
An overview of Types in Compilation?

Xavier Leroy

INRIA Rocquencourt
Domaine de Voluceau, 78153 Le Chesnay, France

1 Types in programming languages

Most programming languages are equipped with a type system that detects type
errors in the program, such as using a variable or result of a given type in a con-
text that expects data of a different, incompatible type. Such type checking can
take place either statically (at compile-time) or dynamically (at run-time). Type
checking has proved to be very effective in catching a wide class of programming
errors, from the trivial (misspelled identifiers) to the fairly deep (violations of
data structure invariants). It makes program considerably safer, ensuring in-
tegrity of data structures and type-correct interconnection of program compo-
nents.

Safety is not the only motivation for equipping programming languages with
type systems, however. Another motivation, which came first historically, is
to facilitate the efficient compilation of programs. Static typing restricts the
set of programs to be compiled, possibly eliminating programs containing con-
structs that are difficult to compile efficiently or even to compile correctly at
all. Also, static typing guarantees certain properties and invariants on the data
manipulated by the program; the compiler can take advantage of these seman-
tic guarantees to generate better code. The “Types in Compilation” workshops
are dedicated to the study of these interactions between type systems and the
compilation process.

2 Exploiting type information for code generation and
optimization

An early example of a type system directed towards efficient compilation is that
of Fortran. The Fortran type system introduces a strict separation between inte-
gers numbers and floating-point numbers at compile-time. The main motivation
for this separation, according to Fortran’s designers, was to avoid the difficul-
ties of handling mixed arithmetic at run-time [2, chapter 6]. Thanks to the type
system, the compiler “knows” when to generate integer arithmetic operations,
floating-point arithmetic operations, and conversions between integers and floats.

? This text is published as the introduction to the proceedings of the 1998 Types
in Compilation workshop, pages 1–8, Lecture Notes in Computer Science 1473,
Springer-Verlag, march 1998.



2

Since then, this separation has permeated hardware design: most processor ar-
chitectures provide separate register sets and arithmetic units for integers and
for floats. In turn, this architectural bias makes it nearly impossible to generate
efficient numerical code for a language whose type system does not statically
distinguish floating-point numbers from integers.

Another area where compilers rely heavily on static typing is the handling of
variable-sized data. Different data types have different natural memory sizes: for
instance, double-precision floats usually occupy more space than integers; the
size and memory layout of aggregate data structures such as records and arrays
vary with the sizes and number of their elements. Precise knowledge of size infor-
mation is required to generate correct code that allocates and operates over data
structures. This knowledge is usually derived from the static typing information:
the type of a data determines its memory size and layout. Languages without
static typing cannot be compiled as efficiently: all data representations must fit
a default size, if necessary by boxing (heap-allocating and handling through a
pointer) data larger than the default size — an expensive operation. Statically-
typed languages whose type system is too flexible to allow this determination of
size information in all cases (e.g. because of polymorphism, type abstraction, or
subtyping) make it more difficult, but not impossible, to exploit unboxed data
representations: see [31, 21, 34, 16, 39, 22, 33, 28] for various approaches.

Guarantees provided by the type system can also enable powerful program
optimizations. For instance, in a strongly-typed language (whose type system
does not allow “casts” between incompatible types), two pointers that have in-
compatible types cannot alias, i.e. cannot point to the same memory block. This
guarantees that load and store operations through those two pointers cannot
interfere, thus allowing more aggressive code motion and instruction schedul-
ing [13]. One can also envision different heap allocation strategies for objects of
different types, as exemplified by the paper by Genius et al. in this proceeding.

Another area where type information is useful is the optimization of method
dispatch in object-oriented languages. General method dispatch is an expensive
operation, involving a run-time lookup of the code associated to the method in
the object’s method suite, followed by a costly indirect jump to that code. In
a class-based language, if the actual class to which the object belongs is known
at compile-time, a more efficient direct invocation of the method code can be
generated instead. If the code of the method is small enough, it can even be
expanded in-line at the point of call. Simple examination of the static type of
the object and of the class hierarchy of the program uncovers many opportunities
for this optimization. For instance, if the static type of the object is a class C
that has no subclasses, the compiler knows that the actual class of the object
is C and can generate direct invocations for all methods of the object [10, 15, 5].



3

3 Program analyses and optimizations based on
non-standard type systems

There are many points of convergence between, on the one hand, algorithms
for type checking and type inference, and on the other hand, static analyses of
programs intended to support code optimization. This should not come as a sur-
prise: both static analyses and type inference algorithms attempt to reconstruct
semantic information that is implicit in the program source, and propagate that
information through the program, recording it at each program point. A more
formal evidence is that both static analyses and type inference problems can be
recast in the common framework of abstract interpretation [9]. What is more
remarkable is that essentially identical algorithms are used for type inference
and for certain program analyses.

For instance, unification between first-order terms, as used for type inference
in the Hindley-Milner type system of ML and Haskell, is also at the basis of
several fast program analyses such as Steensgaard’s aliasing analysis [37], and
Henglein’s tagging analysis [18]. Baker [6] reflects informally on this connection
between Hindley-Milner type inference and several program analyses.

Another technique that has attracted considerable interest recently both from
a type inference standpoint and a program analysis standpoint consists in set-
ting up systems of set inclusion constraints (set inequations) and solving them
iteratively. This technique has been used to perform type inference for type sys-
tems with subtyping [25, 3, 14]. The same technique is also at the basis of several
flow analyses for functional and object-oriented languages [35, 36, 17, 1, 32, 19,
11]. These analyses approximate the flow of control and data in the presence of
first-class functions and objects, and are very effective to optimize function ap-
plications and method invocations, and also to eliminate dynamic type tests in
dynamically-typed languages. Palsberg and O’Keefe [29] draw a formal connec-
tion between those two areas, by proving the equivalence between a flow analysis
(0-CFA) and a type inference algorithm (for the Amadio-Cardelli type system
with subtyping and recursive types). The paper by Aiken et al. in these pro-
ceedings surveys the use of set inclusion constraints and equality (unification)
constraints for program analyses.

Several non-standard type systems have been developed to capture more
precisely the behavior of programs and support program transformations. The
effect systems introduced by Lucassen and Gifford [23, 20] enrich function types
with effects approximating the dynamic behavior of the functions, such as input-
output or operations on the store. This information is useful for code motion and
automatic parallelization. Jouvelot, Talpin and Tofte [38, 40] use region anno-
tations on the types of data structures and functions to determine aliasing and
lifetime information on data structures. The ML compiler developed by Tofte
et al. [8] relies on these lifetime information for managing memory as a stack
of regions with compiler-controlled explicit deallocation of regions instead of a
conventional garbage collector. Tolmach’s paper in these proceedings presents
a reformulation of simple effect systems as monadic type systems. Shao and
Trifonov’s paper develop a type system to keep track of the use of first-class



4

continuations in a program, thus allowing interoperability between languages
that support callcc and languages that do not.

Finally, non-standard type systems can also be used to record and exploit the
results of earlier program analyses. For instance, Dimock et al. [12] and Baner-
jee [7] develop rich type systems that capture and exploit the flow information
produced by flow analyses. Another example is Thiemann’s paper in these pro-
ceedings, which develops a type system that captures resource constraints that
appear in compilers during register allocation.

4 Types at run-time

Many programming languages require compiled programs to manipulate some
amount of type information at run-time. Interesting compilation issues arise
when trying to make these run-time manipulations of types as efficient as possi-
ble. A prime example is the compilation of run-time type tests in dynamically-
typed languages such as Scheme and Lisp: many clever tagging schemes have
been developed to support fast run-time type tests. Another example is object-
oriented languages such as Java, Modula-3, or C++ with run-time type inspec-
tion, where programs can dynamically test the actual class of an object. Again,
clever encodings of the type hierarchy have been developed to perform those
tests efficiently.

Even if the source language is fully statically typed, compilers and run-time
systems may need to propagate type information to run-time in order to support
certain operations. A typical example is the handling of non-parametric polymor-
phic operations such as polymorphic equality in ML and type classes in Haskell
[41]. Another example is the handling of polymorphic records presented in [27].
There are several ways to precompile the required type information into an ef-
ficient form: one is to attach simple tags to data structures; another is to pass
extra arguments (type representations or dictionaries of functions) to polymor-
phic functions. Elsman’s paper in these proceedings compares the performances
of these two approaches in the case of ML’s polymorphic equality.

Passing run-time representations of type expressions as extra arguments to
polymorphic function allows many type-directed compilation techniques to be
applied to languages with polymorphic typing. The TIL compiler [39] and the
Flint compiler [33] rely on run-time passing of type expressions (taken from
extensions of the Fω type system) to handle unboxed data structures in poly-
morphic functions and modules with abstract types. Constructing and passing
these type expressions at run-time entail some execution overhead. The paper
by Shao and Saha in these proceedings shows how to minimize this overhead by
lifting those type-related computations out of loops and functions so that they
all take place once at the beginning of program execution.

Non-conservative garbage collectors also require some amount of type infor-
mation at run-time in order to distinguish pointers from non-pointers in memory
roots and heap blocks. The traditional approach is to use tags on run-time values.
Alternatively, Appel [4] suggested to attach source types to blocks of function



5

code, and reconstruct type information for all reachable objects at run-time,
using a variant of ML type reconstruction. The paper by Hosoya and Yonezawa
in these proceedings is the first complete formalization of this approach.

Communicating static type information to the run-time system can be chal-
lenging, as it requires close cooperation from the compiler back-end. For instance,
a type-directed garbage collector needs type information to be associated with
registers and stack locations at garbage collection points; cooperation from the
register allocator is needed to map the types of program variables onto the reg-
isters and stack slots. The paper by Bernard et al. in these proceedings discuss
their experience with coercing a generic back-end into propagating type infor-
mation.

Another operation that relies heavily on run-time type information is mar-
shaling and un-marshaling between arbitrary data structures and streams of
bytes – a crucial mechanism for persistence and distributed programming. In
these proceedings, Duggan develops rich type systems to support marshaling in
the presence of user-defined marshaling operations for some data types.

5 Typed intermediate languages

In traditional compiler technology, types are checked on the source language, but
the intermediate representations used in the compilation process are essentially
untyped. The intermediate representations may sometimes carry type annota-
tions introduced by the front-end, but no provision is made for type-checking
again these intermediate representations. Recently, several compilers have been
developed that take the opposite approach: their intermediate representations
are equipped with typing rules and type-checking algorithms, and their various
passes are presented as type-preserving transformations that, given a well-typed
input, must produce a well-typed term of the target intermediate language.

The need for typed intermediate representations is obvious in compilers that
require precise type information to be available till run-time, such as TIL and
Flint [39, 33], or at least till late in the compilation process. Without requiring
that each compiler pass be type-preserving and its output typable, it is nearly
impossible to ensure the propagation of correct type information throughout the
whole compiler.

Even in compilers that do not rely as crucially on types, typed intermediate
languages can be extremely useful to facilitate the debugging of the compiler
itself. During compiler development and testing, the type-checkers for the inter-
mediate representations can be run on the outcome of every program transfor-
mation performed by the compiler. This catches a large majority of programming
errors in the implementation of the transformations. In contrast with traditional
compiler testing, which shows that the generated code is incorrect but does not
indicate which pass is erroneous, type-checking the intermediate representations
pinpoints precisely the culprit pass. The Glasgow Haskell compiler was one of
the first to exploit systematically this technique [30].



6

So far, typed intermediate representations as described above have been ap-
plied almost exclusively to compiling functional languages. The paper by Wright
et al. in these proceedings develops a typed intermediate language for compiling
Java, and discusses the difficult issue of making explicit the “self” parameter to
methods in a type-preserving way.

Typed intermediate languages usually do not go all the way down to code
generation. For instance, Glasgow Haskell preserves types through its high-level
program transformation, but the actual code generation is mostly untyped. The
TIL compiler goes several steps further, in particular by performing the conver-
sion of functions into closures in a type-preserving manner [24]. The paper by
Morrisett et al. in these proceedings shows how to go all the way to assembly
code: it proposes a type system for assembly code that can type-check reasonably
optimized assembly code, including most uses of a stack.

6 Other applications of types

While the discussion above has concentrated on core compiler technology for
functional and object-oriented languages, types have also found many exciting
and sometimes unexpected applications in other areas of programming language
implementation. For instance, type-directed partial evaluation is an interesting
alternative to traditional partial evaluation based on source-level reductions.
The paper by Balat and Danvy in these proceedings presents a type-directed
partial evaluator that also uses run-time code generation. The paper by Fujinami
presents a partial evaluator and run-time code generator for C++.

Languages for distributed programming based on process calculi are another
area where the exploitation of type information is crucial to obtain good perfor-
mances. Kobayashi’s abstract in these proceedings surveys this topic.

Types have interesting applications in the area of language-based security
for mobile code. Java applets have popularized the idea that foreign compiled
code can be locally verified for type-correctness before execution. This local
type-checking of compiled code then enables language-based security techniques
that rely on typing invariants, such as the Java “sandbox”. Advances in typed
intermediate languages have an important impact in this area. For instance, while
Java code verification is performed on unoptimized bytecode for an abstract
machine, the paper by Morrisett et al. in these proceedings show that similar
verifications can be carried on optimized machine code. Lee and Necula’s work on
proof-carrying code [26] show how to generalize this approach to the verification
of arbitrary specifications.

In conclusion, there has been considerable cross-fertilization between type
systems and compilers, and we hope to see more exciting new applications of
types in the area of programming language implementations in the near future.

References

1. Ole Agesen, Jens Palsberg, and Michael Schwartzback. Type inference of Self:
analysis of objects with dynamic and multiple inheritance. In Proc. European



7

Conference on Object-Oriented Programming – ECOOP’93, 1993.
2. Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: principles, tech-

niques, and tools. Addison-Wesley, 1986.
3. Alexander S. Aiken and Edward L. Wimmers. Type inclusion constraints and type

inference. In Functional Programming Languages and Computer Architecture 1993,
pages 31–41. ACM Press, 1993.

4. Andrew W. Appel. Run-time tags aren’t necessary. Lisp and Symbolic Computa-
tion, 2(2), 1989.

5. David Bacon and Peter Sweeney. Fast static analysis of C++ virtual function calls.
In Object-Oriented Programming Systems, Languages and Applications ’96, pages
324–341. ACM Press, 1996.

6. Henry G. Baker. Unify and conquer (garbage, updating, aliasing, . . . ) in functional
languages. In Lisp and Functional Programming 1990. ACM Press, 1990.

7. Anindya Banerjee. A modular, polyvariant, and type-based closure analysis. In In-
ternational Conference on Functional Programming 1997, pages 1–10. ACM Press,
1997.

8. Lars Birkedal, Mads Tofte, and Magnus Vejlstrup. From region inference to von
Neumann machines via region representation inference. In 23rd symposium Prin-
ciples of Programming Languages, pages 171–183. ACM Press, 1996.

9. Patrick Cousot. Types as abstract interpretations. In 24th symposium Principles
of Programming Languages, pages 316–331. ACM Press, 1997.

10. Jeffrey Dean, David Grove, and Craig Chambers. Optimization of object-oriented
programs using static class hierarchy analysis. In Proc. European Conference on
Object-Oriented Programming – ECOOP’95, pages 77–101. Springer-Verlag, 1995.

11. Greg DeFouw, David Grove, and Craig Chambers. Fast interprocedural class anal-
ysis. In 25th symposium Principles of Programming Languages, pages 222–236.
ACM Press, 1998.

12. Allyn Dimock, Robert Muller, Franklyn Turbak, and J. B. Wells. Strongly typed
flow-directed representation transformations. In International Conference on Func-
tional Programming 1997, pages 11–24. ACM Press, 1997.

13. Amer Diwan, Kathryn S. McKinley, and J. Eliot B. Moss. Type-based alias anal-
ysis. In Programming Language Design and Implementation 1998, pages 106–117.
ACM Press, 1998.

14. Jonathan Eifrig, Scott Smith, and Valery Trifonov. Type inference for recursively
constrained types and its application to OOP. In Mathematical Foundations of
Programming Semantics, volume 1 of Electronic Notes in Theoretical Computer
Science. Elsevier, 1995.

15. Mary F. Fernández. Simple and effective link-time optimization of Modula-3 pro-
grams. In Programming Language Design and Implementation 1995, pages 103–
115. ACM Press, 1995.

16. Robert Harper and Greg Morriset. Compiling polymorphism using intensional type
analysis. In 22nd symposium Principles of Programming Languages ACM Press,
1995.

17. Nevin Heintze. Set-based analysis of ML programs. In Lisp and Functional Pro-
gramming ’94, pages 306–317. ACM Press, 1994.

18. Fritz Henglein. Global tagging optimization by type inference. In Lisp and Func-
tional Programming 1992. ACM Press, 1992.

19. Suresh Jagannathan and Andrew Wright. Polymorphic splitting: An effective poly-
variant flow analysis. ACM Transactions on Programming Languages and Systems,
20(1):166–207, 1998.



8

20. Pierre Jouvelot and David K. Gifford. Algebraic reconstruction of types and effects.
In 18th symposium Principles of Programming Languages, pages 303–310. ACM
Press, 1991.

21. Xavier Leroy. Unboxed objects and polymorphic typing. In 19th symposium Prin-
ciples of Programming Languages, pages 177–188. ACM Press, 1992.

22. Xavier Leroy. The effectiveness of type-based unboxing. In Workshop Types in
Compilation ’97. Technical report BCCS-97-03, Boston College, Computer Science
Department, June 1997.

23. John M. Lucassen and David K. Gifford. Polymorphic effect systems. In 15th
symposium Principles of Programming Languages, pages 47–57. ACM Press, 1988.

24. Yasuhiko Minamide, Greg Morrisett, and Robert Harper. Typed closure conver-
sion. In 23rd symposium Principles of Programming Languages, pages 271–283.
ACM Press, 1996.

25. John C. Mitchell. Coercion and type inference. In 11th symposium Principles of
Programming Languages, pages 175–185. ACM Press, 1984.

26. George C. Necula. Proof-carrying code. In 24th symposium Principles of Program-
ming Languages, pages 106–119. ACM Press, 1997.

27. Atsushi Ohori. A polymorphic record calculus. ACM Transactions on Programming
Languages and Systems, 17(6):844–895, 1995.

28. Atsushi Ohori and Tomonobu Takamizawa. An unboxed operational semantics for
ML polymorphism. Lisp and Symbolic Computation, 10(1):61–91, 1997.

29. Jens Palsberg and Patrick O’Keefe. A type system equivalent to flow analysis.
In 22nd symposium Principles of Programming Languages, pages 367–378. ACM
Press, 1995.

30. Simon L. Peyton-Jones. Compiling Haskell by program transformation: a report
from the trenches. In European Symposium on Programming 1996, volume 1058 of
Lecture Notes in Computer Science. Springer-Verlag, 1996.

31. Simon L. Peyton-Jones and John Launchbury. Unboxed values as first-class citizens
in a non-strict functional language. In Functional Programming Languages and
Computer Architecture 1991, volume 523 of Lecture Notes in Computer Science,
pages 636–666, 1991.

32. John Plevyak and Andrew Chien. Precise concrete type inference for object-
oriented languages. In Object-Oriented Programming Systems, Languages and Ap-
plications ’94, pages 324–340. ACM Press, 1994.

33. Zhong Shao. Flexible representation analysis. In International Conference on
Functional Programming 1997, pages 85–98. ACM Press, 1997.

34. Zhong Shao and Andrew Appel. A type-based compiler for Standard ML. In
Programming Language Design and Implementation 1995, pages 116–129. ACM
Press, 1995.

35. Olin Shivers. Control-flow analysis in Scheme. In Programming Language Design
and Implementation 1988, pages 164–174. ACM Press, 1988.

36. Olin Shivers. Control-Flow Analysis of Higher-Order Languages. PhD thesis,
Carnegie Mellon University, May 1991.

37. Bjarne Steensgaard. Points-to analysis in almost linear time. In 23rd symposium
Principles of Programming Languages, pages 32–41. ACM Press, 1996.

38. Jean-Pierre Talpin and Pierre Jouvelot. The type and effect discipline. Information
and Computation, 111(2):245–296, 1994.

39. D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and P. Lee. TIL: a
type-directed optimizing compiler for ML. In Programming Language Design and
Implementation 1996, pages 181–192. ACM Press, 1996.



9

40. Mads Tofte and Jean-Pierre Talpin. Region-based memory management. Infor-
mation and Computation, 132(2):109–176, 1997.

41. Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less ad-
hoc. In 16th symposium Principles of Programming Languages, pages 60–76. ACM
Press, 1989.


