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This paper presents a program analysis to estimate unaught exeptions in ML programs. This

analysis relies on uni�ation-based type inferene in a non-standard type system, using rows to

approximate both the ow of esaping exeptions (a la e�et systems) and the ow of result values

(a la ontrol-ow analyses). The resulting analysis is eÆient and preise; in partiular, arguments

arried by exeptions are aurately handled.
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1. INTRODUCTION

Many modern programming languages suh as Ada, Modula-3, ML and Java pro-

vide built-in support for exeptions: raising an exeption at some program point

transfers ontrol to the nearest handler for that exeption found in the dynami

all stak. Exeptions provide safe and exible error handling in appliations: if

an exeption is not expliitly handled in a funtion by the programmer, it is auto-

matially propagated upwards in the all graph until a funtion that \knows" how

to deal with the exeption is found. If no handler is provided for the exeption,

program exeution is immediately aborted, thus pinpointing the unexpeted on-

dition during testing. This stands in sharp ontrast with the traditional C-style

reporting of error onditions as \impossible" return values (suh as null pointers or

the integer �1): in this approah, the programmer must write signi�ant amount

of ode to propagate error onditions upwards; moreover, it is very easy to ignore

an error ondition altogether, often ausing the program to rash muh later, or

even omplete but produe inorret results.

The downside of using exeptions for error reporting and as a general non-loal
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ontrol struture is that it is very easy to forget to ath an exeption at the

right plae, i.e. to handle an error ondition. ML ompilers generate no errors

or warnings in this ase, and the programming mistake will only show up during

testing. Exhaustive testing of appliations is diÆult, and even more so in the ase

of error onditions that are infrequent or hard to reprodue. Our experiene with

large ML appliations is that unaught exeptions are the most frequent mode of

failure.

To address this issue, languages suh as Modula-3 and Java require the program-

mer to delare, for eah funtion or method, the set of exeptions that may esape

out of it. Those delarations are then heked statially during type-heking by

a simple intraproedural analysis. This fores programmers to be onsious of the

ow of exeptions through their programs.

Delaring esaping exeptions in funtions and method signatures works well in

�rst-order, monomorphi programs, but is not adequate for the kind of higher-

order, polymorphi programming that ML promotes. Consider the map iterator on

lists, whih applies a given funtion to every element of a list. In Modula-3 or Java,

the programmer must delare a set E of exeptions that the funtion argument

to map may raise; map, then, may raise the same exeptions E. But E is �xed

arbitrarily, thus preventing map from being applied to funtions that raise exeptions

not in E. The generiity of map an be restored by taking for E the set of all

possible exeptions, but then the preision of the exeption analysis is dramatially

dereased: all invoations of map are then onsidered as potentially raising any

exeption. (Similar problems arise in highly objet-oriented Java programs using

ontainer lasses and iterators intensively.) To deal properly with higher-order

funtions, a very rih language for exeption delarations is required, inluding

at least exeption polymorphism (variables ranging over sets of exeptions) and

unions of exeption sets. (See setion 2 for a more detailed disussion.) We believe

that suh a omplex language for delaring esaping exeptions is beyond what

programmers are willing to tolerate.

The alternative that we follow in this paper is to infer esaping exeptions from

unannotated ML soure ode. In other terms, we view the problem of deteting po-

tentially unaught exeptions as a stati debugging problem, where stati analyses

are applied to the programs not to make them faster via better ode generation, but

to make them safer by pinpointing possible run-time failures. This approah has

several advantages with respet to the Modula-3/Java approah: it blends better

with ML type inferene; it does not hange the language and supports the stati

debugging of \legay" appliations; it allows the use of omplex approximations of

exeption sets, as those need not be written by the programmer (within reason { the

results of the analysis must still be understandable to the programmer). Finally,

the exeption inferene needs not be fully ompatible with the ML module system:

a whole program analysis an be onsidered (again within reason { analysis time

should remain pratial).

Several exeption analyses for ML have been proposed [Guzm�an and Su�arez 1994;

Yi 1998; Yi and Ryu 1997; F�ahndrih and Aiken 1997; F�ahndrih et al. 1998℄,

some based on e�et systems, some on ontrol-ow analyses, some on ombinations

of both (see setion 6 for a detailed disussion). The analysis presented in this

paper attempts to ombine the eÆieny of e�et systems with the preision of ow
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analyses. It is based on uni�ation and non-standard type inferene algorithms that

have exellent running time and should sale well to large appliations. At the same

time, our analysis is still fairly preise; in partiular, it approximates not only the

names of the esaping exeptions, but also the arguments they arry { a feature that

is essential to analyze preisely many existing ML programs. This onstitutes the

main tehnial ontribution of this paper: integrate in the same uni�ation-based

framework both approximation of exeption e�ets in the style of e�et systems

[Talpin and Jouvelot 1994℄, and approximation of sets of values omputed at eah

program point in the style of ow analyses and soft typing [Shivers 1991; Wright and

Cartwright 1997℄. Finally, our analysis has been implemented to over the whole

Objetive Caml language { not only ore ML, but also datatypes, objets, and the

module system. We present some preliminary experimental results obtained with

our implementation.

The remainder of this paper is organized as follows. Setion 2 lists the main

requirements for an ML exeption analysis. Setion 3 presents the non-standard

type system we use for exeption analysis. Extension to the full Objetive Caml

language is disussed in setion 4; experimental results obtained with our imple-

mentation, in setion 5; and related work, in setion 6. Conluding remarks an be

found in setion 7. Algorithms and proofs are shown in appendies.

2. DESIGN REQUIREMENTS

In this setion, we list the main requirements for an e�etive exeption analysis

for ML, and show that they go muh beyond what an be expressed by exeption

delarations in Modula-3 or Java. Existing exeption analyses address some of these

requirements, but none addresses all.

2.1 Handling higher-order funtions preisely

The exeption behavior of higher-order funtions depends on the exeptions that

an be raised by their funtional arguments. A form of polymorphism over esaping

exeptions is thus needed to analyze higher-order funtions preisely. Consider the

map iterator over lists mentioned in introdution. An appliation map f lmay raise

whatever exeption the f argument may raise. Writing �

'

! �

0

for the annotated

type of funtions from type � to type �

0

whose set of potentially esaping exeption

is ', the behavior of map is aptured by the following annotated type sheme:

map : 8�; �; ': (�

'

! �)

;

! (� list

'

! � list)

where �; � range over types and ' ranges over sets of exeptions. In general, the

esaping exeptions for a higher-order funtion are ombinations '

1

[ : : : [ '

n

[

fC

1

; : : : ;C

n

g where the '

i

are variables representing the esaping exeptions for

funtional arguments and the C

j

are exeption onstants. For instane, we have

the following annotated type for funtion omposition �f:�g:�x:f(g(x)):

8�; �; ; ';  : (�

'

! �)

;

! (

 

! �)

;

! 

'[ 

�! �

Given the frequent use of higher-order funtions in ML programs, an exeption

analysis for ML must handle them with preision similar to what the annotated

types above suggest.
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Similar issues arise when funtions are stored into data strutures suh as lists

or hash tables (as in allbak tables for instane). The exeption analysis should

keep trak of the union of the exeptions that an be raised by funtions ontained

in the struture. It is not aeptable to say that any exeption an be raised by

applying a funtion retrieved from the struture.

2.2 Handling exeptions as �rst-lass values

In ML and Java, exeptions are �rst-lass values: exeption values an be built in

advane and passed through funtions before being raised. Consider for instane

the following ontrived example:

let test = �exn. try raise(exn) with E ! 0

The exeption behavior of this funtion is that test exn raises the exeption on-

tained in the argument exn, exept when exn is atually the exeption E, in whih

ase no exeption esapes out of test. We seek exeption analyses preise enough

to apture this behavior.

It is true that the �rst-lass harater of exeption values is rarely, if ever, used

in atual ML programs. However, there is one important idiom where an exeption

value appears: �nalization. Consider:

let f = �x. try g(x)

with E ! 0

| exn ! �nalization ode; raise(exn)

Assuming g an raise exeptions E and E', the exeption analyzer should reognize

that the exn exeption variable an only take the value E', thus the raise(exn)

that re-raises the exeption after �nalization an only raise E', and so does the

funtion f itself.

2.3 Keeping trak of exeption arguments

ML exeptions an optionally arry arguments, just like all other data type on-

strutors. This argument an be tested in the with part of an exeption handler,

using pattern-mathing on the exeption value, so that only ertain exeptions with

ertain arguments are aught. Consider the following example:

exeption Failure of string

let f = �x. if ... then ... else raise(Failure "f")

let g = �x. try f(x) with Failure "f" ! 0

An exeption analysis that only keeps trak of the exeption head onstrutors

(i.e. Failure above) but not of their arguments (i.e. the string "f" above) fails to

analyze this example with suÆient preision: the analysis reords that funtion f

may raise the Failure exeption, hene it onsiders that the appliation f(x) in

g may raise Failure with any argument. Sine the exeption handler traps only

Failure "f", the analyzer onludes that g may raise Failure, while in reality no

exeption an esape g.

This lak of preision an be brushed aside as \unimportant" and \bad pro-

gramming style anyway". Indeed, the programmer should have delared a spei�

onstant exeption Failure_f to report the error in f, rather than rely on the
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general-purpose Failure exeption. However, ode fragments similar to the exam-

ple above appear in legay Caml appliations that we would like to analyze. More

importantly, there are also legitimate uses of exeptions with parameters. For in-

stane, the Caml interfae to Unix system alls uses the following sheme to report

Unix error onditions:

type unix_error = EACCES | ENOENT | ENOSPC | ...

(* enumerated type with 67 onstrutors representing Unix error odes *)

exeption Unix_error of unix_error

This allows user ode to trap all Unix errors at one (try . . . with Unix_error(_)

-> . . . ), and also to trap partiular errors (try . . . with Unix_error(ENOENT) ->

. . . ). Replaing Unix_error by 67 distint exeptions, one for eah error ode,

would make the former very painful. It is desirable that the exeption analysis be

able to show that ertain Unix_error exeptions with arguments representing om-

mon errors (e.g. Unix_error(ENOENT), \no suh �le") are handled in the program

and thus do not esape, while we an aept that other Unix_error exeptions

representing rare errors are not handled in the program and may esape.

The problem with exeption arguments is made worse by the availability (in the

Caml standard library at least) of prede�ned funtions to raise general-purpose

exeptions suh as Failure above. Indeed, the example with Failure above is

more likely to appear under the following form:

exeption Failure of string

let failwith = �msg. raise(Failure msg)

let f = �x. if ... then ... else failwith("f")

let g = �x. try f(x) with Failure "f" ! 0

Preise exeption analysis in this example requires traking the string onstant

"f" not only when it appears as immediate argument to the Failure exeption

onstrutor, but also when it is passed to the funtion failwith. Hene the exep-

tion analysis must also inlude some amount of data ow analysis, not limited to

exeption values.

2.4 Running faster than ontrol-ow analyses

All the requirements we have listed so far point towards ontrol-ow analyses for

funtional languages in the style of k-CFA [Shivers 1991℄ or set-based analysis

[Heintze 1994℄. In order to determine the ow of ontrol at funtion appliations,

these analyses need to trak the ow of funtional values throughout the program;

to do this, they build an approximation of the set of values that an ow to eah

program point. It is entirely straightforward to extend them to approximate also

the set of esaping exeptions at eah program point at the same time as they

approximate the set of result values. Alternatively, the exeption analysis an

be run as a seond pass of dataow analysis exploiting the results of ontrol-ow

analysis [Yi and Ryu 1997℄, although this results in some loss of preision, as the

ontrol ow an be determined more aurately if exeption information is available.

This exeption analysis bene�ts from the relatively preise approximation of values

provided by the ontrol-ow analysis, espeially as far as exeption arguments are

onerned.
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Our �rst implementation of an exeption analyzer for Objetive Caml was indeed

based on ontrol-ow analysis: 0-CFA initially, then polymorphi splitting [Jagan-

nathan and Wright 1998℄. Our pratial experiene with this approah was mixed:

the preision of the exeption analysis was satisfatory (at least with polymorphi

splitting), but the speed of the analysis left a lot to be desired. For instane, analyz-

ing a 600-line program (a simpli�ed version of the Knuth-Bendix benhmark) took

18 seonds on a 150 Mhz Pentium Pro. Those �gures should be taken with a grain

of salt: our implementation of CFA was semi-naive and did not implement all of

the optimizations desribed or alluded to in the literature on CFA and other anal-

yses based on set inlusion onstraints [F�ahndrih and Aiken 1996; Flanagan and

Felleisen 1997; F�ahndrih et al. 1998; Pottier 1996℄. Still, we observed quadrati

behavior on several examples, indiating that the analysis would not sale easily to

large programs

1

.

For these reasons, we deided to abandon analyses based on CFA or more gener-

ally set inlusion onstraints, and settled for less preise but faster analyses based

on equality onstraints and uni�ation.

3. A TYPE SYSTEM FOR EXCEPTION ANALYSIS

In the style of e�et systems [Luassen and Gi�ord 1988; Talpin and Jouvelot 1994℄,

our exeption analysis is presented as a type inferene algorithm for a non-standard

type system. The type system uses uni�ed mehanisms based on row variables

both to keep trak of the e�ets (sets of esaping exeptions) of expressions and to

re�ne the usual ML types by more preise information about the possible values of

expressions. In this setion, we present �rst the typing rules for our type system

(that is, the spei�ations for the exeption analysis), then type inferene issues

(the atual analysis).

3.1 The soure language

The soure language we onsider in this paper is a simple subset of ML with integers

and exeptions as the only data types, the ability to raise and handle exeptions,

and simpli�ed pattern-mathing.

Terms: a ::= x identi�er

j i integer onstant

j �x: a abstration

j a

1

(a

2

) appliation

j let x = a

1

in a

2

the let binding

j math a

1

with p! a

2

j x! a

3

pattern-mathing

j C j D(a) exeption onstrutors

j try a

1

with x! a

2

exeption handler

1

The omplexity of 0-CFA alone is O(n

3

), where n is the size of the whole program. We did

not observe ubi behavior on our tests, however. Quadrati behavior arises in the following

not unommon ase: assume that a group of funtions of size k = O(n) reurses over a list of

m = O(n) elements given in extension in the program soure. At least m iteration of the analysis

is required before �xpoint is reahed on the parameters and results of the funtions. Sine eah

iteration takes time proportional to k, the time of the analysis is O(n

2

).
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Patterns: p ::= x variable pattern

j i j C onstant patterns

j D(p) onstruted pattern

The onstrut math a

1

with p! a

2

j x! a

3

performs pattern-mathing on the

value of a

1

; if it mathes the pattern p, the branh a

2

is evaluated; otherwise, a

3

is evaluated. Multi-ase pattern mathings an be expressed by asading math

expressions. The onstrut try a

1

with x ! a

2

evaluates a

1

; if an exeption is

raised, its value is bound to x and a

2

is evaluated. There is no syntati form for

raising an exeption; instead, we assume prede�ned a raise funtion in the environ-

ment. The try onstrut athes all exeptions; athing only a given exeption C

is performed by:

try a

1

with x! math x with C ! a

2

j y ! raise(y)

The dynami semantis for this language is given by the redution rules in �g-

ure 1, in the style of [Wright and Felleisen 1994℄. Values, evaluation ontexts, and

evaluation results are de�ned as:

Values: v ::= i j C j D(v) j �x:a j raise

Evaluation ontexts: � ::= [ ℄ j �(a) j v(�) j D(�)

j let x = � in a

j math � with p! a

2

j x! a

3

j try � with x! a

Evaluation results: r ::= v j raise v

A result of v indiates normal termination with return value v; a result of raise v

indiates an unaught exeption v.

3.2 The type algebra

The type system uses the following type algebra:

Type expressions: � ::= � type variable

j int['℄ integer type

j exn['℄ exeption type

j �

1

'

! �

2

funtion type

Type shemes: � ::= 8�

i

; �

j

; Æ

k

:�

Rows: ' ::= � row variable

j > all possible elements

j ";' the element " plus whatever is in '

Row elements: " ::= i

:

� integer onstant

j C

:

� onstant exeption

j D(�) parameterized exeption

Presene annotations: � ::= Pre element is present

j Æ presene variable
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(�x:a)(v) ) afx vg (1)

let x = v in a ) afx vg (2)

math v with p! a

2

j x! a

3

) �(a

2

) if � =M(v; p) is de�ned (3)

math v with p! a

2

j x! a

3

) a

3

fx vg if M(v; p) is unde�ned (4)

try v with x! a

2

) v (5)

(raise v)(a) ) raise v (6)

(�x:a)(raise v) ) raise v (7)

D(raise v) ) raise v (8)

let x = raise v in a ) raise v (9)

math raise v with p! a

2

j x! a

3

) raise v (10)

try raise v with x! a

2

) a

2

fx vg (11)

�[a℄ ) �[a

0

℄ if a) a

0

(12)

The pattern-mathing funtion M(v; p):

M(v; x) = fx vg M(i; i) = id M(C;C) = id

M(D(v); D(p)) =M(v; p)

Fig. 1. Redution rules

As in e�et systems, our funtion types �

1

'

! �

2

are annotated by the latent

e�et ' of the funtion, that is, the set of exeptions that may be raised during

appliation of the funtion. In addition, the base types exn['℄ and int['℄ are also

annotated by sets of exeptions and integers respetively. Those sets re�ne the ML

types exn and int by restriting the values that an expression of type exn['℄ or

int['℄ an have.

Sets of exeptions or integers are represented by rows similar to those used for

typing extensible reords [Wand 1987; R�emy 1989; 1993b℄. A row is either >,

meaning that all values of the type are possible (we do not have any more preise

information), or a sequene of row elements "

1

: : : "

n

terminated by a row vari-

able �. We impose the following equational theory on rows to express that the

order of elements in a row does not matter (equation 1), and that > is absorbing

(equation 2):

"

1

; "

2

; ' = "

2

; "

1

; ' (1)

i

:

Pre; > = > (2)

The absorption equation 2 applies only to integer row elements beause we in-

tend > to be used only in rows annotating the int type. (The kinding rules in

setion 3.3 enfore this invariant.) A > symbol is required for base types suh as

int, whih have an in�nite (or at least very large) signature. It is not required for

datatypes suh as exn, whih have a �nite signature: a row enumerating all possible

onstrutors an be used instead, as disussed in setion 4.1.4 below. Moreover,
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ombining > and rows ontaining parameterized onstrutors raises tehnial prob-

lems

2

; we prefer to avoid the diÆulty by restriting > to rows ontaining only

integer elements.

Rows and row variables support both polymorphism over sets and a form of set

union in a uni�ation framework. For instane, the two rows "

1

; �

1

and "

2

; �

2

, whih

informally represent the sets f"

1

g and f"

2

g respetively, unify into the row "

1

; "

2

; �

representing the set f"

1

; "

2

g via the substitution f�

1

 ("

2

; �); �

2

 ("

1

; �)g.

A row element " is either an integer onstant i, a onstant exeption onstru-

tor C, or a parameterized exeption onstrutorD(�) arrying the annotated type �

of its argument. To maintain ruial kinding invariants (see below), the onstant

row elements (i and C) also arry a presene annotation, written �. A presene an-

notation an be either Pre, meaning that the element is present in the set denoted

by the row expression; or a presene variable Æ meaning that the element is atu-

ally not present in the set denoted by the row expression, but may be onsidered

as present in order to satisfy uni�ation onstraints.

At this point, the reader may wonder about the lak of a row onstant ; to

denote the empty row, and of a presene annotation Abs denoting the absene of

a row element. How are we going to express that a funtion has no e�et, or

that an integer expression annot take a partiular value? The answer is: by using

universally quanti�ed row variables and presene variables that our only positively

in type shemes

3

. For instane, a funtion of type 8�: int

�

! int annot raise any

exeption, and an integer expression of type 8Æ: int[0

:

Æ;'℄ annot evaluate to 0,

for the same reasons that an expression of type 8�:� annot evaluate to a value.

This an easily be proved by onsidering a standard ideal model [MaQueen et al.

1986℄ for our type algebra.

Here are some examples of type expressions in this algebra. The type int[>℄

denotes all integer values. The type of integer addition is

8�

1

; �

2

; �

3

; �

4

: int[�

1

℄

�

2

! int[�

3

℄

�

4

! int[>℄

(no e�ets, no information known on the return value).

The type sheme 8�: int[1

:

Pre; 2

:

Pre; �℄ stands for the set f1; 2g and is the type

of integer expressions that an only evaluate to 1 or to 2. As previously mentioned,

the universally quanti�ed row variable � should be read as denoting the empty set

of row elements, sine it ours only positively in the type sheme.

The type sheme 8�; Æ: int[1

:

Æ; 2

:

Pre; �℄ stands for the set f2g. Although 1

is mentioned in the row, it should not be onsidered present in the set, sine its

2

The obvious absorption equation D(�); > = > is unsound, as it allows dedutions suh as

D(�);> = > = D(�);>, whih lead to inonsistent typings. If ML had subtyping and a super-

type > of all types, a orret equation would be D(>); > = >. This equation allows > to absorb

any D(�) (beause D(�);> <: D(>);> = >), but only allows expansion of > into D(>); >,

meaning orretly that no information is available on the argument of D.

3

The notion of positive and negative ourrenes of a variable that we use here is the standard

notion from type theory [Girard et al. 1990℄. Briey, if types and type shemes are viewed as

trees, a type variable is said to our negatively in a type sheme if there exists a path from the

root of the type sheme to the variable that rosses an arrow type onstrutor to the left an odd

number of times. A variable is said to our only positively in a type sheme if it does not our

negatively in that sheme.
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presene annotation Æ is universally quanti�ed and ours only positively.

The type sheme 8�; �

0

: exn[D(int[3

:

Pre; 4

:

Pre; �℄); �

0

℄ stands for the set of

exeptions fD(3);D(4)g.

The raise prede�ned funtion has the following type sheme: 8�; �: exn[�℄

�

! �.

This sheme aptures the fat that an appliation of raise never returns and raises

exatly the exeptions that it reeives as argument.

3.3 Kinding of rows

To simplify the formulation of the typing rules and to ensure the existene of prini-

pal uni�ers and prinipal typings, we require the following four strutural invariants

on rows:

(1) A given integer onstant or exeption onstrutor should our at most one in

a row. For instane, (D(�); D(�

0

); ') is not well-formed.

(2) A row variable � is preeded by the same set of integer onstants and exeption

onstrutors in all row expressions where it ours. For instane, we annot

have both (1

:

Pre; �) and (2

:

Pre; �) in the same derivation.

(3) A row ' annotating an integer type int['℄ an only ontain integer elements i.

(4) A row ' annotating an exeption type exn['℄ or a funtion type �

1

'

! �

2

an

only ontain onstant or parameterized onstrutors C, D and must not end

with >.

Invariants (1) and (2) are well known from earlier work on reord types [R�emy

1993b℄. Invariants (3) and (4) are more unusual. They ensure a lear separation

between annotations of int types (omposed of integer elements and possibly >)

and annotations of the exn types (omposed of onstrutors and no >). Sine >

absorbs only integer elements (equation 2), we do not want it to our in rows

ontaining exeption onstrutors C, D.

Following [R�emy 1993b; Ohori 1995℄, we use kinds to enfore the invariants above.

Our kinds � are omposed of a tag (either INT or EXN) and a set of onstants and

onstrutors:

Kinds: � ::= INT(fi

1

; : : : ; i

n

g) j EXN(fC

1

; : : : ; C

p

; D

1

; : : : ; D

q

g)

The onstants and onstrutors appearing in the set part of a kind are those

onstants and onstrutors that must not appear in rows of that kind, beause

they already appear in elements onatenated before these rows. We assume given

a global mapping K assigning kinds to row variables, and suh that for eah � there

are in�nitely many variables of that kind (i.e. K

�1

(�) is in�nite). The kinding rules

are shown in �gure 2. They de�ne the two judgements ` ' :: � (row ' has kind �)

and ` � wf (type � is well-formed).

3.4 The typing rules

Figure 3 shows the typing rules for our system. They de�ne the judgement E `

a : �=', where E is the typing environment, a the term to type, � the type of

values that a may evaluate to, and ' the set of exeptions that may esape during

the evaluation of a. We assume that typing starts in the initial environment E

0

=

fraise : 8�; �: exn[�℄

�

! �g. We write E

1

�E

2

for the asymmetri onatenation of
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` � :: K(�) ` > :: INT(S)

i =2 S ` ' :: INT(S [ fig)

` (i

:

�; ') :: INT(S)

C =2 S ` ' :: EXN(S [ fCg)

` (C

:

�; ') :: EXN(S)

D =2 S ` ' :: EXN(S [ fDg) ` � wf

` (D(�); ') :: EXN(S)

` � wf

` ' :: INT(;)

` int['℄ wf

` ' :: EXN(;)

` exn['℄ wf

` �

1

wf ` ' :: EXN(;) ` �

2

wf

` �

1

'

! �

2

wf

Fig. 2. Kinding rules

E

1

and E

2

; that is, (E

1

�E

2

)(x) = E

2

(x) if x 2 Dom(E

2

), and (E

1

�E

2

)(x) = E

1

(x)

if x 2 Dom(E

1

) nDom(E

2

).

The rules for variables and let bindings (rules 1 and 5) are standard, exept that

we generalize over all three kinds of type variables. (The instantiation and gener-

alization prediates are de�ned in �gure 3.) For variables as well as other language

onstruts that never raise exeptions (rules 1, 2, 3, 7), the ' omponent of the

result is unonstrained and an be hosen as needed to satisfy equality onstraints

in the remainder of the typing derivation.

The rule for funtion abstration (rule 3) is the usual rule for e�et systems:

the e�et of the funtion body beomes the latent e�et of the funtion type. For

appliations a

1

(a

2

) (rule 4), the usual approah is to take as e�et of the appliation

the union of the e�et of a

1

, latent e�et of the funtion denoted by a

1

, and e�et

of a

2

. Sine our algebra of e�ets laks an union onstrutor, we approximate the

union by requiring that those three e�ets (e�et of a

1

, latent e�et of a

1

, e�et

of a

2

) are equal to the same set ' of exeption. In our uni�ation-based type

inferene algorithm, this orresponds simply to unifying these three e�ets.

For integer onstants and exeption onstrutors (rules 2, 7 and 8), we reord

the atual value of the expression in the approximation part of the type int or

exn. For instane, the type of i must be of the form int[i

:

Pre;'℄, foring i

:

Pre to

appear in the type of the expression. In rules 8 and 13, we write TypeArg(D) for

the type sheme of the argument of onstrutor D, e.g. TypeArg(D) = 8�: int[�℄

for an integer-valued exeption D.

For an exeption handler try a

1

with x ! a

2

(rule 9), the e�et '

1

of a

1

is

injeted in the type exn['

1

℄ assumed for x in a

2

.

The most interesting rule is rule 6 for the math onstrut. This rule is ruial

to the preision of our exeption analysis. When typing math a

1

with p ! a

2

j

x! a

3

, we want to reet the fat that the seond alternative (x! a

3

) is seleted

only when the �rst alternative (p ! a

2

) does not math the value of a

1

. In other

terms, the type of values that an \ow" to x in the seond alternative is not the

type of the mathed value a

1

, but the type of a

1

from whih we have exluded all

values mathing the pattern p in the �rst alternative.
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Typing of expressions:

� � E(x)

E ` x : �

(1)

` '

0

:: INT(fig) ` ' :: EXN(;)

E ` i : int[i

:

Pre; '

0

℄='

(2)

` �

1

wf E � fx : �

1

g ` a : �

2

='

0

` ' :: EXN(;)

E ` �x: a : (�

1

'

0

! �

2

)='

(3)

E ` a

1

: (�

0

'

! �)=' E ` a

2

: �

0

='

E ` a

1

(a

2

) : �='

(4)

E ` a

1

: �

1

=' E � fx : Gen(�

1

; E; ')g ` a

2

: �='

E ` let x = a

1

in a

2

: �='

(5)

E ` a

1

: �

1

=' ` p : �

1

) E

0

` �

1

� p; �

2

E �E

0

` a

2

: �=' E � fx : �

2

g ` a

3

: �='

E ` math a

1

with p! a

2

j x! a

3

: �='

(6)

` '

0

:: EXN(fCg) ` ' :: EXN(;)

E ` C : exn[C

:

Pre; '

0

℄='

(7)

� � TypeArg(D) E ` a : �=' ` '

0

:: EXN(fDg)

E ` D(a) : exn[D(�); '

0

℄='

(8)

E ` a

1

: �='

1

E � fx : exn['

1

℄g ` a

2

: �='

E ` try a

1

with x! a

2

: �='

(9)

Typing of patterns:

` x : � ) fx : �g
(10)

` i : int[i

:

�;'℄) fg
(11)

` C : exn[C

:

�;'℄) fg
(12)

� � TypeArg(D) ` p : � ) E

` D(p) : exn[D(�);'℄) E

(13)

Pattern subtration:

` int[i

:

�;'℄� i; int[i

:

�

0

;'℄
(14)

` exn[C

:

�;'℄� C ; exn[C

:

�

0

;'℄
(15)

` �

0

wf

` � � x; �

0

(16)

` � � p; �

0

` exn[D(�);'℄ �D(p); exn[D(�

0

);'℄

(17)

Instantiation and generalization:

�

0

� 8�

i

�

j

Æ

k

: � if and only if there exists �

i

; '

j

; �

k

suh that ` �

i

wf and

` '

j

:: K(�

j

) and �

0

= �f�

i

 �

i

; �

j

 '

j

; Æ

k

 �

k

g

Gen(�; E; ') is 8�

i

�

j

Æ

k

: � where f�

i

; �

j

; Æ

k

g = FV (�) n (FV (E) [ FV (')).

Fig. 3. The typing rules
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To ahieve this, rules 14{17 de�ne the pattern subtration prediate ` ��p; �

0

,

meaning that �

0

is a orret type for the values of type � that do not math pattern p.

For a variable pattern p = x (rule 16), all values math the pattern, so it is orret

to assume any �

0

for the type of the non-mathed values. For an integer pattern

p = i (rule 14), we fore � to unify with int[i

:

�;'℄, thus exposing in ' the set of all

possible values of type � that are di�erent from i. Then, we take �

0

= int[i

:

�

0

;'℄

for a suitable �

0

. In partiular, if that �

0

is unonstrained in the remainder of

the derivation, we an take �

0

to be a fresh presene variable Æ, thus reeting

that i is not among the possible values of type �

0

. The rules for exeption patterns

(rules 15 and 17) are similar. If the exeption has an argument, instead of hanging

a presene annotation, we reursively subtrat the type of the argument of the

exeption.

3.5 Examples of typings

We now show some typings derivable in our system. These are prinipal typings

idential to those found by our exeption analyzer. Consider �rst a simple handler

for one exeption C.

try raise(C)

with x ! math x with C ! 1 | y ! raise y

The e�et of raise(C) is C

:

Pre; �. Hene, the type of x is exn[C

:

Pre; �℄. Sub-

trating the pattern C from this type, we obtain the type exn[C

:

Æ; �℄ for y. Hene

the e�et of the whole math expression, and also of the whole try expression, is

C

:

Æ; �. The type is int[1

:

Pre; �

0

℄. Sine Æ, � and �

0

are generalizable and our

only positively, we have established that no exeption esapes the expression, and

that it an only evaluate to the integer 1.

We now extend the previous example along the lines of the failwith example of

setion 2.3.

let failwith = �n. raise(D(n)) in

try failwith(42)

with x ! math x with D(42) ! 0 | y ! raise y

We obtain the following intermediate typings:

failwith : 8�; �

1

; �

2

: int[�

1

℄

D(int[�

1

℄);�

2

�������! �

x : exn[D(int[42

:

Pre; �

3

℄); �

4

℄

y : exn[D(int[42

:

Æ; �

3

℄); �

4

℄

Thus we onlude as before that no exeption esapes this expression.

For a representative example of higher-order funtions, onsider funtion ompo-

sition:

let ompose = �f. �g. �x. f(g(x)) in

ompose (�y. 0) (�z. raise(C)) 1

The type sheme for ompose is 8�; �; ; �; �

0

; �

00

: (�

�

! �)

�

0

! (

�

! �)

�

00

! 

�

!

�. The three ourrenes of � express the union of the e�ets of f and g. The

appliation of ompose above has e�et C

:

Pre; �

3

.
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Conerning exeptions as �rst-lass values, the �rst example from setion 2.2

beomes:

let test =

�exn. try raise(exn)

with x ! math x with C ! 1 | y ! raise(y)

in test(C)

The type sheme for test is 8�; �

0

; Æ: exn[C

:

Pre; �℄

C

:

Æ; �

��! int[1

:

Pre; �

0

℄, expressing

that the funtion raises whatever exeption it reeives as argument, exept C. The

appliation test(C) has thus type int[1

:

Pre; �

1

℄ and e�et C

:

Æ

2

; �

2

. Hene no

exeption esapes. The appliation test(E) where E is another exeption distint

from C would have e�et C

:

Æ

3

; E

:

Pre; �

3

, thus showing that E may esape.

Finally, here is an (anedotal) example that is ill-typed in ML, but well-typed in

our type system due to the re�ned typing of pattern-mathing.

math 1 with x -> x | e -> raise e

Sine the �rst ase of the mathing is a ath-all, rule 6 lets us assign the type

exn[�

0

℄ for a fresh �

0

to the variable e bound by the seond ase, even though the

mathed value is an integer. Hene the expression is well-typed, and moreover we

obtain that it has type int[1

:

Pre; �℄ and raises no exeptions (its e�et is 8�

0

:�

0

).

3.6 Type soundness and orretness of the exeption analysis

We now establish the orretness of our exeption analysis: all unaught exeptions

are predited by our e�et system. This property is losely onneted to the type

soundness of our system.

Theorem 1. (Subjet redution.) If E

0

` a : �=' and a ) a

0

, then E

0

` a

0

:

�='

The proof of this theorem, as well as all other theorems in this setion, is given

in appendix C. A key lemma is the following property of pattern subtration.

Lemma 2. (Corretness of subtration.) If E

0

` v : �=' and M(v; p) is unde-

�ned (v does not math pattern p, as de�ned in �gure 1) and ` � � p ; �

0

, then

E

0

` v : �

0

='.

The orretness of our exeption analysis (all unaught exeptions are deteted)

is a simple orollary of subjet redution.

Theorem 3. (Corretness of exeption analysis.) Let a be a omplete program.

Assume E

0

` a : �=' and a

�

) raise v. Then, either v = C and ' = C

:

Pre; '

0

for some C and '

0

, or v = D(v

0

) and ' = D(�

0

);'

0

and E

0

` v

0

: �

0

=' for some

D; v

0

; �

0

; '

0

. In either ase, the unaught exeption v is orretly predited in the

e�et '.

Type soundness for our non-standard type system follows from the subjet redu-

tion property and the following lemma showing that a well-typed expression either

redues to a value or to an unaught exeption, or loops, but never gets \stuk".

Lemma 4. (Progress.) If E

0

` a : �=', then either a is a value v, or a is an

unaught exeption raise v, or there exists a

0

suh that a) a

0

.
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3.7 Prinipal types and inferene of types and exeptions

Just like the ML type system, our type system admits prinipal types, whih an be

omputed by a simple extension of the Damas-Milner algorithm, thus implementing

the exeption analysis. The inferene algorithm is shown in appendix B, along

with the assoiated uni�ation algorithm in appendix A. The existene of prinipal

uni�ers follows from the fat that our equational theory is syntati and regular

[R�emy 1993a℄.

Theorem 5. (Prinipal types.) There exists a type inferene algorithm I oper-

ating on losed terms a that satis�es the following onditions:

|(Corretness) If (�; ') = I(a) is de�ned, then ; ` a : �='.

|(Completeness) If there exists a type �

0

and a row '

0

suh that ; ` a : �

0

='

0

, then

(�; ') = I(a) is de�ned and there exists a substitution  suh that �

0

=  (�) and

'

0

=  (').

4. EXTENSION TO THE FULL OBJECTIVE CAML LANGUAGE

In this setion, we disuss the main issues in extending the analysis presented in

setion 3 to deal with the whole Objetive Caml language [Leroy et al. 1996℄.

4.1 Datatypes

User-de�ned datatypes (sum types) an be approximated in several di�erent ways,

depending on the desired trade-o� between preision and speed of the analysis.

We have onsidered the four approahes listed below (from most preise to least

preise) and illustrated in �gure 4.

4.1.1 Full approximation of datatypes. The �rst approah applies to datatypes

the same treatments as for exeptions: we annotate the type by a row ' approx-

imating the possible values of that type, as onstant onstrutors with presene

annotations, and unary onstrutors with types of arguments. Consider the soure-

level datatype de�nition

type ~� t = C

1

j : : : j C

n

j D

1

of �

1

j : : : j D

m

of �

m

where the �

i

are unannotated ML types. The propagation of approximations is

aptured by the following type shemes assigned to the onstrutors C

i

and D

i

:

C

i

: 8~�; �

0

: ~� t [C

i

:

Pre; �

0

℄

D

i

: 8~�; ~�; �

0

; �

00

: �

i

�

00

! ~� t [D

i

(�

i

); �

0

℄

where �

i

is the annotated type obtained from �

i

by adding distint fresh row vari-

ables taken from ~� on every type onstrutor that arries a row annotation. For

instane, given the delaration

type intlist = Nil | Cons of int * intlist

we assign Nil and Cons the type shemes

Nil : 8�: intlist[Nil

:

Pre; �℄

Cons : 8�

1

; �

2

; �

3

; �

4

: int[�

1

℄� intlist[�

2

℄

�

3

!

intlist[Cons(int[�

1

℄� intlist[�

2

℄); �

4

℄
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Cons

1 Cons

2 Nil

(a) Expression

intlist[Cons(� � �); �

1

℄

int[1

:

Pre; �

2

℄ intlist[Cons(� � �); �

3

℄

int[2

:

Pre; �

4

℄ intlist[Nil

:

Pre; �

5

℄

(b) Type, full approximation

intlist[Cons(� � �); Nil

:

Pre; �

1

℄

int[1

:

Pre; 2

:

Pre; �

2

℄

() Type, looped approximation

(1

:

Pre; 2

:

Pre; �) intlist

(d) Type, extra row parameter

intlist

(e) Type, no annotation

Fig. 4. Examples of data type approximations for the datatype intlist = Nil |

Cons of int * intlist

Reursive datatypes suh as intlist above naturally lead to reursive type expres-

sions. Consider:

let tail = �x. math x with Cons(hd,tl) ! tl | l ! l

During inferene, tl and l reeive types intlist[�

1

℄ and intlist[Cons(int[�

2

℄�

intlist[�

1

℄); �

3

℄ respetively. If only �nite type expressions are allowed, those two

types have no uni�er and the program is rejeted by the analysis. This is not

aeptable, so we extend our type system with reursive type expressions, that is,

type expressions that are in�nite but regular. On the example above, we obtain

the reursive type ��: intlist[Cons(int[�

2

℄ � �); �

3

℄ for the result of tail. The

extension of our type system with reursive type expressions involves replaing

term uni�ation by graph uni�ation in the type inferene algorithm. This auses

no algorithmi diÆulties, but we have not extended our proofs to the ase of

reursive type expressions.

4.1.2 \Looped" approximations for reursive datatypes. The approximation

sheme desribed above has the undesirable side-e�et of reording in the type

approximation the whole struture of a data struture given in extension. If

the data types involved are reursive, we may end up with very large type

approximations. Continuing the intlist example above, onsider the expression

`

n

= Cons(i

1

; Cons(i

2

; : : : ; Cons(i

n

; Nil) : : :)):

With the type of Cons given in setion 4.1.1, this expression is given an annotated

type that is of depth n and reords not only the fat that the list ontains the

integers i

1

: : : i

n

(an information that might be useful to analyze exeptions), but
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also the fat that the list has length n and that its �rst element is i

1

, the seond i

2

,

et. (See �gure 4b.) The latter piee of information is, on pratial examples,

useless for analyzing exeptions. Moreover, suh large approximations slow down

the analysis.

A solution to this problem omes from the following remark: as soon as one

of those big data strutures given in extension is passed to a suÆiently omplex

funtion, its big, unfolded annotated type is going to be uni�ed with a reursive

type, foring all the information in the big type to be folded bak into a smaller

reursive type. For instane, if we pass the list `

n

to the tail funtion shown above,

the type of the list will be uni�ed into

�

n

= ��: intlist[Cons(int[i

1

:

Pre; : : : ; i

n

:

Pre; �

1

℄� �); Nil

:

Pre; �

2

℄:

The idea, then, is to fore this folding into a reursive type when the data struture

is reated, by giving reursive, pre-folded types to the data type onstrutors. This

is easily ahieved by unifying, in the type of the onstrutors, all ourrenes of the

reursively-de�ned type in argument position with the ourrene of the reursively-

de�ned type in result position. For instane, in the ase of the Cons onstrutor of

type intlist, we start with the type

int[�

1

℄� intlist[�

2

℄

�

3

! intlist[Cons(int[�

1

℄� intlist[�

2

℄); �

4

℄

as in setion 4.1.1, then unify the two underlined intlist types, then general-

ize the free variables, obtaining Cons : 8�

1

; �

3

; �

4

: int[�

1

℄ � �

�

3

! � where � is

��:intlist[Cons(int[�

1

℄��); �

4

℄. With this type for Cons, the list `

n

is given the

reasonably ompat type �

n

shown above.

This tehnique of \looping" the types of onstrutors also works for parameterized

datatypes, as long as they are regular (the data type onstrutor is used with

the same parameters in the argument types of the onstrutors). For non-regular

datatypes suh as

type 'a nonreg = Leaf of 'a | Node of 'a list nonreg

the uni�ation of the ourrenes of nonreg in the type of Node would render

that onstrutor essentially useless. Fortunately, suh non-regular data types are

extremely rare in atual programs, so we an use full approximations for them

without impating performane.

4.1.3 Adding row parameters to datatypes. An alternative to annotating

datatype onstrutors with rows is to add row parameters to the type onstrutor

reeting the row annotations on exn, int and funtion types ontained within

the datatype. This tehnique is used by F�ahndrih et al [1998℄. For instane, the

ML datatype de�nition

type t = A of int | B of exn | C of t

is turned into

type (�

1

; �

2

) t = A of int[�

1

℄ | B of exn[�

2

℄ | C of (�

1

; �

2

) t

Two parameters �

1

and �

2

were added in order to reet in the type t the possible

values of types int and exn ontained in that type. The type t itself is not anno-

tated by a row reording whih onstrutors A, B or C are present in values of that
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type. The net e�et is to forget the struture of terms of type t, while orretly

remembering the integers and exeption values ontained in the struture.

In pratie, this solution appears to be slightly less preise and slightly more

eÆient than full approximations of non-reursive datatypes and looped approxi-

mations of reursive datatypes: type expressions are smaller, but in the ase of t

above, looped approximations an express the fat that a value of type t laks

the onstrutor C, while this is not aptured in the solution based on extra row

parameters.

On datatypes that are not annotated by a row, we an no longer perform type sub-

tration during pattern-mathing, sine we have no approximation on the struture

of values of that type. Hene, we simply onsider that subtration is the identity

relation on those datatypes.

4.1.4 Datatypes without any approximations. For maximal speed and minimal

preision, we an put no annotations at all on a datatype: neither a row approx-

imation nor extra row parameters. This way, we forget not only the struture of

values of that type, but also the exeptions, funtions and base values ontained in

that type. Of ourse, this fores us to make very pessimisti assumptions on val-

ues extrated from a datatype without approximation. For instane, if we extrat

an integer by pattern-mathing on suh a datatype, we must give it type int[>℄

sine it an really be any integer. This is reeted in the types of onstrutors by

putting > annotations on all annotated types in the onstrutor argument. In the

intlist example above, if we hoose not to annotate intlist at all, we must give

its onstrutors the following types:

Nil : intlist

Cons : 8�: int[>℄� intlist

�

! intlist

This approah assumes that we have > annotations for all types, while the type

system from setion 3 only has > for type int. However, we an allow> to annotate

other base types suh as float and string. For exeptions and other datatypes,

sine there are �nitely many onstrutors, we an use a (potentially reursive) row

enumerating all onstrutors of the datatype instead of a built-in onstant >. In

the ase of lists, for instane, we an use the following \top row" >

list

(�; �):

>

list

(�; �) = ��

0

: Nil

:

Pre; Cons(� � � list[�

0

℄); �

The annotated type � list[>

list

(�; �)℄ orretly represents any list of elements of

type � .

The \no approximation" approah desribed in this paragraph may look exes-

sively oarse, but is atually quite e�etive for datatypes that introdue no base

types, nor exeption types, nor funtion types. Prominent examples are the built-

in ML types � list and � array, where the � parameter already reords all the

information we need about list and array elements. For instane, a list of funtions

from integers to booleans has type (int['

1

℄

'

2

! bool['

3

℄) list, where '

2

denotes

the union of the e�ets of all funtions present in the list. A funtion extrated

from that list and applied has e�et '

2

, and not any exeption as one might naively

expet.
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4.1.5 Choosing a datatype approximation. The hoie between the four datatype

analysis strategies desribed above an be done on a per-datatype basis, depend-

ing on the shape of the datatype de�nition. We have onsidered several simple

heuristis to perform this hoie. Our �rst prototype used full approximations for

non-parameterized datatypes, and no approximations for parameterized datatypes.

Our urrent prototype uses full approximations for non-reursive or non-regular

datatypes, looped approximations for reursive datatypes, and no approximations

for built-in types without interesting struture (arrays and oating-point numbers,

for instane). Another fator that we plan to integrate in the heuristi is whether

the datatype introdues any exeption type, funtion type, or base type likely to

be an exeption argument (string and int, essentially); if not, we ould favor the

\no approximation" approah.

4.2 Tuples and reords

Tuple types are not approximated speially: eah omponent of the tuple type ar-

ries its own annotation. For instane, int[1

:

Pre; 2

:

Pre; �℄�int[3

:

Pre; 4

:

Pre; �

0

℄

stands for the set of four pairs f1; 2g�f3; 4g. Pattern subtration on tuple types is

not pointwise subtration, whih would lead to inorret results. Consider the type

int[1

:

Pre; �℄ � int[2

:

Pre; 3

:

Pre; �

0

℄. Subtrating pointwise the pattern (1; 2)

from this type would lead to type int[1

:

Æ; �℄ � int[2

:

Æ

0

; 3

:

Pre; �

0

℄, whih is in-

orret sine the value (1; 3) is no longer in the set. Therefore, the urrent imple-

mentation perform no subtration on tuples: we take ` (�

1

��

2

)�(p

1

; p

2

); �

1

��

2

.

For a more re�ned behavior, we ould perform subtration on one of the ompo-

nents if all other omponents are mathed against ath-all patterns. For instane,

we ould take ` (�

1

� �

2

)� (p

1

; x

2

); �

0

1

� �

2

if ` �

1

� p

1

; �

0

1

.

Unlike in SML, reords in Caml are delared and mathed by name. We analyze

them like datatypes, by annotating the name of the reord type by a row of a

partiular form. The row ontains exatly one element reording the annotated

type of every �eld. Pattern subtration for reord types behaves as in the ase of

tuples.

To summarize, the extended type algebra for datatypes, tuples and reords is as

follows:

Type expressions: � ::= : : :

j ~� t['℄ approximated type onstrutor

j ~� t non-approximated type onstrutor

j �

1

� : : :� �

n

tuple type

Row elements: " ::= : : : j flbl

1

: �

1

; : : : ; lbl

n

: �

n

g

4.3 Mutable data strutures

Mutable data strutures (referenes, arrays, reords with mutable �elds) are

trivially handled: it suÆes to introdue the standard value restrition on let-

generalization [Wright 1995℄. This results in a preise approximation of mutable

data. For instane, an array of funtions has type (�

1

'

! �

2

) array, where ' is

the union of the latent e�ets of all funtions stored in the array. In ontrast,

ontrol-ow analyses would lose trak of whih funtions are stored in the array,
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and thus also of the exeptions they may raise, unless supplemented by a region

analysis (aliasing analysis).

4.4 Objets and lasses

Beause our system already uses reursive types, OCaml-style objets do not add

signi�ant omplexity to our framework. We just need to extend the type algebra

with objet types, that is, polymorphi reords of methods [R�emy and Vouillon

1998℄. The type of eah method is annotated by its latent e�et. No extension to

rows and row elements are needed. Sine there are no objet patterns in pattern-

mathing, pattern subtration needs not be modi�ed.

The OCaml lass language interferes very little with the exeption analysis. No

signi�ant modi�ations to the lass type-heker are needed.

4.5 Modules and funtors

Strutures are assigned annotated signatures ontaining annotated types for the

value omponents. Type abbreviations are urrently handled by systemati expan-

sion of their de�nitions

4

.

For mathing a struture S against a signature �, there are two possible seman-

tis. The opaque semantis says that the only things known about the restrition

(S : �) is what � publiizes. In our ase, sine user-provided signatures � ontain

no annotations, this amounts to forgetting the result of the analysis of S and assume

> annotation on all value omponents of the restrited struture. The transparent

semantis simply hek that S mathes �, but the restrition (S : �) retains all

information known about S. We implemented the transparent semantis, as the

opaque semantis results in too muh information loss. (The opaque semantis also

preludes hoosing datatype annotations based on the de�nition of the datatype.)

Similar problems arise with funtors. All is known about the parameter of a

funtor is its syntati signature. Hene, a naive analysis would assume > annota-

tion on all omponents of the funtor argument. For better preision, one ould use

tehniques based on onjuntive types suh as [Shao and Appel 1993℄. Other issues

with funtors are still unlear, suh as the generativity of exeption delaration in

funtor bodies, and the impat of the \exeption polymorphism" o�ered by funtors

(a funtor an take one or several exeptions as arguments, and have a di�erent

exeption behavior depending on whether those arguments are instantiated later

with idential or di�erent exeptions).

For simpliity, we hose not to analyze funtors when they are de�ned, but instead

expand the funtor body at eah appliation and re-analyze the �-redued body.

Although this transformation inreases the size of the analyzed soure, the Caml

programs we are interested in use only small funtors and this simple approah to

analyzing funtors works well in pratie.

4

This might ause performane problems in onjuntion with OCaml objets, whih relies in-

tensively on type abbreviations to make type expressions more manageable [R�emy and Vouillon

1998℄. If this turns out to be a problem, we ould also handle abbreviations by adding extra row

parameters to the type onstrutors, as desribed in [F�ahndrih et al. 1998℄ and in setion 4.1.3.
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4.6 Separate analysis

Transparent signature mathing preludes \true" separate analysis, where any mod-

ule an be analyzed separately knowing only the syntati signatures of the modules

it imports. We an still do \bottom-up" separate analysis, however: a module an

be analyzed separately provided the implementations of its imports have been an-

alyzed already, and their annotated signatures inferred.

Sine an annotated signature for a module may ontain free row variables (e.g. if

the module de�nes mutable strutures), separately analyzing several lients of that

module may result in independent instantiations of those free variables. Those in-

stantiations are reorded in the result of the analysis of eah module, and reoniled

in a �nal \linking" pass before displaying the results of the analysis.

4.7 Polymorphi reursion

Polymorphi reursion as introdued by Myroft [1984℄ is not needed to type-hek

the soure OCaml language, but is desirable to enhane the preision of our exep-

tion analyzer. With ML-style monomorphi reursion, we obtain false positives on

funtions that reursively all themselves inside a try. . . with. Consider:

let re f =

�x. try if ... then raise(C) else f(x)

with C ! () | y ! raise y

The latent e�et inferred for f is C; � beause the e�et of f(x) is uni�ed with that

of raise(C) at a time where the type of f is not yet generalized. With polymorphi

reursion, we an assign f the type sheme 8�; �: �

�

! unit both outside and inside

the reursion; it is a fresh instane of that type sheme that gets uni�ed with the

e�et of raise(C), thus not polluting the type sheme of f.

Although type inferene with polymorphi reursion is undeidable [Kfoury et al.

1993℄, there exists semi-algorithms that work very well in pratie, suh as Hen-

glein's semi-algorithm [Henglein 1993℄. We experimented with a home-grown in-

omplete algorithm based on restrited �xpoint iteration, whih always terminates

but may return non-prinipal types, and obtained good results. This algorithm is

desribed in the seond author's PhD thesis [Pessaux 1999℄.

5. EXPERIMENTAL RESULTS

In this setion, we present some experimental results obtained with our implemen-

tation. Currently, our analyzer implements all extensions desribed in setion 4

exept objets

5

. The analyzer is ompiled with the OCaml 2.00 native-ode om-

piler and runs on a Pentium II 333 Mhz workstation under Linux.

5.1 Analysis speed

Figure 5 gives timings for the analysis of various small to medium-sized OCaml

programs. We give timings both without and with polymorphi reursion. For

omparison, we also give the time OCaml takes to parse and type-hek those

5

The analysis of objets and lasses was prototyped separately and remains to be merged in our

main implementation.
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Test program Size Analysis Analysis speed Typing

(lines) time (lines/se.) time

1. Hu�man ompression 233 0.07/0.08 s 3300/2900 l/s 0.08 s

2. Knuth-Bendix 441 0.14/0.16 s 3200/2800 l/s 0.14 s

3. Doteur (Eliza lone) 556 0.81/0.83 s 680/670 l/s 0.10 s

4. Lexer generator 1169 0.27/0.32 s 4300/3700 l/s 0.20 s

5. Nulei 2919 1.90/1.88 s 1530/1550 l/s 0.62 s

6. OCaml standard library 3082 2.52/2.52 s 1200/1200 l/s 1.89 s

7. Analyzer of .h �les 3088 0.54/0.58 s 5700/5300 l/s 0.27 s

8. Our exeption analyzer 12235 10.3/16.1 s 1200/760 l/s 3.86 s

9. OCaml byteode ompiler 17439 12.6/22.9 s 1400/760 l/s 4.00 s

Fig. 5. Experimental results (without polymorphi reursion/with polymorphi

reursion)

programs. (The analysis times given inlude parsing and pre-proessing as well as

analysis.)

The overall performanes are quite good, in the order of 1000{2000 lines of soure

per seond. Programs that ontain large data strutures given in extension (Nulei,

Doteur) take longer to analyze due to the large size of the rows annotating the types

of those data strutures. On average, the exeption analysis takes twie as muh

time as OCaml type inferene; the ratio ranges between 1 (on simple programs)

and 8 (on Doteur, beause of the large onstant data strutures). Polymorphi

reursion inreases the analysis time by a fator of 1.5 on benhmark 8 and 1.8 on

benhmark 9, but has negligible impat on the other benhmarks. The slowdown

remains aeptable ompared with the inrease in preision.

5.2 Preision of the analysis

Generally speaking, exeptions reported as esaping by our analyzer fall in four

lasses:

|True positives: these are exeptions that an atually esape during an exeution

of the program. These indiate potential errors in the program, and require

programmer intervention.

|True negatives: a onsequene of using presene annotations in rows is that the

analysis an also display exeptions that are raised in the program, but provably

always handled. The programmer an be on�dent that those exeptions are

orretly treated in the program.

|Unavoidable false positives: these exeptions annot atually esape during any

exeution of the program, but disovering this fat is beyond the aims of our

analysis. Typial examples are the exeptions raised on a division by zero or

an out-of-bounds array aess: our analysis assumes that those exeptions an

always be raised by a division or an array aess, although the struture of the

program may be suh that the divisor is never null and the array index is always

within bounds. Removing those false positives requires either extra analyses,

programmer-supplied invariants, or even general program proof.
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|Avoidable false positives: these false positives result from a lak of preision in

our analysis, and ould oneivably be avoided with a more preise traking of

the ow of values and exeptions. Some of those false positives are aused by

the bidiretional ow of information inherent in our uni�ation-based analysis;

others orrespond to insuÆiently polymorphi typing of reursive de�nitions.

We have manually inspeted the output of the analyzer on our benhmark pro-

grams. Programs 1, 3, 4, 5 and 7 have a relatively simple exeption behavior, and

our analysis reports no avoidable false positives for those programs, but only true

positives and \division by zero" and \array bound error" exeptions.

For Knuth-Bendix, whih has a quite ompliated exeption struture, 8 ex-

eptions (Failure with 8 di�erent string arguments) appearing in the soure are

orretly reported as non-esaping; 7 exeptions (one Invalid_argument and 6

Failure) are reported as potentially esaping, and an atually our in some

irumstanes. Without polymorphi reursion, the analysis reports two false pos-

itives (one Not_found and one Failure), whih orrespond to reursive funtions

ontaining try . . . with around reursive alls. Adding polymorphi reursion as

disussed in setion 4.7 removes one of those false positives. The other one is still

there, beause our inomplete inferene algorithm for polymorphi reursion fails

to give a type polymorphi enough to one of the funtions. We believe the inferene

algorithm ould be strengthened to eliminate the other false positive as well.

The larger examples 8 and 9 exhibit another soure of avoidable false positives:

mutable data strutures (referenes and arrays) ontaining funtions. As men-

tioned in setion 4.3, the row variables appearing in approximations of mutable

data strutures are not generalized, hene \ollet" all exeptions at their use sites.

For instane:

let r = ref(�x. ...) in

let f = �y. if ond then !r y else raise(C)

in !r 0

The body of let r is typed under the initial assumption that r has type int

�

! int

where � is not generalized. When typing f, the e�et of raise C is uni�ed with that

of !r y, hene � beomes C : Pre; �

0

and the appliation !r 0 appears to raise C.

6. RELATED WORK

6.1 Exeption analyses for ML

Several exeption analyses for ML are desribed in the literature. Guzm�an and

Su�arez [1994℄ develop a simple type and e�et system to keep trak of esaping

exeptions. Their system does not handle exeptions as �rst-lass values, nor ex-

eptions arrying arguments. An e�et system with the same harateristis is

presented in setion 5.4.2 of [Nielson et al. 1999℄. The �rst exeption analysis

proposed by Yi [1998℄ is based on general abstrat interpretation tehniques, and

runs too slowly to be usable in pratie. Later, Yi and Ryu [1997℄ developed a

more eÆient analysis roughly equivalent to a onventional ontrol-ow analysis to

approximate the all graph and the values of exeptions, followed by a data-ow

analysis to estimate unaught exeptions.
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F�ahndrih and Aiken [1997; 1998℄ have applied their BANE toolkit for onstraint-

based program analyses to the problem of analyzing unaught exeptions in SML.

Their system uses a ombination of inlusion onstraints (as in ontrol-ow analy-

ses) to approximate the ontrol ow, and equality onstraints (uni�ation) between

annotated types to keep trak of exeption values.

To ompare performanes between [Yi and Ryu 1997℄, [F�ahndrih and Aiken

1997℄ and our analyzer, we used two of our benhmarks for whih we have a faithful

SML translation: Knuth-Bendix and Nulei. The times reported below are of the

form t

1

=t

2

, where t

1

is the time spent in exeption analysis only, and t

2

is the total

program analysis time, inluding parsing and type-heking in addition to exeption

analysis.

Test program Yi-Ryu BANE Our system

(version 0.98) (version 1.5)

Knuth-Bendix 0.7/1.0 s 1.6/2.2 s 0.06/0.14 s

Nulei 1.8/5.2 s 3.3/7.6 s 1.4/1.9 s

From these �gures, our exeption analysis appears to be the fastest of the three.

However, there are many external fators that inuene the total running times of

the analyses (suh as the Yi-Ryu and BANE analyses being ompiled by SML/NJ

while ours is ompiled by Objetive Caml), so the �gures above are not fully on-

lusive.

The main di�erene between the analyses of [Yi and Ryu 1997℄, [F�ahndrih and

Aiken 1997℄, and ours is the approximation of arguments arried by exeptions:

they approximate only exeption and funtion values arried by exeptions, but our

analysis is the only one that also approximates exeption arguments that are strings,

integers, or datatypes. As explained in setion 2.3, approximating all arguments of

exeptions is ruial to obtain preise analysis of many real appliations.

In theory, our uni�ation-based analysis should be less preise than analyses

based on inlusion onstraints suh as [Yi and Ryu 1997; F�ahndrih and Aiken

1997℄: the bidiretional propagation of information performed by uni�ation auses

exeption e�ets to \leak" in types where those exeptions annot atually our.

It is easy to onstrut arti�ial examples of suh leaks, e.g. by replaing let-bound

identi�ers by �-bound identi�ers. However, those examples do not seem to our in

atual programs. The only leaks we observed in atual programs were related either

to de�ienies of our inomplete algorithm for typing polymorphi reursion, or to

funtions ontained inside mutable data strutures. On those two ases, the analysis

of [F�ahndrih and Aiken 1997℄ obtains more preise results than our analysis.

6.2 Other related work

Our use of rows with row variables and presene annotations to approximate values

of base types and sum types is essentially idential to R�emy's typing of extensible

variants [R�emy 1989℄. Another appliation of R�emy's enoding is the soft typing

system for Sheme of Wright and Cartwright [1997℄. Like our analysis, this soft

typing system uses presene ags to keep trak of whether a value an be a ons,

an integer, an atom, et. Being intended for Sheme, their analysis is speialized to

a �xed algebra of S-expressions, while ours also handles extensible and user-de�ned

data types. Cartwright and Felleisen [1996℄ briey ompare the uni�ation-based
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approah to soft typing with another approah using set-based analysis.

There is a natural onnetion between exeption analysis and type inferene for

extensible variants: using the well-known funtional enoding of exeptions (where

eah subexpression is transformed to return a value of a variant type, either an

exeption tag or NormalResult(v) where v is the value of the subexpression), esti-

mating unaught exeptions is equivalent to inferring preise variant types. Pottier

[1998℄ outlines an exeption analysis thus derived from a type inferener for ML

with subtyping.

Re�nement types [Freeman and Pfenning 1991℄ and the dependent types of Xi

and Pfenning [1999℄ also introdue annotations on types to haraterize subsets of

ML's data types. Our approah is less ambitious than re�nement types, in that it

does not try to apture \deep" strutural invariants of reursive data strutures;

on the other hand, type inferene is muh easier.

The priniples of e�et systems were studied extensively ira 1990 [Luassen

and Gi�ord 1988; Talpin and Jouvelot 1994℄, but few pratial appliations have

been developed sine. An impressive appliation is the region analysis of [Tofte

and Talpin 1997; Tofte and Birkedal 1998℄. Like ours, its preision is improved by

typing reursion polymorphially.

Several program analyses based on uni�ation and running in quasi-linear time

have been proposed as faster alternatives to more onventional dataow analy-

ses. Two well-known examples are Henglein's tagging analysis [Henglein 1992℄ and

Steensgaard's aliasing analysis [Steensgaard 1996℄. Uni�ation-based analyses have

also been applied to the detetion of year 2000 problems in Cobol programs [Ei-

dorf et al. 1999; Ramalingam et al. 1999℄. Baker [1990℄ suggests other examples of

uni�ation-based analyses.

The Churh projet has investigated the use of intersetion types for program

analyses [Dimok et al. 1997℄. It an be argued that intersetion types are a more

natural way to analyze reursive funtions than polymorphi reursion. However,

type inferene for intersetion types is also undeidable, and inferene algorithms

for �nite-rank fragments have only reently been proposed [Kfoury and Wells 1999℄.

The extended stati heking projet [Leino and Nelson 1998℄ develops stati

debugging tools for Modula-3 and Java that keep trak of unaught exeptions.

Extended stati heking is more ambitious than our analysis, in that it also de-

tets dereferening of null pointers, out-of-bound array aesses, and mutex loking

errors in multi-threaded programs. Consequently, it relies on programmer-supplied

annotations (e.g. preonditions to funtions and methods).

7. CONCLUSIONS AND FUTURE WORK

It is often said that uni�ation-based program analyses are faster, but less pre-

ise than more general onstraint-based analyses suh as CFA or SBA. For ex-

eption analysis, our experiene indiates that a ombination of uni�ation, let-

polymorphism, and polymorphi reursion is in pratie almost as preise as analy-

ses based on inlusion onstraints. (The only ase where our analysis is notieably

less preise than inlusion onstraints is when referenes to funtions are used inten-

sively.) The running times of our algorithm seem exellent (although its theoretial

omplexity is at least as high as that of ML type inferene). In turn, this good eÆ-

ieny of our analysis allows us to keep more information on exeption arguments
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than the other exeption analyses, inreasing greatly the preision of the analysis on

ertain ML programs. Thus, we see an interesting ase of \less is more", where an a

priori impreise tehnology (uni�ation) allows to improve eventually the preision

of the analysis.

Some engineering issues remain to be solved before our analysis an be applied

to large ML appliations. The main pratial issue is displaying the results of the

analysis in a readable way. The volume of information ontained in annotated type

expressions an be overwhelming. The implementation of our analysis developed by

the seond author provides a graphial browser for annotated types that allows the

programmer to selet di�erent levels of display for eah annotated type, abstrating

some of the information. It remains to see the e�etiveness of this tool on large

programs.

Another diretion for future work is to ombine our analysis with array bound

analyses and integer interval analyses, in order to eliminate some of the \unavoid-

able false positives" urrently reported.

APPENDIX

A. THE UNIFICATION ALGORITHM

In this appendix, we give the uni�ation algorithm for our type algebra modulo the

two equations (1) and (2). We de�ne the head onstrutor H(") of a row element "

as follows:

H(i

:

�) = i H(C

:

�) = C H(D(�)) = D

The algorithm is in the style of Robinson's uni�ation algorithm, and handles the

left ommutativity axiom (equation (1)) like in [R�emy 1993b℄. Namely, to unify two

onstruted rows "

1

;'

1

and "

2

;'

2

when the head onstrutors of "

1

and "

2

di�er,

we pik a fresh row variable � of the appropriate kind and solve the two equations

'

1

= "

2

; � and '

2

= "

1

; �. As shown in appendix C, theorem 21, any solution of

those equations also solves "

1

;'

1

= "

2

;'

2

.

To make preise the generation of \fresh" row variables during uni�ation, we

add an extra parameter V and an extra result V

0

to the uni�ation algorithm, whih

beomes mgu

V

(Q) = ( ; V

0

). The parameter V is a set of variables that must not

be used as fresh variables during uni�ation. We always assume V �nite, so that

it is always possible to hoose a row variable not in V and of any given kind. The

seond result V

0

is the union of V and of the set of variables that have been used

as fresh variables during uni�ation. We write mgu

V

(Q) Æ � to stand for ( Æ �; V

0

)

where ( ; V

0

) = mgu

V

(Q).

mgu

V

(;) = (id ; V )

Uni�ation between types:

mgu

V

(f� = �g [Q) = mgu

V

(Q)

mgu

V

(f� = �g [Q) = mgu

V

(Qf� �g) Æ f� �g if � =2 FV (�)

mgu

V

(f� = �g [Q) = mgu

V

(Qf� �g) Æ f� �g if � =2 FV (�)

mgu

V

(fint['

1

℄ = int['

2

℄g [Q) = mgu

V

(f'

1

= '

2

g [Q)

mgu

V

(fexn['

1

℄ = exn['

2

℄g [Q) = mgu

V

(f'

1

= '

2

g [Q)
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mgu

V

(f�

1

'

1

! �

0

1

= �

2

'

2

! �

0

2

g [Q) = mgu

V

(f�

1

= �

2

;'

1

= '

2

; �

0

1

= �

0

2

g [Q)

Uni�ation between rows:

mgu

V

(f� = �g [Q) = mgu

V

(Q)

mgu

V

(f� = 'g [Q) = mgu

V

(Qf� 'g) Æ f� 'g if � =2 FV (')

mgu

V

(f' = �g [Q) = mgu

V

(Qf� 'g) Æ f� 'g if � =2 FV (')

mgu

V

(f> = >g [Q) = mgu

V

(Q)

mgu

V

(f(i

:

�;') = >g [Q) = mgu

V

(f� = Pre;' = >g [Q)

mgu

V

(f> = (i

:

�;')g [Q) = mgu

V

(f� = Pre;' = >g [Q)

mgu

V

(f("

1

;'

1

) = ("

2

;'

2

)g [Q) = mgu

V

(f"

1

= "

2

;'

1

= '

2

g [Q)

if H("

1

) = H("

2

)

mgu

V

(f("

1

;'

1

) = ("

2

;'

2

)g [Q) = mgu

V [f�g

(f'

1

= ("

2

; �);'

2

= ("

1

; �)g [Q)

if H("

1

) 6= H("

2

)

and � =2 V and � not free in the left-hand side

and � has kind T (S [ fH("

1

); H("

2

)g)

where T (S) is the kind of "

1

;'

1

and "

2

;'

2

and T stands for either EXN or INT

Uni�ation between row elements:

mgu

V

(f(i

:

�

1

) = (i

:

�

2

)g [Q) = mgu

V

(f�

1

= �

2

g [Q)

mgu

V

(f(C

:

�

1

) = (C

:

�

2

)g [Q) = mgu

V

(f�

1

= �

2

g [Q)

mgu

V

(fD(�

1

) = D(�

2

)g [Q) = mgu

V

(f�

1

= �

2

g [Q)

Uni�ation between presene annotations:

mgu

V

(fÆ = �g [Q) = mgu

V

(QfÆ  �g) Æ fÆ  �g

mgu

V

(f� = Æg [Q) = mgu

V

(QfÆ  �g) Æ fÆ  �g

mgu

V

(fPre = Preg [Q) = mgu

V

(Q)

If none of the ases above is appliable, mgu

V

(Q) is unde�ned.

B. THE TYPE INFERENCE ALGORITHM

The type inferene algorithm de�ned below is similar to Damas and Milner's W

algorithm. One di�erene is that it infers not only the type for the given expression,

but also its e�et. Another di�erene is that we make expliit the notion of \fresh"

variable, so that the laim of ompleteness of W an be made preise. Hene,

we add an extra parameter V and an extra result V

0

to the algorithm W , whih

beomes W (E; a; V ) = (�; '; �; V

0

). As in the ase of the uni�ation algorithm, the

parameter V is a set of type variables whih annot be used as fresh variable by

this exeution of the W algorithm. The result V

0

is V plus all type variables that

have been used as fresh variables by this exeution of W , and therefore must not

be used again as fresh variables later.

The result of the algorithm W (E; a; V ) is the quadruple (�; '; �; V

0

) de�ned by

indution on a as follows:
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|If a is x (with x 2 Dom(E)):

let � =2 V be a fresh row variable of kind EXN(;)

take (�; V

0

) = Inst(E(x); V [ f�g) and ' = � and � = id .

|If a is i:

let � =2 V be a fresh row variable of kind INT(fig)

let �

0

=2 V be a fresh row variable of kind EXN(;)

take � = int[i : Pre; �℄ and ' = �

0

and � = id and V

0

= V [ f�; �

0

g.

|If a is �x: a

1

:

let � =2 V be a fresh type variable

let (�

1

; '

1

; �

1

; V

1

) =W (E � fx : �g; a

1

; V [ f�g)

let � =2 V

1

be a fresh row variable of kind EXN(;)

take � = �

1

(�)

'

1

! �

1

and ' = � and � = �

1

and V

0

= V

1

[ f�g.

|If a is a

1

(a

2

):

let (�

1

; '

1

; �

1

; V

1

) =W (E; a

1

; V )

let (�

2

; '

2

; �

2

; V

2

) =W (�

1

(E); a

2

; V

1

)

let � =2 V

2

be a fresh type variable

let (�; V

3

) = mgu

V

2

[f�g

f�

2

(�

1

) = �

2

'

2

! �; �

2

('

1

) = '

2

g

take � = �(�) and ' = �('

2

) and � = � Æ �

2

Æ �

1

and V

0

= V

3

.

|If a is let x = a

1

in a

2

:

let (�

1

; '

1

; �

1

; V

1

) =W (E; a

1

; V )

let (�

2

; '

2

; �

2

; V

2

) =W (�

1

(E)� fx : Gen(�

1

; �

1

(E); '

1

)g; a

2

; V

1

)

let (�; V

3

) = mgu

V

2

f�

2

('

1

) = '

2

g

take � = �(�

2

) and ' = �('

2

) and � = � Æ �

2

Æ �

1

and V

0

= V

3

.

|If a is math a

1

with p! a

2

j x! a

3

:

let (�

1

; '

1

; �

1

; V

1

) =W (E; a

1

; V )

let (E

0

; �

0

;  ; V

0

1

) = Patsubtr(p; �

1

; V

1

)

let (�

2

; '

2

; �

2

; V

2

) =W ( (�

1

(E))�E

0

; a

2

; V

0

1

)

let (�

3

; '

3

; �

3

; V

3

) =W (�

2

( (�

1

(E))) � fx : �

2

(�

0

)g; a

3

; V

2

)

let (�; V

4

) = mgu

V

3

f�

3

(�

2

) = �

3

; �

3

('

2

) = '

3

; �

3

(�

2

( ('

1

))) = '

3

g

take � = �(�

3

) and ' = �('

3

) and � = � Æ �

3

Æ �

2

Æ  Æ �

1

and V

0

= V

4

.

|If a is C:

let � =2 V be a fresh row variable of kind EXN(fCg)

let �

0

=2 V be a fresh row variable of kind EXN(;)

take � = exn[C : Pre; �℄ and ' = �

0

and � = id and V

0

= V [ f�; �

0

g.

|If a is D(a

1

):

let (�

1

; '

1

; �

1

; V

1

) =W (E; a

1

; V )

let (�

2

; V

2

) = Inst(TypeArg(D); V

1

)

let (�; V

3

) = mgu

V

2

f�

2

= �

1

g

let � =2 V

3

be a fresh row variable of kind EXN(fDg)

let �

0

=2 V

3

[ f�g be a fresh row variable of kind EXN(;)

take � = exn[D(�(�

1

)); �℄ and ' = �

0

and � = � Æ �

1

and V

0

= V

3

[ f�; �

0

g.

|If a is try a

1

with x! a

2

:

let (�

1

; '

1

; �

1

; V

1

) =W (E; a

1

; V )

let (�

2

; '

2

; �

2

; V

2

) =W (�

1

(E)� fx : exn['

1

℄g; a

2

; V

1

)

let (�; V

3

) = mgu

V

2

f�

2

(�

1

) = �

2

g
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take � = �(�

2

) and ' = �('

2

) and � = � Æ �

2

Æ �

1

and V

0

= V

3

.

If none of the ases above applies, or if one of the uni�ation steps fails, then type

inferene fails and W (E; a; V ) is unde�ned.

The type inferene algorithm I for losed terms mentioned in setion 3.7, the-

orem 5, is de�ned in terms of W as follows: if W (;; a; ;) = (�; '; �; V

0

), then

I(a) = (�; '); if W (;; a; ;) is unde�ned, then so is I(a).

The auxiliary funtion Inst(�; V ) (trivial instane)

Inst(8�

i

; �

j

; Æ

k

: �; V ) is (�f�

i

 �

0

i

; �

j

 �

0

j

; Æ

k

 Æ

0

k

g; V [ f�

0

i

; �

0

j

; Æ

0

k

g) where

�

0

i

; �

0

j

; Æ

0

k

are fresh variables not in V suh that �

0

j

and �

j

have the same kind for

all j.

The auxiliary funtion Patsubtr (typing of patterns and pattern subtration)

Patsubtr(p; �; V ) is the quadruple (E; �

0

; �; V

0

) de�ned by indution on p as follows:

|If p is x:

let � =2 V be a fresh type variable

take E = fx : �g and �

0

= � and � = id and V

0

= V [ f�g.

|If p is i:

let � =2 V be a fresh row variable of kind INT(fig)

and Æ =2 V [ f�g be a fresh presene variable

let (�; V

1

) = mgu

V [f�;Æg

f� = int[i : Æ; �℄g

let Æ

0

=2 V

1

be a fresh presene variable

take E = ; and �

0

= int[i : Æ

0

;�(�)℄ and � = � and V

0

= V

1

[ fÆg.

|If p is C:

let � =2 V be a fresh row variable of kind EXN(fCg)

and Æ =2 V [ f�g be a fresh presene variable

let (�; V

1

) = mgu

V [f�;Æg

f� = exn[C : Æ; �℄g

let Æ

0

=2 V

1

be a fresh presene variable

take E = ; and �

0

= exn[C : Æ

0

;�(�)℄ and � = � and V

0

= V

1

[ fÆg.

|If p is D(p

1

):

let �

1

= Inst(TypeArg(D))

let (E

1

; �

0

1

; �

1

; V

1

) = Patsubtr(p

1

; �

1

; V )

let � =2 V

1

be a fresh row variable of kind EXN(fDg)

let (�; V

2

) = mgu

V

1

[f�g

f� = exn[D(�

1

(�

1

)); �℄g

take E = �(E

1

) and �

0

= exn[D(�(�

0

1

));�(�)℄ and � = � Æ �

1

and V

0

= V

2

.

C. PROOFS

In this appendix, we prove the laims made in setions 3.6 and 3.7. More detailed

proofs an be found in the seond author's thesis [Pessaux 1999℄.

C.1 Properties of the typing judgement

We say that an environment E is well-formed if for all x 2 Dom(E), E(x) is

8~�; ~�;

~

Æ: � with ` � wf.

Lemma 6. (Typings are well-kinded.) Let E be a well-formed environment.

Then, E ` a : �=' implies ` � wf and ` ' :: EXN(;).
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Proof. We �rst show (by indution on p) that if ` � wf and ` p : � ) E, then

E is well formed, and if ` � � p; �

0

, then ` �

0

wf. The result then follows by an

easy indution on the derivation of E ` a : �='.

Lemma 7. (Commutation between instantiation and substitution.) If � � �,

then �(�) � �(�) for all substitutions �.

Proof. Straightforward by de�nition of �.

In the following lemma, we write Rng(�) for the range of the substitution �, that

is,

S

fFV (�(v)) j v 2 Dom(�)g. We say that a type variable v is out of reah of a

substitution � if v =2 Dom(v) [Rng(v). In other terms, v is out of reah of � if and

only if �(v) = v, and for all variables v

0

6= v, v is not free in �(v

0

).

Lemma 8. (Commutation between generalization and substitution.) If all vari-

ables in FV (�) n (FV (E) [ FV (')) are out of reah of the substitution �, then

Gen(�(�); �(E); �(')) = �(Gen(�; E; ')).

Proof. It is easy to see that a variable � out of reah of � is free in a type �

if and only if it is free in �(�). Hene, FV (�(�)) n (FV (�(E)) [ FV (�('))) =

FV (�) n (FV (E) [ FV (')), and the result follows.

Lemma 9. (Typing is stable by substitution.) Let � be a substitution.

(1 ) If ` p : � ) E then ` p : �(�)) �(E).

(2 ) If ` � � p; �

0

then ` �(�) � p; �(�

0

).

(3 ) If E ` a : �=' then �(E) ` a : �(�)=�(').

Proof. The proof of 1 and 2 is by strutural indution on p. The proof of 3 is

by strutural indution on a and uses 1 and 2. For the base ase a = x, we apply

lemma 7. For the ase a = (let x = a

1

in a

2

), we �rst rename the generalized

variables in the typing of a

1

so that they are out of reah of �, then apply lemma 8

to the typing of a

2

.

We say that a shema � is more general than a shema �

0

, and write � � �

0

, if

all instanes of �

0

are also instanes of �.

Lemma 10. (Typing is stable under more general hypotheses.) Assume

Dom(E

1

) = Dom(E

2

) and E

2

(x) � E

1

(x) for all x 2 Dom(E

1

). Then,

E

1

` a : �=' implies E

2

` a : �='.

Proof. The proof is by strutural indution on a. The base ase a = x is

straightforward by hypothesis E

2

(x) � E

1

(x). For the ase a = (let x = a

1

in a

2

),

notie that � � �

0

implies FV (�) � FV (�

0

); therefore, FV (E

2

) � FV (E

1

), and it

follows that Gen(�; E

2

; ') � Gen(�; E

1

; ').

C.2 Type soundness

Lemma 11. (Values have no e�ets.) Let v be a value. Assume E

0

` v : �='.

Then, for all rows '

0

of kind EXN(;), we have E

0

` v : �='

0

as well.

Proof. The result follows by examination of the typing rules that an apply to

a value (rules 2, 3, 7 and 8).
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In the sequel, we write ` v : � as an abbreviation for \there exists some ' suh

that E

0

` v : �='". By lemma 11, if there exists one suh ', then E

0

` v : �='

holds for all ' of kind EXN(;).

Lemma 12. (Substitution lemma.) Assume ` v : �

0

and E�fx : 8�

1

: : : �

n

:�

0

g `

a : �=' where the variables �

1

: : : �

n

are not free in E. Then, E ` afx vg : �='.

Proof. The proof is by strutural indution on a. We write E

x

= E � fx :

8�

1

: : : �

n

:�

0

g. The base ase a = x follows from lemmas 9 and 11. For the ase

a = (let x = a

1

in a

2

), notie that Gen(�; E; ') � Gen(�; E

x

; ') sine FV (E) �

FV (E

x

), and use lemma 10.

Lemma 13. (Substitution lemma for pattern-mathing.) Assume ` v : �

0

and

` p : �

0

) E

0

and E �E

0

` a : �='. If � =M(v; p) is de�ned, then E ` �(a) : �='.

Proof. The proof is an easy indutive argument on p, using lemma 12 for the

base ase p = x.

We say that a value v belongs to a row ' if one of the following holds:

|v is an integer i and ' = i

:

Pre;'

0

for some '

0

;

|v is a onstant exeption C and ' = C

:

Pre;'

0

for some '

0

;

|v is a parameterized exeption D(v

0

) and ' = D(�

0

);'

0

for some '

0

and �

0

suh

that ` v

0

: �

0

.

Lemma 14. (Shape of values by type.) Let v be a value. Assume ` v : � .

|If � is int['℄, then v is an integer i, and this integer i belongs to '.

|If � is exn['℄, then v is either C or D(v

0

), and in both ases v belongs to '.

|If � is �

1

'

! �

2

, then v is a funtion �x:a, and E

0

� fx : �

1

g ` a : �

2

='.

Proof. The result holds for eah of the typing rules that an apply to a value

(rules 2, 3, 7 and 8).

Lemma 2. (Corretness of subtration.) If ` v : � and M(v; p) is unde�ned

(value v does not math pattern p) and ` � � p; �

0

, then ` v : �

0

.

Proof. The proof proeeds by indution and ase analysis on the pattern p.

If p = x, the result holds vauously, as M(v; p) is de�ned regardless of v.

If p = i, by rule 14, we have � = int[i

:

�;'℄ and �

0

= int[i

:

�

0

;'℄ for some

', �, and �

0

. Sine v has type � , lemma 14 shows that v is an integer j and

moreover j belongs to the row i

:

�;'. Sine M(v; p) is unde�ned, we have i 6= j.

Hene j belongs to the row '. In other terms, ' = j

:

Pre;'

0

for some '

0

, and

�

0

= int[j

:

Pre; i

:

�

0

;'

0

℄. Thus we an derive ` j : �

0

by rule 2.

The ase p = C is similar to the previous ase.

Finally, if p = D(p

1

), by rule 17, we have � = exn[D(�

1

);'℄ and �

0

=

exn[D(�

0

1

);'℄ with ` �

1

� p

1

; �

0

1

. From the hypothesis that v has type � ,

lemma 14 shows that v is either a onstruted term D(v

1

) with ` v

1

: �

1

, or a

onstant onstrutor C or onstruted term D

0

(v

1

), D

0

6= D, that belongs to '.

In the latter ase, v also belongs to D(�

0

1

);' and the result follows by rule 7 or 8.

In the former ase, M(v

1

; p

1

) is unde�ned, otherwise M(v; p) would be de�ned.

Applying the indution hypothesis to v

1

and p

1

, we obtain ` v

1

: �

0

1

. The expeted

result ` v : �

0

follows by rule 8.
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Lemma 16. (E�ets of exeptions.) E

0

` raise v : �=' if and only if v belongs

to '.

Proof. A typing derivation for E

0

` raise v : �=' has the following shape:

exn['℄

'

! � � E

0

(raise)

E

0

` raise : exn['℄

'

! � E

0

` v : exn['℄='

E

0

` raise v : �='

By lemma 14, if E

0

` v : exn['℄=', then v belongs to '. Conversely, if v belongs

to ', we an derive E

0

` v : exn['℄=' using rule 7 or 8.

Theorem 1. (Subjet redution.) Redution preserves typing: if E

0

` a : �='

and a) a

0

, then E

0

` a

0

: �='

Proof. We show the result �rst for head redutions (redution rules 1{11), by

ase on the redution rule used. For rules 1 and 2 (�-redution), use lemma 12. For

rule 3, the result follows from lemma 13. For rule 4, lemma 2 shows that ` v : �

0

where �

0

is the type obtained by subtrating p from � . Then, the result follows

from lemma 12. The ase of rule 5 is straightforward. For rules 6 to 10, notie

that in all those rules, a

0

is raise v and a is an expression ontaining raise v as

a subexpression outside of a try onstrut. Thus, in a derivation of E

0

` a : �=',

a subexpression raise v is assigned the e�et '. By lemma 16, it follows that v

belongs to ', and that E

0

` raise v : �='. Finally, the result in the ase of rule 11

follows from lemma 12.

The result then extends to redutions under a ontext � (rule 12) by a straight-

forward strutural indution over �.

Theorem 3. (Corretness of exeption analysis.) Let a be a omplete program.

Assume E

0

` a : �=' and a

�

) raise v. Then, v belongs to '.

Proof. By the subjet redution theorem 1, it follows that E

0

` raise v : �='.

Lemma 16 then shows that v belongs to '.

Lemma 4. (Progress.) If E

0

` a : �=', then either a is a value v, or a is an

unaught exeption raise v, or there exists a

0

suh that a) a

0

.

Proof. The proof is by strutural indution and ase analysis on a.

If a is an identi�er x, sine it is well-typed in E

0

, we must have a = raise and

this is a value. If a is a onstant i, C or a �-abstration, a is a value.

If a is D(a

1

), we have that a

1

is well-typed in E

0

, hene by indution hypothesis,

either a

1

is a value, or it redues, or it is raise v. In the �rst ase, a is a value; in

the seond ase, a redues by the ontext rule 12; in the third ase, a redues by

rule 8.

If a is a

1

(a

2

), applying the indution hypothesis to a

1

and a

2

, we have the

following ases to onsider. If a

1

and a

2

are values, sine a

1

has an arrow type,

it must be a �-abstration (lemma 14), hene a redues by rule 1. If a

1

is an

unaught exeption raise v, a redues by rule 6. If a

1

is a value and a

2

an unaught

exeption, a

1

must be a �-abstration and a redues by rule 7. Otherwise, either

a

1

redues or a

1

is a �-abstration and a

2

redues; in both ases, a redues by the

ontext rule 12.
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If a is let x = a

1

in a

2

: by indution hypothesis, either a

1

is a value and a an

�-redue (rule 2), or a

1

is an unaught exeption and a redues by rule 9, or a

1

redues and a redues also by the ontext rule.

If a is math a

1

with p ! a

2

j x ! a

3

, either a

1

is a value and a an redue by

rule 3 or 4, or a

1

is an unaught exeption and a redues by rule 10, or a

1

redues

and a redues also by the ontext rule.

Finally, if a is try a

1

with x ! a

2

, either a

1

is a value and a an redue by

rule 5, or a

1

is an unaught exeption and a redues by rule 11, or a

1

redues and

a redues also by the ontext rule.

Theorem 20. (Type soundness.) Let a be a omplete program. Assume E

0

`

a : �='. If a

�

) a

0

and a

0

is in normal form with respet to the redution rules,

then a

0

is either a value v or an unaught exeption raise v.

Proof. The result is a orollary of theorem 1 and lemma 4.

C.3 Properties of the type inferene algorithm

In the following theorem, we write � =

V

�

0

to mean �(v) = �

0

(v) for all variables

v 2 V . We say that a system of equations Q = f�

i

= �

0

i

;'

j

= '

0

j

;�

l

= �

0

l

g is

well-kinded if for all i, ` �

i

wf and ` �

0

i

wf, and for all j, there exists a kind �

j

suh

that '

j

:: �

j

and '

0

j

:: �

j

.

Theorem 21. (Prinipal uni�ers.) Let Q be a set of well-kinded equations and

V a �nite set of variables suh that FV (Q) � V .

|Corretness: if (�; V

0

) = mgu

V

(Q) is de�ned, then � is a uni�er of Q, and �

preserves kinds. Moreover, V

0

is �nite, V � V

0

, and Dom(�) [Rng(�) � V

0

.

|Completeness and prinipality: if  preserves kinds and is a solution of Q, then

(�; V

0

) = mgu

V

(Q) is de�ned and there exists a kind-preserving substitution �

suh that  =

V

� Æ �.

Proof. The proof is a standard indutive argument on the exeution of mgu

and ase analysis on the shape of Q. We show the only ase that di�ers from

the usual proof of Robinson's algorithm: Q = f("

1

;'

1

) = ("

2

;'

2

)g [ Q

1

where

H("

1

) 6= H("

2

). Let t(S) be the kind of "

1

;'

1

and "

2

;'

2

. Let � be a variable of kind

T (S[fH("

1

);H("

2

)g) suh that � =2 V . ConsiderQ

0

= f'

1

= ("

2

; �);'

2

= ("

1

; �)g[

Q

1

. The equations in Q

0

are well-kinded: the �rst one has kind T (S[fH("

1

)g); the

seond one has kind T (S[fH("

2

)g). Moreover, FV (Q

0

) = FV (Q)[f�g � V [f�g.

For the orretness part, assume (�; V

0

) = mgu

V [f�g

(Q

0

) is de�ned. By indution

hypothesis, � is a solution of Q

0

, � preserves kinds, V

0

is �nite, V [ f�g � V

0

, and

Dom(�)[Rng(�) � V

0

. Sine � is a solution of Q

0

, it is a solution of Q

1

. Moreover,

�("

1

;'

1

) = �("

1

); �('

1

) = �("

1

); �("

2

); �(�)

�("

2

;'

2

) = �("

2

); �('

2

) = �("

2

); �("

1

); �(�)

Those two rows are equal modulo the left ommutativity equation. Hene, � is a

solution of Q.

For the ompleteness part, assume that  is a solution of Q. Sine  ("

1

;'

1

)

and  ("

2

;'

2

) are equal, they are both equal to a row of the form  ("

1

); ("

2

);'

for some '. Take  

0

=  � f�  'g. By onstrution of ', the substitution  

0
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is a solution of Q

0

. Applying the indution hypothesis, (�; V

0

) = mgu

V [f�g

(Q

0

) is

de�ned, and  

0

=

V [f�g

� Æ � for some �. Hene mgu

V

(Q) = (�; V

0

) is de�ned, and

sine  

0

=

V

 , we have  =

V

� Æ � as expeted.

The following lemma summarizes some simple properties of the W algorithm

that are useful to show the orretness and ompleteness of W . The �niteness

of the V parameter and of the V

0

result ensures that fresh variables an always

be found outside of V , and thus that W and mgu do not fail when piking fresh

variables.

Lemma 22. (Strutural properties of W .) Assume (�; '; �; V

0

) = W (E; a; V ) is

de�ned, V is �nite, and FV (E) � V . Then:

|V � V

0

;

|V

0

is �nite;

|FV (�) � V

0

and FV (') � V

0

;

|all variables not in V

0

are out of reah of �;

|FV (�(E)) � V

0

.

Proof. The result follows by examination of the ases of W and by the proper-

ties of mgu shown in theorem 21.

Theorem 23. (Corretness of algorithm W .) If FV (E) � V and (�; '; �; V

0

) =

W (E; a; V ) is de�ned, then �(E) ` a : �='. Moreover, we have ` � wf and ` ' ::

EXN(;), and � preserves kinds.

Proof. The proof is a standard indutive argument on a, using the stability

of typing judgements by substitution (lemma 9) and the orretness of mgu (theo-

rem 21, �rst part). Notie that ` � wf and ` ' :: EXN(;) follow from �(E) ` a : �='

by lemma 6. We show one ase to illustrate the proof. Assume a = a

1

(a

2

). By

hypothesis, W (E; a; V ) is de�ned, hene we have

(�

1

; '

1

; �

1

; V

1

) =W (E; a

1

; V ) (�

2

; '

2

; �

2

; V

2

) =W (�

1

(E); a

2

; V

1

)

� =2 V

2

(�; V

3

) = mgu

V

2

[f�g

f�

2

(�

1

) = �

2

'

2

! �; �

2

('

1

) = '

2

g

� = �(�) ' = �('

2

) � = � Æ �

2

Æ �

1

Applying the indution hypothesis to the reursive alls ofW , we obtain derivations

of �

1

(E) ` a

1

: �

1

='

1

and �

2

(�

1

(E)) ` a

2

: �

2

='

2

. Applying lemma 9 to those

derivations (with substitution � Æ �

2

for the left derivation and � for the right

derivation), we obtain derivations of �(E) ` a

1

: �(�

2

(�

1

))=�(�

2

('

1

)) and �(E) `

a

2

: �(�

2

)=�('

2

).

The set of equations f�

2

(�

1

) = �

2

'

2

! �; �

2

('

1

) = '

2

g is well-kinded sine �

2

is

kind-preserving, �

1

and �

2

are well-formed, and '

1

and '

2

have kind EXN(;). Hene,

� is a uni�er of this set of equations, and we have

�(E) ` a

1

: �(�

2

)

'

! �=' and �(E) ` a

2

: �(�

2

)='

from whih we an derive �(E) ` a

1

(a

2

) : �=' by rule 4 as desired.

Theorem 24. (Completeness of algorithm W .) Let E be a well-kinded envi-

ronment, a be an expression, and V be a �nite set of type variables suh that
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FV (E) � V . If there exists a kind-preserving substitution �

0

and types �

0

; '

0

suh

that �

0

(E) ` a : �

0

='

0

, then (�; '; �; V

0

) = W (E; a; V ) is de�ned and there exists a

kind-preserving substitution  suh that �

0

=  (�) and '

0

=  (') and �

0

=

V

 Æ �.

Proof. The proof proeeds by strutural indution on a. We show one ase to

illustrate the proof. Assume a = a

1

(a

2

). By hypothesis, we have a derivation of

�

0

(E) ` a

1

: �

00

'

0

! �

0

='

0

�

0

(E) ` a

2

: �

00

='

0

�

0

(E) ` a

1

(a

2

) : �

0

='

0

We apply the indution hypothesis to the left premise, obtaining:

(�

1

; '

1

; �

1

; V

1

) =W (E; a

1

; V ) �

00

'

0

! �

0

=  

1

(�

1

) '

0

=  

1

('

1

) �

0

=

V

 

1

Æ �

1

By lemma 22, the onditions are met to apply the indution hypothesis to

W ('

1

(E); a

2

; V

1

) and to the substitution  

1

. We obtain:

(�

2

; '

2

; �

2

; V

2

) =W (�

1

(E); a

2

; V

1

) �

00

=  

2

(�

2

) '

0

=  

2

('

2

)  

1

=

V

1

 

2

Æ �

2

Take � =2 V

2

as in the algorithm, and onsider the substitution  

3

=  

2

�f� �

0

g.

It is easy to see that  

3

is a uni�er for the set of equations

Q = f�

2

(�

1

) = �

2

'

2

! �; �

2

('

1

) = '

2

g:

Moreover, this set of equations is well-sorted beause �

2

is kind-preserving, and  

3

is kind-preserving beause  

2

is (by indution hypothesis) and �

0

is well-formed by

lemma 6. In addition, the variables free in Q all belong to V

2

[f�g by onstrution

of Q and by lemma 22. By theorem 21, the prinipal uni�er (�; V

3

) = mgu

V

2

[f�g

(Q)

is therefore de�ned, and W (E; a; V ) does not fail. Moreover, sine � is prinipal,

we have  

3

=

V

2

[f�g

 

4

Æ� for some kind-preserving substitution  

4

. We then take

 =  

4

and show that this  satis�es the onlusions of the theorem. We do have

 (�) =  (�(�)) =  

3

(�) = �

0

 (') =  (�('

2

)) =  

3

('

2

) =  

2

('

2

) = '

0

:

Let v be a variable in V . Sine V � V

1

and all variables not in V

1

are out of reah

for �

1

, we have FV (�

1

(v)) � V

1

. Sine V

1

� V

2

and all variables not in V

2

are out

of reah for �

2

, we have FV (�

2

(�

1

(v))) � V

2

. It follows that

 (�(v)) =  (�(�

2

(�

1

(v)))) by de�nition of � in the algorithm

=  

3

(�

2

(�

1

(v))) beause FV (�

2

(�

1

(v))) � V

2

[ f�g

=  

2

(�

2

(�

1

(v))) beause � =2 FV (�

2

(�

1

(v)))

=  

1

(�

1

(v)) beause FV (�

1

(v)) � V

1

= �

0

(v) beause v 2 V

This is the expeted result.
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