
Computer security from a programming
language and static analysis perspective

(Extended abstract of invited lecture)

Xavier Leroy

INRIA Rocquencourt and Trusted Logic S.A.
Domaine de Voluceau, B.P. 105, 78153 Le Chesnay, France

Xavier.Leroy@inria.fr

1 Introduction

Computer security [16, 5] is usually defined as ensuring integrity, confidentiality,
and availability requirements even in the presence of a determined, malicious
opponent. Sensitive data must be modified and consulted by authorized users
only (integrity, confidentiality); moreover, the system should resist “denial of
service” attacks that attempt to render it unusable (availability). In more col-
orful language, computer security has been described as “programming Satan’s
computer” [6]: the implementor must assume that every weakness that can be
exploited will be.

Security is a property of a complete system, and involves many different top-
ics, both computer-related (hardware, systems, networks, programming, cryptog-
raphy) and user-related (organizational and social policies and laws). In this talk,
we discuss the impact of programming languages and static program analysis on
the implementation of access control security policies, with special emphasis on
smart cards. By lack of time, we will not discuss other relevant examples of
programming language concepts being used for computer security, such as type
systems for information flow [42, 41, 20, 2, 34, 35] and validation of cryptographic
protocols using process algebras and types [4, 1, 3].

2 Access control

Access control is the most basic and widespread security policy. An access control
policy provides yes/no answers to the question “is this principal (user, program,
role, . . . ) allowed to perform this operation (read, write, creation, deletion, . . . )
on this resource (file, network connection, database record, . . . )?”. Access con-
trol is effective to ensure integrity, and can also ensure simple confidentiality
properties.

2.1 Preventing direct access to a resource

Access control is performed by fragments of code (OS kernel, reference monitor,
privileged library) that check that access to a logical resource (file, network



connection) is allowed before performing the operation on the underlying low-
level resource (disk or network controller). Of course, access control is moot if
the program can bypass this code and operate directly on the low-level resource.

The traditional answer to this issue relies on hardware-enforced mechanisms:
the low-level resources can only be accessed while the processor is in supervisor
mode, and switching from user mode to supervisor mode can only be performed
through specific entry points that branch to the access control code. On the user
side, resources are represented indirectly by “handles”, e.g. indices into kernel
tables. Hardware memory management prevents user code from accessing kernel
data directly.

This model, while effective, is not always suitable. Sometimes, user-mode
programs must be further partitioned into relatively trusted (Web browser)
and completely untrusted (Web applets). Switching between user and supervisor
modes can be expensive. The required hardware support may not be present,
e.g. in small embedded devices.

An alternate, language-based approach executes all code within the same
memory space, without hardware protections, but relies on strong typing to re-
strict direct access to sensitive resources. These resources are directly represented
by pointers, but strong typing prevents these pointers from being forged, e.g. by
guessing their addresses. Thus, the typing discipline of the language can be used
to enforce security invariants on the resources.1

As a trivial example, if a resource is not reachable from the initial memory
roots of a piece of code, memory safety, also called garbage collection safety, en-
sures that this code can never access this resource. As a less trivial example, two
standard type-based encapsulation techniques can be used to provide controlled
access to a resource: procedural encapsulation and type abstraction [27].

– With procedural encapsulation, the resource is a free variable of a function
closure, or a private field of an object, and only the closure or the object
are given to the untrusted code. The latter, then, cannot fetch the resource
pointers directly from the object or the closure (this would be ill-typed), and
must call the function or a method of the object to operate on the resource;
the code of the function or the method will then perform the required access
checks before performing the operation.

– With type abstraction, the resource pointer itself can be given to the un-
trusted code, but its type is made abstract, preventing the code from op-
erating directly on it; to use the resource, the code must call one of the
operations provided in the signature of the abstract type, and this code will
then perform access checks as described before.

As outlined above, strong typing can be exploited to enforce access control.
The remaining question, then, is how to enforce a strong typing discipline during
execution of (untrusted) code. A simple approach is to perform type checks dy-
namically, during program execution. This can be achieved in many ways: direct
1 Strong typing is also effective at preventing other kinds of attacks such as buffer

overflows that cause attacker-provided data to be executed as privileged code.



interpretation of the program source (if available); compilation of the source
with insertion of run-time checks; bytecode interpretation of virtual machine
code such as the JVM [28]; just-in-time compilation of said virtual machine
code; and instrumentation of precompiled machine code with additional checks
(software fault isolation) [43].

To reduce the run-time overhead of dynamic type checking, it is desirable to
perform some of the type checks statically, during a program analysis pass prior
to actual execution. Static typing of source code is common and well understood
[8]. However, source for untrusted code is not always available. Moreover, bugs
in the source-to-executable compiler could introduce type violations after type
checking; in other terms, the compiler is part of the trusted computing base.
These drawbacks can be avoided by performing static type-checking on lower-
level, compiled code. A famous example is Java bytecode verification [18, 28,
25], which performs static type-checking on JVM bytecode at dynamic loading
time. Typed Assembly Language [31, 30] goes several steps below virtual machine
code: it statically type-checks assembly code for an actual microprocessor (the
Intel x86 family), including many advanced idioms such as stack unwinding for
exception handling.

Java bytecode verification and typed assembly language leave certain checks
relevant to type safety to be performed at run-time: typically, array bound
checks, or Java’s downcasts. More advanced type systems based on dependent
types were proposed to allow static verification of array bound checks (and more)
[47, 46, 38, 13]. Proof-carrying code [32] takes this approach to the extreme by
replacing static type checking with static proof checking in a general program
logic: the provider of the code provides not only compiled code, but also a proof
that it satisfies a certain security property; the user of the code, then, checks
this proof to make sure that the code meets the property. The property typ-
ically includes type correctness and memory safety, but can also capture finer
behavioral aspects of the code [33].

2.2 Implementing access control

The security policy implemented by access control checks is traditionally repre-
sented as an access control matrix, giving for each resource and each principal
the allowed operations. This matrix is often represented as access control lists
(each resource carries information on which principals can access it) or as capa-
bilities (each principal carries a set of resources that it can access). The yes/no
nature of access control matrices is sometimes too coarse: security automata
[37] can be used instead to base access control decisions on the history of the
program execution, e.g. to allow an applet to read local files or make network
connections, but not both (to prevent information leaks).

Determining the principal that is about to perform a sensitive operation
is often difficult. In particular, shared library code that performs operations on
behalf of an untrusted user must have lower privileges than when performing op-
erations on behalf of a trusted user. The Java security manager [17] uses stack
inspection to address this problem: each method is associated with a principal,



and the permissions granted are those of the least privileged principal appearing
in the method call stack leading to the current operation. This model is some-
times too restrictive: an applet is typically allowed to draw text on the screen,
but not to read files; yet, to draw text on behalf of the applet, the system may
need to read fonts from files. Privilege amplification mechanisms are provided
to address this need, whereas system code can assert a permission (e.g. read a
file for the font loading code) regardless of whether its caller has it.

Access control checks are traditionally performed dynamically, during exe-
cution. The run-time overhead of these checks is generally tolerable, and can
be further reduced by partial evaluation techniques allowing for instance inline
expansion and specialization of security automata [15, 12, 40].

Still, it is desirable to perform static approximations of access control checks:
to guide and validate optimizations such as removal of redundant checks, but
also to help programmers determine whether their code works correctly under
a given security policy. Jensen et al. [7] develop a static approximation of the
Java stack inspection mechanism, where the (infinitely many) call stacks are
abstracted as a finite automaton, and security properties described as temporal
formulae are model-checked against this automaton. Pottier et al. [36] compose
the security-passing interpretation of stack inspection (proposed in [45] as a
dynamic implementation technique) with conventional type systems described
in the HM (X) framework to obtain type-based static security analyses. Finally,
Walker [44] describes a type system for typed assembly language where the
states of security automata are expressed within the types themselves, allowing
fine static control of the program security behavior.

3 Application to smart card programming

3.1 Smart card architectures

Smart cards are small, inexpensive embedded computers used as security tokens
in several areas, such as credit cards and mobile phones. Traditional smart cards
such as Eurocard-Mastercard-Visa credit cards behave very much like a small
file system, with access control on directories and files, and determination of
principals via PIN codes.

The newer Java Card architecture [10] offers a model closer to an applet-
enabled Web browser, with several applications running in the same memory
space, and post-issuance downloading of new applications. The applications are
executed by a virtual machine that is a subset of the JVM. The security of this
architecture relies heavily on the type safety of this JVM variant. For access
control, the Java security manager based on stack inspection is replaced by a
simpler “firewall” that associates owners to Java objects and prevents an ap-
plication from accessing directly an object owned by another application. Inter-
application communications are restricted to invocation of interface methods on
objects explicitly declared as “shared”.

Formal methods are being systematically applied to many aspects of the
Java Card architecture [19]: formal specifications of the virtual machine, applet



loading, the firewall, the APIs, and specific applications; and machine proofs
of safety properties such as type safety and non-interference. As for program
analyses, several approaches to on-card bytecode verification have been proposed
[26, 14]. Static analyses of firewall access control are described in [9]. Chugunov
et al. [11] describe a more general framework for verifying safety properties of
Java Card applets by model checking.

3.2 Hardware attacks

The software-based security techniques presented in section 2 all assume that the
programs execute on reliable, secured hardware: the best software access control
will not prevent information leaks if the attacker can simply steal the hard disk
containing the confidential data. In practice, hardware security is often ensured
by putting the computers in secured premises (locked doors, armed guards).

For smart cards and similar embedded devices, this is not possible: the hard-
ware is physically in the hands of the potential attackers. By construction, a
smart card cannot be pulled apart as easily as a PC: smart card hardware is
designed to be tamper proof to some extent. Yet, the small size and cost of a
smart card does not allow extensive tamper proofing of the kind used for hard-
ware security modules [39]. Thus, a determined attacker equipped with a good
microelectronics laboratory can mount a variety of physical attacks on a smart
card [23]:

– Non-intrusive observation: perform precise timings of operations; measure
power consumption or electromagnetic emissions as a function of time.

– Intrusive observation: expose the chip and implant micro-electrodes on some
data paths.

– Temporary perturbation: introduce “glitches” in the power supply or the
external clock signal; “flash” the chip with high-energy particles.

– Permanent modification: destroy connections and transistors within the chip.

These attacks can defeat the security of the software in several ways. Power
analysis can reveal the sequencing of instructions performed, thus reveal secret
data such as the private keys in naive implementation of public-key cryptography
[22]. Perturbations or modifications can prevent some instructions of the program
from executing normally: for instance, a taken conditional branch can be skipped,
thus deactivating a security check. Variables and registers can also be set to
incorrect values, causing for instance a loop intended to send a communication
buffer on the serial port to send a complete memory dump instead.

3.3 Software countermeasures

The obvious countermeasure to these attacks is to harden the smart card hard-
ware [24]. It is a little known fact that the programs running on smart cards can
also be written in ways that complicate hardware attacks. This is surprising,
because in general it is nearly impossible for a program to protect itself from



execution on malicious hardware. (Some cryptographic techniques such as those
described in [29] address this issue in the context of boolean circuits, but have
not been demonstrated to be practical.)

The key to making smart card software more resistant is to notice that hard-
ware attacks cannot change the behavior of the hardware arbitrarily. Permanent
modifications are precise but irreversible, thus can be detected from within the
program by running frequent self tests, and storing data in a redundant fashion
(checksums). Temporary perturbations, on the other hand, are reversible but
imprecise: they may cause all the memory to read as all zeroes or all ones for
a few milliseconds, but cannot set a particular memory location to a particular
value. Thus, their impact can be minimized by data redundancy, and also by
control redundancy. For instance, a critical loop can be double-counted, with one
counter that increases and another that decreases to zero; execution is aborted
if the sum of the two counters is not the expected constant.

Finally, hardware attacks can be made much harder by program random-
ization. Randomizing data (as in the “blinding” technique for RSA [22]) ren-
ders information gained by power analysis meaningless. Randomizing control
(e.g. calling independent subroutines in a random order, or choosing randomly
between different implementations of the same function) makes it difficult to
perform a perturbation at a given point in the program execution.

Software hardening techniques such as the ones outlined above are currently
applied by hand on the source code, and often require assembly programming to
get sufficient control on the execution. It is interesting to speculate how modern
programming techniques could be used to alleviate this burden. The hardening
code could possibly be separated from the main, algorithmic code using aspect-
oriented programming [21]. Perhaps some of the hardening techniques are sys-
tematic enough to be performed transparently by a compiler, or by a virtual
machine interpreter in the case of Java Card. Finally, reasoning about software
hardening techniques could require a probabilistic semantics that reflects some
of the time-precision characteristics of likely hardware attacks.

References

1. Mart́ın Abadi. Secrecy by typing in security protocols. Journal of the ACM,
46(5):749–786, 1999.

2. Mart́ın Abadi, Anindya Banerjee, Nevin Heintze, and Jon G. Riecke. A core cal-
culus of dependency. In 26th symposium Principles of Programming Languages,
pages 147–160. ACM Press, 1999.

3. Mart́ın Abadi and Bruno Blanchet. Secrecy types for asymmetric communication.
In Furio Honsell and Marino Miculan, editors, Proceedings of the 4th International
Conference on Foundations of Software Science and Computation Structures, vol-
ume 2030 of Lecture Notes in Computer Science, pages 25–41. Springer-Verlag,
2001.

4. Mart́ın Abadi and Andrew D. Gordon. A calculus for cryptographic protocols: The
Spi calculus. Information and Computation, 148(1):1–70, 1999.

5. Ross Anderson. Security Engineering. John Wiley & Sons, 2001.



6. Ross Anderson and Roger Needham. Programming Satan’s computer. In Computer
Science Today: Recent Trends and Developments, number 1000 in Lecture Notes
in Computer Science, pages 426–441. Springer-Verlag, 1995.

7. Frédéric Besson, Thomas de Grenier de Latour, and Thomas Jensen. Secure calling
contexts for stack inspection. In Principles and Practice of Declarative Program-
ming (PPDP 2002), pages 76–87. ACM Press, 2002.

8. Luca Cardelli. Type systems. In Allen B. Tucker, editor, The Computer Science
and Engineering Handbook. CRC Press, 1997.

9. Denis Caromel, Ludovic Henrio, and Bernard Serpette. Context inference for static
analysis of java card object sharing. In Proceedings e-Smart 2001, volume 2140 of
Lecture Notes in Computer Science. Springer-Verlag, 2001.

10. Zhiqun Chen. Java Card Technology for Smart Cards: Architecture and Program-
mer’s Guide. The Java Series. Addison-Wesley, 2000.

11. Gennady Chugunov, Lars Åke Fredlund, and Dilian Gurov. Model checking multi-
applet Java Card applications. In Smart Card Research and Advanced Applications
Conference (CARDIS’02), 2002.

12. Thomas Colcombet and Pascal Fradet. Enforcing trace properties by program
transformation. In 27th symposium Principles of Programming Languages, pages
54–66. ACM Press, 2000.

13. Karl Crary and Joseph C. Vanderwaart. An expressive, scalable type theory for
certified code. In International Conference on Functional Programming 2002. ACM
Press, 2002.

14. Damien Deville and Gilles Grimaud. Building an “impossible” verifier on a Java
Card. In USENIX Workshop on Industrial Experiences with Systems Software
(WIESS’02), 2002.

15. U. Erlingsson and Fred B. Schneider. IRM enforcement of Java stack inspection.
In Symposium on Security and Privacy. IEEE Computer Society Press, 2000.

16. Morrie Gasser. Building a secure computer system. Van Nostrand Reinhold Co.,
1988.

17. Li Gong. Inside Java 2 platform security: architecture, API design, and implemen-
tation. The Java Series. Addison-Wesley, 1999.

18. James A. Gosling. Java intermediate bytecodes. In Proc. ACM SIGPLAN Work-
shop on Intermediate Representations, pages 111–118. ACM, 1995.

19. Pieter H. Hartel and Luc A. V. Moreau. Formalizing the safety of Java, the Java
virtual machine and Java Card. ACM Computing Surveys, 33(4):517–558, 2001.

20. Nevin Heintze and Jon G. Riecke. The SLam calculus: programming with secrecy
and integrity. In 25th symposium Principles of Programming Languages, pages
365–377. ACM Press, 1998.

21. Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In
European Conference on Object-Oriented Programming (ECOOP’97), number 1241
in Lecture Notes in Computer Science. Springer-Verlag, 1997.

22. Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In Proceedings Crypto ’96, number 1109 in Lecture Notes in
Computer Science, pages 104–113. Springer-Verlag, 1996.

23. Markus Kuhn. Tamper resistance - a cautionary note. In USENIX Workshop on
Electronic Commerce proceedings, pages 1–11, 1996.

24. Markus Kuhn. Design principles for tamper-resistant smartcard processors. In
USENIX Workshop on Smartcard Technology proceedings, 1999.



25. Xavier Leroy. Java bytecode verification: an overview. In G. Berry, H. Comon,
and A. Finkel, editors, Computer Aided Verification, CAV 2001, volume 2102 of
Lecture Notes in Computer Science, pages 265–285. Springer-Verlag, 2001.

26. Xavier Leroy. Bytecode verification for Java smart card. Software Practice &
Experience, 32:319–340, 2002.

27. Xavier Leroy and François Rouaix. Security properties of typed applets. In J. Vitek
and C. Jensen, editors, Secure Internet Programming – Security issues for Mobile
and Distributed Objects, volume 1603 of Lecture Notes in Computer Science, pages
147–182. Springer-Verlag, 1999.

28. Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. The
Java Series. Addison-Wesley, 1999. Second edition.

29. Sergio Loureiro, Laurent Bussard, and Yves Roudier. Extending tamper-proof
hardware security to untrusted execution environments. In USENIX Smart Card
Research and Advanced Application Conference (CARDIS’02), 2002.

30. Greg Morrisett, Karl Crary, Neal Glew, and David Walker. Stack-based typed
assembly language. Journal of Functional Programming, 12(1):43–88, 2002.

31. Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From System F to typed
assembly language. ACM Transactions on Programming Languages and Systems,
21(3):528–569, 1999.

32. George C. Necula. Proof-carrying code. In 24th symposium Principles of Program-
ming Languages, pages 106–119. ACM Press, 1997.

33. George C. Necula and Peter Lee. Safe, untrusted agents using proof-carrying code.
In Giovanni Vigna, editor, Mobile Agents and Security, volume 1419 of Lecture
Notes in Computer Science, pages 61–91. Springer-Verlag, 1997.

34. François Pottier and Sylvain Conchon. Information flow inference for free. In
International Conference on Functional Programming 2000, pages 46–57. ACM
Press, 2000.

35. François Pottier and Vincent Simonet. Information flow inference for ML. In
29th symposium Principles of Programming Languages, pages 319–330. ACM Press,
2002.

36. François Pottier, Christian Skalka, and Scott Smith. A systematic approach to
static access control. In David Sands, editor, Proceedings of the 10th European
Symposium on Programming (ESOP’01), volume 2028 of Lecture Notes in Com-
puter Science, pages 30–45. Springer-Verlag, 2001.

37. Fred B. Schneider. Enforceable security policies. ACM Transactions on Informa-
tion and System Security, 2(4), 2000.

38. Zhong Shao, Bratin Saha, Valery Trifonov, and Nikolaos Papaspyrou. A type
system for certified binaries. In 29th symposium Principles of Programming Lan-
guages, pages 217–232. ACM Press, 2002.

39. Sean W. Smith and Steve Weingart. Building a high-performance, programmable
secure coprocessor. Technical Report RC 21102, IBM Research, 1998.

40. Peter Thiemann. Enforcing security properties by type specialization. In European
Symposium on Programming 2001, volume 2028 of Lecture Notes in Computer
Science. Springer-Verlag, 2001.

41. Dennis Volpano and Geoffrey Smith. A type-based approach to program security.
In Proceedings of TAPSOFT’97, Colloquium on Formal Approaches in Software
Engineering, volume 1214 of Lecture Notes in Computer Science, pages 607–621.
Springer-Verlag, 1997.

42. Dennis Volpano, Geoffrey Smith, and Cynthia Irvine. A sound type system for
secure flow analysis. Journal of Computer Security, 4(3):1–21, 1996.



43. Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. Ef-
ficient software-based fault isolation. ACM SIGOPS Operating Systems Review,
27(5):203–216, 1993.

44. David Walker. A type system for expressive security policies. In 27th symposium
Principles of Programming Languages, pages 254–267. ACM Press, 2000.

45. Dan S. Wallach, Edward W. Felten, and Andrew W. Appel. The security architec-
ture formerly known as stack inspection: A security mechanism for language-based
systems. ACM Transactions on Software Engineering and Methodology, 9(4), 2000.

46. Hongwei Xi and Robert Harper. A dependently typed assembly language. In
International Conference on Functional Programming ’01, pages 169–180. ACM
Press, 2001.

47. Hongwei Xi and Frank Pfenning. Eliminating array bound checking through de-
pendent types. In Programming Language Design and Implementation 1998, pages
249–257. ACM Press, 1998.


