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Abstract

We propose a benchmark to compare theorem-proving systems on their ability to express proofs of compiler
correctness. In contrast to the first POPLmark, we emphasize the connection of proofs to compiler imple-
mentations, and we point out that much can be done without binders or alpha-conversion. We propose
specific criteria for evaluating the utility of mechanized metatheory systems; we have constructed solutions
in both Coq and Twelf metatheory, and we draw conclusions about those two systems in particular.
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1 How to evaluate mechanized metatheories

The POPLmark challenge [3] aims to compare the usability of several automated
proof assistants for mechanizing the kind of programming-language proofs that
might be done by the author of a POPL paper, with benchmark problems “chosen
to exercise many aspects of programming languages that are known to be difficult
to formalize.” The first POPLmark examples are all in the theory of F<: and
emphasize the theory of binders (e.g., alpha-conversion).

Practitioners of machine-checked proof about real compilers have interests that
are similar but not identical. We want to formally relate machine-checked proofs
to actual implementations, not particularly to LATEX documents. Furthermore,
perhaps it is the wrong approach to “exercise aspects . . . that are known to be
difficult to formalize.” Binders and αβ-conversion are certainly useful, but they
are not essential for proving real things about real compilers, as demonstrated in
several substantial compiler-verification projects [9,10,13,6,7,8]. If machine-checked
proof is to be useful in providing guarantees about real systems, let us play to its
strengths, not to its weaknesses.
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Therefore we have designed a down-to-earth example of machine-checked metathe-
ory, closer to the semantics of typed assembly languages. It is entirely first-order,
without binders or the need for alpha conversion. We specify the Structured Oper-
ational Semantics (SOS) of a simple pointer machine (cons, car, cdr, branch-if-nil)
and we present a simple type system with constructors for list-of-τ and nonempty-
list-of-τ . The benchmark explicitly covers the relationship of proofs about a type
system to proofs about an executable type checker.
The challenge is to represent the type system, prove soundness of the type sys-
tem, represent the type-checking algorithm, and prove that the algorithm correctly
implements the type system. We have implemented the benchmark both in Coq
and in Twelf metatheory, and we draw conclusions about the usability of these two
systems.

We lack space to present here, but discuss in the full paper[1],

• how the needs of implementors (of provably correct compilers and provably sound
typecheckers) differ from the needs of POPL authors addressed by the first
POPLmark;

• a specification of the entire problem down to details such as the recommended
ascii names for predicates and inference rules;

• details of our Coq and Twelf solutions;
• more details about which subtasks were easy or difficult in Coq and Twelf;
• how easy it is to learn Twelf and Coq given the available documentation.

As well as a benchmark, the list machine is a useful exercise for students learning
Coq or Twelf; we present the outlines of our solutions (with proofs deleted) on the
Web [2].

2 Specification of the problem

Machine syntax. Machine values A are cons cells and nil.

a : A ::= nil | cons(a1, a2)

The instructions of the machine are as follows:
ι : I ::=

jump l (jump to label l)
| branch-if -nil v l (if v = nil go to l)
| fetch-field v 0 v′ (fetch the head of v into v′)
| fetch-field v 1 v′ (fetch the tail of v into v′)
| cons v0 v1 v′ (make a cons cell in v′)
| halt (stop executing)
| ι0 ; ι1 (sequential composition)

In the syntax above, the metavariables vi range over variables; the variables them-
selves vi are enumerated by the natural numbers. Similarly, metavariables li range
over program labels Li.

A program is a sequence of instruction blocks, each preceded by a label.

p : P ::= Ln : ι; p | end
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Operational semantics. Machine states are pairs (r, ι) of the current instruction
ι and a store r associating values to variables. We write r(v) = a to mean that a

is the value of variable v in r, and r[v := a] = r′ to mean that updating r with the
binding [v := a] yields a unique store r′. The semantics of the machine is defined
by the small-step relation (r, ι)

p7→ (r′, ι′) defined by the rules below, and the Kleene
closure of this relation, (r, ι)

p7→∗ (r′, ι′).

(r, (ι1; ι2); ι3)
p7→ (r, ι1; (ι2; ι3))

r(v) = cons(a0, a1) r[v′ := a0] = r′

(r, (fetch-field v 0 v′; ι))
p7→ (r′, ι)

r(v) = cons(a0, a1) r[v′ := a1] = r′

(r, (fetch-field v 1 v′; ι))
p7→ (r′, ι)

r(v0) = a0 r(v1) = a1 r[v′ := cons(a0, a1)] = r′

(r, (cons v0 v1 v′; ι))
p7→ (r′, ι)

r(v) = cons(a0, a1)

(r, (branch-if -nil v l; ι))
p7→ (r, ι)

r(v) = nil p(l) = ι′

(r, (branch-if -nil v l; ι))
p7→ (r, ι′)

p(l) = ι′

(r, jump l)
p7→ (r, ι′)

A program p runs, that is, p ⇓, if it executes from an initial state to a final state.
A state is an initial state if variable v0 = nil and the current instruction is the one
at L0. A state is a final state if the current instruction is halt.

{ }[v0 := nil] = r p(L0) = ι (r, ι)
p7→∗ (r′,halt)

p ⇓

It is useful for a benchmark for machine-verified proof to include explicit ascii

names for each constructor and rule. Our full specification [1] does that.

A type system. We will assign to each live variable at each program point a list
type. To guarantee safety of certain operations, we provide refinements of the list
type for nonempty lists and for empty lists. In particular, the fetch-field operations
demand that their list argument has nonempty list type, and the branch-if-nil
operation refines the type of its argument to empty or nonempty list, depending on
whether the branch is taken.

τ : T ::=
nil (singleton type containing nil)

| list τ (list whose elements have type τ)
| listcons τ (non-nil list of τ)

An environment Γ is an type assignment of types to a set of variables. We define
the obvious subtyping τ ⊂ τ ′ among the various refinements of the list type, using
a common set of first-order syntactic rules, easily expressible in most mechanized
metatheories. We extend subtyping widthwise and depthwise to environments.

We define the least common supertype τ1u τ2 = τ3 of two types τ1 and τ2 as the
smallest τ3 such that τ1 ⊂ τ3 and τ1 ⊂ τ2.

In the operational semantics, a program is a sequence of labeled basic blocks. In
our type system, a program-typing, ranged over by Π, associates to each program
label a variable-typing environment. We write Π(l) = Γ to indicate that Γ represents
the types of the variables on entry to the block labeled l.
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Instruction typings. Individual instructions are typed by a judgment Π `instr

Γ{ι}Γ′. The intuition is that, under program-typing Π, the Hoare triple Γ{ι}Γ′

relates precondition Γ to postcondition Γ′.
Π `instr Γ{ι1}Γ′ Π `instr Γ′{ι2}Γ′′

Π `instr Γ{ι1; ι2}Γ′′

Γ(v) = list τ Π(l) = Γ1 Γ[v := nil] = Γ′ Γ′ ⊂ Γ1

Π `instr Γ{branch-if -nil v l}(v : listcons τ, Γ′)
Γ(v) = listcons τ Π(l) = Γ1 Γ[v := nil] = Γ′ Γ′ ⊂ Γ1

Π `instr Γ{branch-if -nil v l}Γ
Γ(v) = nil Π(l) = Γ1 Γ ⊂ Γ1

Π `instr Γ{branch-if -nil v l}Γ
Γ(v) = listcons τ Γ[v′ := τ ] = Γ′

Π `instr Γ{fetch-field v 0 v′}Γ′
Γ(v) = listcons τ Γ[v′ := list τ ] = Γ′

Π `instr Γ{fetch-field v 1 v′}Γ′

Γ(v0) = τ0 Γ(v1) = τ1 (list τ0) u τ1 = list τ Γ[v := listcons τ ] = Γ′

Π `instr Γ{cons v0 v1 v}Γ′

Block typings. A block is an instruction that does not (statically) continue with
another instruction, because it ends with a jump.

Π `instr Γ{ι1}Γ′ Π;Γ′ `block ι2
Π;Γ `block ι1; ι2

Π(l) = Γ1 Γ ⊂ Γ1

Π;Γ `block jump l

Program typings. We write |=prog p : Π and say that a program p has program-
typing Π if for each labeled block l : ι in p, the block ι has the precondition Π(l) = Γ
given in Π, that is, Π; Γ `block ι. Moreover, we demand that Π(L0) = v0 : nil, { }
and that every label l declared in Π is defined in p.

Type system vs. type checker. We have presented some relations defined by
derivation rules and some defined informally. This is a bit sloppy, especially where
a derivation rule refers to an informally defined relation; any solution to the bench-
mark must formalize this. We will use the notation |=prog p : Π to mean that
program p has type Π in the (not necessarily algorithmic) type system, and the
notation `prog p : Π to mean that p : Π is derived in some algorithmic type-checker.
The full paper [1] outlines two such algorithmic type-checkers. One is written in
pseudo-code and corresponds to a type-checker implemented in imperative or func-
tional style. The other refines the derivation rules given above to make them fully
syntax-directed and therefore amenable to an implementation as a logic program.

Sample program. The following list-machine program has three basic blocks.
Variable v0 is initialized to nil as prescribed by the operational semantics. Block
0 initializes v1 to the list cons(nil, cons(nil,nil)) and jumps to block 1. Block 1
is a loop that, while v1 is not nil, fetches the tail of v1 and continues. The last
instruction of block 1 is actually dead code (never reached). Block 2 is the loop
exit, and halts.

psample =
L0 : cons v0 v0 v1; cons v0 v1 v1; cons v0 v1 v1; jump L1;
L1 : branch-if -nil v1 L2; fetch-field 1 v1 v1; branch-if -nil v0 L1; jump L2;
L2 : halt;
end
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The program is well-typed with

Πsample = L0 : (v0 : nil, { }), L1 : (v0 : nil, v1 : list nil, { }), L2 : { }, { }

3 Mechanization tasks

Implementing the “list-machine” benchmark in a mechanized metatheory (MM)
comprises the following tasks:

1. Represent the operational semantics in the MM.

2. Derive the fact that psample ⇓. The MM should conveniently simulate execution
of small examples, so the user can debug the SOS and get an intuitive feel for
its expressiveness.

Soundness of a type system.

3. Represent the type system in the MM (define enough notation to represent
the formula |=prog p : Π and inference rules from which type-soundess could be
proved).

4. Represent in the MM an algorithm for least-common-supertype, that is, the
computation τ1 u τ2 = τ3 producing τ3 from inputs τ1 and τ2.

5. Using the type system, derive the fact that |=prog psample : Πsample. The MM
should conveniently simulate type-checking of small examples, so the user can
debug the type system and get a feel for its expressiveness.

6. Represent the statement of the defining properties of least common supertypes,
e.g., τ1 u τ2 = τ3 ⇒ τ1 ⊂ τ3.

7. Prove that the u algorithm enjoys these properties.

8. Represent the statement of a soundness theorem for the type system. The
informal statement of soundness is, “a well-typed program will not get stuck.”
A program state is not stuck if it steps or halts:

|=prog p : Π initial(p, r, ι) (r, ι)
p7→∗ (r′, ι′)

(∃r′′, ι′′. (r′, ι′) p7→ (r′′, ι′′)) ∨ ι′ = halt
soundness

9. Prove the soundness theorem. The full paper [1] outlines the principal lemmas
of this proof, which is a standard argument by type preservation and progress.

Efficient type-checking algorithm.

10. Represent an asymptotically efficient type-checking algorithm `prog p : Π in
the MM. By efficient we mean that an N -instruction program with M live
variables should type-check in O(N log M) time.

11. Using the type-checking algorithm, calculate `prog psample : Πsample. The MM
should simulate execution of algorithms on small inputs.

12. Prove that the type-checking algorithm terminates on any program.

13. Demonstrate the type-checker on large-scale examples with good performance.
Typically this will be done through an automatic translation to Prolog or ML
which is then compiled by an optimizing compiler.

14. Prove that `prog p : Π implies |=prog p : Π. That is, the type-checker soundly
implements the type system.
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Writing the paper.

15. Use an automatic tool to generate readable LATEX formulas for the SOS rules,
the typing rules, and the statements of (not the proofs of) the least-common-
supertype lemmas and soundness theorems. Klein and Nipkow [6] demonstrate
this very nicely in the Isabelle/HOL formalization of a Java subset compiler.

4 A proof in Twelf metatheory

The Twelf system[12] is an implementation of the Edinburgh Logical Framework
(LF). One can represent the operators of a logic as type constructors in LF, and
proofs in that logic as terms in LF, and one can do proof-checking by type-checking
the terms (considering them as derivations).

In Twelf one can prove theorems (proofs in a logic), or metatheorems (proofs
about a logic). Either approach could be used for our benchmark. Our solution uses
the usual approach in Twelf, which is metatheoretic.

In this case the logics in question are our operational semantics and our type
system, and the metatheorem to be proved is type soundness: that is, if one can
combine the inference rules of the type system to produce a derivation of type-
checking, then it must be possible to combine the inference rules of the SOS to
produce (only) nonstuck derivations of execution.

This approach is agressively syntactic. Instead of saying that p is a mapping
from labels to instructions, we give syntactic constructions that (we claim) represent
such a mapping. One consequence of this style is that our |=prog p : Π is not just a
semantic relation, but a syntactically derivable one expressed as Horn clauses. By
carefully structuring the Horn clauses that define our relations so that we can iden-
tify “input” and “output” arguments, we can ensure that the logic-programming
interpretation of our clauses is actually an algorithm. This input-output organiza-
tion can be specifed and mechanically checked in Twelf via %mode declarations. Our
type system is then directly executable in Twelf.

Each clause in Twelf is named. When Twelf traces out, via prolog-style back-
tracking, one or more derivations of a result by the successful application of clauses,
it builds as well a derivation tree for each derivation.

In LF, one can compute as well on the derivation trees themselves. Suppose
we write another prolog program (set of clauses) that takes as input a derivation
tree for type-checking, and produces as output a derivation tree for safe (nonstuck)
execution. If this program is total (that is, terminates successfully on any input)
then we have constructively proved that any well typed program is safe.

To reason about this meta-program, we use (machine-checked) %mode declara-
tions to explain what are the inputs and outputs of the derivation transformer. We
also use (machine-checked) %total declarations to ensure that our meta-program
has covered all the cases that may arise, and that our meta-program does not
infinite-loop. We give an example of such a proof in section 6, items 6 and 7.

Twelf has an amazing economy of features. One does not have to learn a module
system—because there is none—one just uses naming conventions on all one’s iden-
tifiers. One does not have to learn how to use large libraries of lemmas and tactics,
because there are no libraries of lemmas and tactics: but such libraries would not
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be so useful, because Twelf has few abstraction features, and no polymorphism. All
proofs are done with the simple mechanism of proving the totality of metaprograms.
There’s a calculated gamble here: In return for the benefit of proving everying in
one simple style, and rarely having to translate between abstractions, one trades
away many things: there are some theorems that this notation cannot even express
(because the quantifiers are nested too deep, for example); and there are some things
that are provable but in a contrived way (expressing semantic properties only with
inductive syntactic constructors), as illustrated below.

Our Twelf proof starts by defining inductively the notion of equalities and in-
equalities on natural numbers, labels, variables, type structure, and term structures.
We give syntactic characterizations of well-formed environments (i.e., that do not
map the same variable twice).

Sometimes it is tricky to make a properly inductive syntactic definition of a
semantic property. For example, consider environment subtyping, semantically
Γ1 ⊂env Γ2 ≡ ∀v. v ∈ dom Γ2 ⇒ (v ∈ dom Γ1 ∧ Γ1(v) ⊂ Γ2(v)).

An “obvious” “inductive” definition uses the syntactic rules,

Γ ⊂ {}
a1

Γ1(v) = τ ′ τ ′ ⊂ τ Γ1 ⊂env Γ2

Γ1 ⊂env v : τ, Γ2
a2

The induction is (supposedly) over the size of the term to the right of the ⊂env

symbol. However, this definition is not sufficiently inductive for useful properties
(transitivity, reflexivity) to be provable—at least, we were not able to prove them.
The problem appears to be that Γ1 does not decrease in rule a2.

The following definition is properly inductive—we use Γ′ instead of Γ1 in the
premise of rule b2. Proving transitivity and reflexivity from this definition is easy;
the difficulty is to avoid wasting time with the pseudoinductive definition above.

Γ ⊂env { }
b1

Γ1
.= (v : τ ′, Γ′) τ ′ ⊂ τ Γ′ ⊂env Γ2

Γ1 ⊂env v : τ, Γ2
b2

5 A proof in Coq

The Coq system [5,4] is a proof assistant based on the Calculus of Inductive Con-
structions. This logic is a variant of type theory, following the “propositions-as-
types, proofs-as-terms” paradigm, enriched with built-in support for inductive and
coinductive definitions of predicates and data types.

From a user’s perspective, Coq offers a rich specification language to define prob-
lems and state theorems about them. This language includes (1) constructive logic
with all the usual connectives and quantifiers; (2) inductive definitions via inference
rules and axioms (as in Twelf’s meta-logic); (3) a pure functional programming
language with pattern-matching and structural recursion (in the style of ML or
Haskell).

For the list-machine benchmark, we used a combination of all three specification
styles, following common practice in research papers on type systems. The inference
rules for operational semantics and the type systems are transcribed directly as
inductive definitions. Operations over stores, environments and program-typings,
as well as least common supertypes and the type-checking algorithm are presented
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as functions. Finally, subtyping between environments Γ ⊂ Γ′ is defined by the
propositional formula

∀v,∀t′, Γ′(v) = t′ ⇒ ∃t, Γ(v) = t ∧ t ⊂ t′

Unlike Twelf’s meta-theory, the logic of Coq provides rich forms of polymor-
phism. This enabled us to factor out the treatment of stores, environments, and
program-typings by reusing an efficient, polymorphic implementation of finite maps
as radix-2 search trees developed earlier by Leroy as part of the Compcert project [8].

6 Comparison of mechanized proofs

Task Twelf Coq
1. Operational Semantics 126 98 lines
2. Derive p ⇓ 1 8
3. Type system |=prog p : Π 167 130
4. u algorithm * *
5. Derive |=prog psample : Πsample 1 no
6. State properties of u 12 13
7. Prove properties of u 114 21
8. State soundness theorem 29 15
9. Prove soundness of |=prog p : Pi 2060 315

10. Efficient algorithm 22 145
11. Derive `prog psample : Πsample 1 1
12. Prove termination of `prog p : Π 18 0
13. Scalable type-checker yes yes
14. Prove soundness of `prog p : Pi 347 141
15. Generate LATEX no no

We have implemented those tasks that are implementable in both the Twelf
(metatheory) and Coq systems. The number of lines of code required is summarized
in the table above. Total parsing and proof-checking time 1 was 0.558 seconds real
time for Twelf, 2.622 seconds for Coq.

1. Operational semantics. Both Twelf and Coq make it easy and natural
to represent inductive definitions of the kind found in SOS. In Coq one also has
the choice of representing operations over mappings (e.g., lookup and update in
stores) either as relations (defined by inductive predicates) or as functions (defined
by recursion and pattern-matching).

2. Derive p ⇓. Twelf makes it very easy to interpret inductive definitions as
logic programs. Therefore this task was trivial in Twelf. Coq does not provide
a general mechanism to execute inductive definitions. However, the rules for the
operational semantics were simple enough that (after some experimentation) we
could use the proof search facilities of Coq (the eauto tactic) as a poor man’s logic
program interpreter. A more general method to execute inductive definitions in
Coq, which we implemented also, is to define an execution function (61 lines), prove
its correctness with respect to the inductive definition (35 lines), then execute the
function. (Evaluation of functional programs is supported natively by Coq.)

1 Dell Precision 360, Linux, 2.8 GHz Pentium 4, 1GB RAM, 512kB cache.
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3. Represent the type system. Easy and natural in both Twelf and Coq
(with, as before, the choice in Coq of using the functional presentation of operations
over mappings).

4. Least-upper-bound algorithm. Because the “type system” represented in
Twelf is most straightforwardly done as a constructive algorithm, this was already
done as part of task 3 in our Twelf representation. In Coq, while the type system
itself is not algorithmic, we chose to specify the least-upper bound operation as a
function from pairs of types to types. Therefore, the algorithm to compute least-
upper bounds was already done as part of task 3 in the Coq development as well.

5. Derive an example of type-checking. Trivial to do in Twelf, by running
the type system as a logic program. Not directly possible in Coq because the
specification of the type system is not algorithmic: it uses universal quantification
over all variables to specify environment subtyping.

6. State properties of least-upper-bound. Entirely straightforward in Coq.
For example, here are the Coq statements of these properties:

Lemma lub_comm: forall t1 t2, lub t2 t1 = lub t1 t2.
Lemma lub_subtype_left: forall t1 t2, subtype t1 (lub t1 t2).
Lemma lub_subtype_right: forall t1 t2, subtype t2 (lub t1 t2).
Lemma lub_least: forall t1 t3, subtype t1 t3 ->

forall t2, subtype t2 t3 -> subtype (lub t1 t2) t3.

The correspondence with the mathematical statements of these properties is obvi-
ous.

In Twelf, stating the properties of least-upper-bound must be done in a way
that seems artificial at first, but once learned is reasonably natural. The lemma

τ1 u τ2 = τ3

τ1 ⊂ τ3
lub-subtype-left

is represented as a logic-programming predicate,

lub-subtype-left: lub T1 T2 T3 -> subtype T1 T3 -> type.

which transforms a derivation of lub T1 T2 T3 into a derivation of subtype T1 T3.
The “proof” will consist of logic-programming clauses over this predicate. To be a
“proof” of the property we want, we will have to demonstrate (to the satisfaction
of the metatheory, which checks our claims) that our clauses have the following
properties:

%mode lub-subtype-left +P1 -P2. The modes of a logic program specify which
arguments are to be considered inputs (+) and which are outputs (-). For-
mally, given any ground term (i.e., containing no logic variables) P1 whose type is
lub T1 T2 T3, our clauses (if they terminate) must produce outputs P2 of type
subtype T1 T3 that are also ground terms.

%total P1 (lub-subtype-left P1 P2). We ask the metatheorem to check our
claim that no execution of lub-subtype-left can infinite-loop: it must either fail
or produce a derivation of subtype T1 T3; and we check the claim that the
execution never fails (that all cases are covered). The use of P1 in two places
in our %total declaration is (in some sense) mixing the thing to be proved with
part of the proof: we indicate that the induction should be done over argument
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1 of lub-subtype-left, not argument 2.

7. Prove properties of least-upper-bound. In Twelf this is done by writ-
ing logic-programming clauses that satisfy all the requirements listed above. For
example, the following 9 clauses will do it:

-: lub-subtype-left lub-refl subtype-refl.
-: lub-subtype-left lub-1 subtype-refl.
-: lub-subtype-left (lub-2 P1) (subtype-list P2) <-

lub-subtype-left P1 P2.
-: lub-subtype-left (lub-2b P1) (subtype-listcons P3) <-

lub-subtype-left P1 P3.
-: lub-subtype-left (lub-3 P1) (subtype-list P2) <-

lub-subtype-left P1 P2.
-: lub-subtype-left lub-4 subtype-nil.
-: lub-subtype-left lub-5 subtype-nil.
-: lub-subtype-left lub-6 (subtype-listcons subtype-refl).
-: lub-subtype-left (lub-7 P1) (subtype-listmixed P2) <-

lub-subtype-left P1 P2.

These are not clauses of a type-checker, they are clauses about a type-checker, and
serve only to “prove” the %mode and %total declarations.

In Coq, the proofs are done interactively by constructing proof scripts. For
example, the proof of lub_subtype_left is:

induction t1; destruct t2; simpl; auto; rewrite IHt1; auto.

which corresponds to doing an induction on the structure of the first type t1, then
a case analysis on the second type t2, then some equational reasoning.

There are 6 separate steps to the Coq proof, each takes just two or three tokens
to write, and each takes some thought from the user. On the other hand, each of
the 9 clauses of the Twelf proof, ranging in size from 6 to 16 tokens, also takes some
thought. The time or effort required to build a proof is not necessarily proportional
to the token count, but we report what measures we have.

8. State soundness theorem for the type system. In Coq, the statement
is just ordinary mathematics. In Twelf, this is done, as above, by writing a logical
predicate that relates a derivation of type-checking to a derivation of runs-or-halts,
and then making the appropriate %mode and %total claims for the Twelf system to
check.

9. Prove soundness of the type system. Writing such a logic program
in Twelf takes more than 2000 lines; our full paper [1] explains this proof in more
detail. The Coq proof of soundness is about 7 times shorter (300 lines). There
are several reasons for Coq’s superiority over Twelf here. The first is Coq’s proof
automation facilities, which were very effective for many of the intermediate proofs:
once we indicated manually the structure of the inductions, Coq’s proof search tac-
tics were often able to derive automatically the conclusion from the hypotheses. A
second reason is the use of non-algorithmic specifications, especially for environment
subtyping, which are simpler to reason about. The last reason is the ability to reuse
basic properties over mappings, such as the so-called “good variables” properties,
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instead of proving them over and over again.
Twelf lacks the ability to create and re-use abstract data types, so many clauses

of the program and proof must be copied and edited. Twelf has some proof
automation—the %total declaration calculates the structural induction automat-
ically, and (if it fails) prints a report detailing the missing cases—but it does not
automate the case analysis. 2

10. Asymptotically efficient algorithm. In Twelf, the most straightforward
representation of the type system, when run as an algorithm, takes quadratic time.
This is because the rules for looking up labels in global environments Π involve a
search of the length of Π for each lookup. In any Prolog system that permits the
efficient dynamic assertion of new clauses, one can do lookup in constant time (the
Prolog system uses hashing internally). Twelf supports dynamic clauses, so we can
write a nice linear-time “type-checker” as a new logic program, reusing many of the
Horn clauses that constitute the “type system.”

In Coq, the type-checker is defined as a function from program typings and
programs to booleans. Our solution uses intermediate functions for checking envi-
ronment subtyping and for type-checking instructions and blocks. These functions
return option types to signal typing errors, which are propagated in a monadic style.
To avoid an n2 algorithm, we represent environments and program typings as finite
maps implemented by radix-2 search trees. Therefore, the typing algorithm has
O(n log n) complexity.

11. Simulate the new algorithm. This is a trivial matter both in Twelf
and in Coq. In Twelf, once again, we perform a one-line query in the logic-program
interpreter. In Coq, we simply request the evaluation of a function application (of
the type-checker to the sample program and program typing), which is also one line.

12. Prove termination of the type-checker. Twelf has substantial au-
tomated support for doing proofs of termination of logic programs (such as the
type-checker) where the induction is entirely structural. This task was very easy in
Twelf.

In Coq, this task was even easier: all functions definable in Coq are guaranteed
to terminate (in particular, all recursions must be either structural or well-founded
by Noetherian induction), so there was nothing to prove for this task.

13. Industrial-strength type-checker. Coq has a facility to automatically
generate Caml programs from functions expressed in Coq. Automatic extraction of
Caml code from the Coq functional specification of the type-checker produces code
that is close to what a Caml programmer would write by hand if confined to the
purely functional subset of the language.

Similarly, Twelf programs (such as our type-checker) that don’t use higher-order
abstract syntax can be automatically translated to Prolog, and those that use HOAS
can be automatically translated to lambda-Prolog. There are many efficient Prolog
compilers in the world, and there is one efficient lambda-Prolog compiler.

14. Prove soundness of type-checker. Straightforward (though a bit te-

2 Supplying the case analysis automatically will be the job of the Twelf metatheorem prover. Unfortunately,
it appears that the metatheorem prover does not work; the Twelf manual says, “The theorem proving
component of Twelf is in an even more experimental stage and currently under active development” [11]
and every version of the manual since 1998 contains this identical sentence. One doubts whether the last
two words are accurate.
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dious) both in Twelf and in Coq. Again, Coq’s proof automation facilities result in
a significantly shorter proof (3 times shorter than the Twelf proof).

15. Generate LATEX. Although both Coq and Twelf have facilities for gener-
ating LATEX, neither has a facility that is sufficiently useful for the purposes of this
benchmark.

7 Conclusion

Proofs of semantic properties of operational specifications can be agressively
“semantic,” meaning that they avoid all proof-theoretic induction over syntax;
denotational-semantic approaches and logical-relations models have this flavor. We
have not discussed these approaches in this paper, but they can be successfully
mechanized in Coq, in Isabelle/HOL, or in an object logic embedded in Twelf; how-
ever, it does not seem natural to mechanize semantic proofs in Twelf metatheory.

Or the proofs can be agressively “syntactic,” meaning that only proof-theoretic
induction is used, and we avoid any attribution of “meaning” to the operators; the
Wright-Felleisen notation [14] encourages this approach. Coq and Isabelle support
this style, among others; Twelf metatheory supports only this pure proof-theoretic
style. The advantages to using a pure style are that the metatheory itself can be
much smaller and simpler—making it easier to learn and easier to reason about.
Indeed, Twelf is a much simpler and smaller system than Coq.

Between these two extremes, it is possible to reason using a mix of semantic
and syntactic reasoning. Authors who believe they are writing in a purely Wright-
Felleisen style are often reasoning semantically about such things as environments
and mappings. The Coq system supports the mixed style (or either of the two ex-
tremes) reasonably well. Therefore, it may be the case that specifications expressed
in Coq are closer to what one would write in a research paper. Coq proofs can
be substantially shorter than Twelf proofs, especially when experienced experts are
manipulating the language of tactics. Therefore Coq may be a language of choice
for those who do not want to commit in advance to a purely proof-theoretic style.

However, our benchmark does not exercise one of the main strengths of the
Twelf system, the higher-order abstract syntax and related proof mechanisms. For
syntactic theories that use binders and αβη-conversion, the comparison might come
out differently.
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