on terms E annotated by their types
T . For the core language constructs (variables, constants, abstractions, applica-
tions), the translation is a simple morphism; the corresponding cases are omitted
from Figure 7.

Access to a structure component E.X is translated into an access to field X of the
ACM Transactions on Programming Languages and Systems, Vol. 27, No. 5, September 2005.
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record obtained by translating E. Conversely, a structure 〈ι; o〉 is translated into
a record construction. The resulting record has one field for each exported name
X ∈ dom(o), and this field is associated with o(X) where all input parameters
on which X depends are λ-abstracted. Some notation is required here. We write
D−1(X) for the list of immediate predecessors of node X in the dependency graph
D, ordered lexicographically. (The ordering is needed to ensure that values for
these predecessors are provided in the correct order later; any fixed total ordering
will do.) If (X1, . . . , Xn) = D−1(X) is such a list, we write ι−1(D−1(X)) for the
list (x1, . . . , xn) of variables associated to the names (X1, . . . , Xn) by the input
mapping ι. Finally, we write ~λ(x1, . . . , xn).M as shorthand for λx1 . . . λxn.M .
With all this notation, the field X in the record translating 〈ι; o〉 is bound to
~λι−1(D−1(X)).Jo(X) : O(X)K.

The sum of two mixins E1 + E2 is translated by building a record containing
the union of the fields of the translations of E1 and E2. For the delete operator
E \ X, we return a copy of the record representing E in which the field X is
omitted. Renaming E[X ← Y ] is harder: not only do we need to rename the field
X of the record representing E into Y , but the renaming of X to Y in the input
parameters can cause the order of the implicit arguments of the record fields to
change. Thus, we need to abstract again over these parameters in the correct order
after the renaming, then apply the corresponding field of JEK to these parameters
in the correct order before the renaming. Again, some notation is in order: to each
name X we associate a fresh variable written X, and similarly for lists of names,
which become lists of variables. Moreover, we write M (x1, . . . , xn) as shorthand
for M x1 . . . xn.

The freeze operation E ! X is perhaps the hardest to compile. Output compo-
nents Z that do not depend on X are simply re-exported from JEK. For the other
output components, consider a component Y of E that depends on Y1, . . . , Yn, and
assume that one of these dependencies is X, which itself depends on X1, . . . , Xp.
In E ! X, the Y component depends on {Y1 . . . Yn, X1 . . . Xp} \ {X}. Thus, we λ-
abstract on the corresponding variables, then compute X by applying JEK.X to the
parameters Xj . Since X can depend on itself, this application must be done in a
let rec binding over X. Then, we apply JEK.Y to the parameters that it expects,
namely Yi, which include X.

The only operator that remains to be explained is close(E). Here, we take
advantage of the fact that close removes all input dependencies to generate code
that is more efficient than a sequence of freeze operations. We first serialize the
set of names exported by E against its dependency graph D. That is, we identify
strongly connected components of D, then sort them in topological order. The
result is an enumeration ({X1

1 . . . X1
n1
}, . . . , {Xp

1 . . . Xp
np
}) of the exported names

where each cluster {Xi
1 . . . Xi

ni
} represents mutually recursive definitions, and the

clusters are listed in an order such that each cluster depends only on the preceding
ones. We then generate a sequence of let rec bindings, one for each cluster, in
the order above. In the end, all output components are bound to values with no
dependencies, and can be grouped together in a record.
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16 · T. Hirschowitz and X.Leroy

γ(x) = 0
(var)

Γ ` x : Γ(x) / γ
Γ ` c : TC(c) / γ (const)

Γ + {x : τ ′} `M : τ / (γ − 1)[x 7→ d]
(abstr)

Γ ` λx.M : τ ′ d−→ τ / γ

Γ `M1 : τ ′ d−→ τ / γ1 Γ `M2 : τ ′ / γ2
(app)

Γ `M1 M2 : τ / (γ1 − 1) ∧ d @ γ2

Γ `M : τ ′ d−→ τ / γ Γ(x) = τ ′
(appvar)

Γ `M x : τ / (γ − 1) ∧ (x 7→ d)

Γ `M : τ ′ / γ′ Γ + {x : τ ′} ` N : τ / γ[x 7→ d]
(let)

Γ ` let x = M in N : τ / γ ∧ d @ γ′

Γ + {. . . xj : τj . . .} `M : τ / γ[. . . xj 7→ dj . . .]
∀i : Γ + {. . . xj : τj . . .} `Mi : τi / γi[. . . xj 7→ dij . . .]

∀i, j : dij ≥ 1 ∀i, j, k : dik ≤ dij @ djk
(rec)

Γ ` let rec . . . xi = Mi . . . in M : τ / γ ∧ `
^

i

di @ γi

´ ∧ `
^

i,j

di @ dij @ γj

´

∀i : Γ `Mi : τi / γ
(record)

Γ ` 〈. . . Xi = Mi . . .〉 : 〈. . . Xi : τi . . .〉 / γ

Γ `M : 〈. . . Xj : τj . . .〉 / γ 1 ≤ i ≤ n
(sel)

Γ `M.Xi : τi / γ

Fig. 8. Typing rules for λB

5. TYPE SOUNDNESS OF THE TRANSLATION

5.1 A type system for the target language

The translation scheme defined above can generate recursive definitions of the form
let rec x = M x in N . In λB , these definitions can either evaluate to a fixpoint
(for instance, M = λx.λy.y), or get stuck (for instance, M = λx.x(λy.y)). In
preparation for showing that no term generated by the translation can get stuck,
we now equip λB with a sound type system that guarantees that all recursive
definitions are correct. Boudol [2003] gave such a type system, using annotated
function types τ1

0−→ τ2 and τ1
1−→ τ2 to distinguish functions that respectively need

or do not need the value of their argument immediately after application. However,
Boudol’s type system does not keep track of dependencies in curried functions with
sufficient precision for our purposes. Hence we now define a refinement of Boudol’s
type system, where the annotations 0 and 1 on function types are generalized into
natural integers.

The type system for λB is defined in Figure 8. Types, written τ , have the
following syntax:

λB types: τ ::= int | bool base types
| τ1

d−→ τ2 annotated function types
ACM Transactions on Programming Languages and Systems, Vol. 27, No. 5, September 2005.
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| 〈. . . Xi : τi . . .〉 record types

Arrow types are annotated with degrees d, indicating how a function uses its argu-
ment. For instance, a function such as λx.x + 1 has type int

0−→ int, because the
value of x is immediately needed after application, whereas λxyz.x + 1 has type
int

2−→ . . . because the value of x is not needed unless at least 2 more function
applications are performed. Formally, a degree can be either a natural number
or ∞, meaning that the variable is not used. The typing judgment is of the form
Γ ` M : τ / γ, where γ is a (total) mapping from variables to degrees, indicating
how M uses each variable: γ(x) = ∞ means that x is not free in M ; γ(x) = 0
means that the value of x may be needed to evaluate M ; and γ(x) = n + 1 means
that the value of x is definitely not needed when apply M to n or fewer function
applications, for instance if x occurs in M under at least n+1 function abstractions.

Rule (var) expresses that the variable x is immediately used via the side condition
γ(x) = 0. Function abstraction (rule (abstr)) increments by 1 the degree of all
variables appearing in its body, except for its formal parameter x, whose degree is
retained in the type of the function. We write γ − 1 for the function y 7→ γ(y)− 1,
with the convention that 0 − 1 = 0 and ∞− 1 = ∞. We write (γ − 1)[x 7→ d] for
the function that maps x to d, and otherwise behaves like (γ − 1).

Rule (app) deals with general function application. In the function part M1,
all variable degrees are decremented by 1, since the application removes one level
of abstraction. The degrees of the argument part M2 are combined with the d
annotation on the arrow type of M1 via the @ operation, defined as follows:

d @ 0 = 0 d @∞ =∞ d @ (n + 1) = d.

Because of call-by-value, immediate dependencies in M2 (γ2(x) = 0) are still imme-
diate in the application. Variables not free in M2 (γ2(x) = ∞) do not contribute
any dependency to the application. The interesting case is that of a variable x with
degree n + 1 in M2, i.e. not immediately needed. We do not know to how many
arguments the function M1 is going to apply its argument inside its body. However,
we know that it will not do so before d more applications of M1 M2. Hence, we can
take d for the degree of x in M1 M2. Finally, the contributions from the function
part (γ1 − 1) and the argument part (d @ γ2) are combined with the ∧ operator,
which is point-wise minimum.

When the argument of an application is a variable, as in M x, a more precise
type-checking is possible (rule (appvar)). Namely, the variable x is not needed
immediately, but only when the function M needs its argument. Hence, the degree
of x in the application is (γ(x) − 1) ∧ d, while all other variables y have degree
γ(y)− 1.

The most complex rule is (rec) for mutual recursive definitions. Intuitively, the
right-hand sides M1 . . .Mn must not depend immediately on any of the recursively
defined variables x1 . . . xn. In other terms, the dependency dij of Mi on xj must
satisfy dij ≥ 1. However, we must also take into account indirect dependencies:
for instance, M1 may depend on x2, whose definition M2 in turn depends on x3,
making M1 depend on x3 as well. We account for these indirect dependencies via the
premises dik ≤ dij @ djk, which we nickname the “triangular inequalities”. Finally,
the dependencies of the whole let rec are obtained by combining those of its body
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D−1(X) = (X1, . . . , Xn) is the list of the predecessors of X in D, ordered lexicographically.

D(X, Y ) = min {χ | X χ−→ Y ∈ D} (with the convention that D(X, Y ) = ∞ if D contains no
edges from X to Y )

FCTD(X, I) = (T χ1
1 , . . . , T χn

n ), for Sources(D) ⊂ dom(I), where D−1(X) = (X1, . . . , Xn)
and for all i ∈ {1 . . . n}, I(Xi) = Ti and D(Xi, X) = χi.

Sources(D) = {X | X χ−→ Y ∈ D, X, Y ∈ Names, χ ∈ Vals}
Sinks(D) = {Y | X χ−→ Y ∈ D, X, Y ∈ Names, χ ∈ Vals}

Fig. 9. Operations on graphs

M with those arising from the uses of the xi in M , either direct (di @γi) or one-step
indirect (di @ dij @ γj). Longer indirect dependencies such as di @ dij @ djk @ γk

need not be taken into account because of the triangular inequalities.
Finally, the (let) rule is a combination of the (abstr) and (app) rules, and the

rules for record operations (record) and (sel) are straightforward.

Theorem 5.1. (Soundness of λB.) If Γ `M : τ / γ and γ(x) ≥ 1 for all x free
in M , then M either reduces to a value or diverges, but does not get stuck.

Proof. The theorem follows from the following lemmas, which are proved in
appendix B. The first three lemmas are substitution lemmas for general one-variable
substitution, substitution of one variable by another, and parallel substitution.
They play a crucial role for proving subject reduction for the typing rules (app),
(appvar) and (rec) respectively.

Lemma 5.2. (Substitution.) If Γ + {x 7→ τ ′} `M1 : τ / γ1[x 7→ d], and Γ `M2 :
τ ′ / γ2, with x /∈ FV (M2) ∪ dom(γ2), then Γ `M1{x←M2} : τ / γ1 ∧ d @ γ2.

Lemma 5.3. (Substitution by a variable.) If Γ + {x 7→ τ ′} ` M : τ / γ[x 7→ d]
and Γ(y) = τ ′, then Γ `M{x← y} : τ / γ ∧ (y 7→ d).

Lemma 5.4. (Parallel substitution.) If Γ+{. . . xi :τi . . .} `M : τ / γM [. . . xi 7→
di . . .], and for all j ∈ {1 . . . n}, Γ ` Mj : τj / γj with for all i, j, xi /∈ FV (Mj) ∪
dom(γj), then Γ `M{. . . xi ←Mi . . .} : τ / γM ∧

∧

i

di @ γi.

We then show the standard properties of subject reduction (reduction preserves
typing) and progress (well-typed terms are not stuck).

Lemma 5.5. (Subject reduction.) If Γ `M : τ / γ and M →M ′, then Γ `M ′ :
τ / γ.

Lemma 5.6. (Progress.) If Γ ` M : τ / γ and γ ≥ 1, then either M is a value,
or there exists M ′ such that M →M ′.

The soundness of λB follows from lemmas 5.5 and 5.6.

5.2 Soundness of the translation

The goal of this section is to prove the soundness of our approach, in the sense
that a well-typed CMSv expression translates to a well-typed λB expression. The
soundness of λB then ensures that the translation evaluates correctly.
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Mixin modules in a call-by-value setting · 19

Jτ1 → τ2K = τ1
0−→ τ2

JintK = int

JboolK = bool

J{I;O;D}K = 〈X : JO(X)KX,D,I | X ∈ dom(O)〉 if ` {I;O;D}
JT KX,D,I = JT1K χ1+(n−1)−−−−−−−→ JT2K χ2+(n−2)−−−−−−−→ . . . JTnK χn−−→ JT K

where (T χ1
1 , . . . , T χn

n ) = FCTD(X, I)

Fig. 10. Translation of CMSv types into λB types

Core terms: C ::= xT | cstT variables, constants
| λx.CT | (C1 C2)T abstraction, application
| E.XT component projection

Mixin terms: E ::= C core term
| 〈ι; o〉T mixin structure
| (E1 + E2)T sum
| (E[X ← Y ])T rename X to Y
| (E ! X)T freeze X
| (E \X)T delete X
| (close(E))T close

Output assignments: o ::= Xi
i∈I7→ Ei

Fig. 11. Syntax of type-annotated CMSv terms

To state the soundness of the translation, we need to set up a translation from
source types to λB types. We start by defining useful operations on graphs and
signatures in Figure 9. We define FCTD(X, I) as the list of the types and valuations
of the predecessors of X in D according to I, ordered lexicographically. Then,
Sources(D) and Sinks(D) are simply the sets of predecessors and successors of any
node in D. The translation of types is presented in Figure 10. A natural translation
for environments follows, defined by JΓK = J·K ◦ Γ. Moreover, we define the initial
degree environment corresponding to a type environment as do(Γ) = 0 ◦ Γ, that is
to say the function equal to 0 on dom(Γ) and ∞ elsewhere. In the sequel, we will
often use valuations as degrees. It is worth noticing that for all valuations χ1, and
χ2, min(χ1, χ2) = χ1 ∧ χ2 = χ1 @ χ2.

As the translation operates on annotated well-typed terms, we define an anno-
tated syntax in Figure 11. The type system for annotated terms is exactly the
same, except that it looks more like a well-formedness judgment Γ ` E. Thus a
derivation for a standard term yields a correct derivation for the corresponding an-
notated term. We denote by E the annotated term corresponding to a derivation
of E, which should be clear from the context. A well-formed annotated term is a
term whose annotations are all well-formed types. We consider only well-formed
annotated terms in the following.

We define IsRec(E ) as 1 if E is an abstraction λx.C, and 0 otherwise, and extend
this definition to annotated expressions.

Theorem 5.7. (Soundness of the translation.) If Γ ` E : T , then JΓK ` JEK :
JT K / do(Γ) + IsRec(E ).
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See appendix C for the full proof. Notice that this result holds for non-empty
contexts Γ; in conjunction with the compositional nature of the translation, this
ensures that our compilation scheme is applicable (and sound) not only to closed
programs, but also to terms with free variables as can arise during separate compi-
lation.

6. RELATED WORK

6.1 Mixin-based inheritance and object-oriented traits

The notion of mixin originates in the object-oriented language Flavors [Moon 1986],
and was further investigated both as a linguistic device addressing many of the
shortcomings of inheritance [Flatt et al. 1998; Findler and Flatt 1998] and as a
semantic foundation for inheritance [Cook 1989]. An issue with mixin classes that
is generally not addressed is the treatment of instance fields and their initialization.
Mixin classes where instance fields can be initialized by arbitrary expressions raise
exactly the same problems of detecting cyclic dependencies that we have addressed
in this paper in the context of call-by-value mixin modules. Initialization can also
be performed by an initialization method named init or some other conventional
name, but this breaks data encapsulation.

The notion of traits [Black et al. 2003] shares several key features with mixin
modules. Traits are collections of named methods that can be combined together
and with regular class definitions using various operators such as sum, overrid-
ing, aliasing and exclusion. Traits contain only methods but not instance fields;
therefore, initialization of instance fields is again not addressed.

6.2 Language designs with mixin modules

Bracha [Bracha 1992] formulated the concept of mixin-based inheritance (sum)
independently of an object-oriented setting. His mixins do not address the initial-
ization issue. Duggan and Sourelis [1996] transposed Bracha’s mixin concept to
the ML module system. Their mixin module system supports extensible functions
and datatypes: a function defined by cases can be split across several mixins, each
mixin defining only certain cases, and similarly a datatype (sum type) can be split
across several mixins, each mixin defining only certain constructors; a composition
operator then stitches together these cases and constructors. The recursion prob-
lem is avoided by allowing only functions (λ-abstractions) in the combinable parts
of mixins, while initialization code goes into a separate, non-combinable part of
mixins. Their compilation scheme (into ML modules) is less efficient than ours,
since the fixpoint defining a function is computed at each call, rather than only
once at mixin combination time as in our system.

Flatt and Felleisen [1998] introduce the closely related concept of units, which
adapt Bracha’s ideas to Scheme and ML. A first difference with our proposal is that
units do not feature late binding. Moreover, the initialization problem is handled
differently. Their implementation of units for Scheme allows arbitrary computa-
tions within the definitions of unit components, and evaluates these computations
like Scheme’s letrec construct. Thus, ill-founded recursions are not prevented
statically. The formalization of units in [Flatt and Felleisen 1998, section 4] re-
stricts definitions to syntactic values, but includes an initialization expression in
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each unit. This initialization expression can perform arbitrary computations and
refer to the variables bound by the definitions, but is evaluated for its side-effects
only. As in Duggan and Sourelis’ system, this approach prevents the creation of
ill-founded recursive definitions, but is less flexible than our approach.

6.3 Mixin calculi

Ancona and Zucca [1998; 1999; 2002] develop a theory of mixins, abstracting over
much of the core language, and show that it can encode the pure λ-calculus, as well
as Abadi and Cardelli’s object calculus. The emphasis is on providing a calculus,
with reduction rules but no fixed reduction strategy, and nice confluence properties.
Another calculus of mixins is the m-calculus [Wells and Vestergaard 2000], which is
very similar to CMS in many aspects, but is not based on any core language, using
only variables instead. The emphasis is put on the equational theory, allowing for
example to replace some variables with their definition inside a structure, or to
garbage collect unused components, yielding a powerful theory. Neither Ancona
and Zucca nor Wells and Vestergaard attempt to statically control recursive defini-
tions, performing on-demand unwinding instead. Still, some care is required when
unwinding definitions inside a structure, because of confluence problems [Ariola
and Blom 2002].

6.4 Recursive modules in ML

Crary et al. [1999], Dreyer et al. [2001], and Russo [2001] extend the Standard ML
module system with mutually recursive structures via a structure rec binding.
Like mixins, this construct addresses ML’s cross-module recursion problem; un-
like mixins, it does not support late binding and incremental programming. The
structure rec binding does not lend itself directly to separate compilation (the
definitions of all mutually recursive modules must reside in the same source file), al-
though separate compilation can be recovered by functorizing each recursive module
over the others. ML structures contain type components in addition to value com-
ponents, and this raises delicate static typing issues that we have not yet addressed
within our CMSv framework. Crary et al. formalize static typing of recursive struc-
ture using recursively-defined signatures and the phase distinction calculus, while
Russo remains closer to Standard ML’s static semantics. Concerning ill-founded re-
cursive value definitions, Russo does not attempt to detect them statically, relying
on run-time tests to catch them during evaluation. Crary et al. statically require
that all components of recursive structures are syntactic values. This is safe, but
less flexible than our component-per-component dependency analysis.

6.5 Type systems for well-founded recursion

The type system for λB presented in section 5 is a refinement of the type sys-
tem introduced by Boudol [2003]. Dreyer [2004] and Dreyer et al. [2003] propose
a different type system to guarantee safe call-by-value evaluation of generalized
recursive definitions of the form let rec x = M x in N . Their system can be
viewed as an effect system that tracks the (pro forma) effect of using the value of
a recursively-bound variable. The typing rules ensure that no such use can occur
before the recursive definition has been fully evaluated. This type system appears
expressive enough to show that the terms produced by our compilation scheme do
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not get stuck on an illegal recursive definition. Moreover, its type soundness proof
appears simpler than that of our type system. A drawback of Dreyer’s system for
our purpose is that it requires “boxing” and “unboxing” annotations in terms and
in type expressions. It is not immediately obvious how to extend the compilation
scheme given in section 4 to insert the correct annotations.

6.6 Connections with object-oriented type systems

Bono et al. [1999] use a notion of dependency graph in the context of a type system
for extensible and incomplete objects. However, they do not distinguish between
“0” and “1” dependencies, since the fact that objects contain only methods but no
immediate computations precludes immediate dependencies between methods.

7. CONCLUSIONS AND FUTURE WORK

As a first step towards a full mixin module system for ML, we have developed a
call-by-value variant of Ancona and Zucca’s calculus of mixins. The main technical
innovation of our work is the use of dependency graphs in mixin signatures, stati-
cally guaranteeing that cross-module recursive definitions are well founded, yet leav-
ing maximal flexibility in mixing recursive function definitions and non-recursive
computations within a single mixin. Dependency graphs also allow a separate com-
pilation scheme for mixins where fixpoints are taken as early as possible, i.e. during
mixin initialization rather than at each component access.

Our λB target calculus can be compiled efficiently down to machine code, using
the “in-place updating” trick outlined in [Cousineau et al. 1987] and formalized in
[Hirschowitz et al. 2003; Hirschowitz 2003] to implement the non-standard let rec
construct.

In this paper, the dynamic semantics of CMSv is given by translation. A direct
reduction semantics is desirable to allow finer reasoning on the evaluation of mixins.
More recent work [Hirschowitz et al. 2004; Hirschowitz 2003] develops a call-by-
value reduction semantics for a calculus of mixins called MM, closely related to
CMSv.

The translation semantics of CMSv raises another issue that is better addressed
in the reduction semantics of MM: programmer control of evaluation order. In
CMSv, when a mixin is closed, its definitions are evaluated in an order that is
only partially determined by a topological sort of its dependency graph. More-
over, the freeze operator duplicates the definition of the frozen component into the
components that use it, resulting in multiple evaluations of the frozen component
later. These two features are problematic when the core language is imperative.
In MM, frozen components are never duplicated, but turned into local (nameless)
definitions instead; and the evaluation order of components is unambiguously de-
termined by a combination of the initial ordering of definitions in structures, and
programmer-supplied “fake dependency” annotations on definitions.

The price to pay for this better control of evaluation order is that MM does
not lend itself to a type-directed compilation scheme like the one presented in this
paper. Since local definitions do not appear in mixin signatures, it is not possible
to determine when and where they should be evaluated based on the signatures
of the mixins involved, like the compilation scheme presented in this paper does.
Indeed, the only known implementation scheme for MM is interpretative in nature
ACM Transactions on Programming Languages and Systems, Vol. 27, No. 5, September 2005.



Mixin modules in a call-by-value setting · 23

and relies on run-time interpretation of dependency graphs. The overhead of this
interpretation is acceptable if mixins are second-class (like ML modules), but if
mixins are first-class values, the compilation scheme for CMSv presented here is
much more efficient.

A drawback of dependency graphs is that programmers must (in principle) pro-
vide them explicitly when declaring a mixin signature, e.g. for a deferred sub-mixin
component. This could make programs quite verbose. Future work includes the
design of a concrete syntax for mixin signatures that alleviate this problem in the
most common cases. A more ambitious approach is to infer dependency graphs en-
tirely, by generating constraints between formal variables ranging over dependency
graphs, and solving these constraints incrementally.

The next step towards mixins for ML is to support type definitions and decla-
rations as components of mixins. While these type components account for most
of the complexity of ML module typing, we are confident that we can extend to
mixins the body of type-theoretic work already done for ML modules [Harper and
Lillibridge 1994; Leroy 1994] and recursive modules [Crary et al. 1999; Dreyer et al.
2001].
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A. SOUNDNESS OF GRAPH OPERATIONS

In the following, we write fst(P ) and last(P ) for the first (respectively, last) node of
a path p. We write [X] for the zero-length path consisting of node X. If fst(P ) = Y ,
we write (X

χ−→ Y ) :: P for the path obtained by prepending the edge X
χ−→ Y to

the path p. The valuation ν(P ) of a path P is defined inductively by ν([X]) = 1
and ν((X

χ−→ Y ) :: P ) = min(χ, ν(P )). Thus, a graph D is safe if and only if all
paths p of D such that fst(P ) = last(P ) are such that ν(P ) = 1.

Lemma A.1. If D is a safe dependency graph, then the graphs D[X ← Y ], D\X
and D ! X are safe.

Proof. For each operation, we show that for all path in the result graph, there
exists a corresponding path with the same valuation in D.

Renaming: Let D′ = D[X ← Y ] = {A{X ← Y } χ−→ B{X ← Y } | A χ−→ B ∈ D},
and let P be a path of D′, with valuation χ, and fst(P ) = A and last(P ) = B. By
induction on the length of P , we find a path with same valuation in D, such that
fst(P ) = A{Y ← X} and last(P ) = B{Y ← X}.

Consider first the base case P = [Z] for some name Z mentioned in D′. All edges
of D′ are of the form A{X ← Y } χ−→ B{X ← Y }, where the corresponding edge
A

χ−→ B is in D. Hence, there is a name Z ′ mentioned in D such that Z = Z ′{X ←
Y }. If Z = Y , then Z ′ = X, because Y cannot be mentioned in D by definition of
the renaming operation, and then the path [X] in D has same valuation as P , and
the right first and last nodes. If Z 6= Y , then Z = Z ′ and the path [Z ′] of D has
the expected valuation, first and last nodes.

Now, assume the result for P ′ and consider P = (A
χ−→ B) :: P ′, with fst(P ′) = B.

Let last(P ′) = C and χ′ = ν(P ′). By induction hypothesis, there is a path P ′′ of
D, from B{Y ← X} to C{Y ← X}, with valuation χ′. By definition of D′ the edge
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to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
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Degrees

d ::= n | ∞

Minimum

d ∧ ∞ = d
∞ ∧ d = d
m ∧ n = min(m, n)

Composition

d @ ∞ = ∞
d @ 0 = 0
d @ n + 1 = d

Plus

∞ + n = ∞
m + n = m +N n

Minus

∞ − n = ∞
m − n = m−N n if m ≥ n
m − n = 0 if m < n

Fig. 12. Summary of degree operations

A{Y ← X} χ−→ B{Y ← X} is in D. Therefore, the path (A{Y ← X} χ−→ B{Y ←
X}) :: P ′′ is in D as well. It has the expected first and last nodes, and its valuation
is min(χ, χ′) = ν(P ).

It follows that every cycle in D′ corresponds to a cycle in D with the same
valuation. Since D is safe, D′ is safe as well.

Deletion: The result is straightforward, since all edges of the resulting graph D′
are already present in D.

Freezing: LetD′ = D!X = (D∪Daround)\Dremove, whereDaround andDremove are
defined in section 3.2, and let P be a path of D′, with valuation χ, and fst(P ) = A
and last(P ) = B. By induction on the length of P , we construct a path from A to
B in D with the same valuation.

For the base case P = [A], we have A = B. Since the freezing operation does not
introduce new names, all names appearing in D′ are already in D; therefore, P is
also a path of D, obviously with valuation 1.

Consider now P = (A
χ−→ C) :: P ′, with fst(P ′) = C and last(P ′) = B. By

induction hypothesis, there is a path P ′′ in D from C to B such that ν(P ′′) =
ν(P ′). We now argue by cases on the edge A

χ−→ C: by definition of the freeze
operation, it can either be in D or in Daround. If the edge A

χ−→ C comes from D,
the path A

χ−→ C :: P ′′ is then clearly a path of D, with the expected valuation
and endpoints. If the edge A

χ−→ C comes from Daround, there exist χ1 and χ2

such that A
χ1−→ X ∈ D and X

χ2−→ C ∈ D and χ = min(χ1, χ2). Hence, the
path (A

χ1−→ X) :: (X
χ2−→ C) :: P ′′ is a path of D from A to B, with valuation

min(min(χ1, χ2), ν(P ′′)) = min(χ, ν(P ′)) = ν(P ).

B. SOUNDNESS OF THE TARGET LANGUAGE

To simplify the proofs, we prove the soundness on a subset λB of λB that ex-
cludes constants, record construction and access, and the let binding. It is entirely
straightforward to extend the proofs to the omitted constructs.

B.1 Properties of degrees

We start the proof with a number of algebraic lemmas on degrees and degree opera-
tions. Figure 12 re-states the definitions of the operations on degrees. The following
lemmas should be read as universally quantified over the degrees d, d′, d1, d2, d3.
We adopt the convention that @ has highest precedence, followed by ∧, and then
ACM Transactions on Programming Languages and Systems, Vol. 27, No. 5, September 2005.
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+ and −.

Lemma B.1.

(1 ) (d1 + 1) @ d2 ≤ d1 @ d2 + 1.
(2 ) (d1 ∧ d2) @ d3 = d1 @ d3 ∧ d2 @ d3.
(3 ) d1 @ (d2 ∧ d3) = d1 @ d2 ∧ d1 @ d3.
(4 ) (d1 @ d2) @ d3 = d1 @ (d2 @ d3).
(5 ) (d− n) @ d′ = d @ d′ − n.
(6 ) If d + 1 = d′, then d′ ≥ 1 and d = d′ − 1.
(7 ) If d 6= 0, then d− 1 + 1 = d.
(8 ) 0 @ d ≤ d.
(9 ) If d ≤ d′ then d + 1 ≤ d′ + 1.
(10 ) If d + 1 ≤ d′ − 1 then d + 2 ≤ d′.
(11 ) If d2 ≥ 1, then d1 @ d3 ≤ d1 @ d2 @ d3.

Proof.

(1) If d2 = 0, we obtain 0 ≤ 1, which is true. If d2 = ∞ we obtain ∞ ≤ ∞.
Otherwise, the claim reduces to d1 + 1 ≤ d1 + 1.

(2) If d3 = 0, we obtain 0 on both sides of the equality. If d3 =∞, both sides are
equal to ∞. Otherwise we get d1 ∧ d2 on both sides.

(3) If d2 = 0, both sides are equal to 0. If d2 = ∞, then d2 ∧ d3 = d3 and
d1 @ d2 = ∞, so both sides are equal to d1 @ d3. Otherwise, we argue by case
on d3. If d3 = 0, then we obtain 0 on both sides, and if d3 = ∞, we obtain
d1 @ d2 for both sides. Otherwise, d2 ∧ d3 = n 6= 0, so d1 @ (d2 ∧ d3) = d1 =
d1 ∧ d1 = d1 @ d2 ∧ d1 @ d3.

(4) If d3 = 0, both sides are equal to 0. If d3 = ∞, we obtain ∞ on both sides.
Otherwise, both sides are equal to d1 @ d2.

(5) Both sides reduce to ∞ if d′ =∞, to 0 if d′ = 0, and to d− 1 otherwise.
(6) By definition of +.
(7) By definition of + and −.
(8) By definition of @.
(9) By definition of +.
(10) Since d + 1 is strictly positive, d′ cannot be 0. Thus, d′ = d′ − 1 + 1 by

property 7, and the result follows by applying property 9 to d + 1 ≤ d′ − 1.
(11) If d3 = ∞ or d3 = 0, both sides reduce to d3. Otherwise, write d3 = n + 1.

Then, d1 @d3 = d1 and d1 @d2 @d3 = d1 @d2, hence it simply remains to prove
that d1 ≤ d1 @ d2. Since d2 ≥ 1, we have only two cases: either d2 = ∞, in
which case d1 @ d2 =∞ which cannot be less than d1; or d2 = m + 1, in which
case d1 @ d2 = d1, and the result holds.

This completes the proof.

Lemma B.2. If γ ≤ (γ1 − 1) ∧ d @ γ2, then there exists γ′1 and γ′2 such that
γ = (γ′1 − 1) ∧ d @ γ′2 and γ′1 ≤ γ1 and γ′2 ≤ γ2.
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Proof. We define γ′1 and γ′2 pointwise. Consider a variable x. Let d′ =
γ(x), d1 = γ1(x), d2 = γ2(x). We construct d′1 and d′2 such that d′ = (d′1−1)∧d@d′2
and d′1 ≤ d1 and d′2 ≤ d2. If d′ = 0, then we can take d′1 = d′2 = 0. If d′ =∞, then
we can take d′1 = d1 and d′2 = d2, because only ∞ is greater than d′. Finally, if
d′ = n + 1, let d′1 = n + 2 and d′2 = d2. By hypothesis we know that d′ ≤ d @ d2.
Since d′1 − 1 = n + 1 = d′, we have (d′1 − 1)∧ d @ d′2 = d′1 − 1 = d′. Moreover, since
d′ ≤ d1 − 1, we have that n + 1 ≤ d1 − 1, and therefore (d′1 = n + 2 ≤ d1 by lemma
B.1. Finally, d′2 ≤ d2 trivially holds.

Lemma B.3. If γ ≤ (γ1 − 1) ∧ (x 7→ d), then there exists γ′1 such that γ′1 ≤ γ1

and γ = (γ′1 − 1) ∧ (x 7→ d).

Proof. We proceed as in the previous proof. Consider a variable y and let
d′ = γ(y) and d1 = γ1(y). We construct d′1 such that d′1 ≤ d1 and d′ = (d′1 − 1) ∧
((x 7→ d)(y)). If d1 = 0, then d′1 = 0 works. Otherwise, we take d′1 = d′ + 1. This
definition satisfies the following properties:

—Since d′ ≤ d1 − 1, we have d′ + 1 ≤ d1 − 1 + 1 and d1 6= 0. By lemma B.1, it
follows that d1 − 1 + 1 = d1, hence d′1 ≤ d1.

—From d′ ≤ (d′ + 1− 1) ≤ (d′1 − 1) and d′ ≤ (d1 − 1)∧ (x 7→ d)(y) ≤ (x 7→ d)(y), it
follows that d′ ≤ (d′1 − 1) ∧ ((x 7→ d)(y)).

—Since d′1 − 1 = d′, we have that (d′1 − 1) ∧ ((x 7→ d)(y)) ≤ d′.

Thus, d′1 satisfies the claim.

Lemma B.4. Let n ∈ N. If

γ′ ≤ γ0 ∧
∧

i,j∈{1...n}
di @ dij @ γj ∧

∧

i∈{1...n}
di @ γi

then there exist γ′0, γ
′
1, . . . , γ

′
n such that γ′i ≤ γi, for i = 0, . . . , n and

γ′ = γ′0 ∧
∧

i,j∈{1...n}
di @ dij @ γ′j ∧

∧

i∈{1...n}
di @ γ′i.

Proof. Simply take γ′0 = γ′ and γ′i = γi for i = 1, . . . , n. By transitivity we
have γ′0 ≤ γ0 and trivially γ′i ≤ γi. It is easy to check that

γ′0 ∧
∧

i,j∈{1...n}
di @ dij @ γ′j ∧

∧

i∈{1...n}
di @ γ′i ≤ γ′

by definition of γ′. Moreover, by hypothesis, we know that
∧

i,j∈{1...n}
di @ dij @ γ′j ≥ γ′ and

∧

i∈{1...n}
di @ γ′i ≥ γ′.

Therefore,

γ′ ≤ γ′0 ∧
∧

i,j∈{1...n}
di @ dij @ γ′j ∧

∧

i∈{1...n}
di @ γ′i

and the expected equality follows.

Lemma B.5. If γ[x 7→d] = (γ1−1)∧d0 @γ2 then there exist γ′1, γ′2, d1, d2 such
that γ1 = γ′1[x 7→ d1], γ2 = γ′2[x 7→ d2], and γ = (γ′1 − 1) ∧ d0 @ γ′2.
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Proof. Let d1 = γ1(x) and d2 = γ2(x). Let γ′1 be the function associating
γ1(y) to every variable y 6= x and such that γ′1(x) = γ(x) + 1, which we can
write γ1[x 7→ γ(x) + 1]. Let γ′2 be the function associating γ2(y) to every variable
y 6= x and such that γ′2(x) =∞, which we can write γ2[x 7→ ∞]. We have trivially
γ1 = γ′1[x 7→ d1] and γ2 = γ′2[x 7→ d2]. We now check the third property. On x,

γ(x) = (γ(x) + 1− 1) ∧ d0 @∞ = (γ′1(x)− 1) ∧ d0 @ γ′2(x).

On y 6= x,

γ(y) = (γ1(y)− 1) ∧ d0 @ γ2(y) = (γ′1(y)− 1) ∧ d0 @ γ′2(y).

This is the expected result.

Lemma B.6. If γ[x 7→ d] = γ0 ∧
( ∧

i,j∈{1...n}
di @ dij @ γj

) ∧ (∧

i

di @ γi

)
, then

there exist γ′0 and a γ′i for each i, such that γ′0[x 7→ d0] = γ0, γ′i[x 7→ d′i] = γi, and
γ = γ′0 ∧

( ∧

i,j∈{1...n}
di @ dij @ γ′j

)∧ (∧

i

di @ γ′i
)
, with d0 = γ0(x) and d′i = γi(x) for

all i.

Proof. Take γ′0 = γ0[x 7→ γ(x)] and γ′i = γi[x 7→∞] for all i. We check that the
expected properties hold as in the previous proof.

B.2 Weakening lemmas

We now prove two “weakening” lemmas showing that the typing judgement still
holds if the degree environment γ is replaced by another environment γ′ ≤ γ, or if
the degree γ(x) of an unused variable x is changed.

Lemma B.7. (Degree restriction.) If γ′ ≤ γ and Γ ` M : τ / γ, then Γ ` M :
τ / γ′.

Proof. We reason by induction on the typing derivation of M , and by case on
the last typing rule used. (Refer to Figure 8 for the typing rules of λB .)

Rule (var), M = x. We know that Γ(x) = τ and γ(x) = 0 ≥ γ′(x), so γ′(x) = 0
and we can apply the axiom (var) again.

Rule(abstr), M = λx.M1. Given the typing rules, we have a derivation of Γ+{x 7→
τ1} ` M1 : τ2 / (γ − 1)[x 7→ d] with τ = τ1

d−→ τ2. Notice that (γ′ − 1)[x 7→ d] ≤
(γ−1)[x 7→d]. Therefore, by induction hypothesis, we have a derivation of Γ+{x 7→
τ1} `M1 : τ2 / (γ′ − 1)[x 7→ d]. The expected result follows by another application
of the rule (abstr).

Rule (app), M = M1 M2. By typing hypothesis, we have derivations for Γ `M1 :
τ ′ d−→ τ / γ1 and Γ ` M2 : τ ′ / γ2, with γ = (γ1 − 1) ∧ d @ γ2. By lemma B.2, we
construct γ′1 and γ′2, such that γ′1 ≤ γ1, γ′2 ≤ γ2 and γ′ = (γ′1−1)∧d@γ′2. Applying
the induction hypothesis twice, we obtain derivations for Γ `M1 : τ ′ d−→ τ / γ′1 and
Γ ` M2 : τ ′ / γ′2, and we can apply the rule (app) again to obtain the expected
result.

Rule (appvar), M = M1 x. We have a derivation for Γ ` M1 : τ ′ d−→ τ / γ1 with
Γ(x) = τ ′ and γ = (γ1 − 1) ∧ d. Hence, γ′ ≤ (γ1 − 1) ∧ (x 7→ d). Applying lemma
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B.3, we obtain γ′1 such that γ′1 ≤ γ1 and γ′ = (γ′1− 1)∧ (x 7→ d). We can apply rule
(appvar) again to derive the expected judgment.

Rule (rec), M = let rec . . . xi = Mi . . . in N . By typing hypothesis, we have

Γ + {. . . xj : τj . . .} ` N : τ / γ0[. . . xj 7→ dj . . .]
Γ + {. . . xj : τj . . .} `Mi : τi / γi[. . . xj 7→ dij . . .]

for all i, j, dij ≥ 1
for all i, j, k, dik ≤ dij @ djk

γ = γ0 ∧
(∧

i

di @ γi

) ∧ (∧

i,j

di @ dij @ γj

)
.

Using lemma B.4, we take γ′N = γ′ and for all i, γ′i = γi, knowing that γ′N ≤ γ0

and γ′ = γ′N ∧
(∧

i

di @ γ′i
)∧(∧

i,j

di @ dij @ γ′j
)
. By induction hypothesis, we obtain

a derivation of Γ + {. . . xj : τj . . .} ` N : τ / γ′N [. . . xj 7→ dj . . .]. Hence we can
derive Γ `M : τ / γ′.

Lemma B.8. (Degree weakening.) If Γ ` M : τ / γ[x 7→ d] and x /∈ FV (M),
then Γ `M : τ / γ.

Proof. The proof is by induction on the typing derivation of M and by case on
the last rule used.

Rule (var), M = y. Since x /∈ FV (M), we have x 6= y. By typing hypotheses,
γ(y) = 0 and Γ(y) = τ . It follows that Γ `M : τ / γ.

Rule (abstr), M = λy.M1, where y is fresh. The premise of the typing rule holds:
Γ + {y 7→ τ1} ` M1 : τ2 / (γ[x 7→ d] − 1)[y 7→ d0] and τ = τ1

d0−→ τ2. Obviously,
(γ[x 7→ d]− 1)[y 7→ d0] = (γ− 1)[y 7→ d0][x 7→ d− 1]. Hence, by induction hypothesis
we obtain Γ + {y 7→ τ1} `M1 : τ2 / (γ − 1)[y 7→ d0] and the expected result follows
by rule (abstr).

Rule (app), M = M1 M2. We have Γ ` M1 : τ ′ d0−→ τ / γ1 and Γ ` M2 : τ ′ / γ2

with γ[x 7→ d] = (γ1 − 1) ∧ d0 @ γ2. Applying lemma B.5, we obtain d1, d2, γ′1 and
γ′2 such that γ = (γ′1 − 1) ∧ d0 @ γ′2, γ′1[x 7→ d1] = γ1 and γ′2[x 7→ d2] = γ2. By
induction hypothesis we can derive Γ ` M1 : τ ′ d0−→ τ / γ′1 and Γ ` M2 : τ ′ / γ′2.
The expected result follows by rule (app).

Rule (appvar), M = M1y, with y 6= x by hypothesis x /∈ FV (M). We have a
derivation of Γ ` M1 : τ1

d0−→ τ2 / γ1 with γ[x 7→ d] = (γ1 − 1) ∧ (y 7→ d0). Take
γ′1 = γ1[x 7→γ(x)+1]. We have γ′1[x 7→γ1(x)] = γ1 and γ = (γ′1−1)∧ (y 7→d0). The
first equality is straightforward, and the second equality follows from the facts that
γ(x) = γ(x)+1−1, and for any z 6= x, ((γ1−1)∧(y 7→d0))(z) = ((γ′1−1)∧(y 7→d0))(z).
We then conclude by induction hypothesis as above.

Rule (rec), M = let rec . . . xi = Mi . . . in N . We have

Γ + {. . . xj : τj . . .} ` N : τ / γN [. . . xj 7→ dj . . .]
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and for all i

Γ + {. . . xj : τj . . .} `Mi : τi / γi[. . . xj 7→ dij . . .]

with for all i, j, k, dik ≤ dij @ djk and for all i, j, dij ≥ 1 and γ[x 7→ d] = γN ∧(∧

i

di @ γi

) ∧ (∧

i,j

di @ dij @ γj

)
. Lemma B.6 shows the existence of γ′N and γ′i

for all i such that γ′N [x 7→ dN ] = γN , and for all i γ′i[x 7→ d′i] = γi, and γ =
γ′N ∧

(∧

i

di @ γ′i
) ∧ (∧

i,j

di @ dij @ γ′j
)
, with dN = γN (x) and for all i, d′i = γ′i(x).

Applying the induction hypothesis, we derive

Γ + {. . . xj : τj . . .} ` N : τ / γ′N [. . . xj 7→ dj . . .]

and for all i

Γ + {. . . xj : τj . . .} `Mi : τi / γ′i[. . . xj 7→ dij . . .].

The result follows by rule (rec).

Lemma B.9. (Type weakening.) If Γ + {x 7→ τ ′} ` M : τ / γ and x /∈ FV (M),
then Γ `M : τ / γ.

Proof. Straightforward by induction on the typing derivation.

B.3 Substitution lemmas

We now establish the traditional substitution lemma: a variable can be substi-
tuted by a term of the same type without affecting the type of the program. This
lemma provides a semantic justification for our definition of @ in relation with what
actually happens during the reduction of an application.

Lemma B.10. (Substitution.) If Γ + {x 7→ τ ′} ` M1 : τ / γ1[x 7→ d], and Γ `
M2 : τ ′ / γ2, with x /∈ FV (M2)∪ dom(γ2), then Γ `M1{x←M2} : τ / γ1 ∧ d@ γ2.

Proof. We proceed by induction on the typing derivation of M1 and case anal-
ysis on the last typing rule used. We write M = M1{x←M2}, Γ′ = Γ + {x 7→ τ ′},
and γ0 = γ1 ∧ d @ γ2.

Rule (var), M1 = y. We have Γ′(y) = τ and γ1[x 7→ d](y) = 0.
If y = x, then M = M2, d = 0, τ = τ ′ and by hypothesis Γ ` M : τ / γ2. By

lemma B.7, it suffices to show that γ0 ≤ γ2 or γ1 ∧ 0 @ γ2 ≤ γ2, which is true by
lemma B.1.

If y 6= x, then x /∈ FV (M) and Γ + {x 7→ τ ′} ` M : τ / γ1[x 7→ d]. By lemmas
B.8 and B.9, Γ ` M : τ / γ1. It suffices to show that γ0 ≤ γ1, which is trivially
true.

Rule (abstr), M1 = λy.M3, with y fresh. By typing hypothesis, we have

Γ′ + {y 7→ τ1} `M3 : τ2 / γ3[y 7→ d0]

with τ = τ1
d0−→ τ2 and γ3[y 7→ d0] = (γ1[x 7→ d] − 1)[y 7→ d0] = (γ1 − 1)[x 7→

(d − 1); y 7→ d0]. Take M ′
3 = M3{x ← M2}. By induction hypothesis, we have
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Γ + {y 7→ τ1} ` M ′
3 : τ2 / (γ1 − 1)[y 7→ d0] ∧ (d − 1) @ γ2. Since y is fresh, it does

not occur in γ2, therefore

(γ1 − 1)[y 7→ d0] ∧ (d− 1) @ γ2

= ((γ1 − 1) ∧ (d− 1) @ γ2)[y 7→ d0]
= ((γ1 − 1) ∧ (d @ γ2 − 1))[y 7→ d0] by lemma B.1
= ((γ1 ∧ d @ γ2)− 1)[y 7→ d0] = (γ0 − 1)[y 7→ d0].

Hence, rule (abstr) concludes Γ ` λy.M ′
3 : τ1

d0−→ τ2 / γ0, which is the expected
result.

Rule (app), M1 = M3 M4. We have Γ′ `M3 : τ ′′ d0−→ τ / γ3 and Γ′ `M4 : τ ′′ / γ4

and γ1[x 7→d] = (γ3−1)∧d0@γ4. By lemma B.5, if d3 = γ3(x) and d4 = γ4(x), there
exists γ′3 and γ′4 such that γ′3[x 7→d3] = γ3, γ′4[x 7→d4] = γ4, and γ1 = (γ′3−1)∧d0@γ′4.
By induction hypothesis, if M ′

3 = M3{x ← M2} and M ′
4 = M4{x ← M2}, then

Γ `M ′
3 : τ ′′ d0−→ τ / γ′3 ∧ d3 @ γ2 and Γ `M ′

4 : τ ′′ / γ′4 ∧ d4 @ γ2. Therefore, by rule
(app),

Γ `M : τ / ((γ′3 ∧ d3 @ γ2)− 1) ∧ d0 @ (γ′4 ∧ d4 @ γ2).

Moreover, by lemma B.1, the degree environment is equal to

(γ′3 − 1) ∧ (d3 @ γ2 − 1) ∧ (d0 @ γ′4) ∧ (d0 @ d4 @ γ2)
= γ1 ∧ (d3 @ γ2 − 1) ∧ (d0 @ d4 @ γ2)
= γ1 ∧ ((d3 − 1∧d0 @ d4) @ γ2

= γ1 ∧ d @ γ2

= γ0.

Rule (appvar), M1 = M3 y. As in the (var) case, we argue by case, according to
whether y is equal to x or not.

Case y = x. Here, M = M ′
3 M2, where M ′

3 = M3{x ← M2}. The typing
hypothesis implies Γ′ ` M3 : τ ′′ d0−→ τ / γ3 (*) and Γ′(y) = Γ′(x) = τ ′ = τ ′′ and
γ1[x 7→d] = (γ3−1)∧ (y 7→d0). Take γ′3 = γ3[x 7→γ1(x)+1]. We have γ1 = (γ′3−1)
and γ′3[x 7→ γ3(x)] = γ3. Thus we can write the premise (*) as follows

Γ′ `M3 : τ ′′ d0−→ τ / γ′3[x 7→ γ3(x)].

Hence, by induction hypothesis we have

Γ `M ′
3 : τ ′′ d0−→ τ / γ′3 ∧ d3 @ γ2

with d3 = γ3(x). Then by rule (app), we obtain

Γ `M : τ / ((γ′3 ∧ d3 @ γ2)− 1) ∧ d0 @ γ2.

Notice that γ0 = (γ′3 − 1) ∧ d @ γ2. Since d = (d3 − 1) ∧ d0, it follows that

γ0 = (γ′3 − 1) ∧ (d3 @ γ2 − 1) ∧ d0 @ γ2.

We therefore have derived the desired judgment.
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Case y 6= x. Here, M = M ′
3 y, where M ′

3 = M3{x← M2}. By typing hypothesis,
we have Γ′ ` M3 : τ ′′ d0−→ τ / γ3 (*) and Γ′(y) = Γ(y) = τ ′′ and γ1[x 7→ d] =
(γ3− 1)∧ (y 7→ d0). Take γ′3 = γ3[x 7→ γ1(x) + 1]. We have γ1 = (γ′3− 1)∧ (y 7→ d0),
and γ′3[x 7→ γ3(x)] = γ3. Thus we rewrite the premise (*) as follows:

Γ′ `M3 : τ ′′ d0−→ τ / γ′3[x 7→ γ3(x)].

By induction hypothesis, it follows that

Γ `M ′
3 : τ ′′ d0−→ τ / γ′3 ∧ d3 @ γ2

with d3 = γ3(x). Then by rule (appvar), we get

Γ `M : τ / ((γ′3 ∧ d3 @ γ2)− 1) ∧ (y 7→ d0)

which yields by lemma B.1

Γ `M : τ / (γ′3 − 1) ∧ (d3 @ γ2 − 1) ∧ (y 7→ d0).

Moreover,

γ0 = γ1 ∧ d @ γ2

= (γ′3 − 1) ∧ (y 7→ d0) ∧ d @ γ2

= (γ′3 − 1) ∧ (y 7→ d0) ∧ (d3 − 1) @ γ2

(because γ1[x 7→ d] = (γ3 − 1) ∧ (y 7→ d0))
= (γ′3 − 1) ∧ (y 7→ d0) ∧ (d3 @ γ2 − 1) (by lemma B.1).

Thus, the expected result holds.

Rule (rec), M = let rec x1 = N1 and . . . and xn = Nn in N , where the xi are
fresh. By typing hypothesis,

Γ′ + {. . . xj : τj . . .} ` N : τ / γN [. . . xj 7→ dj . . .]
for all i, Γ′ + {. . . xj : τj . . .} ` Ni : τi / δi[. . . xj 7→ dij . . .]

for all i, j, dij ≥ 1
for all i, j, k, dik ≤ dij @ djk

We write N ′ = N{x←M2} and for all i, N ′
i = Ni{x←M2}. We have γ1[x 7→d] =

γN ∧
(∧

i

di @ δi

)∧ (∧

i,j

di @ dij @ δj

)
. Lemma B.6 shows that we can construct γ′N

and a δ′i for all i such that γ′N [x 7→ dN ] = γN , and δ′i[x 7→ d0
i ] = δi for all i and

γ1 = γ′N ∧
(∧

i

di @ δ′i
) ∧ (∧

i,j

di @ dij @ δ′j
)
, with dN = γN (x) and d0

i = δi(x) for

each i. Thus, the two premises can be rewritten as follows:

Γ′ + {. . . xj : τj . . .} ` N : τ / γ′N [. . . xj 7→ dj . . .][x 7→ dN ]
for all i, Γ′ + {. . . xj : τj . . .} ` Ni : τi / δ′i[. . . xj 7→ dij . . .][x 7→ d0

i ]

By induction hypothesis, it follows that

Γ + {. . . xj : τj . . .} ` N ′ : τ / γ′N [. . . xj 7→ dj . . .] ∧ dN @ γ2

for all i, Γ + {. . . xj : τj . . .} ` N ′
i : τi / δ′i[. . . xj 7→ dij . . .] ∧ d0

i @ γ2
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Since the xis are fresh we have γ′N [. . . xj 7→dj . . .]∧dN @γ2 = (γ′N∧dN @γ2)[. . . xj 7→
dj . . .] and for all i, δ′i[. . . xj 7→ dij . . .]∧ d0

i @ γ2 = (δ′i ∧ d0
i @ γ2)[. . . xj 7→ dij . . .].

We can therefore apply rule (rec) to obtain

Γ `M : τ / γ′N ∧ dN @ γ2 ∧
∧

i,j

di @ dij @ (δ′j ∧ d0
j @ γ2) ∧

∧

i

di @ (δ′i ∧ d0
i @ γ2)

According to lemma B.1, the degree environment above is equal to

γ′N ∧ (dN @ γ2)
∧ (

∧

i,j

di @ dij @ δ′j)

∧ (
∧

i,j

di @ dij @ d0
j @ γ2)

∧ (
∧

i

di @ δ′i)

∧ (
∧

i

di @ d0
i @ γ2).

To obtain the expected result, it suffices to prove that this degree environment is
equal to γ0. Since

γ1[x 7→ d] = γN ∧
(∧

i

di @ δi

) ∧ (∧

i,j

di @ dij @ δj

)

we know that

d = γN (x) ∧ (∧

i

di @ δi(x)
) ∧ (∧

i,j

di @ dij @ δj(x)
)
.

Therefore, d = dN ∧
(∧

i

di @ d0
i

) ∧ (∧

i,j

di @ dij @ d0
j

)
. It follows that

γ0 = γ1 ∧ d @ γ2

= γ′N ∧
(∧

i

di @ δ′i
) ∧ (∧

i,j

di @ dij @ δ′j
)

∧ (
dN ∧

(∧

i

di @ d0
i

) ∧ (∧

i,j

di @ dij @ d0
j

))
@ γ2

= γ′N ∧
(∧

i

di @ δ′i
) ∧ (∧

i,j

di @ dij @ δ′j
)

∧ (dN @ γ2) ∧
(∧

i

di @ d0
i @ γ2

) ∧ (∧

i,j

di @ dij @ d0
j @ γ2

)
.

This completes the proof.

We now extend the previous lemma to the case of parallel substitution, exploiting
the fact that M{. . . xi ← Mi . . .} is equal to M{x1 ← y1} . . . {xn ← yn}{y1 ←
M1} . . . {yn ← Mn}, where the yi are fresh. To support this reduction, we first
show the stability of the typing judgement under substitution of one variable by a
fresh variable.

Lemma B.11. If Γ+{x:τ} `M : τ / γ[x 7→d] and y /∈ FV (M), then Γ+{y :τ} `
M{x← y} : τ / γ[y 7→ d].
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Proof. Easy induction on the typing derivation of M .

Lemma B.12. (Parallel substitution.) Assume Γ + {. . . xi : τi . . .} ` M : τ /
γM [. . . xi 7→ di . . .], and for all j ∈ {1 . . . n}, Γ ` Mj : τj / γj with for all i, j,
xi /∈ FV (Mj) ∪ dom(γj). Then, Γ `M{. . . xi ←Mi . . .} : τ / γM ∧

∧

i

di @ γi.

Proof. Write M{. . . xi ← Mi . . .} as M{x1 ← y1} . . . {xn ← yn}{y1 ←
M1} . . . {yn ←Mn} where the yi are fresh. We first apply lemma B.11 n times to
obtain Γ + {. . . yi : τi . . .} `M{x1 ← y1} . . . {xn ← yn} : τ / γM [. . . yi 7→ di . . .].
We then apply lemma B.10 n times again, successively using the n typing hypotheses
for the Mi. This leads to the desired judgment.

B.4 Substitution by a variable

We now state and prove a stronger variant of lemma B.10 for the case where we
substitute a variable by another variable. This alternate substitution lemma is
distinct from lemma B.11: here, y is not supposed to be fresh, and this is why
former occurences of y must be taken into account, which is done through the ∧
operation.

Lemma B.13. (Substitution by a variable.) If Γ + {x 7→ τ ′} ` M : τ / γ[x 7→ d]
and Γ(y) = τ ′, then Γ `M{x← y} : τ / γ ∧ (y 7→ d).

Proof. We write Γ′ = Γ + {x 7→ τ ′} and M ′ = M{x ← y} and proceed by
induction on the typing derivation of M and case analysis on the last typing rule
used.

Rule (var) We distinguish the three sub-cases M = x, M = y, and M = z with
z 6= x and z 6= y. All three cases are straightforward.

Rule (abstr), M = λz.M1 where z is fresh. By typing hypothesis, we have

Γ′ + {z 7→ τ1} `M1 : τ2 / (γ[x 7→ d]− 1)[z 7→ d0]

with τ = τ1
d0−→ τ2. This is equivalent to

Γ′ + {z 7→ τ1} `M1 : τ2 / (γ − 1)[z 7→ d0][x 7→ d− 1].

Applying the induction hypothesis, we then have

Γ + {z 7→ τ1} `M1{x← y} : τ2 / (γ − 1)[z 7→ d0] ∧ (y 7→ d− 1)

which yields

Γ + {z 7→ τ1} `M1{x← y} : τ2 / ((γ ∧ (y 7→ d))− 1)[z 7→ d0].

We conclude Γ `M{x← y} : τ / γ ∧ (y 7→ d) by rule (abstr).

Rule (app), M = M1 M2. The typing hypothesis entails Γ′ ` M1 : τ ′ d0−→ τ / γ1

and Γ′ `M2 : τ ′ / γ2 with γ[x 7→d] = (γ1−1)∧d0 @γ2. Take γ′1 = γ1[x 7→γ(x)+1]
and γ′2 = γ2[x 7→∞]. These degree environments enjoy the following properties:

γ1 = γ′1[x 7→ γ1(x)] γ2 = γ′2[x 7→ γ2(x)] γ = (γ′1 − 1) ∧ d0 @ γ′2.
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By induction hypothesis, we can derive

Γ `M1{x← y} : τ ′′ d0−→ τ / γ′1 ∧ (y 7→ γ1(x))
Γ `M2{x← y} : τ ′′ / γ′2 ∧ (y 7→ γ2(x))

Γ `M ′ : τ / (γ′1 − 1) ∧ (y 7→ (γ1(x)− 1)) ∧ d0 @ (γ′2 ∧ (y 7→ γ2(x)))

The degree environment in the conclusion is equal to

(γ′1 − 1) ∧ d0 @ γ′2 ∧ (y 7→ ((γ1(x)− 1) ∧ d0 @ γ2(x))) = γ ∧ (y 7→ d).

The desired result follows.

Rule (appvar), M = M1 z We have Γ′ ` M1 : τ ′′ d0−→ τ / γ1 and Γ′(z) = τ ′′

and γ[x 7→ d] = (γ1 − 1) ∧ (z 7→ d0). We consider the two cases z = x and z 6= x
separately.

Case z = x. In this case, τ ′ = τ ′′. Consider γ′1 = γ1[x 7→ γ(x) + 1]. We have
γ′1 − 1 = γ and γ′1[x 7→ γ1(x)] = γ1. By induction hypothesis, we obtain

Γ `M1{x← y} : τ ′ d0−→ τ / γ′1 ∧ (y 7→ γ1(x)).

Since Γ(y) = τ ′, rule (appvar) concludes

Γ `M ′ : τ / (γ′1 − 1) ∧ (y 7→ (γ1(x)− 1)) ∧ (y 7→ d0).

The degree environment in this conclusion is equal to (γ′1−1)∧(y 7→((γ1(x)−1)∧d0)),
that is, γ ∧ (y 7→ d). This is the expected result.

Case z 6= x. Define γ′1 = γ1[x 7→ γ(x) + 1]. We have γ = (γ′1 − 1) ∧ (z 7→ d0) and
γ′1[x 7→ γ1(x)] = γ1. By induction hypothesis, we obtain

Γ `M1{x← y} : τ ′′ d0−→ τ / γ′1 ∧ (y 7→ γ1(x)).

Since Γ(z) = τ ′′, we derive by rule (appvar)

Γ `M ′ : τ / (γ′1 − 1) ∧ (y 7→ (γ1(x)− 1)) ∧ (z 7→ d0).

The latter degree environment is equal to γ ∧ (y 7→ (γ1(x)− 1)), that is, γ ∧ (y 7→d),
as required to establish the result.

Rule (rec), M = let rec . . . xi = Mi . . . in N where the xi are fresh. The
premises of rule (rec) hold:

Γ′ + {. . . xi : τi . . .} `Mj : τj / γj [. . . xj 7→ dji . . .] for all j

Γ′ + {. . . xi : τi . . .} ` N : τ / γN [. . . xi 7→ di . . .]
for all i, j, dij ≥ 1

for all i, j, k, dik ≤ dij @ djk.

Moreover, γ[x 7→ d] = γN ∧
(∧

i

di @ γi

) ∧ (∧

i,j

di @ dij @ γj

)
. By lemma B.6, we

can construct γ′N and γ′i for each i satisfying the following conditions: γ = γ′N ∧(∧

i

di @ γ′i
) ∧ (∧

i,j

di @ dij @ γ′j
)
, γN = γ′N [x 7→ dN ], and for all i, γi = γ′i[x 7→ d′i],

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 5, September 2005.



Mixin modules in a call-by-value setting · App–13

with dN = γN (x) and for all i, d′i = γi(x). Applying the induction hypothesis, we
obtain derivations for the following judgments:

Γ + {. . . xi : τi . . .} `Mj{x← y} : τj / γ′j [. . . xi 7→ dji . . .] ∧ (y 7→ d′j) for all j

Γ + {. . . xi : τi . . .} ` N{x← y} : τ / γ′N [. . . xi 7→ di . . .] ∧ (y 7→ dN ).

From these premises, rule (rec) derives Γ `M ′ : τ / γ′, where

γ′ = γ′N ∧ (y 7→ dN )
∧ (∧

i,j

di @ dij @ (γ′j ∧ (y 7→ d′j))
)

∧ (∧

i

di @ (γ′i ∧ (y 7→ d′i))
)

= γ ∧ (y 7→ (dN ∧
(∧

i,j

di @ dij @ d′j
) ∧ (∧

i

di @ d′i
)
))

= γ ∧ (y 7→ d)

This concludes the proof.

B.5 Soundness

The soundness of λB ’s type system (theorem 5.1) is, as usual, a corollary of two
properties: subject reduction (lemma B.15) and progress (lemma B.16). We start
with a technical lemma on recursive definitions arising from the reduction of a let
rec term.

Lemma B.14. Assume Γ + {. . . xi : τi . . .} ` Mj : τj / γj [. . . xi 7→ dji . . .]
for all j ∈ {1 . . . n}. Further assume that for all i, j, dij ≥ 1 and for all i, j, k,
dik ≤ dij @ djk. Then, for any i0 ∈ {1 . . . n},

Γ ` let rec . . . xi = Mi . . . in Mi0 : τi0 / γi0 ∧
∧

i

di0i @ γi

Proof. By application of rule (rec), we obtain

Γ ` let rec . . . xi = Mi . . . in Mi0 : τi0 / γi0 ∧
∧

i,j

di0i @ dij @ γj ∧
∧

i

di0i @ γi.

Since di0j ≤ di0i @ dij , we have di0j @ γj ≤ di0i @ dij @ γj . Thus,
∧

i,j

di0i @ dij @ γj ∧
∧

i

di0i @ γi =
∧

i

di0i @ γi

and the expected result follows.

Lemma B.15. (Subject reduction.) If Γ ` M : τ / γ and M → M ′, then
Γ `M ′ : τ / γ.

Proof. The proof is by case analysis on the reduction rule used.

Reduction rule (beta), M = (λx.M1) v. The typing derivation for M ends either
with an application of the (app) rule or with the (appvar) rule.
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In the (appvar) case, we have v = y. We rename x if necessary to ensure x 6= y.
The typing derivation for M is of the following form

Γ + {x 7→ τ ′} `M1 : τ / (γ0 − 1)[x 7→ d]

Γ ` λx.M1 : τ ′ d−→ τ / γ0 Γ(y) = τ ′

Γ `M : τ / (γ0 − 1) ∧ (y 7→ d)

Moreover, γ = (γ0 − 1) ∧ (y 7→ d) and M ′ = M1{x← y}. By lemma B.13, we have

Γ `M ′ : τ / (γ0 − 1) ∧ (y 7→ d)

which is the expected result.
In the (app) case, the typing derivation for M is

Γ + {x 7→ τ ′} `M1 : τ / (γ1 − 1)[x 7→ d]

Γ ` λx.M1 : τ ′ d−→ τ / γ1

...

Γ ` v : τ ′ / γ2

Γ `M : τ / (γ1 − 1) ∧ d @ γ2

Moreover, M ′ = M1{x← v} and γ = (γ1 − 1) ∧ d @ γ2. By lemma B.10, it follows
that Γ `M ′ : τ / γ, as expected.

Reduction rule (mutrec), M = let rec . . . xi = vi . . . in N , where the xi are
fresh. We have M ′ = M{. . . xi ← Mi . . .} with, for all i, Mi = let rec . . . xj =
vj . . . in vi. By typing, we have

Γ + {. . . xj : τj . . .} ` N : τ / γN [. . . xj 7→ dj . . .]
for all i, Γ + {. . . xj : τj . . .} ` vi : τi / γi[. . . xj 7→ dij . . .]

for all i, j, dij ≥ 1
for all i, j, k, dik ≤ dij @ djk.

By lemma B.14, it follows that

Γ `Mi : τi / γi ∧
∧

j

dij @ γj .

By lemma B.12, we obtain

Γ `M ′ : τ / γN ∧
(∧

i

di @ (γi ∧
∧

j

dij @ γj)
)

which is identical to the expected result

Γ `M ′ : τ / γN ∧
(∧

i

di @ γi

) ∧ (∧

ij

di @ dij @ γj

)
.

Reduction rule (context), M = E [M1], M1 →M ′
1 and M ′ = E [M ′

1]. The result
follows by structural induction and case analysis over the context E. The only point
worth mentioning is that in the case E = v [ ] and the typing derivation ends with
rule (appvar), then M1 can only be a variable, and therefore cannot reduce.
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Lemma B.16. (Progress.) If Γ `M : τ / γ and γ ≥ 1, then either M is a value,
or there exists M ′ such that M →M ′.

Proof. The proof is a standard inductive argument on the typing derivation of
M , and case analysis on the last typing rule used.

Rule (var). M is a variable, i.e. a value.

Rule (abstr). M is a λ-abstraction, i.e. a value.

Rule (app), M = M1 M2. We have Γ ` M1 : τ ′ d−→ τ / γ1 and Γ ` M2 : τ ′ / γ2.
Moreover, γ = (γ1 − 1) ∧ d @ γ2. Applying the induction hypothesis to M1 and
M2, either both terms are values or at least one reduces. If M1 reduces, M also
reduces via the context [ ] M2. If M1 is a value and M2 reduces, M also reduces
via the context M1 [ ]. If both M1 and M2 are values, the type τ ′ d−→ τ of M1

guarantees that M1 is either a variable or an abstraction. But M1 cannot be a
variable, because γ ≥ 1 implies γ1 ≥ 2. Hence, M1 is an abstraction and we can
apply rule (beta) to reduce M .

Rule (appvar). Same reasoning as in the (app) case.

Rule (rec), M = let rec . . . xi = Mi . . . in N . If all Mi are values, M reduces
by rule (mutrec). Otherwise, M reduces via the rule (context).

C. SOUNDNESS OF THE TRANSLATION

We now turn to proving the type soundness of the translation: the translation of a
well-typed source term is a well-typed λB-term.

We start by stating three typing rules that are admissible in λB , and help type-
check the terms arising from the translation scheme. We omit the proofs of admis-
sibility, which are straightforward.

Lemma C.1. (Single let rec.) The following typing rule is admissible for the
type system of λB.

Γ + {x 7→ τ ′} `M : τ / γ1[x 7→ d] Γ + {x 7→ τ ′} ` N : τ ′ / γ2[x 7→ d′] d′ ≥ 1

Γ ` let rec x = N in M : τ / γ1 ∧ d @ γ2

Lemma C.2. (Multiple abstractions.) The following typing rule is admissible for
the type system of λB.

Γ + {. . . xi : τi . . .} `M : τ / (γ − n)[. . . xi 7→ di . . .]

Γ ` ~λ(x1, . . . , xn).M : τ1
d1+(n−1)−−−−−−→ τ2

d2+(n−2)−−−−−−→ . . . τn
dn−→ τ / γ

Lemma C.3. (Multiple applications.) The following typing rule is admissible for
the type system of λB.

Γ `M : τ1
d1+(n−1)−−−−−−→ τ2

d2+(n−2)−−−−−−→ . . . τn
dn−→ τ / γ Γ(xi) = τi for i = 1, . . . , n

Γ `M(x1, . . . , xn) : τ / (γ − n) ∧ (. . . xi 7→ di . . .)

We now prove two technical lemmas on the typing of sub-expressions that occur
when translating the close and freeze operators.
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Lemma C.4. (Translation of close.) Assume Γ ` e : J{I;O;D}K / do(Γ). Let
X1, . . . , Xn be names such that Xi /∈ dom(Γ) and O(Xi) = I(Xi) and D(Xi, Xj) 6=
0 for i, j ∈ {1, . . . , n}. Further assume that for all immediate predecessors X of
one of the Xi in D, either X is one of the Xi, or Γ(X) = I(X). Let M be an
expression and τ be a type such that Γ′ ` M : τ / do(Γ′), where Γ′ = Γ + {X1 :
O(X1), . . . , Xn : O(Xn)}. Then,

Γ ` let rec . . . Xi = e.Xi D−1(Xi) . . . in M : τ / do(Γ)

Proof. By definition of the translation of a mixin signature, and the hypotheses
on Γ, the conditions of lemma C.3 are met, and we obtain

Γ′ ` e.Xi D−1(Xi) : O(Xi) / do(Γ) ∧ (X 7→D(X, Xi) | X ∈ D−1(Xi)).

Since Xj /∈ dom(Γ) for all j, the degree environment above is pointwise greater or
equal to do(Γ)[Xj 7→ D(Xj , Xi) | j ∈ {1, . . . , n}]. Thus, by lemma B.7, it follows
that

Γ′ ` e.Xi D−1(Xi) : O(Xi) / do(Γ)[Xj 7→D(Xj , Xi) | j ∈ {1, . . . , n}].
Moreover, D(Xj , Xi) ∈ {1,∞} for all i and j. Hence, the premises of the (rec)
typing rule are met. Applying the weakening lemma B.7 to its conclusion, we
obtain the desired result.

Lemma C.5. (Translation of freeze.) Assume Γ ` e : J{I;O;D}K/do(Γ), where
e is a variable distinct from X for all names X. Let X be a name such that
I(X) = O(X). Write D′ = D !X and I ′ = I\X . Then, for all names Y ∈ dom(O),
if X /∈ D−1(Y ) we have

Γ ` e.Y : JO(Y )KY,D′,I′ / do(Γ)

and if X ∈ D−1(Y ), we have

Γ ` ~λD′−1(Y ). let rec X = e.X D−1(X) in e.Y D−1(Y ) : JO(Y )KY,D′,I′ / do(Γ)

Proof. Recall the definition of D′:
D′ = D ! X = (D ∪Daround) \ Dremove

where Daround = {Z χ′1∧χ′2−−−−→ Y | (Z χ1−→ X) ∈ D, (X
χ2−→ Y ) ∈ D} and Dremove =

{X χ−→ Y | Y ∈ Names, χ ∈ {0, 1}}.
Thus, in the case X /∈ D−1(Y ), no edges leading to Y are added nor removed.

Hence, D′−1(Y ) = D−1(Y ), which implies JO(X)KX,D!X,I\X
= JO(X)KX,D,I and

the expected result.
Consider now the case X ∈ D−1(Y ). We have D′−1(Y ) = (D−1(Y ) ∪D−1(X)) \
{X}. Define Γ′ = Γ + {Z : JI(Z)K | Z ∈ D−1(Y )}. By lemma C.3, and using the
fact that e is not one of the Z, it follows that

Γ′ ` e.X D−1(X) : JOXK / {e 7→ 0; Z 7→ D(Z,X) | Z ∈ D−1(X)}
and

Γ′ + {X : JI(X)K} ` e.Y D−1(Y ) : JOY K / {e 7→ 0;Z 7→ D(Z, Y ) | Z ∈ D−1(Y )}.
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Notice that D(X, X) ≥ 1, because otherwise the graph D would not be safe,
making the signature {I;O;D} ill-formed. In addition, O(X) = I(X). The
conditions of lemma C.1 are therefore met, and we obtain Γ′ ` let rec X =
e.X D−1(X) in e.Y D−1(Y ) : JO(Y )K / γ, where

γ = {e 7→ 0;Z 7→ D(Z,X) | Z 6= X, Z ∈ D−1(X)}
∧ {e 7→ 0; Z 7→ D(Z, Y ) | Z 6= X, Z ∈ D−1(Y )}

By definition of D′ = D ! X, γ is equal to {e 7→ 0;Z 7→ D′(Z, Y ) | Z ∈ D′−1(Y )}.
Applying lemma C.2, we obtain

Γ ` ~λD′−1(Y ). let rec X = e.X D−1(X) in e.Y D−1(Y ) : JO(X)KX,D′,I′ / {e 7→0}
which implies the desired result by weakening.

Theorem C.6. (Soundness of the translation.) If Γ ` E : T , then JΓK ` JEK :
JT K / do(Γ) + IsRec(E ).

Proof. The proof is by structural induction on E, and case analysis on E.

Function abstraction: E = λx.C and T = τ1 → τ2. By induction hypothesis,
JΓK+ {x : τ1} ` JCK : τ2 / do(Γ)[x 7→ 0]+ IsRec(C ). Applying the degree weakening
lemma if IsRec(C ) is not zero, we obtain JΓK + {x : τ1} ` JCK : τ2 / do(Γ)[x 7→ 0].
From this, the (abstr) typing rule shows that JΓK ` Jλx.CK : τ1

0−→ τ2 / do(Γ) + 1,
which is the expected result since IsRec(λx .C ) = 1.

Other core language constructs: the result follows immediately from the in-
duction hypothesis, since IsRec(E ) = 0 in these cases.

Structure construction: E = 〈ι; o〉 and T = {I;O;D}. By typing, we have
D = D〈ι; o〉, ` D, dom(o) = dom(O), and for all X ∈ dom(o), Γ+I◦ι ` o(X):O(X).

Let o = Xi
i∈I7→ Ei, O = Xi

i∈I7→ Ti, χi = IsRec(Ei) and ι = yj
j∈J7→ Yj , with

I(Yj) = T ′j for all j, with the Xis and Yjs ordered lexicographically, that is, if
i1 < i2, then Xi1 <lex Xi2 , and similarly for the Yjs.

By induction hypothesis, for all i, we have JΓK+ JI ◦ ιK ` JEiK : JTiK / do(Γ + I ◦
ι) + χi.

Notice that FV (JEiK) = FV (Ei) and FV (Ei) ∩ dom(ι) = ι−1(D−1(Xi)). We
can therefore apply lemma C.2 and weakening lemmas B.8 and B.9 to eliminate
variables of dom(ι) that are not free in Ei. Let (Z1, . . . , Zn) = D−1(Xi) and for all
k ∈ {1 . . . n}, T ′′k = I(Zk). We obtain

Γ ` ~λι−1(D−1(Xi)).JEiK : JT ′′1 K
χi+(n−1)−−−−−−→ . . . JT ′′n K

χi−→ JTiK / do(Γ).

Moreover, we have JTiKXi,D,I = JT ′′1 K
χi+(n−1)−−−−−−→ . . . JT ′′n K

χi−→ JTiK as a consequence
of D(Zk, Xi) = ν(ι−1(Zk), Ei) = IsRec(Ei) = χi. The desired result follows.

Closing: E = close(E′) and T = {I;O;D}. We apply lemma C.4 repeatedly to
each let rec group in the translation, starting with the innermost one. Since the
let rec are generated following a serialisation of the graph D, all free variables in
a let rec are bound earlier, and dependencies between the variables bound in the
same let rec cannot have degree 0 (otherwise the graph D would not be safe, and
T would be ill-formed). The expected result follows.
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Freezing: E = E1 ! X. The result follows from the induction hypothesis applied
to E1, and lemma C.5 applied to each component of the record generated by the
translation.

Delete: E = E1\X. The result follows immediately from the induction hypothesis
applied to E1.

Renaming: E = E1[X ← Y ]. We apply the induction hypothesis to E1, then use
lemmas C.2 and C.3 to handle the rearrangement of the parameters of the record
components.
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