

Foreword
I delivered my inaugural lecture at Collège de France on November 15,
2018. The text of the lecture, in French, was then published as a
book by Fayard [22], and will also be
made freely available in the near future.
This document is an English translation of my manuscript for the
inaugural lecture. I translated myself; proofreading by native
English speakers is welcome.
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Xavier Leroy

Paris, November 10, 2019

Addendum for the second edition
The translation was revised to integrate the feedback kindly provided
by David Tranah. The original French text is now freely available
online [23].

Xavier Leroy

Paris, March 10, 2020

Software, between mind and matter

Mr Administrator,

Dear colleagues,

Dear friends,

Ladies and gentlemen,

On the Web site of the France Culture radio station, we can read the
following:

Autrefois nommée «harangue», la leçon inaugurale prononcée par chaque
professeur élu au Collège de France est à la fois la description de
l’état d’une discipline et la présentation d’un programme de
recherche. Bien que le nouveau titulaire soit aguerri, cet exercice
demeure une épreuve formidable. [26]Previously called “harangue”, the inaugural lecture delivered by
every professor newly elected at Collège de France is both a
description of the state of a discipline and the presentation of a
research program. Even though the new incumbent is experienced, this
exercise remains a formidable ordeal.

As I begin this inaugural lecture — or shall I say this harangue?
— “formidable ordeal” feels about right, but “experienced”
feels exaggerated: “deeply moved” would better describe my current state
of mind. Emotion at the honor you have conferred upon me, dear
colleagues, and the trust you have placed in me by receiving me here.
Emotion, as well, to see my discipline, computer science, thus
recognized and its place at Collège de France thus confirmed.
Computing, as a practice and as a science, has long been ignored by
the French academic system [28].
It was not until the mid-1960s that computing appeared in the French
higher education and research system; not until circa 1980 that the
main French scientific universities opened computer science
departments; not until 1997 that a computer scientist, Gilles Kahn,
was elected member of the Academy of Sciences; not until 2000 that
CNRS created a department dedicated exclusively to
information and communication sciences; and not until 2007 that
computer science entered Collège de France, the last step towards
academic respectability.
Gérard Berry, exceptional educator and indefatigable ambassador
of our field, introduced computer science to Collège de France,
first on the annual chair of technological innovation in 2007, then in 2009
as first guest of the annual chair of informatics and numerical
sciences, created jointly with Inria, and finally in 2012 as incumbent of
the first permanent chair in computer science, titled “algorithms,
machines and languages”. Bourdieu described Collège de France as
“lieu de sacralisation des hérétiques” (“a place where
heretics get sanctified”). He did not mention that several attempts
may be required before sainthood is reached.
This chair of software sciences that you are entrusting me with is,
therefore, the second permanent chair in computer science in the
history of Collège de France. It is a confirmation that this field of
study fully belongs in this institution. It is also a strong sign of
recognition addressed to all computer programmers — academics,
industry professionals, free software enthusiasts, amateurs —
who create software and work relentlessly to make it better. (And
there are many of them in the audience tonight.) On behalf of this community,
I thank the assembly of the professors of Collège de France for having
created this chair, and Pierre-Louis Lions for having promoted its
project.

A brief history of software
The first programmable mechanical devices appear in Europe
during the 18th century: street organs and Jacquard-style weaving looms.
It is the presence or absence of holes on a punched card that determines
the musical tune or the visual pattern that are produced. One
machine — the hardware, as we call it today — can produce an
infinity of visual or audible results just by changing the information
presented on the punched card — the software. The only
limitations are the length of the punched card and the imagination of
those who prepare it: the programmers.
That was a strong idea, which could have been food for thought. Yet,
it went mostly unnoticed outside of weaving plants and fairgrounds for
two centuries.
The wave of automation that swept through industry since the 19th
century then through daily life after 1950 was based on machines and
equipment that were mechanical at first, then electrical, then
electronic, but not programmable at all and built to perform one and
only one action.
That was the case of numerical computation, even though it is
identified with the modern computer in popular culture.
Programmable pocket calculators have equipped high-school students
since the 1980s; yet, nothing could be programmed in the calculating
equipment that was still widely used well after World War II: from Pascal’s
arithmetical machine (1645) to the Curta pocket mechanical calculator
dear to Gérard Berry; from the Hollerith tabulating machines that
enabled the wide-scale censuses of the 20th century to the cash
registers of my childhood years; from the artillery ballistic
computers to the fly-by-wire systems of the first supersonic airplanes
[12]. Even the “Bombe” computer that enabled British
intelligence to break the German Enigma cipher during World War II was
not programmable and had to be re-cabled often. This might come as a
surprise since the architect of the “Bombe”, Alan Turing, had, a few
years earlier, developed the theoretical foundations for programmable
computers — the famous universal machine that we will discuss again
soon. But there was a war to win against Nazi Germany, and no time to
study computer programming.
One exception: in 1834, Charles Babbage, a British mathematician,
designed an analytical engine, where a Jacquard-style punched
card controls the operation of a sophisticated mechanical calculator,
the difference engine [12].
Despite generous funding from
the British government, Babbage’s analytical engine was never able to be
fabricated because it was too complex for the mechanical engineering
of the time. However, his friend Ada Byron, Countess of Lovelace,
wrote, on paper, a few programs for the analytical engine, including a
program that computes Bernouilli numbers, making her the first
computer programmer in history [25].
Did Babbage invent the modern programmable computer? Opinions
differ. However, he is clearly a pioneer of the modern research
project. It is all there: funding by a governmental agency,
excessively ambitious objectives that could not be realized, and a
side result (the first numerical computing program) that turns out to
be a major scientific result — said result being obtained by
a woman who was not even funded by the project!
It is only at the end of Word War II that the concept of the universal
programmable computer becomes widely accepted.
The seminal work of Eckert and Mauchly (1943) and of von Neumann (1945)
establish the architecture of modern computers: an arithmetic and
logical unit communicating with a memory containing both the program
that drives computation steps and the data they process. Several
prototypes were developed in academic laboratories at the end of the
1940s (ENIAC, Manchester Mark 1, EDSAC, EDVAC, …). The first
electronic programmable calculators that we call computers today
become commercially available from 1952
(Ferranti Mark 1, Univac 1, IBM 701, …) [12].
The rest of the story is well known. Computers have spread from computing
centers to factories, offices, homes, payment methods, phones, cars,
medical equipment, cameras, television sets, home appliances, all the
way to light bulbs, which are now “connected” and claim to be
“intelligent”. Computers play an ever increasing part in everyday
life and in public life, from entertainment to the management of
critical infrastructures and the preservation of human lives.
This explosive growth of computing owns much to tremendous advances in
micro-electronics, resulting in mass production of computers and
systems on chip ever more powerful yet no more expensive, but also to
the amazing flexibility of software that runs on these electronic
systems. Hardware becomes a tabula rasa, a blank slate,
infinitely reprogrammable. For example, the Voyager space probes were
remotely reprogrammed many times during the 40 years of their
journey through the Solar system. Free of almost all physical
constraints, software can achieve an unbelievable level of complexity.
A Web browser consists of about 10 million line of code; the embedded
software on board a modern car, 100 million; Google’s whole code
base, about 2 billion. That an assembly of 2 billion different
components more or less works is unprecedented in the history of
technology. Equally unprecedented is the great vulnerability of
software to design and programming errors — the infamous bugs
— and to security attacks and malicious use.
I could talk at length about the feats and the misery of modern
computing, dazzle you with figures, frighten you with risks. Instead,
let me go back to the fundamental concepts of computing and the
history of their birth. These concepts are rooted not in numerical
computing and analysis, but in a completely different branch of
mathematics, bordering with philosophy, namely: logic.

Logical foundations
Many times in the past, mathematicians and philosophers turned to
computation for a source of unquestionable and universally-accessible
truths [8].
As early as 1670, Leibniz set out to represent philosophical
concepts by mathematical symbols, and to identify the symbolic
calculation rules that support reasoning over these concepts. Thanks
to this calculus ratiocinator, as he called it,
philosophical controversies could be solved just by calculation:

Quando orientur controversiae, non magis disputatione opus erit
inter duos philosophus, quam inter duos computistas. Sufficiet enim
calamos in manus sumere sedereque ad abacos, et sibi mutuo (accito
si placet amico) dicere: calculemus.
[20]If controversies were to arise, there would be no more need of
disputation between two philosophers than between two calculators. For
it would suffice for them to take their pencils in their hands and to
sit down at the abacus, and say to each other (and if they so wish
also to a friend called to help): let us calculate.

It is a long journey from this dream of Leibniz to modern mathematical
logic [7]. However, this imperative,
calculemus, remained as a rallying cry among computer
scientists: in particular, it is the title of a series of conferences
on symbolic computation. Let us compute, brothers and sisters! it
builds truth!
During the second half of the 19th century, logic progressed
tremendously, with the formalization of propositional logic
(Boole, 1854) then of predicate logic (Frege, 1879), and the birth of
set theory (Cantor, 1875–1884)
[7, ch. 2–4].
Around 1900 it became conceivable to ground all of mathematics on
a small basis of a formal logic. However, this beautiful project was
marred by logical paradoxes. A famous example is Russell’s paradox
(1903): if we can define A = {x ∣ x ∉ x}, “the set of all
sets that do not belong to themselves”, then A belongs to A, but
at the same time A does not belong to A. This internal
contradiction makes naive set theory inconsistent and therefore
unusable as a mathematical logic.
Could it be that the fine edifice of mathematics, which we often
picture like the Eiffel tower, rising towards the sky while grounded
on solid foundations, actually resembles the tower of Pisa, leaning
dangerously because of weak foundations?
This was called the foundational crisis of
mathematics, and it preoccupied some of the greatest mathematicians
and philosophers of the early 20th century [8].
In 1900, David Hilbert, in his list of 23 major unsolved mathematical
problems, mentioned the problem of proving the consistency of
arithmetic – an important fragment of mathematics, but a fragment
nonetheless. Twenty years later, he formulated what we now call
Hilbert’s program. Its objective was to formalize arithmetic as a
deductive system1
and to prove that this system satisfies three essential properties:

	
Consistency: there are no propositions P such that
P and its negation not-P can both be deduced.
(The logic is free of paradoxes.)

	Completeness: for every proposition P we can deduce
one of P or not-P. (The logic cannot say “I don’t know”.)

	Decidability (Entscheidungsproblem, “decision problem”):
there exists a systematic process — an algorithm, as we say today —
which, given a proposition P, decides whether it can be deduced
or not.

The decidability requirement shows that Hilbert, like Leibniz with the
calculus ratiocinator, found it very important to be able to
compute the truth value of a logical proposition.
Like a Collège de France professor who is interviewed on France
Culture, Hilbert popularized this program through a famous
speech broadcast on German radio in 1930, which he concluded by
stating
Wir müssen wissen; wir werden wissen:
“we must know; we will know” [7, ch. 5].
Shortly thereafter, we came to know… that Hilbert’s program is
impossible.
In 1931, Kurt Gödel published his famous first incompleteness theorem
[13], which shows that any consistent
axiomatization of arithmetic contains a statement P such that
neither P nor not-P can be deduced. In 1936, Alonzo Church and
Alan Turing proved, independently and via different approaches, the
first undecidability results (of the halting problem), from which it
follows that the Entscheidungsproblem cannot be solved by an
algorithm [3, 35].
This is the end of Hilbert’s program, but also the beginning of a new
knowledge. Fundamental computer science was born out of
this failure of Hilbert’s program like a wild flower growing on the
ruins of a collapsed temple.
To prove his incompleteness result, Gödel demonstrated
how to represent any logical formula by a natural number.
Today we would use a sequence of bits (zeros and ones), and a more compact
encoding than Gödel’s, but the key idea is there: any piece of
information — number, text, sound, picture, video, logical formula,
computer program, etc — can be coded by a sequence of bits, then
transmitted, or stored, or processed by a computer.
To prove their undecidability results, Church and Turing characterized
precisely what an algorithm is, thus giving birth to computability
theory, each in his own style. Turing formalized a “universal
machine”, an imaginary robot that moves a tape and reads and writes
symbols on this tape, capturing the essence of the modern computer:
the programmable calculator with stored program. Church developed his
“lambda calculus”, an algebraic notation centered on the notion of
function, which is the ancestor of modern programming languages.
This birth of computability theory is such an important moment in the
history of computing that it deserves to be explained with a cooking
analogy. Algorithms are often compared to recipes. To explain an
algorithm that solves a given problem, just as to communicate a recipe for
a given dish, natural language suffices: there is no need to formulate the
recipe in mathematical terms. This is no longer the case if we
need to reason about all possible recipes and all dishes they
produce. Consider — with apologies to Hilbert — the recipe problem
(Rezeptproblem):

Can any dish be produced by a recipe?

To answer in the negative, we need to identify a dish that is not
cookable, such as ambrosia in Greek mythology, then prove that no
recipe can produce this dish. To this end, we must have a
mathematically-precise definition of what constitutes a recipe.
(For example, “knock on Zeus’ door and ask him for leftover
ambrosia” is not a recipe.) Thus, we are led to develop a
cookability theory that is more general and perhaps more
interesting than the Rezeptproblem we started with.
Mutatis mutandis and proportionally speaking, Church and Turing
followed a similar approach to answer the Entscheidungsproblem
in the negative. Moreover, the two models of computability they
proposed, while coming from different horizons, are equivalent,
meaning that any one of the models can simulate the other, and both
are equivalent to a third model inspired by mathematics, the
µ-recursive functions studied by Kleene around the same time.
A machine (Turing’s universal machine), a language (Church’s
lambda-calculus), and a class of mathematical functions (the
µ-recursive functions) completely agree on which functions are
computable and which problems are decidable. This is the birth of a
universal notion of computability, called Turing completeness. Today,
we know hundreds of models of computation, from mathematical games to
bio-inspired models to quantum computing; all these models compute
exactly the same functions as a Turing machine.

Towards efficiency and effectiveness
Something is still missing before Turing’s dreams and Church’s
lambda-obsessions lead up to modern computing: a quantitative
dimension, completely absent from computability theory. For
instance, a problem can be decidable just because the solution space
is finite: it “suffices” to test all 2N possible solutions, even
though it would exhaust all the energy of the Sun if N reaches about
200 [24]. Likewise, a model of computability such as
Conway’s Game of Life can be Turing-complete yet totally unsuitable
for programming.
The final step that leads to modern computer science is precisely to
account for the efficiency of algorithms and the
effectiveness of programming these algorithms. On one side,
a science of algorithms emerges: how to design efficient algorithms and
characterize mathematically the time, memory space, or energy they consume.
On the other side, the implementation of
these algorithms in software reveals new needs: expressive
programming languages; precise semantics for these languages;
interpretation and compilation techniques to execute these languages
on hardware; verification methods to rule out programming errors —
the dreaded bug. This knowledge, half empirical, half
mathematical, delineates the long path leading from the abstract
specification of a software system to its effective implementation.
This is the core of software sciences, the field of study that
I will teach and research at Collège de France.
I will not discuss algorithms further in this lecture, and will not
discuss them much in my first courses, because the science of
algorithms has been brilliantly exposed already by Gérard Berry and by
several incumbents of the annual chair in informatics and
numerical sciences: Bernard Chazelle in 2012, Jean-Daniel Boissonat
in 2016, Claire Mathieu in 2017, and Rachid Guerraoui in 2018.
These professors communicated the richness and the diversity of
this area, from probabilistic algorithms to computational geometry,
from approximation algorithms to distributed computing. Instead, I
would rather talk about the journey from an abstract algorithm to its
concrete execution by the computer, with special emphasis on
programming languages and software verification.

Programming languages
In movies, computer experts glance at screens full of fast-scrolling
zeros and ones and immediately spot the virus that the bad guys are trying
to inject. Reality begs to differ. The programming language made of zeros
and ones does exist: it is called machine code and it can
be executed directly by the electronic circuits of the computer.
However, machine code is completely unsuitable for writing programs,
because it is illegible and lacks structure. Since the dawn of
computers, programmers have invented many higher-level
programming languages, clearer, more expressive, more intuitive than
machine code, so as to facilitate writing, reviewing, maintaining
and evolving programs. In parallel, they have also developed the
programming tools — interpreters, compilers, assemblers, linkers —
that execute programs written in these new programming languages,
often by translation into machine code.
In 1949 — the classic Antiquity of computing history —
assembly languages appear. While remaining close to machine
code, these languages replace bits by text: mnemonic words and
abbreviations represent machine instructions (add for addition,
cmp for comparison, etc); labels give names to program points and
memory locations; comments, written in natural language and ignored
during execution, help documenting the program and explaining
what it does. It becomes clear that a program is intended not only to
be executed by machines, but also, and as importantly, to be read,
studied and modified by humans.
The Renaissance of programming languages starts in 1957 with
Fortran, the first programming language that supports
arithmetic expressions close to familiar mathematical notation. For
instance, the solutions to the quadratic equation
Ax2 + Bx + C = 0
are clearly expressed in Fortran:

 D = SQRT(B*B - 4*A*C)
 X1 = (-B + D) / (2*A)
 X2 = (-B - D) / (2*A)

In assembly language, a dozen instructions would be needed, at least
one per basic arithmetic operation. This is the beginning of a
humanistic approach where the programming language must clearly
express the main concepts of its application area. Thus,
Fortran, dedicated to numerical computing, emphasizes
algebraic notations and arrays and matrices. Likewise, in 1959,
Cobol was designed for business applications and introduced the
concepts of records and structured files, the ancestors of modern
databases.
The age of Enlightenment starts in 1960 with Algol and
Lisp. The new priority for programming languages is to
express the structure of programs and to make it easy to write, reuse
and combine program fragments. Algol and Lisp are
centered on the twin notions of procedures and
functions. Freely reusable and equipped with a well-defined
interface, procedures and functions are the building blocks of
software. Recursion (the ability for a function to call itself
on sub-problems) opens a new way to design and express algorithms,
beyond the usual iteration schemes. Lisp opens another new
direction: symbolic computation. A Lisp program manipulates
mathematical expressions, logical formulas, or other programs as
easily as a Fortran program manipulates arrays of numbers.
The industrial revolution hits the software world around 1965.
Software is less and less handcrafted by end-users, but increasingly
developed by specialized firms. A primary objective is to coordinate
the work of large teams of average-skilled programmers, so as to produce
programs whose size and complexity exceed the abilities of a single
highly-skilled programmer. The programming languages of this time,
such as PL/I and C, are highly pragmatic and care less about elegance
than about efficient utilization of hardware resources. The need for
training many new programmers gives birth to languages dedicated to
teaching computer programming, such as Basic, which make it possible
to learn quickly how to program badly.
In parallel, the years 1970–1985 see the emergence of a computer
counter-culture. Computer programming can liberate itself from the
mainstream software industry. Rejecting the domination of the
so-called imperative approach to programming, other programming
paradigms emerge and materialize in radically original programming
languages:
object-oriented programming (Simula, Smalltalk),
logic programming (Prolog),
functional programming (Scheme, ML, Hope, FP),
synchronous programming (Esterel, Lustre), …
During the 1980s and 1990s, counter-culture is largely absorbed
by the mainstream. Hippies join advertising firms and
object-oriented programming becomes the new industry standard, but
through languages (C++, Java) that distort the original ideas.
Functional programming spreads and becomes more respectable through a
marriage of convenience with imperative programming. The OCaml
language, to which I contributed much, is the result of such an
alliance between the functional, imperative, and object-oriented
approaches.
In the same time frame, it becomes fashionable to proclaim the end of
programming and to question the relevance of programming languages.
Soon we will no longer need to program: instead, we will assemble software
components. Granted, it is no longer expected of every programmer to
write their own sort routine: better reuse one from a
library. However, assembling software components is still programming,
in a different way, at a higher level, with new problems that arise.
What is the interface of a component? how to reuse it correctly? what
guarantees does it provide? So many questions that a good programming
language can help to answer, through linguistic mechanism that support
large-scale programming: classes and packages (Java, C#, …);
modules and functors (Standard ML, OCaml); contracts (Eiffel, Racket,
…); etc.
Today, we hear about another end of programming: thanks to artificial
intelligence and its machine learning techniques, software is no
longer written, but largely learned from examples. Can a
language-based approach contribute to this “new frontier” in
computing? Recent work on probabilistic programming clearly goes in
this direction [36].
In parallel with this evolution of ideas and concept, the formal
understanding of programming languages — their syntax and
their semantics — progressed tremendously, so much so that,
today, we can describe and define a programming language with
mathematical precision. The 1960s saw the emergence of grammatical
frameworks, often inspired by general linguistics, that can not only
describe the syntax of a language but also generate automatically the
corresponding parser (syntax analyzer).
Semantics resisted formalization longer. Programming constructs
such as x = x + 1 (meaning “increment variable x”) look mathematically
absurd at first sight: how could it be that x is equal to x + 1?
We need to distance ourselves from this
strange syntax and introduce the notion of a program state — a
mapping from variables to their current values — to finally explain
this assignment as a mathematical transformation from the state
“before” executing the assignment to the state “after”. Equally
clever ideas are required to account for other programming constructs
found in many languages. Today, we master many approaches to assigning a
mathematically-precise meaning to a program: denotational semantics,
where a program is interpreted as an element of a mathematical
structure (Scott domains, two-player games, Church’s lambda-calculus, etc);
operational semantics, describing the successive steps in executing
the program; and axiomatic semantics, characterizing the logical
assertions satisfied by all executions of the program
[29].
It can come as a surprise that we have formal syntaxes and semantics
for widely-used programming languages such as C. If the behavior of
a C program can be known with mathematical precision, how comes that
this behavior is so often erratic, including bugs, crashes, and security
holes? This is the central question of formal software verification,
which we now introduce on a simple instance: the type-checking of programs.

Type checking
In daily life, we do not compare apples and oranges, nor do we add
cabbages and carrots. In physics, dimensional homogeneity prohibits
absurd combinations: each quantity has a dimension (duration,
distance, mass, etc); an equation that equates or adds two quantities
having different dimensions is physically absurd and always wrong.
Generalizing this folk wisdom and this physical wisdom,
type-checking a program consists in grouping data by types
(such as integers, character strings, arrays, functions, etc) and
checking that the program manipulates the data in accordance with their
types. For example, the expression "hello"(42), which applies a
character string as if it were a function, is ill-typed. This simple
verification, which can be performed statically, before the program
executes, detects many programming errors and provides basic
guarantees about software reliability.
The benefits of type-checking goes further. It guides the design and
structuring of programs: programmers are encouraged to declare the
types of the data structures and of the interfaces for software
components, so that the consistency of these declarations can be
verified automatically by a type-checking algorithm. One notch above,
types also influence the design of programming languages and their
comparative analysis [32]. Which language features lend
themselves to effective type-checking? How can we give precise types to
the features we care about? These are questions that shape a
programming language. For example, the design of the Rust language
was guided by the need to type mutable data structures with high
precision.
Even deeper, types reveal a connection between programming languages
and mathematical logics: the Curry-Howard correspondence, where types
are viewed as logical propositions and programs as constructive
proofs. This correspondence between proving and programming was first
observed on simple instances by Curry in 1958, then by Howard in 1969.
The result looked so insignificant that Curry mentioned it in 4 pages
of one of his books [6], and Howard did not submit
for publication, circulating photocopies of his manuscript instead
[15]. Rarely have photocopies had such an impact: the
Curry-Howard correspondence started to resonate with the renewal of
logic and the explosion of computer science of the 1970s, then
established itself in the 1980s as a deep structural connection
between languages and logics, between programming and proving. Today,
it is commonplace to study the logical meaning of a programming
language feature, or the computational content of a mathematical theorem
— that is, which algorithms hide inside its proofs. My lectures for
the year 2018–2019, titled “Programming = proving? The Curry-Howard
correspondence today”, discuss this ferment of ideas, at the border
between logic and computer science.
In the end, this simple idea of attaching types to data and checking type
consistency in programs carried us quite far! Now, let us see how to
extend this approach to the verification of other desirable properties
of a program, beyond type soundness.

Formal verification
On the one hand, programming languages, tools, and methodologies have
progressed immensely. On the other, the complexity of software keeps
increasing, and we entrust it with more and more responsibilities.
Thus, the central issue with software is no longer to program,
but to convince: convince designers, developers, end-users,
regulation or certification authorities, perhaps a court of justice
(if something bad happens) that the software is correct and harmless.
To build this conviction, we need to specify what the program
is supposed to do (“what do we want?”); verify that the
program satisfies this specification (“did we write the program
right?”); and validate that the program and its specification
match user expectations (“did we write the right program?”).
Specifications take on many forms, from English prose to rigorous
mathematical definitions through test suites (examples
of expected behaviors) and semi-formal notations (diagrams,
pseudocode).
The most widely used method for verification and validation, by far, is testing:
execute the program on well-chosen inputs and check the results. In
essence, this is an experimental approach, where software is treated
like a natural phenomenon and its specification like a theory in need
of experimental validation. Empirically, testing can reach high
levels of software assurance, provided much effort is invested in
constructing the test suite. For critical software systems, where
human lives are at stake, the assurance levels are so high that
testing becomes prohibitively expensive. Scientifically, no certainty
arises from the results of testing, except for a few finite-state
systems that can be tested exhaustively. As Dijkstra quipped in 1969,

Testing shows the presence, not the absence of bugs.

Beyond testing, formal verification techniques establish, by
computation and logical deduction, properties that hold for all
possible executions of a program [31].
The properties being established range from type soundness through
robustness (absence of “crashes” during execution) to full
correctness with respect to a mathematical specification. As
mentioned previously, a program can be viewed as a mathematical
definition through a formal semantics for the language in which the
program is written. Formal verification proves properties of the
program as if these properties were theorems about this mathematical
definition.
The fundamental ideas and formalisms for verification have a long
history. As early as 1949, in a short communication at a conference,
Turing himself suggested annotating programs with logical assertions
(formulas linking the values of program variables)
[27]. This approach was rediscovered by Floyd in
1967 [11], then generalized by Hoare in 1969
[14] as program logics that make it possible to
reason by deduction about the behavior of a program without having to
construct its denotational or operational semantics beforehand.
Two verification techniques more specialized than program logics but
easier to automate appeared shortly after: abstract interpretation
[5] and model checking
[9, 33].
In spite of these early conceptual advances, it was not until the turn
of the century that formal verification made inroads in the critical software
industry, especially in the railway sector and the aviation sector.
An early success, in 1998, was the verification of the control software
for the driverless Paris métro line 14. Why such a delay? The formal
verification of a realistic software system demands enormous
amounts of deductive reasoning and calculations, well beyond human
capabilities. To overcome this limitation, it was necessary to
develop formal verification tools that automate these tasks, completely or
partially, and to invent new algorithms for efficient verification.
This is one of the major achievements in computer science of the last
20 years.
We can choose between several kinds of tools, depending on the desired
degree of automation and precision of verification.

	
A static analyzer automatically infers simple properties
of a variable (for example, its variation interval in the case of a
numerical variable) or of several variables (for example, a linear
inequality). Often, this suffices to show that the program is
robust.

	A model checker can automatically verify other kinds of
properties, expressed in temporal logic, by exploring the states
that are reachable at run-time.

	A program prover, also called deductive verifier,
is able to check full correctness of a program with respect to
its specification, provided that the program is manually annotated
with logical assertions: preconditions (hypotheses on entry to
functions and commands), postconditions (guarantees on exit),
and invariants. The tool, then, verifies that preconditions
logically imply postconditions, and that invariants are preserved,
using automated theorem proving.

	A proof assistant such as Coq or Isabelle enables us
to conduct mathematical proofs that are too difficult to be
automated. The proof is constructed interactively
by the user, but the tool verifies automatically that the proof
is sound and exhaustive.

	Figure 1: Computing the first n prime numbers. From Knuth [19].

An example will illustrate the capabilities of these modern
verification tools. The program shown in figure 1 is one
of the first examples in Knuth’s treatise on algorithms
[19, section 1.3.2, program P],
expressed in a Java-like language. The function firstprimes
computes the first n prime numbers. It iterates over odd numbers
m = 3, 5, 7, …, excluding those that are multiple of a prime
number already found and keeping the others.
A static analyzer based on abstract interpretation can infer the
inequalities n > 0 and 0 ≤ i < n and 0 ≤ j < i, without any
programmer assistance. It follows that the accesses
p[0], p[i] and p[j] are always within the bounds of array p.
The analyzer, therefore, proved the absence of a common programming
bug, source of many security holes.
A deductive verification tool can prove many other properties of this
code fragment, all the way to partial correctness:
assuming function firstprimes terminates, its result is guaranteed
to be the sequence of the first n prime numbers, in ascending order.
The tool cannot succeed all by itself: the programmer must annotate
the code with numerous logical assertions, especially loop invariants,
that guide verification (figure 2).

	Figure 2: The invariant for the outer loop of the program from
figure 1. It expresses the fact that the sub-array
p[0] …p[i−1] contains all the prime numbers between
2 and m, and only those numbers. Moreover, this sub-array is
sorted in strictly increasing order, and therefore contains no duplicates.

Termination of the program is much harder to verify automatically,
because it follows from the fact that there are infinitely many prime
numbers: if there were only 10 prime numbers and the function were
called with n = 11, it would loop forever searching for the
11th prime number.
We can add Euclid’s theorem “there is no largest prime
number” as an axiom, but I am not aware of any automated verification
tool able to deduce termination from this axiom; an interactive proof
seems in order, using a proof assistant such as Coq or Isabelle.
Another example where higher mathematics are used is an optimization
suggested by Knuth [19, section 1.3.2, exercise 6],
consisting in removing the condition
j < i of the inner loop, on the grounds that the other condition
p[j] <= √m suffices to stop this loop at the right time.
Proving the correctness of this optimization is difficult, because
it hinges on a subtle property of the density of prime numbers:
Bertrand’s postulate, first proved by Chebychev in 1852, showing
that for all n > 1 the interval (n, 2n) contains at
least one prime number. Mechanically proving this theorem and its use
to justify the optimized code requires an interactive proof in Coq
[34]. However, the Why3 automatic verification tool is
able to verify the optimized code when taking Bertrand’s postulate as
an axiom [10].
Verifying the full correctness of a program can carry us quite far
indeed — especially if the program was optimized by Knuth. However,
there are no insurmountable obstacles, despite what many programmers
feel, let alone fundamental impossibilities, despite what a few
academics claimed [1]. Software was never expelled
from mathematical paradise. No deity ever decreed “in pain thou shalt
bring forth programs! using only tests and a few UML diagrams!”.
The main prerequisite to formal verification is the availability of a
mathematically-precise specification of the expected properties. We
must express the problem as equations before we can solve it! This
should come as no surprise to physicists, but is sometimes
misunderstood by programmers and often by managers. Some application
areas have long known how to put problems into equations: this is the
case for control-command laws, which are central to many critical
software systems such as train traffic regulation or fly-by-wire
aircraft. Other areas have recently made remarkable progress towards
formal specification and verification: cryptographic protocols and
applications [4], operating system components
[18].
At the other end of the spectrum, machine learning, which plays a
central role in contemporary artificial intelligence, is often applied
to perception tasks that lack any precise specification. How can we
characterize what is “good” speech recognition or “good” image
classification more precisely than by a success rate on a given data
set? However, in the rare case where a precise specification is
available, a deep neural network can be formally verified
once the training phase is over, as demonstrated by Katz
et al. on the ACAS-Xu aerial collision avoidance system
[17].
Another obstacle on the path to formally-verified software is the
trust we can put in the computer tools that participate in its
production and its verification. These tools are programs like any
others, potentially buggy. A design or implementation mistake in a
static analyzer or another verification tool can cause it to ignore
a dangerous execution path or a source of bugs in the program under
analysis, and therefore to wrongly conclude that the program is
safe. Furthermore, verification tools rarely operate on the machine code
that actually runs, but more commonly on the source code, written in a
high-level language, or even on an abstract model of the software
system. A second, more insidious risk appears here: compilers and
automatic code generators, which translate the source code or the
abstract model into executable machine code, could make mistakes
during translation, producing the wrong executable code from a
formally-verified source or model.
Quis custodiet ipsos custodes? If verification and compilation
tools watch over software quality, who watches the watchmen? Testing
is ineffective because these tools are complex programs that implement
subtle algorithms for symbolic computation. However, these tools have
fairly simple specifications, expressed in terms of the semantics for
the languages involved; this paves the way to formal verification.
My recent work and that of many colleagues explores this approach of
formally verifying the tools that participate in the verification and
the compilation of critical software. Using the Coq assistant,
we developed and verified CompCert [21], a realistic
compiler for the C programming language. (See figure 3.)
CompCert’s good performance and its extensive verification are
milestones in this research area. Two follow-up projects use similar
approaches to verify other tools: Verasco [16], a static
analyzer based on abstract interpretation,
and Velus [2], a code generator for the Lustre reactive language.

	Figure 3: The formally-verified part of the CompCert compiler.
It translates the CompCert subset of the C language to
assembly language for 4 target architectures, going through
8 intermediate languages. Compilation comprises 16 passes,
including optimization passes that eliminate inefficiencies
and improve the performance of the generated code.
This is a standard architecture for a modern compiler.
CompCert’s distinguishing feature is that every language
(source, intermediate, target) has a formal semantics, and
every compilation pass is formally verified to preserve
these semantics, using the Coq proof assistant.

Conclusions
Look at how much progress has been made in the world of software since
the inception of the programmable computer! High-level programming
languages, compilers, semantics, type systems, formal specifications,
program logics, tools that automate formal verification, verification
of these tools and of compilers: so many steps taken in the last 60
years that tremendously increase our ability to produce safe and
secure software.
Are we about to reach software perfection, this ideal where software
behaves exactly as prescribed by its specifications, and where
programming becomes invisible? Like most ideals, software perfection
grows ever more distant as we progress towards it…

	
Artificial intelligence succeeds at tasks, especially perception
tasks, that were inaccessible to machines until very recently.
However, AI produces “black boxes” that are highly vulnerable to
bias, to noise, and to malicious use.
As far as software reliability is concerned, this sets us back 20 years
and calls for new verification and validation methods.

	Hardware turns out to be less infallible than software developers
like to assume. Vulnerabilities such as those demonstrated by the
Spectre attacks show that hardware has a hard time keeping a secret.

	Formal methods remain difficult to deploy, and keep frightening many
programmers. A first step would be to make it easier to write
specifications, for example via new, domain-specific
specification languages.

	Finally, we need to question the way we teach computer science
and mathematics. Our students often confuse the “for all”
and “there exists” quantifiers. How can they write
specifications if they do not understand basic logic?

Logic! We are back to logic, once more! It is the leitmotiv
for this lecture: the rise of computer science from the ashes of
Hilbert’s program; the semantics of programming languages;
specifications and program logics; all the way to type systems that
bridge programming and proving… All things considered, is
software just logic that runs on a computer? Not always (to err is
human); not only (algorithmic efficiency matters too); but if only!
One of the best things that could happen to software is to be the
embodiment of mathematical logic.
At a time when we entrust software
with more and more responsibilities and we delegate more and more
decisions to algorithms, in the naive hope that they will make fewer
mistakes than humans or for more sinister reasons [30], we need
mathematical rigor more than ever: to express what a program is
supposed to do, to reason upon what it actually does, and to mitigate
the risks it poses. Software can balance formal rigor with unbridled
creativity. It is our duty, as computer scientists and as citizens,
to provide this balance.

References
	
[1]
	
A. Asperti, H. Geuvers, and R. Natarajan.
Social processes, program verification and all that.
Mathematical Structures in Computer Science, 19(5):877–896,
2009.
	[2]
	
T. Bourke, L. Brun, P. Dagand, X. Leroy, M. Pouzet, and L. Rieg.
A formally verified compiler for Lustre.
In PLDI 2017: Proceedings of the 38th Conference on Programming
Language Design and Implementation, pages 586–601. ACM, 2017.
	[3]
	
A. Church.
A note on the Entscheidungsproblem.
J. Symb. Log., 1(1):40–41, 1936.
	[4]
	
V. Cortier and S. Kremer.
Formal models and techniques for analyzing security protocols: A
tutorial.
Foundations and Trends in Programming Languages,
1(3):151––267, 2014.
	[5]
	
P. Cousot and R. Cousot.
Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints.
In POPL 1977: Conference Record of the Fourth Symposium on
Principles of Programming Languages, pages 238–252. ACM, 1977.
	[6]
	
H. B. Curry and R. Feys.
Combinatory Logic.
North-Holland, 1958.
	[7]
	
M. Davis.
The Universal Computer: The Road from Leibniz to Turing.
CRC Press, 2012.
	[8]
	
G. Dowek.
Computation, Proof, Machine: Mathematics Enters a New Age.
Cambridge University Press, 2015.
	[9]
	
E. A. Emerson and E. M. Clarke.
Characterizing correctness properties of parallel programs using
fixpoints.
In Automata, Languages and Programming, 7th Colloquium,
volume 85 of Lecture Notes in Computer Science, pages 169–181.
Springer, 1980.
	[10]
	
J.-C. Filliâtre.
Knuth’s prime numbers.
In Gallery of verified programs.
http://toccata.lri.fr/gallery/knuth_prime_numbers. Last visited
2019/02/04.
	[11]
	
R. W. Floyd.
Assigning meaning to programs.
In Mathematical Aspects of Computer Science, volume 19 of Proceedings of Symposia on Applied Mathematics, pages 19–32. American
Mathematical Society, 1967.
	[12]
	
H. H. Goldstine.
The Computer from Pascal to von Neumann.
Princeton University Press, 1980.
	[13]
	
K. Gödel.
Über formal unentscheidbare Sätze der Principia Mathematica und
verwandter Systeme, I.
Monatshefte für Mathematik und Physik, 38:173–198, 1931.
English translation in [37].
	[14]
	
C. A. R. Hoare.
An axiomatic basis for computer programming.
Communications of the ACM, 12(10):576––585, 1969.
	[15]
	
W. A. Howard.
The formulae-as-types notion of construction.
In J. P. Seldin and J. R. Hindley, editors, To H.B. Curry:
Essays on Combinatory Logic, Lambda Calculus and Formalism, page 479–490.
Academic Press, 1980.
Facsimile of the 1969 manuscript.
	[16]
	
J.-H. Jourdan, V. Laporte, S. Blazy, X. Leroy, and D. Pichardie.
A formally-verified C static analyzer.
In POPL 2015: Proceedings of the 42nd Symposium on Principles of
Programming Languages, pages 247–259. ACM, 2015.
	[17]
	
G. Katz, C. W. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer.
Reluplex: An efficient SMT solver for verifying deep neural
networks.
In CAV 2017: Computer Aided Verification, 29th International
Conference, volume 10426 of Lecture Notes in Computer Science, pages
97–117. Springer, 2017.
	[18]
	
G. Klein, J. Andronick, K. Elphinstone, G. Heiser, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and
S. Winwood.
seL4: formal verification of an operating-system kernel.
Communications of the ACM, 53(6):107–115, 2010.
	[19]
	
D. E. Knuth.
The Art of Computer Programming: Volume 1: Fundamental
Algorithms.
Addison Wesley, July 1997.
	[20]
	
G. Leibniz.
Nova Methodus pro Maximis et Minimis.
Acta Eruditorum, Oct. 1684.
	[21]
	
X. Leroy.
Formal verification of a realistic compiler.
Communications of the ACM, 52(7):107–115, 2009.
	[22]
	
X. Leroy.
Le logiciel, entre l’esprit et la matière, volume 284 of Leçons inaugurales du Collège de France.
Fayard, Apr. 2019.
	[23]
	
X. Leroy.
Le logiciel, entre l’esprit et la matière, volume 284 of Leçons inaugurales du Collège de France.
OpenEdition Books, Dec. 2019.
https://books.openedition.org/cdf/7671.
	[24]
	
I. L. Markov.
Limits on fundamental limits to computation.
Nature, 512:147–154, Aug. 2014.
	[25]
	
L. F. Menabrea and Ada Augusta, Countess of Lovelace.
Sketch of the analytical engine invented by Charles Babbage.
http://www.fourmilab.ch/babbage/sketch.html, 1842.
	[26]
	
M. Moneghetti.
Collège de France: 40 leçons inaugurales.
https://www.franceculture.fr/emissions/college-de-france-40-lecons-inaugurales.
Last visited 2019/02/04.
	[27]
	
L. Morris and C. B. Jones.
An early program proof by Alan Turing.
Ann. Hist. Computing, 6(2):129–143, 1984.
	[28]
	
P. Mounier-Kuhn.
L’informatique en France de la seconde guerre mondiale au Plan
Calcul: L’émergence d’une science.
P. U. Paris-Sorbonne, Mar. 2010.
	[29]
	
H. R. Nielson and F. Nielson.
Semantics with Applications: An Appetizer.
Springer, 2007.
	[30]
	
C. O’Neil.
Weapons of Math Destruction: How Big Data Increases Inequality
and Threatens Democracy.
Crown, 2016.
	[31]
	
D. A. Peled.
Software Reliability Methods.
Texts in Computer Science. Springer, 2001.
	[32]
	
B. C. Pierce.
Types and Programming Languages.
MIT Press, 2002.
	[33]
	
J. Queille and J. Sifakis.
Specification and verification of concurrent systems in CESAR.
In International Symposium on Programming, 5th Colloquium,
volume 137 of Lecture Notes in Computer Science, pages 337–351.
Springer, 1982.
	[34]
	
L. Théry.
Proving pearl: Knuth’s algorithm for prime numbers.
In TPHOLs 2003: Theorem Proving in Higher Order Logics, volume
2758 of Lecture Notes in Computer Science, pages 304–318. Springer,
2003.
	[35]
	
A. M. Turing.
On computable numbers, with an application to the
Entscheidungsproblem.
Proceedings of the London Mathematical Society,
s2-42(1):230–265, 1937.
	[36]
	
J. van de Meent, B. Paige, H. Yang, and F. Wood.
An introduction to probabilistic programming.
Computing Research Repository, abs/1809.10756, 2018.
	[37]
	
J. van Heijenoort.
From Frege to Gödel: A Source Book in Mathematical Logic,
1879–1931.
Harvard University Press, 1977.

	
1
	Comprised of axioms (such as “n + 0 = n for all n”)
and of deduction rules (such as modus ponens,
“from P ⇒ Q and P we can deduce Q”).

cover.jpeg
Software,
between mind

and matter

Xavier Leroy

main003.png
CompCert C type-checking (" Clight |_type climination

expr. simpl., Toopsimplt. | "
Optimizations: constant propag,, CSE, stackallocasion
inlining, tail calls, dead code elim. of addressed variables

CFG construction (™ . instruction (" J
RTL 1 opr. decomp, | CminorSel [« ion | Cminor

register allocation (IRC)
alling conventions

linearization . materialization
Mach
e ofthecrG T_Lneer oFsuckFrames)ac

assembly code emission

[Asm ARMJ (Asm PPC] (Asm RiscV [Asm x86 J

main001.png
bigint[] firstprimes(int n)
{

assert (n > 0);
bigint p[] = new bigint[n];

plol = 2;
bigint m = 3;
loop:

for (int i =1; i < n; m=m + 2) {
int j = 0;
while (j < i A p[jl <= ym) {
if (m % p[j] == 0) continue loop;
=i+
}
plil =m; i =i + 13
}

return p;

main002.png
for (int i =1; i <m;m=m+ 2) {
/* invariants:
Yk, 0 < k< i = prime(p[k])
Vn, 2 < n<mAprime(n) = 3k, 0 < k<iAplk]l=n
Wik 0<j<k<i=plj]<plkl
*/
}

