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Convertibility checking — determining whether two lambda-terms are equal up to reductions — is a crucial

component of proof assistants and dependently-typed languages. Practical implementations often use heuristics

to quickly conclude that two terms are convertible, or are not convertible, without reducing them to normal

form. However, these heuristics can backfire, triggering huge amounts of unnecessary computation. This paper

presents a novel convertibility-checking algorithm that relies crucially on laziness and concurrency. Laziness
is used to share computations, while concurrency is used to explore multiple convertibility subproblems

in parallel or via fair interleaving. Unlike heuristics-based approaches, our algorithm always finds an easy

solution to the convertibility problem, if one exists. The paper describes the algorithm in process calculus

style, discusses its complexity, and reports on its mechanized proof of partial correctness and its lightweight

experimental evaluation.
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1 Introduction
Lambda-terms and related functional notations are widely used in functional programming lan-

guages, in higher-order type systems, and in higher-order logics. These terms come with a notion

of reduction, which expresses elementary steps of computation, such as the famous beta-reduction

(𝜆𝑥. 𝑡) 𝑢 → 𝑡 [𝑥 := 𝑢], which expresses the application of a function.

Reductions have two main uses: evaluation (reducing a term to a final result) and conversion
(determining whether two terms are equal up to reductions). Evaluation accounts for the execution

of functional programs and their specialization through partial evaluation techniques. Conversion is

used in type systems and in logics based on type theory to state that two types or two propositions

are identical up to computation. This concept is captured by the well-known typing rule

Γ ⊢ 𝑎 : 𝑡 ′ 𝑡 ≈ 𝑡 ′

Γ ⊢ 𝑎 : 𝑡
conv

For example, the two propositions 2 + 2 = 4 and 4 = 4 are convertible, since 2 + 2 reduces to 4;

therefore, the trivial proof term refl 4 (reflexivity of equality) of 4 = 4 also proves 2 + 2 = 4; no

deduction steps are necessary. This is an instance of proof by reflection, where deduction and proof
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search are replaced by computations performed during type checking [Boutin 1997; Kokke and

Swierstra 2015].

Due to the conv rule, proof assistants and programming languages based on type theory such

as Agda, Lean and Rocq verify convertibility of terms at every proof step and type-checking step.

Therefore, it is crucial to find algorithms for convertibility checking that are both correct and

efficient. Many different reduction sequences can be applied to a term; some sequences lead quickly

to the desired result, while others can take much longer or diverge.

To evaluate a term, we have reduction strategies such as call by name, call by value and call by

need. The performance characteristics and efficient implementation of these strategies are well

known. For example, call by need is optimal (in terms of the number of beta-reductions) for weak

reduction [Balabonski 2013], and high-performance implementations exist.

In contrast, no good reduction strategy is known for checking whether two terms are convertible.

The textbook approach is to reduce both terms to normal form and compare the normal forms

for equality. This approach can perform arbitrary amounts of unnecessary computation (see §2

for examples). Convertibility checkers used by proof assistants perform incremental evaluation

of the two terms, bringing them to a state where they are either syntactically equal or obviously

non-convertible. They use heuristics to determine which evaluation to perform next. As illustrated

in §2 and §10, these heuristics are sometimes ineffective, performing unnecessary computation and

resulting in proofs that take forever to check and proof tactics that take forever to fail.

This paper presents a novel algorithm for checking convertibility that relies crucially on laziness
and concurrency. Laziness, or more precisely non-strict evaluation, is used to avoid unnecessary

computations and to share computations betweenmultiple convertibility subproblems. Concurrency

is used to explore multiple convertibility subproblems in parallel or via fair interleaving, stopping

them all as soon as one of them returns conclusive evidence. Existing convertibility checkers

would explore these subproblems sequentially, in an order chosen by heuristics; they can get stuck

exploring the wrong subproblem first. In contrast, our concurrent exploration method will never

overlook an easy solution to the convertibility problem, if one exists.

Our convertibility algorithm has been proved sound using the Rocq proof assistant. It can be

easily implemented as an abstract machine. This machine has the subterm property [Accattoli and

Lago 2012, §3.1], meaning that it can be statically compiled to virtual machine code or native code.

The remainder of this paper is organized as follows. Section 2 gives examples that illustrate the

difficulties of convertibility checking. Section 3 introduces the small process calculus that we use to

express our algorithms. Section 4 describes call-by-need evaluation (to WHNF) and normalization.

Sections 5 and 6, the core of the paper, describe the convertibility algorithm. Its implementation as

an abstract machine with explicit scheduling is shown in section 7, and its Rocq proof of soundness

is described in section 8. Section 9 analyses the performance of our algorithm. Section 10 reports on

a preliminary experimental evaluation, using the Rocq conversion checker as the baseline. Related

work is discussed in section 11 and followed by concluding remarks in section 12.

2 Intuitions on Convertibility Checking
Consider the problem of determining whether two expressions 𝑒1 and 𝑒2 are convertible, written

𝑒1 ≈ 𝑒2, in the sense that they are equal up to integer arithmetic calculations. For example, 6×4+1 ≈
10 + 14 + 1 since 6 × 4 is 24 and 10 + 14 is also 24.

A simple algorithm for determining whether 𝑒1 ≈ 𝑒2 is to compute the integer values of 𝑒1 and 𝑒2
and then compare these values for equality. For example,

6 × 4 + 1 ≈ 10 + 14 + 1 since 6 × 4 + 1 evaluates to 25, as does 10 + 14 + 1

6 × 4 + 1 ̸≈ 3 × 8 since 6 × 4 + 1 evaluates to 25 and 3 × 8 to 24.
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However, this algorithm can perform unnecessary computations. For example, let 𝐹 be an

expensive integer function, of cost O(2𝑛), say. To determine that

𝐹 20 ≈ 𝐹 20

the simple algorithm computes 𝐹 20 twice. However, it suffices to note that the two sides of

the conversion problem are syntactically identical; therefore, their values must be equal, and no

computation is needed.

Similarly, assume that expressions include the lists constructors cons and nil. To determine that

cons (𝐹 20) nil ̸≈ nil

we do not need to compute 𝐹 20 at all. It suffices to observe that the head constructors of the left-

hand side (cons) and of the right-hand side (nil) are different; therefore, no amount of calculation

can make them equal.

Often, the two expressions being tested for convertibility are not identical, but “fairly close”.

Consider:

𝐹 20 ≈ 𝐹 (19 + 1)
Again, there is no need to compute both sides. It suffices to show that 20 ≈ 19 + 1, by a simple

computation. Then, 𝐹 20 ≈ 𝐹 (19 + 1) follows immediately.

The previous example suggests the following heuristic: to show that two applications of the

same function are convertible, first check if the arguments are pairwise compatible:

𝐹 𝑎1 . . . 𝑎𝑛 ≈ 𝐹 𝑏1 . . . 𝑏𝑛 if 𝑎𝑖 ≈ 𝑏𝑖 for 𝑖 = 1, . . . , 𝑛

Only when this first check fails should the definition of 𝐹 be used to further reduce the two sides

of the convertibility test.

Unfortunately, this heuristic is not always profitable. Consider

𝐾 0 (𝐹 20) ≈ 𝐾 0 (𝐹 21)

where 𝐾 is the familiar combinator 𝐾 𝑥 𝑦 = 𝑥 . The heuristic above causes 𝐹 20 and 𝐹 21 to be

computed, which is expensive. However, if we unroll the definition of 𝐾 first, the convertibility

problem becomes 0 ≈ 0, which is trivial, and no computation of 𝐹 is needed.

In many cases, it is preferable to unroll the definition of a recursive function once rather than

fully evaluate an application of the function. For example, let exp be the naive exponentiation

function

exp 𝑛 = if 𝑛 = 0 then 1 else exp(𝑛 − 1) + exp(𝑛 − 1)
Consider the convertibility problem

exp 40 ≈ exp 39 + exp 39

Unrolling the definition of exp in the left-hand side and simplifying the if allows us to prove

convertibility without evaluating exp 40 or exp 39.
When comparing applications of two different functions, unrolling the definitions of both

functions is often the right thing to do, but not always. Consider the mutually-recursive functions

even 𝑛 = if 𝑛 = 0 then true else odd(𝑛 − 1)
odd 𝑛 = if 𝑛 = 0 then false else even(𝑛 − 1)

and the convertibility problem

odd 999999 ≈ even 1000000
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The problem can easily be solved by unrolling the definition of even in the right-hand side, reducing
it to odd 999999. However, if we unroll odd in the left hand side and even in the right-hand side

simultaneously, we obtain even 999998 ≈ odd 999999, which is still far from a solution.

As the examples above show, there are many different ways to determine if two expressions

are convertible. Some ways are faster for certain expressions, but no single way is consistently

better than the others. Proof assistants generally use a fixed strategy to determine when and where

to perform reductions and unrolling of function definitions. For instance, given 𝐹 𝑎1 · · · 𝑎𝑛 ≈
𝐹 𝑏1 · · · 𝑏𝑛 , the Rocq proof checker first tries to prove 𝑎𝑖 ≈ 𝑏𝑖 for 𝑖 = 𝑛, 𝑛−1, . . . , 1 before unrolling 𝐹 .
Given 𝐹 𝑎1 · · · 𝑎𝑛 ≈ 𝐺 𝑏1 · · · 𝑏𝑚 , it chooses whether to unroll 𝐹 or𝐺 based on numerical priorities,

which can be controlled with the Strategy command [Rocq Development Team 2025].This is

a reasonable strategy. However, any such strategy can go wrong and perform huge amounts of

unnecessary computation, which prevent proof checking from completing in a reasonable amount

of time [Gross 2021, section 2.6.2].

The approach we propose and develop in this paper is to explore multiple ways to solve a

convertibility problem in parallel, instead of trying one way after another based on a fixed strategy.

For instance, when presented with the problem 𝐹 𝑒1 ≈ 𝐹 𝑒2, we do not decide whether to begin by

solving 𝑒1 ≈ 𝑒2, or by unrolling 𝐹 on the left to obtain 𝑒′
1
≈ 𝐹 𝑒2, or by unrolling 𝐹 on the right to

obtain 𝐹 𝑒1 ≈ 𝑒′2. Rather, we set up the three corresponding problems and solve them in parallel,

stopping them as soon as 𝑒1 ≈ 𝑒2 terminates with a “yes”, or 𝑒′
1
≈ 𝐹 𝑒2 or 𝐹 𝑒1 ≈ 𝑒′2 terminate with a

“yes” or a “no”.

In other words, we view solving a convertibility problem as searching a tree of possible proofs

of convertibility or non-convertibility. Using concurrency and fair interleaving, our approach

performs a breadth-first traversal of the proof search tree to find the simplest possible proof in

this proof space. In contrast, existing convertibility checkers perform a mostly depth-first traversal

of the proof search tree, using strategies to select which branch to explore first. Sometimes, they

go down a very long branch and fail to produce a proof in reasonable time. In the worst case, our

breadth-first approach can take time exponential in the length of the shortest proof, but this is still

preferable to the existing depth-first approaches, which can take arbitrarily long.

With so many convertibility subproblems being generated and solved in parallel, it is crucial to

avoid duplicating computations between subproblems. For instance, if 𝐺 𝑥 = 1 + 𝑥 , the problem
𝐺 (𝐹 20) ≈ 𝐺 (𝐹 19) generates two main subproblems: 𝐹 20 ≈ 𝐹 19, to compare the arguments to𝐺 ,

and 1 + 𝐹 20 ≈ 1 + 𝐹 19, after unrolling 𝐺 on both sides. We really want to evaluate 𝐹 20 and 𝐹 19

only once, not twice each. To this end, we systematically use lazy evaluation to share computations

within expressions, as in (𝜆𝑥. 𝑥 + 𝑥) (𝐹 20), and between convertibility problems, as in the example

above.

Since we are testing the convertibility of lambda-terms, we need a notion of lazy evaluation that

extends beyond weak reduction (as in Haskell and other functional languages) to include strong

reduction (within the body of a lambda-abstraction). This is presented in §4. Since we interleave

the executions of multiple evaluations and multiple convertibility problems, we need a formulation

of lazy evaluation that plays well with concurrency, which is presented in the next section.

3 Expressing Laziness with a Process Calculus
The following artificial example illustrates the features we need from the metalanguage used to

describe our convertibility testing algorithm.

𝐻 (𝑛) = let 𝑎 = 𝐹 (𝑛) and 𝑏 = 𝐺 (𝑛) in
if 𝑛 < 0 then 1 else 𝑎 × 𝑎 × 𝑏

We would like to avoid unnecessary evaluations of 𝐹 (𝑛) and 𝐺 (𝑛) when evaluating 𝐻 (𝑛). Namely:
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Processes: 𝑃 ::= 𝛼 ! 𝐸 send 𝐸 on channel 𝛼

| 𝑃1 ∥ 𝑃2 parallel composition

| 𝜈𝛼. 𝑃 channel creation

Expressions: 𝐸 ::= 𝑥 | 𝑣 variables, values

| 𝐸? receive a value from channel 𝐸

| 𝐹 𝐸1 · · · 𝐸𝑛 function applications

| 𝐶 𝐸1 · · · 𝐸𝑛 data constructor applications

Values: 𝑣 ::= 𝛼 | 𝐶 𝑣1 · · · 𝑣𝑛 channels, constructors

Structural equivalences:

𝑃1 ∥ 𝑃2 = 𝑃2 ∥ 𝑃1
𝑃1 ∥ (𝑃2 ∥ 𝑃3) = (𝑃1 ∥ 𝑃2) ∥ 𝑃3
(𝜈𝛼. 𝑃1) ∥ 𝑃2 = 𝜈𝛼. (𝑃1 ∥ 𝑃2) if 𝛼 not free in 𝑃2

Generic reduction rule:

𝛼 ! 𝑣 ∥ Γ [𝛼?] → 𝛼 ! 𝑣 ∥ Γ [𝑣]
(Plus: specific reduction rules 𝛼 ! 𝐹 (. . .) → . . . for specific functions 𝐹 .)

Fig. 1. The simple process calculus used as a metalanguage in this article.

• the bindings of 𝑎 and 𝑏 should be lazy, so that 𝐹 (𝑛) and𝐺 (𝑛) are not evaluated at all if 𝑛 < 0;

• the computations bound to 𝑎 and 𝑏 should be shared between multiple uses of these variables,

so that 𝐹 (𝑛) and 𝐺 (𝑛) are evaluated only once if 𝑛 ≥ 0, even though 𝑎 is used twice;

• the evaluations of 𝐹 (𝑛) and𝐺 (𝑛) should proceed in parallel, or by fair interleaving, so that

𝑎 × 𝑎 × 𝑏 produces 0 as soon as one of 𝐹 (𝑛) or 𝐺 (𝑛) returns 0, without waiting for the other

computation to terminate.

To support these features, we will use a simple process calculus loosely inspired by the 𝜋-calculus

[Milner 1999]. As summarized in Fig. 1, we have processes 𝑃 that execute in parallel (𝑃1 ∥ 𝑃2) and
communicate values over channels (𝛼, 𝛽,𝛾, . . .). The process 𝛼 !𝐸 computes the value of expression 𝐸

and sends it over channel 𝛼 . In an expression, 𝛼? denotes the value read from channel 𝛼 when it is

available. Finally, 𝜈𝛼. 𝑃 creates a fresh channel name 𝛼 for the duration of the execution of 𝑃 .

Using this notation, here is the process that computes 𝐻 (𝑛) and returns its value on channel 𝛾 :

𝛾 ! 𝐻 (𝑛) = 𝜈𝛼, 𝛽. 𝛼 ! 𝐹 (𝑛) ∥ 𝛽 !𝐺 (𝑛) ∥ 𝛾 ! if 𝑛 < 0 then 1 else 𝛼? × 𝛼? × 𝛽?

The two bound variables 𝑎 and 𝑏 are represented by two fresh channels 𝛼 and 𝛽 . Their bindings are

represented by the two processes 𝛼 ! 𝐹 (𝑛) and 𝛽 !𝐺 (𝑛) that run in parallel with the body of 𝐻 .

The syntax and semantics of the process calculus are summarized in Fig. 1. The crucial part is

the value communication rule:

𝛼 ! 𝑣 ∥ Γ [𝛼?] → 𝛼 ! 𝑣 ∥ Γ [𝑣]

It says that if a sending process 𝛼 ! 𝐸 has reduced to 𝛼 ! 𝑣 , where 𝑣 is the value of 𝐸, any receiver 𝛼?

in any context Γ can be replaced by the value 𝑣 . Unlike in the 𝜋-calculus, the sending process 𝛼 ! 𝑣

remains unchanged, so that all present or future occurrences of 𝛼? can also be replaced by 𝑣 .

Does the encoding of 𝐻 in terms of processes satisfy the list of requirements above?

• Sharing of computations bound to variables is enforced by the communication rule. In 𝐻 (𝑛)
above, 𝐹 (𝑛) is computed only once, and its value 𝑣 replaces the two occurrences of 𝛼?.
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• Parallelism is inherent in the process calculus encoding of 𝐻 . The evaluations of 𝐹 (𝑛) and
𝐺 (𝑛) can be freely interleaved, and we can give a parallel semantics to the multiplication

operator: 0 × 𝐸 → 0 and 𝐸 × 0 → 0, even if 𝐸 is blocked on a receive operation.

• Laziness is not guaranteed by the process calculus encoding, only non-strictness: the evalua-
tions of 𝐹 (𝑛) and 𝐺 (𝑛) can start right away, but can also be delayed until the values of 𝛼?

and 𝛽? are required to make progress. However, laziness can be enforced by an appropriate

scheduling of process reductions. Typically, the processes 𝛼 ! 𝐹 (𝑛) and 𝛽 !𝐺 (𝑛) should not be

reduced until the values of 𝛼? and 𝛽? are needed to make progress in the process that sends

on 𝛾 , that is, until 𝑛 was tested nonnegative.

More generally, we can encode ML-style explicit laziness, presented as two expressions: lazy 𝐸,
which produces a thunk that evaluates 𝐸 on demand, and force 𝐸, which forces the thunk 𝐸 and

returns its value. We represent thunks by channels; thus, force 𝐸 is simply 𝐸?, and lazy has the
following reduction rule:

𝛼 ! Δ[lazy 𝐸] → 𝜈𝛽. 𝛼 ! Δ[𝛽] ∥ 𝛽 ! 𝐸
where Δ is an expression evaluation context. Without scheduling restrictions, the evaluation of 𝐸

can start immediately, making lazy 𝐸 behave like a future. To enforce laziness, we need to perform

only the reductions that are necessary to produce the final value on the result channel 𝛼 . Consider

the following typical intermediate evaluation state:

𝛼 ! Δ0 [𝛼1?] ∥ 𝛼1 ! Δ1 [𝛼2?] ∥ · · · ∥ 𝛼𝑛−1 ! Δ𝑛−1 [𝛼𝑛?] ∥ 𝛼𝑛 ! 𝐸 ∥ 𝑃
where 𝐸 can reduce and the Δ𝑖 are expression evaluation contexts. There is a chain of computations

waiting for values to be sent on channels: 𝛼 is waiting for 𝛼1, which is waiting for 𝛼2, all the way

to 𝛼𝑛−1, which is waiting for 𝛼𝑛 , which is not waiting on anyone and can make progress (since 𝐸

can reduce). Therefore, the reduction of 𝐸 is the one that must be performed at this point. Other

reductions in the remaining processes 𝑃 might be possible, but are not required to progress on the

evaluation of 𝛼 , so they are not performed.

4 Strong Call-by-Need Reduction
We now use our process calculus notation to describe algorithms that reduce lambda-terms to

weak head normal form, then to normal form. Our algorithms implement call-by-need strategies,

using channels and parallel processes to share the reductions of subterms. However, they make no

attempt at sharing subcontexts the way optimal reduction algorithms do.

4.1 The Source Language
While our approach extends to richer functional languages, this paper considers only the pure

untyped lambda-calculus, and its extension with defined constants 𝑐 .

Pure lambda terms: 𝑡,𝑢 ::= 𝑥 | 𝜆𝑥.𝑡 | 𝑡 𝑢
Extended lambda terms: 𝑡,𝑢 ::= 𝑥 | 𝜆𝑥.𝑡 | 𝑡 𝑢 | 𝑐
Defined constants are constants that are bound to terms at top-level. For example, this is written

def 𝑐 := 𝑡 in Lean and Definition 𝑐 := 𝑡 . in Rocq. Unlike ordinary constants, which are opaque,

defined constants can be expanded (replaced by their definitions) at any time during computation.

4.2 Reduction to Weak Head Normal Form
To compute weak head normal forms (WHNF) of pure lambda terms, we use an environment

machine inspired by Krivine’s machine [Krivine 2007], with the main difference that environments

𝑒 map variables not to unevaluated thunks, but to channels connected to processes that evaluate

these thunks. The machine produces values of the following shape:
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Values: 𝑣 ::= ⟨𝑥, 𝑡, 𝑒⟩ closure of function 𝜆𝑥. 𝑡 by environment 𝑒

| [𝑥 𝑠] free variable 𝑥 applied to arguments 𝑠

Environments: 𝑒 ::= {𝑥1 ↦→ 𝛼1, . . . , 𝑥𝑛 ↦→ 𝛼𝑛} mapping from variables to channels

Stacks: 𝑠 ::= 𝛼1 · 𝛼2 · · ·𝛼𝑛 · 𝜖 lists of arguments (channels)

To compute theWHNF of term 𝑡 in environment 𝑒 , the machine starts in state eval 𝑡 𝑒 and performs

the following transitions.

𝛼 ! eval 𝑡 𝑒 → 𝛼 ! reduce 𝑡 𝑒 𝜖

𝛼 ! reduce (𝑡 𝑢) 𝑒 𝑠 → 𝜈𝛽. 𝛼 ! reduce 𝑡 𝑒 (𝛽 · 𝑠) ∥ 𝛽 ! eval 𝑢 𝑒
𝛼 ! reduce (𝜆𝑥.𝑡) 𝑒 𝑠 → 𝛼 ! apply ⟨𝑥, 𝑡, 𝑒⟩ 𝑠

𝛼 ! reduce 𝑥 𝑒 𝑠 → 𝛼 ! apply 𝑒 (𝑥)? 𝑠 if 𝑥 ∈ Dom(𝑒)
𝛼 ! reduce 𝑥 𝑒 𝑠 → 𝛼 ! apply [𝑥] 𝑠 if 𝑥 ∉ Dom(𝑒)

𝛼 ! apply 𝑣 𝜖 → 𝛼 ! 𝑣

𝛼 ! apply ⟨𝑥, 𝑡, 𝑒⟩ (𝛽 · 𝑠) → 𝛼 ! reduce 𝑡 (𝑒 + 𝑥 ↦→ 𝛽) 𝑠
𝛼 ! apply [𝑥 𝑠′] 𝑠 → 𝛼 ! [𝑥 (𝑠′ · 𝑠)]

In the reduce 𝑡 𝑒 𝑠 state, the machine traverses the spine of applications of 𝑡 , recording arguments

on the stack 𝑠 . If 𝑡 is an application 𝑡 𝑢, the machine sets up a new process eval 𝑢 𝑒 that reduces 𝑢
and sends its value on a fresh channel 𝛽 , then pushes 𝛽 on the stack and proceeds with the reduction

of 𝑡 . In all other cases, the machine switches to the apply 𝑣 𝑠 state, where 𝑣 is the value of 𝑡 : a
closure if 𝑡 is a function abstraction, a neutral value [𝑥] if 𝑡 is a free variable 𝑥 , and the value read

from channel 𝑒 (𝑥) if 𝑥 is a bound variable.

In the apply 𝑣 𝑠 state, if 𝑠 is empty, evaluation is finished and 𝑣 is returned. If 𝑠 is not empty and 𝑣

is a function closure, a 𝛽-reduction step is performed and the machine resumes in the reduce state.

If 𝑣 is a constant or a free variable already applied to arguments 𝑠′, the arguments 𝑠 are added to 𝑠′.
In terms of reduction strategies, this machine implements non-strict evaluation with sharing (of

the evaluation of a function argument). The process 𝛽 !eval𝑢 𝑒 that is created when the application

𝑡 𝑢 is reduced can start executing immediately or stay idle until the value of a variable 𝑥 bound

to 𝑢 is needed for the first time. At that time, the machine computes 𝑒 (𝑥)?, that is, 𝛽?, forcing the

process 𝛽 ! reduce 𝑢 𝑒 𝜖 to evaluate to 𝛽 ! 𝑣 for some value 𝑣 . If the value of 𝑥 is needed again

later, it is obtained from this 𝛽 ! 𝑣 process; no recomputation is required. Therefore, depending on

the scheduling of processes, the machine implements call-by-value, call-by-need, or any strategy

“in between”, but not call-by-name. Call-by-need can be obtained by restricting the scheduling of

processes appropriately, as outlined at the end of §3.

4.3 Reduction under Lambdas and Normalization
Normal forms can be computed by alternating evaluation phases, which produce values (WHNFs),

and reification phases, which turn these values into terms in normal forms. This is similar to the

“eval” and “reify” phases of normalization by evaluation [Berger et al. 1998] and of type-directed

partial evaluation [Danvy 1996]. For example, if evaluation produces a function closure ⟨𝑥, 𝑡, 𝑒⟩, we
can apply it to a fresh free variable [𝑦], obtaining a value 𝑣 , then recursively reify 𝑣 to a normal-form

term 𝑡 , and finally produce the normal form 𝜆𝑦. 𝑡 .

A naive implementation of this normalization procedure can duplicate evaluations, however. For

example, consider the term (𝜆𝑓 . 𝑔 𝑓 𝑓 ) (𝜆𝑥 . 𝑡) where 𝑔 is a free variable. Evaluation produces the

value [𝑔 𝛽 𝛽], where 𝛽 is a channel that produces a closure for 𝜆𝑥. 𝑡 . Naive reification will reify

each occurrence of this closure independently, causing 𝑡 to be normalized twice.
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As described in [Biernacka et al. 2022] and independently observed by us, this unsharing of

function values can be avoided by anticipating the need to reduce in the function body 𝑡 when

creating the closure for the function 𝜆𝑥. 𝑡 . In our channel-based presentation, this means adding

two components to every function closure ⟨𝑥, 𝑡, 𝑒⟩: a fresh free variable 𝑦 used for normalization,

and a channel 𝛿 connected to a process that evaluates on demand the application of 𝑡 to 𝑦.

Values: 𝑣 ::= ⟨𝑥, 𝑡, 𝑒,𝑦, 𝛿⟩ enriched function closure

| [𝑥 𝑠]
The evaluation rule for function abstractions becomes:

𝛼 ! reduce (𝜆𝑥.𝑡) 𝑒 𝑠 → 𝜈𝛾𝛿. 𝛼 ! apply ⟨𝑥, 𝑡, 𝑒,𝑦, 𝛿⟩ 𝑠 ∥ 𝛿 ! eval 𝑡 (𝑒 + 𝑥 ↦→ 𝛾) ∥ 𝛾 ! [𝑦]
where 𝑦 is a fresh variable

The extra components of closures are ignored during application:

𝛼 ! apply ⟨𝑥, 𝑡, 𝑒,𝑦, 𝛿⟩ (𝛽 · 𝑠) → 𝛼 ! reduce 𝑡 (𝑒 + 𝑥 ↦→ 𝛽) 𝑠
With this twist on closures, we can define nf 𝑡 , the normalization of a closed term 𝑡 , and reify 𝑣 ,
the reification of a value 𝑣 as a lambda-term, by the following rules:

𝛼 ! nf 𝑡 → 𝜈𝛽. 𝛼 ! reify 𝛽? ∥ 𝛽 ! eval 𝑡 { }
reify ⟨𝑥, 𝑡, 𝑒,𝑦, 𝛿⟩ → 𝜆𝑦. reify 𝛿?

reify [𝑥 𝛽1 · · · 𝛽𝑛] → 𝑥 (reify 𝛽1?) · · · (reify 𝛽𝑛?)

4.4 Defined Constants
We now extend the evaluation and reification approach of sections 4.2 and 4.3 to defined constants.

Unlike let-bound variables, which have local scope and must therefore be expanded during

reduction to WHNF, defined constants have global scope and can remain unexpanded in WHNFs,

resulting in values [𝑐 𝑠] that carry an unexpanded constant 𝑐 and a possibly empty list of arguments

𝑠 to which 𝑐 is applied. This enables faster convertibility testing of two terms, as outlined in §2 and

developed in §5. However, when unfolding a defined constant 𝑐 to reduce a value [𝑐 𝑠], we must be

careful not to duplicate the evaluation of the definition 𝑡 of 𝑐 or its application to the arguments 𝑠 .

To this end, we reuse the approach of §4.3: we attach a channel 𝛿 to each [𝑐 𝑠] value and connect

this channel to a process that evaluates this application of 𝑐 on demand.

Values: 𝑣 ::= ⟨𝑥, 𝑡, 𝑒,𝑦, 𝛿⟩
| [𝑥 𝑠]
| [𝑐 𝑠]@𝛿 constant 𝑐 applied to 𝑠 , with actual value available from 𝛿

Given a set of constant definitions 𝑐1 := 𝑡1, . . . , 𝑐𝑛 := 𝑡𝑛 , we define a global environment 𝐾 that

maps constants to fresh channels, and a process 𝐾𝑃 that evaluates the 𝑡𝑖 on demand and sends their

values to those channels.

𝐾 = {𝑐1 ↦→ 𝛼1; . . . ; 𝑐𝑛 ↦→ 𝛼𝑛}
𝐾𝑃 = 𝛼1 ! eval 𝑡1 { } ∥ · · · ∥ 𝛼𝑛 ! eval 𝑡𝑛 { }

When we evaluate a constant 𝑐 , we pair it with the channel 𝐾 (𝑐), thus ensuring that the evaluation
of its definition 𝑡 is properly shared and non-strict:

𝛼 ! reduce 𝑐 𝑒 𝑠 → 𝛼 ! apply ( [𝑐]@𝐾 (𝑐)) 𝑠

New channels and new processes are created when a constant is applied to new arguments:

𝛼 ! apply ( [𝑐 𝑠′]@𝛿) 𝑠 → 𝜈𝛾 . 𝛼 ! [𝑐 (𝑠′ · 𝑠)]@𝛾 ∥ 𝛾 ! apply 𝛿? 𝑠
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The normalization procedure of §4.3 is modified as follows:

𝛼 ! nf 𝑡 → 𝜈𝛽. 𝛼 ! reify 𝛽? ∥ 𝛽 ! eval 𝑡 { } ∥ 𝐾𝑃
reify ⟨𝑥, 𝑡, 𝑒,𝑦, 𝛿⟩ → 𝜆𝑦. reify 𝛿?

reify [𝑥 𝛽1 · · · 𝛽𝑛] → 𝑥 (reify 𝛽1?) · · · (reify 𝛽𝑛?)
reify ( [𝑐 𝑠]@𝛿) → reify 𝛿?

5 Convertibility Testing
5.1 The Basic Algorithm
Just like normalization can be viewed as a combination of evaluation and reification, determining

whether two terms 𝑡, 𝑡 ′ are convertible can be viewed as a combination of evaluation of 𝑡 and 𝑡 ′ and
comparison of the resulting values 𝑣, 𝑣 ′. For example, if 𝑣 and 𝑣 ′ are applications of free variables 𝑥
and 𝑥 ′, we need to check that 𝑥 = 𝑥 ′ and that the arguments are pairwise convertible.

More precisely, to test the convertibility of 𝑡 and 𝑡 ′ and send the resulting Boolean value to

channel 𝛼 , we start with the following process:

𝜈𝛽𝛽 ′ . 𝛼 ! conv? 𝛽 𝛽 ′ 𝜖 ∥ 𝛽 ! eval 𝑡 { } ∥ 𝛽 ′ ! eval 𝑡 ′ { } ∥ 𝐾𝑃

Here, eval is the reduction to WHNF from §4, and conv? 𝛽 𝛽 ′ 𝜉 is the comparison of the values

read from the channels 𝛽 and 𝛽 ′ up to a renaming 𝜉 of free variables (a list of pairs of variables that

are considered equal). The function conv? and the auxiliary functions conv and conv∗ are defined
by the following rules:

𝛼 ! conv? 𝛽 𝛽 ′ 𝜉 → 𝛼 ! conv 𝛽? 𝛽 ′? 𝜉

𝛼 ! conv ⟨𝑥, 𝑡, 𝑒,𝑦, 𝛿⟩ ⟨𝑥 ′, 𝑡 ′, 𝑒′, 𝑦′, 𝛿 ′⟩ 𝜉 → 𝛼 ! conv? 𝛿 𝛿 ′ ((𝑦,𝑦′) · 𝜉)
𝛼 ! conv [𝑥 𝑠] [𝑥 ′ 𝑠′] 𝜉 → 𝛼 ! conv∗ 𝑠 𝑠′ 𝜉 if (𝑥, 𝑥 ′) ∈ 𝜉 and |𝑠 | = |𝑠′ |

𝛼 ! conv 𝑣1 𝑣2 𝜉 → 𝛼 ! F in all other cases

𝛼 ! conv∗ 𝛽1 · · · 𝛽𝑛 𝛽 ′1 · · · 𝛽 ′𝑛 𝜉 → 𝜈𝛾1 . . . 𝛾𝑛 . 𝛼 ! 𝛾1? ∧ . . . ∧ 𝛾𝑛?
∥ 𝛾1 ! conv? 𝛽1 𝛽 ′1 𝜉 ∥ · · · ∥ 𝛾𝑛 ! conv? 𝛽𝑛 𝛽

′
𝑛 𝜉

(We have only shown the cases for pure lambda terms. The cases for defined constants 𝑐 are

discussed in §5.2.)

If the values read from channels 𝛽 and 𝛽 ′ are two closures ⟨𝑥, 𝑡, 𝑒,𝑦, 𝛿⟩ and ⟨𝑥 ′, 𝑡 ′, 𝑒′, 𝑦′, 𝛿 ′⟩, we
recursively compare the WHNFs of the corresponding function bodies, which can be read from

𝛿 and 𝛿 ′, up to equality of the variables 𝑦 and 𝑦′, which we express by adding the pair (𝑦,𝑦′) to
the current renaming 𝜉 . (The freshness requirements on the variables stored in extended function

closures guarantee that 𝑦 and 𝑦′ are not already involved in the renaming 𝜉 , as shown in the Rocq

proof described in §8.)

If the values read from channels 𝛽 and 𝛽 ′ are two applications of free variables [𝑥 𝑠] and [𝑥 ′ 𝑠′],
we check that the variables 𝑥 and 𝑥 ′ are equal up to the current renaming 𝜉 , that the argument lists

𝑠 and 𝑠′ have the same length, and that the arguments are pairwise convertible, as expressed by

conv∗ 𝑠 𝑠′ 𝜉 . We could have written

𝛼 ! conv [𝑥 𝛽1 · · · 𝛽𝑛] [𝑥 ′ 𝛽 ′1 · · · 𝛽 ′𝑛] 𝜉 → 𝛼 ! conv? 𝛽1 𝛽
′
1
𝜉 ∧ . . . ∧ conv? 𝛽𝑛 𝛽

′
𝑛 𝜉 if (𝑥, 𝑥 ′) ∈ 𝜉

The more convoluted definition above, using auxiliary processes and fresh channels, makes it

obvious that the sub-convertibility tests conv? 𝛽𝑖 𝛽
′
𝑖 𝜉 can run in parallel.
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In the definition of conv∗, the ∧ operator is “parallel and”: it reduces to false as soon as one of its

arguments reduces to false, even if the other argument is blocked reading from a channel.

T ∧ T → T F ∧ 𝐸 → F 𝐸 ∧ F → F

Combined with the non-strictness of eval (reduction to WHNF), this gives our convertibility test

nice early-failure properties. For example, if 𝑡1 and 𝑡2 are terms that are expensive to compute,

and 𝑥1 and 𝑥2 are two different free variables, the test determines that 𝑥1 𝑡1 ̸≈ 𝑥2 𝑡2 without ever
computing 𝑡1 nor 𝑡2: the two terms reduce to the values 𝑣1 = [𝑥1 𝛽1] and 𝑣2 = [𝑥2 𝛽2], where 𝛽1
and 𝛽2 are channels connected to processes that evaluate 𝑡1 and 𝑡2, and the comparison conv 𝑣1 𝑣2 𝜉
returns F immediately, since (𝑥1, 𝑥2) ∉ 𝜉 .
Likewise, the test can determine that 𝑥 𝑥1 𝑡1 ̸≈ 𝑥 𝑥2 𝑡2 without computing 𝑡1 or 𝑡2 in full. Two

convertibility subproblems are generated, one corresponding to 𝑥1 ≈ 𝑥2 and the other to 𝑡1 ≈ 𝑡2:

𝛼 ! 𝛾1? ∧ 𝛾2? ∥ 𝛾1 ! conv [𝑥1] [𝑥2] 𝜉 ∥ 𝛾2 ! conv? 𝛽1 𝛽2 𝜉 ∥ · · ·

Assuming fair interleaving, conv [𝑥1] [𝑥2] 𝜉 quickly reduces to F, causing F to be sent on 𝛼 , while

conv? 𝛽1 𝛽2 𝜉 has barely started to evaluate 𝑡1 and 𝑡2
Since reduction to WHNF preserves sharing, our convertibility test can also avoid some re-

peated evaluations that a more naive algorithm would perform. For example, to determine that

(𝜆𝑥. 𝑓 𝑥 𝑥) 𝑡 ≈ (𝜆𝑦. 𝑓 𝑦 𝑦) 𝑡 , where 𝑓 is a free variable, it evaluates 𝑡 only twice, once for the

left-hand side occurrence of 𝑡 and once for the right-hand side occurrence. (Section 6.3 shows one

way to also share the convertibility processes, not just the evaluation processes. Section 6.4 shows

one way to avoid evaluating 𝑡 at all.)

5.2 Handling Defined Constants
We now extend the basic convertibility test from §5.1 to support defined constants as introduced in

§4.4. As the examples in §2 demonstrate, there is no optimal strategy to handle defined constants

in a convertibility test: in general, constants have to be unfolded (replaced by their definitions) to

determine convertibility; but in some cases, the test can conclude that two terms are convertible

without unfolding constants, treating them as simple names instead, which can avoid unnecessary

computations. Our algorithm strives to keep all possibilities open, exploring them in parallel and

relying on non-strict evaluation and early-failure and early-success optimizations to shorten this

exploration.

Consider again the comparison conv 𝑣 𝑣 ′ 𝜉 of two values. If one value is a possibly applied,

defined constant [𝑐 𝑠]@𝛿 and the other is a different kind of value, there is no choice but to unfold

the definition of 𝑐 and continue reducing to WHNF. The resulting value can simply be read from 𝛿 ,

since the evaluation that produced [𝑐 𝑠]@𝛿 anticipated this need (as explained in §4.4).

𝛼 ! conv [𝑐 𝑠]@𝛿 𝑣 𝜉 → 𝛼 ! conv 𝛿? 𝑣 𝜉 if 𝑣 is not a constant

𝛼 ! conv 𝑣 [𝑐 𝑠]@𝛿 𝜉 → 𝛼 ! conv 𝑣 𝛿? 𝜉 if 𝑣 is not a constant

If the values 𝑣 and 𝑣 ′ are the same constant, or more generally the same application of a constant,

that is, [𝑐 𝑠]@𝛿 and [𝑐′ 𝑠′]@𝛿 ′ with 𝛿 = 𝛿 ′, we know that 𝑐 = 𝑐′ and 𝑠 = 𝑠′ and we can return T
immediately.

𝛼 ! conv [𝑐 𝑠]@𝛿 [𝑐′ 𝑠′]@𝛿 𝜉 → T

If the values 𝑣 and 𝑣 ′ are applications of different defined constants [𝑐 𝑠]@𝛿 and [𝑐′ 𝑠′]@𝛿 ′, with
𝑐 ≠ 𝑐′, it is tempting to unfold both 𝑐 and 𝑐′ in one step. However, as exemplified in §2, this can

result in missed opportunities to conclude quickly that the two values are convertible. Instead,
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we explore the two possibilities (unfold 𝑐 or unfold 𝑐′) in parallel, and choose whichever result is

obtained first.

𝛼 ! conv [𝑐 𝑠]@𝛿 [𝑐′ 𝑠′]@𝛿 ′ 𝜉 → 𝜈𝛽𝛾 . 𝛼 ! 𝛽? ⊕ 𝛾?
∥ 𝛽 ! conv [𝑐 𝑠]@𝛿 𝛿 ′? 𝜉
∥ 𝛾 ! conv 𝛿? [𝑐′ 𝑠′]@𝛿 ′ 𝜉

if 𝑐 ≠ 𝑐′ or |𝑠 | ≠ |𝑠′ |

The Boolean choice operator ⊕ returns whichever of its two arguments terminates first, knowing

that they evaluate to the same Boolean value. (Unfolding a constant in the left-hand side or in the

right-hand side doesn’t change the Boolean value of the convertibility test.)

T ⊕ 𝐸 → T F ⊕ 𝐸 → F 𝐸 ⊕ T → T 𝐸 ⊕ F → F

Finally, if the two values being compared are applications [𝑐 𝑠]@𝛿 and [𝑐 𝑠′]@𝛿 ′ of the same

defined constant 𝑐 to the same number of arguments, a third possibility arises: just compare the

arguments pairwise and return T if they are pairwise convertible, as in the case of free variables or

abstract constants.

𝛼 ! conv [𝑐 𝑠]@𝛿 [𝑐 𝑠′]@𝛿 ′ 𝜉 → 𝜈𝛽𝛾𝜂. 𝛼 ! 𝜂?
−→⊕ (𝛽? ⊕ 𝛾?)

∥ 𝛽 ! conv [𝑐 𝑠]@𝛿 𝛿 ′? 𝜉
∥ 𝛾 ! conv 𝛿? [𝑐′ 𝑠′]@𝛿 ′ 𝜉
∥ 𝜂 ! conv∗ 𝑠 𝑠′ 𝜉

if |𝑠 | = |𝑠′ |

The “biased choice” operator 𝐸1
−→⊕ 𝐸2 returns the Boolean value of 𝐸2 under the assumption that 𝐸1

implies 𝐸2. Therefore, if 𝐸1 terminates early with value T, 𝐸1
−→⊕ 𝐸2 can return T without waiting for

𝐸2 to terminate; and if 𝐸2 terminates early, its value can be returned immediately, without waiting

for 𝐸1 to terminate.

T −→⊕ 𝐸 → T 𝐸
−→⊕ T → T 𝐸

−→⊕ F → F

Here, we use a combination 𝐸1
−→⊕ (𝐸2 ⊕ 𝐸3) of biased choice and regular choice, where 𝐸1 is “the

argument lists 𝑠 and 𝑠′ are pairwise convertible”, 𝐸2 is “𝑐 𝑠 ≈ 𝑐 𝑠′ after unrolling 𝑐 in the left-hand

side”, and 𝐸3 is “𝑐 𝑠 ≈ 𝑐 𝑠′ after unrolling 𝑐 in the right-hand side”. As soon as one of 𝐸1, 𝐸2 or 𝐸3
returns T, we know that 𝑐 𝑠 and 𝑐 𝑠′ are convertible and can immediately return T. As soon as one of

𝐸2 or 𝐸3 returns F, we know that 𝑐 𝑠 and 𝑐 𝑠′ are not convertible and can return F. If 𝐸1 returns F, we
know that the arguments are not convertible but cannot conclude anything about the convertibility

of 𝑐 𝑠 and 𝑐 𝑠′. (Consider 𝑐 = 𝜆𝑥. 𝜆𝑦. 𝑥 and 𝑠, 𝑠′ differing in their second elements.)

6 Extensions
6.1 Avoiding Redundant Unfolding of Constants
The progressive unfolding of defined constants, on either the left-hand side or the right-hand side

but not both sides simultaneously, naturally leads to duplicated conv tests. For example, if 𝑐 ≠ 𝑐′

are defined constants, and assuming that 𝛿? reduces to 𝑣 and 𝛿 ′? to 𝑣 ′,

𝛼 ! conv [𝑐]@𝛿 [𝑐′]@𝛿 ′ 𝜉 →+ 𝜈𝛽𝛾 . 𝛼 ! 𝛽? ⊕ 𝛾? ∥ 𝛽 ! conv [𝑐]@𝛿 𝑣 ′ 𝜉 ∥ 𝛾 ! conv 𝑣 [𝑐′]@𝛿 ′ 𝜉
→+ 𝜈𝛽𝛾 . 𝛼 ! 𝛽? ⊕ 𝛾? ∥ 𝛽 ! conv 𝑣 𝑣 ′ 𝜉 ∥ 𝛾 ! conv 𝑣 𝑣 ′ 𝜉

We have two identical processes conv 𝑣 𝑣 ′ that run concurrently. Evaluations within 𝑣 and 𝑣 ′ will
be shared, and one processes will become unneeded as soon as the other terminates. Nonetheless,

some convertibility testing work is duplicated, and the number of convertibility processes can

increase exponentially.
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To avoid this, we introduce applied frozen constants as a new type of values:

Values: 𝑣 ::= ⟨𝑥, 𝑡, 𝑒,𝑦, 𝛿⟩ | [𝑥 𝑠] | [𝑐 𝑠]@𝛿
| [𝑐 𝑠] frozen constant 𝑐 applied to 𝑠

Frozen constants cannot be unfolded. During evaluation, they behave like free variables:

𝛼 ! apply [𝑐 𝑠] 𝑠′ → 𝛼 ! [𝑐 (𝑠 · 𝑠′)]
Consequently, the only way for a value 𝑣 to be convertible with a frozen constant [𝑐 𝑠] is for 𝑣
to reduce (possibly by unfolding) to the same constant 𝑐 applied to some arguments 𝑠′, with the

arguments 𝑠 and 𝑠′ being pairwise convertible.
When comparing two applied defined constants [𝑐 𝑠]@𝛿 and [𝑐′ 𝑠′]@𝛿 ′, we still create two

parallel processes, one that unfolds 𝑐 and another that unfolds 𝑐′. However, in the process that

unfolds 𝑐′, we freeze 𝑐 , replacing [𝑐 𝑠]@𝛿 with [𝑐 𝑠]. This way, further unfoldings of 𝑐 will only
take place in one of the processes, but not in both.

𝛼 ! conv [𝑐 𝑠]@𝛿 [𝑐′ 𝑠′]@𝛿 ′ 𝜉 → 𝜈𝛽𝛾 . 𝛼 ! 𝛽?
−→⊕ 𝛾?

∥ 𝛽 ! conv [𝑐 𝑠] 𝛿 ′? 𝜉
∥ 𝛾 ! conv 𝛿? [𝑐′ 𝑠′]@𝛿 ′ 𝜉

if 𝑐 ≠ 𝑐′ or |𝑠 | ≠ |𝑠′ |

𝛼 ! conv [𝑐 𝑠]@𝛿 [𝑐 𝑠′]@𝛿 ′ 𝜉 → 𝜈𝛽𝛾𝜂. 𝛼 ! 𝜂?
−→⊕ (𝛽? −→⊕ 𝛾?)

∥ 𝛽 ! conv [𝑐 𝑠] 𝛿 ′? 𝜉
∥ 𝛾 ! conv 𝛿? [𝑐′ 𝑠′]@𝛿 ′ 𝜉
∥ 𝜂 ! conv∗ 𝑠 𝑠′ 𝜉

if |𝑠 | = |𝑠′ |

Note the use of a biased choice in 𝛽?
−→⊕ 𝛾?: the 𝛽 process, which is the one that freezes 𝑐 , may

return F even though the two values are convertible; only the 𝛾 process returns an authoritative

result.

When they appear as arguments in a convertibility test, applications of frozen constants [𝑐 𝑠]
are treated almost like applications of free variables [𝑥 𝑠]. However, a special case is needed when

comparing an application of a frozen constant with an application of the same constant that is not

frozen.

𝛼 ! conv [𝑐 𝑠] [𝑐 𝑠′] 𝜉 → 𝛼 ! conv∗ 𝑠 𝑠′ 𝜉 if |𝑠 | = |𝑠′ |
𝛼 ! conv [𝑐 𝑠] [𝑐 𝑠′]@𝛿 ′ 𝜉 → 𝜈𝛽𝛾 . 𝛼 ! 𝛽? ∨ 𝛾?

∥ 𝛽 ! conv∗ 𝑠 𝑠′ 𝜉
∥ 𝛾 ! conv [𝑐 𝑠] 𝛿 ′? 𝜉

if |𝑠 | = |𝑠′ |

𝛼 ! conv [𝑐 𝑠]@𝛿 [𝑐 𝑠′] 𝜉 → 𝜈𝛽𝛾 . 𝛼 ! 𝛽? ∨ 𝛾?
∥ 𝛽 ! conv∗ 𝑠 𝑠′ 𝜉
∥ 𝛾 ! conv 𝛿? [𝑐′ 𝑠] 𝜉

if |𝑠 | = |𝑠′ |

6.2 Handling 𝜂-Conversion
Several proof assistants consider terms equal up to 𝜂-conversion of functions: 𝜆𝑥 .𝑀 𝑥 ≈ 𝑀 . Our

algorithm can be extended to handle 𝜂-conversion as well. The key observation is that, in the

presence of 𝜂-conversion, in order to prove 𝜆𝑥. 𝑀 ≈ 𝑁 , it suffices to show𝑀 [𝑥 := 𝑦] ≈ 𝑁 𝑦 where𝑦

is a fresh variable. However, this should only be attempted when it is safe and profitable to do so.

For example, if 𝑁 is a lambda-abstraction, this approach is not profitable; and if 𝑁 is a pair (𝑁1, 𝑁2)
(in an extension of our lambda-calculus with pairs), this approach creates a term (𝑁1, 𝑁2) 𝑦 that

goes wrong during evaluation.

The first safe and profitable case is the comparison of a function value with a neutral value, that

is, an applied free variable [𝑧 𝑠] or an applied frozen constant [𝑐 𝑠]. Then, we can safely apply the
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neutral value to a fresh variable.

𝛼 ! conv ⟨𝑥, 𝑡, 𝑒,𝑦, 𝛿⟩ [𝑧 𝑠] 𝜉 → 𝜈𝛽. 𝛼 ! conv 𝛿? [𝑧 (𝑠 · 𝛽)] ((𝑦,𝑦′) · 𝜉) ∥ 𝛽 ! [𝑦′] 𝑦′ fresh

(We omit three similar rules: one with [𝑐 𝑠] instead of [𝑧 𝑠] and two with the function value and

the neutral value swapped.)

When one side is an abstraction and the other is a defined constant, we explore two possibilities

in parallel: unfolding the constant or applying it to a fresh free variable. In the latter case, we

must prevent further unfolding of the constant by using the frozen constant mechanism of §6.1.

Unfolding the constant after applying it to a fresh free variable can be unsafe (e.g. if the constant
expands to a pair) and is not profitable. The corresponding rule is as follows:

𝛼 ! conv ⟨𝑥, 𝑡, 𝑒,𝑦, 𝛿⟩ [𝑐 𝑠]@𝛿 ′ 𝜉 → 𝜈𝛽𝛾𝜂. 𝛼 ! 𝜂?
−→⊕ 𝛾?

∥ 𝜂 ! conv 𝛿? [𝑐 (𝑠 · 𝛽)] ((𝑦,𝑦′) · 𝜉)
∥ 𝛾 ! conv ⟨𝑥, 𝑡, 𝑒,𝑦, 𝛿⟩ 𝛿 ′? 𝜉
∥ 𝛽 ! [𝑦′]

𝑦′ fresh

(Plus a similar rule for conv [𝑐 𝑠]@𝛿 ′ ⟨𝑥, 𝑡, 𝑒,𝑦, 𝛿⟩ 𝜉 .)

6.3 Sharing Convertibility Processes
As mentioned at the end of §5.1, our convertibility checker benefits from our lazy evaluator’s ability

to share the repeated evaluations of sub-terms. However, the convertibility tests themselves are

not shared and can easily be duplicated.

Consider the test (𝜆𝑥 . 𝑓 𝑥 𝑥) 𝑡 ≈ (𝜆𝑦. 𝑓 𝑦 𝑦) 𝑢 where 𝑓 is a free variable. After the initial

evaluation steps, we end up comparing two inert values [𝑓 𝛽 𝛽] and [𝑓 𝛾 𝛾]:
𝛼 ! conv [𝑓 𝛽 𝛽] [𝑓 𝛾 𝛾] 𝜉 ∥ 𝛽 ! eval 𝑡 { } ∥ 𝛾 ! eval 𝑢 { }

This process further reduces to

𝛼 ! 𝛿? ∧ 𝜂? ∥ 𝛿 ! conv? 𝛽 𝛾 𝜉 ∥ 𝜂 ! conv? 𝛽 𝛾 𝜉 ∥ 𝛽 ! eval 𝑡 { } ∥ 𝛾 ! eval 𝑢 { }
The evaluations of 𝑡 and 𝑢 remain shared, but the convertibility test conv? 𝛽 𝛾 𝜉 is duplicated. In
some cases involving recursive functions, this can result in exponential duplication of convertibility

tests (see the perfect example in §10).

This problem could be avoided by re-sharing conv? 𝛽 𝛾 𝜉 processes as they are created, using

hash-consing on the channels 𝛽 and 𝛾 . On the example above, this re-sharing would result in

𝛼 ! 𝛿? ∧ 𝛿? ∥ 𝛿 ! conv? 𝛽 𝛾 𝜉 ∥ 𝛽 ! eval 𝑡 { } ∥ 𝛾 ! eval 𝑢 { }
with a single conv? 𝛽 𝛾 𝜉 process whose output is used twice.

Re-sharing convertibility processes also solves the issue with redundant unfolding of constants

described in §6.1, without the need to introduce frozen constant values and treat them specially.

However, frozen constant values have other uses, e.g. to handle 𝜂-conversion, and they are cheaper

to implement than process re-sharing.

6.4 Sharing Identical Source Subterms
Evaluation processes eval 𝑡 𝑒 carefully avoid duplicating computations when performing a beta-

reduction or unfolding a constant. Consequently, (𝜆𝑥. 𝑥 + 𝑥) 𝑡 ≈ 0 evaluates 𝑡 only once, and

1 + 𝑐 ≈ 𝑐 + 1 evaluates the definition of 𝑐 only once. However, multiple occurrences of the same

source subterm 𝑡 are evaluated independently. For example, 𝑡 + 𝑡 ≈ 0 evaluates 𝑡 twice, and so does

1 + 𝑡 ≈ 𝑡 + 1.

To share more evaluations, we can let-bind some subterms of the source terms before starting

the convertibility test. For example, 𝑡 + 𝑡 can be replaced by let 𝑥 = 𝑡 in 𝑥 + 𝑥 . To share subterms
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that occur on both sides of a convertibility test, we need let bindings that cover both sides, leading

to generalized convertibility problems of the following form:

let 𝑥1 = 𝑡1 in . . . let 𝑥𝑛 = 𝑡𝑛 in 𝑡 ≈ 𝑡 ′

For example, 1+ 𝑡 ≈ 𝑡 +1 can be replaced by let 𝑥 = 𝑡 in 1+𝑥 ≈ 𝑥 +1. More generally,𝐶 [𝑡] ≈ 𝐶′ [𝑡]
can be replaced by let 𝑥 = 𝑡 in𝐶 [𝑥] ≈ 𝐶′ [𝑥] where 𝑥 is fresh, provided that 𝑡 does not depend on

variables that are bound by 𝐶 or 𝐶′
. This transformation includes as a special case the lifting of

maximal free expressions described by Peyton Jones [1987, chapter 15] to implement full laziness

[Balabonski 2012].

One way to implement the transformation outlined above is to perform hash-consing on the

closed subterms of the original convertibility problem 𝑡 ≈ 𝑡 ′. This yields (in linear time) a DAG

where multiple occurrences of the same closed subterm are shared. Then, we transcribe (in linear

time) this DAG as a set of let bindings to obtain a generalized convertibility problem of the form

shown above.

To evaluate this generalized convertibility problem, we set up the following process:

𝜈𝛽𝛽 ′𝛾1 . . . 𝛾𝑛 . 𝛼 ! conv? 𝛽 𝛽 ′ 𝜖
∥ 𝛽 ! eval 𝑡 {𝑥1 ↦→ 𝛾1, . . . , 𝑥𝑛 ↦→ 𝛾𝑛} ∥ 𝛽 ′ ! eval 𝑡 ′ {𝑥1 ↦→ 𝛾1, . . . , 𝑥𝑛 ↦→ 𝛾𝑛}
∥ 𝛾1 ! eval 𝑡1 { } ∥ . . . ∥ 𝛾𝑛 ! eval 𝑡𝑛 {𝑥1 ↦→ 𝛾1, . . . , 𝑥𝑛−1 ↦→ 𝛾𝑛−1}

Since it is now possible for the same channel to appear on both sides of a convertibility sub-problem,

we add a new early-success case:

𝛼 ! conv? 𝛽 𝛽 ′ 𝜉 → T if 𝛽 = 𝛽 ′

For example, 𝑐 𝑡 ≈ 𝑐 𝑡 , encoded as let 𝑥 = 𝑡 in 𝑐 𝑥 ≈ 𝑐 𝑥 , triggers the new case above when

comparing the two argument stacks for 𝑐 , causing T to be returned without evaluating 𝑡 at all.

7 An Explicitly-Scheduled Abstract Machine
The evaluation and convertibility testing functions of §4 and §5 do not enforce laziness: they allow

evaluations to start reducing as soon as the corresponding processes are created, before we know

that their results are needed. We now make scheduling explicit in these functions, specifying which

processes should be reduced at each step, so that processes are not executed before their results are

needed, and the executions of active processes are interleaved fairly.

The explicitly-scheduled rules are shown in figures 2 and 3. They can be viewed as the transitions

of an abstract machine whose states are triples 𝑃
[
𝑊,𝑄

]
or, equivalently, as reduction rules for

processes 𝑃 annotated with scheduling information𝑊,𝑄 . In both cases,

• 𝑃 is the parallel composition of a set of elementary processes 𝛼1 ! 𝐸1 ∥ · · · ∥ 𝛼𝑛 ! 𝐸𝑛 , identified
by their channels 𝛼𝑖 .

• 𝑊 is a map from channels to sets of channels. It records which processes are waiting on

the result of other processes:𝑊 (𝛼) = {𝛽1, . . . , 𝛽𝑛} means that the processes 𝛽1, . . . , 𝛽𝑛 are

blocked waiting for the process 𝛼 to send a value.

• 𝑄 is a queue of channels representing the active processes: the processes whose results are

needed to advance the resolution of the current convertibility problem. Inactive processes

are never scheduled for execution. However, a process can alternate between the “inactive”

and “active” states as the convertibility problem progresses. There are no duplicates in this

queue, ensuring fairness between the active processes.

Many of the abstract machine transitions simply perform round-robin execution of the active

processes. They have the following shape:

𝛼 ! 𝐸 ∥ 𝑃
[
𝑊,𝛼 ·𝑄

]
→ 𝑃 ′ ∥ 𝑃

[
𝑊,𝑄 · 𝛼

]
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Initial state when testing convertibility of 𝑡1 and 𝑡2: (𝛼 ↦→ {∗} means that 𝛼 is always needed)

𝛼 ! conv? 𝛽 𝛾 𝜖 ∥ 𝛽 ! eval 𝑡1 𝜖 ∥ 𝛾 ! eval 𝑡2 𝜖 ∥ 𝐾𝑃
[
(𝛼 ↦→ {∗}), 𝛼 · 𝜖

]
Transitions for convertibility processes:

𝛼 ! conv? 𝛽 𝛽 𝜉 ∥ 𝑃
[
𝑊,𝛼 ·𝑄

]
→ 𝛼 ! T ∥ 𝑃

[
finish(𝛼,𝑊 ,𝑄)

]
𝛼 ! conv? 𝛽 𝛽′ 𝜉 ∥ 𝑃

[
𝑊,𝛼 ·𝑄

]
→ 𝛼 ! conv 𝛽? 𝛽′? 𝜉 ∥ 𝑃

[
𝑊,𝑄 · 𝛼

]
if 𝛽 ≠ 𝛽′

Obtaining the values to be compared:

𝛼 ! conv 𝛽? 𝐸′ 𝜉 ∥ 𝛽 ! 𝑣 ∥ 𝑃
[
𝑊,𝛼 ·𝑄

]
→ 𝛼 ! conv 𝑣 𝐸′ 𝜉 ∥ 𝛽 ! 𝑣 ∥ 𝑃

[
𝑊,𝑄 · 𝛼

]
𝛼 ! conv 𝐸 𝛽′? 𝜉 ∥ 𝛽′ ! 𝑣 ′ ∥ 𝑃

[
𝑊,𝛼 ·𝑄

]
→ 𝛼 ! conv 𝐸 𝑣 ′ 𝜉 ∥ 𝛽′ ! 𝑣 ′ ∥ 𝑃

[
𝑊,𝑄 · 𝛼

]
𝛼 ! conv 𝛽? 𝛽′? 𝜉 ∥ 𝑃

[
𝑊,𝛼 ·𝑄

]
→ 𝛼 ! conv 𝛽? 𝛽′? 𝜉 ∥ 𝑃[

need(𝛼, 𝛽, need(𝛼, 𝛽′,𝑊 ,𝑄))
]

𝛼 ! conv 𝛽? 𝑣 ′ 𝜉 ∥ 𝑃
[
𝑊,𝛼 ·𝑄

]
→ 𝛼 ! conv 𝛽? 𝑣 ′ 𝜉 ∥ 𝑃

[
need(𝛼, 𝛽,𝑊 ,𝑄)

]
𝛼 ! conv 𝑣 𝛽′? 𝜉 ∥ 𝑃

[
𝑊,𝛼 ·𝑄

]
→ 𝛼 ! conv 𝑣 𝛽′? 𝜉 ∥ 𝑃

[
need(𝛼, 𝛽′,𝑊 ,𝑄)

]
Comparing two values:

𝛼 ! conv ⟨𝑥, 𝑡, 𝑒,𝑦, 𝛿⟩ ⟨𝑥 ′, 𝑡 ′, 𝑒′, 𝑦′, 𝛿 ′⟩ 𝜉 ∥ 𝑃
[
𝑊,𝛼 ·𝑄

]
→ 𝛼 ! conv? 𝛿 𝛿 ′ ((𝑦,𝑦′) · 𝜉) ∥ 𝑃

[
𝑊,𝑄 · 𝛼

]
𝛼 ! conv [𝑥 𝑠] [𝑥 ′ 𝑠′] 𝜉 ∥ 𝑃

[
𝑊,𝛼 ·𝑄

]
→ 𝛼 ! conv∗ 𝑠 𝑠′ 𝜉 ∥ 𝑃

[
𝑊,𝑄 · 𝛼

]
if (𝑥, 𝑥 ′) ∈ 𝜉 and |𝑠 | = |𝑠′ |

𝛼 ! conv [𝑐 𝑠]@𝛿 [𝑐′ 𝑠′]@𝛿 𝜉 ∥ 𝑃
[
𝑊,𝛼 ·𝑄

]
→ 𝛼 ! T ∥ 𝑃

[
finish(𝛼,𝑊 ,𝑄)

]
𝛼 ! conv [𝑐 𝑠]@𝛿 [𝑐′ 𝑠′]@𝛿 ′ 𝜉 ∥ 𝑃

[
𝑊,𝛼 ·𝑄

]
→ 𝜈𝛽𝛾 . 𝛼 ! 𝛽? ⊕ 𝛾?

∥ 𝛽 ! conv [𝑐 𝑠]@𝛿 𝛿 ′? 𝜉
∥ 𝛾 ! conv 𝛿? [𝑐′ 𝑠′]@𝛿 ′ 𝜉 ∥ 𝑃[
𝑊 [𝛽 ↦→ {𝛼}, 𝛾 ↦→ {𝛼}], 𝑄 · 𝛽 · 𝛾

]
if 𝑐 ≠ 𝑐′ or |𝑠 | ≠ |𝑠′ |

𝛼 ! conv [𝑐 𝑠]@𝛿 [𝑐 𝑠′]@𝛿 ′ 𝜉 ∥ 𝑃
[
𝑊,𝛼 ·𝑄

]
→ 𝜈𝛽𝛾𝜂𝜁 .

𝛼 ! 𝜂?
−→⊕ 𝜁 ? ∥ 𝜁 ! 𝛽? ⊕ 𝛾?

∥ 𝛽 ! conv [𝑐 𝑠]@𝛿 𝛿 ′? 𝜉
∥ 𝛾 ! conv 𝛿? [𝑐′ 𝑠′]@𝛿 ′ 𝜉
∥ 𝜂 ! conv∗ 𝑠 𝑠′ 𝜉 ∥ 𝑃[
𝑊 [𝜂 ↦→ {𝛼}, 𝜁 ↦→ {𝛼}, 𝛽 ↦→ {𝜁 }, 𝛾 ↦→ {𝜁 }],
𝑄 · 𝜂 · 𝛽 · 𝛾

]
if |𝑠 | = |𝑠′ |

𝛼 ! conv [𝑐 𝑠]@𝛿 𝑣 ′ 𝜉 ∥ 𝑃
[
𝑊,𝛼 ·𝑄

]
→ 𝛼 ! conv 𝛿? 𝑣 ′ 𝜉 ∥ 𝑃

[
𝑊,𝑄 · 𝛼

]
𝛼 ! conv 𝑣 [𝑐′ 𝑠′]@𝛿 ′ 𝜉 ∥ 𝑃

[
𝑊,𝛼 ·𝑄

]
→ 𝛼 ! conv 𝑣 𝛿 ′? 𝜉 ∥ 𝑃

[
𝑊,𝑄 · 𝛼

]
𝛼 ! conv 𝑣1 𝑣2 𝜉 ∥ 𝑃

[
𝑊,𝛼 ·𝑄

]
→ 𝛼 ! F ∥ 𝑃

[
finish(𝛼,𝑊 ,𝑄)

]
in all other cases

Fig. 2. The explicitly-scheduled abstract machine, part 1.
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Comparing two argument stacks:

𝛼 ! conv∗ 𝜖 𝜖 𝜉 ∥ 𝑃
[
𝑊,𝛼 ·𝑄

]
→ 𝛼 ! T ∥ 𝑃

[
finish(𝛼,𝑊 ,𝑄)

]
𝛼 ! conv∗ (𝛽 · 𝑠) (𝛽′ · 𝑠′) 𝜉 ∥ 𝑃

[
𝑤, 𝛼 ·𝑄

]
→ 𝜈𝛾𝜂. 𝛼 ! 𝛾? ∧ 𝜂?

∥ 𝛾 ! conv? 𝛽 𝛽′ 𝜉
∥ 𝜂 ! conv∗ 𝑠 𝑠′ 𝜉 ∥ 𝑃[
𝑊 [𝛾 ↦→ {𝛼}, 𝜂 ↦→ {𝛼}], 𝑄 · 𝛾 · 𝜂

]
Transitions for evaluation processes:

𝛼 ! eval 𝑡 𝑒 ∥ 𝑃
[
𝑊,𝛼 ·𝑄

]
→ 𝛼 ! reduce 𝑡 𝑒 𝜖 ∥ 𝑃

[
𝑊,𝑄 · 𝛼

]
𝛼 ! reduce (𝑡 𝑢) 𝑒 𝑠 ∥ 𝑃

[
𝑊,𝛼 ·𝑄

]
→ 𝜈𝛽. 𝛼 ! reduce 𝑡 𝑒 (𝛽 · 𝑠) ∥ 𝛽 ! eval 𝑢 𝑒 ∥ 𝑃

[
𝑊,𝑄 · 𝛼

]
𝛼 ! reduce (𝜆𝑥.𝑡) 𝑒 𝑠 ∥ 𝑃

[
𝑊,𝛼 ·𝑄

]
→ 𝜈𝛾𝛿. 𝛼 ! apply ⟨𝑥, 𝑡, 𝑒,𝑦, 𝛿⟩ 𝑠

∥ 𝛿 ! eval 𝑡 (𝑒 + 𝑥 ↦→ 𝛾)
∥ 𝛾 ! [𝑦] ∥ 𝑃[
𝑊,𝑄 · 𝛼

]
where 𝑦 is a fresh variable

𝛼 ! reduce 𝑥 𝑒 𝑠 ∥ 𝑃
[
𝑊,𝛼 ·𝑄

]
→ 𝛼 ! apply 𝑒 (𝑥)? 𝑠 ∥ 𝑃

[
𝑊,𝑄 · 𝛼

]
if 𝑥 ∈ Dom(𝑒)

𝛼 ! reduce 𝑥 𝑒 𝑠 ∥ 𝑃
[
𝑊,𝛼 ·𝑄

]
→ 𝛼 ! apply [𝑥] 𝑠 ∥ 𝑃

[
𝑊,𝑄 · 𝛼

]
if 𝑥 ∉ Dom(𝑒)

𝛼 ! reduce 𝑐 𝑒 𝑠 ∥ 𝑃
[
𝑊,𝛼 ·𝑄

]
→ 𝛼 ! apply ( [𝑐]@𝐾 (𝑐)) 𝑠 ∥ 𝑃

[
𝑊,𝑄 · 𝛼

]
Obtaining the value to be applied:

𝛼 ! apply 𝛽? 𝑠 ∥ 𝛽 ! 𝑣 ∥ 𝑃
[
𝑊,𝛼 ·𝑄

]
→ 𝛼 ! apply 𝑣 𝑠 ∥ 𝛽 ! 𝑣 ∥ 𝑃

[
𝑊,𝑄 · 𝛼

]
𝛼 ! apply 𝛽? 𝑠 ∥ 𝑃

[
𝑊,𝛼 ·𝑄

]
→ 𝛼 ! apply 𝛽? 𝑠 ∥ 𝑃

[
need(𝛼, 𝛽,𝑊 ,𝑄)

]
Applying a value to a stack:

𝛼 ! apply 𝑣 𝜖 ∥ 𝑃
[
𝑊,𝛼 ·𝑄

]
→ 𝛼 ! 𝑣 ∥ 𝑃

[
finish(𝛼,𝑊 ,𝑄)

]
𝛼 ! apply ⟨𝑥, 𝑡, 𝑒,𝑦, 𝛿⟩ (𝛽 · 𝑠) ∥ 𝑃

[
𝑊,𝛼 ·𝑄

]
→ 𝛼 ! reduce 𝑡 (𝑒 + 𝑥 ↦→ 𝛽) 𝑠 ∥ 𝑃

[
𝑊,𝑄 · 𝛼

]
𝛼 ! apply [𝑥 𝑠′] 𝑠 ∥ 𝑃

[
𝑊,𝛼 ·𝑄

]
→ 𝛼 ! [𝑥 (𝑠′ · 𝑠)] ∥ 𝑃

[
finish(𝛼,𝑊 ,𝑄)

]
𝛼 ! apply ( [𝑐 𝑠′]@𝛿) 𝑠 ∥ 𝑃

[
𝑊,𝛼 ·𝑄

]
→ 𝜈𝛾 . 𝛼 ! [𝑐 (𝑠′ · 𝑠)]@𝛾 ∥ 𝛾 ! apply 𝛿? 𝑠 ∥ 𝑃

[
finish(𝛼,𝑊 ,𝑄)

]
Transitions for Boolean connectors (symmetrical rules for ∧ and ⊕ omitted):

𝛼 ! 𝛽? ⊕ 𝛾? ∥ 𝛽 ! 𝑣 ∥ 𝑃
[
𝑊,𝛼 ·𝑄

]
→ 𝛼 ! 𝑣 ∥ 𝛽 ! 𝑣 ∥ 𝑃

[
finish(𝛼, unneed(𝛼,𝛾,𝑊 ,𝑄))

]
𝛼 ! 𝛽? ∥ 𝛽 ! 𝑣 ∥ 𝑃

[
𝑊,𝛼 ·𝑄

]
→ 𝛼 ! 𝑣 ∥ 𝛽 ! 𝑣 ∥ 𝑃

[
finish(𝛼,𝑊 ,𝑄)

]
𝛼 ! 𝛽? ∧ 𝛾? ∥ 𝛽 ! F ∥ 𝑃

[
𝑊,𝛼 ·𝑄

]
→ 𝛼 ! F ∥ 𝛽 ! F ∥ 𝑃

[
finish(𝛼, unneed(𝛼,𝛾,𝑊 ,𝑄))

]
𝛼 ! 𝛽? ∧ 𝛾? ∥ 𝛽 ! T ∥ 𝑃

[
𝑊,𝛼 ·𝑄

]
→ 𝛼 ! 𝛾? ∥ 𝛽 ! T ∥ 𝑃

[
need(𝛼,𝛾,𝑊 ,𝑄)

]
𝛼 ! 𝛽?

−→⊕ 𝛾? ∥ 𝛽 ! T ∥ 𝑃
[
𝑊,𝛼 ·𝑄

]
→ 𝛼 ! T ∥ 𝛽 ! T ∥ 𝑃

[
finish(𝛼, unneed(𝛼,𝛾,𝑊 ,𝑄))

]
𝛼 ! 𝛽?

−→⊕ 𝛾? ∥ 𝛽 ! F ∥ 𝑃
[
𝑊,𝛼 ·𝑄

]
→ 𝛼 ! 𝛾? ∥ 𝛽 ! F ∥ 𝑃

[
need(𝛼,𝛾,𝑊 ,𝑄)

]
𝛼 ! 𝛽?

−→⊕ 𝛾? ∥ 𝛾 ! 𝑣 ∥ 𝑃
[
𝑊,𝛼 ·𝑄

]
→ 𝛼 ! 𝑣 ∥ 𝛾 ! 𝑣 ∥ 𝑃

[
finish(𝛼, unneed(𝛼, 𝛽,𝑊 ,𝑄))

]
Fig. 3. The explicitly-scheduled abstract machine, part 2.
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where 𝛼 ! 𝐸 → 𝑃 ′ is one of the reduction steps for the evaluation or convertibility functions of §4

and §5. The reduction step is performed because the process 𝛼 is active and in head position in the

queue 𝑄 . The process is then moved to the end of 𝑄 . The other processes 𝑃 and the wait map𝑊

are unchanged. The net effect of these transitions is to step through the executions of the active

processes in round-robin manner.

When a new process is created, it can be either in the inactive state or in the active state. For

example, in the rule that reduces a function application

𝛼 ! reduce (𝑡 𝑢) 𝑒 𝑠 ∥ 𝑃
[
𝑊,𝛼 ·𝑄

]
→ 𝜈𝛽. 𝛼 ! reduce 𝑡 𝑒 (𝛽 · 𝑠) ∥ 𝛽 ! eval 𝑢 𝑒 ∥ 𝑃

[
𝑊,𝑄 · 𝛼

]
the process 𝛽 ! eval 𝑢 𝑒 that computes the value of the function argument 𝑢 is initially inactive,

since we do not need its value right away. It will become active when the value 𝛽? is needed. In

contrast, the rule that tests the convertibility of two nonempty stacks,

𝛼 ! conv∗ (𝛽 · 𝑠) (𝛽 ′ · 𝑠′) 𝜉 ∥ 𝑃
[
𝑄, 𝛼 ·𝑊

]
→ 𝜈𝛾𝜂. 𝛼 ! 𝛾? ∧ 𝜂?

∥ 𝛾 ! conv? 𝛽 𝛽 ′ 𝜉
∥ 𝜂 ! conv∗ 𝑠 𝑠′ 𝜉 ∥ 𝑃[
𝑊 [𝛾 ↦→ {𝛼}, 𝜂 ↦→ {𝛼}], 𝑄 · 𝛾 · 𝜂

]
creates two new convertibility processes, 𝛾 and 𝜂, which need to start executing right away, while

𝛼 need to wait for them to produce Boolean values. Therefore, 𝛾 and 𝜂 are added to 𝑄 , and 𝛼 is

recorded (in𝑊 ) as waiting both on 𝛾 and on 𝜂.

When an active process reduces to a value, all the processes waiting for this value must be

restarted. This is performed by the finish operation:

finish(𝛼,𝑊 ,𝑄) = (𝑊 [𝛼 ↦→ ∅], 𝑄 · (𝑊 (𝛼) \𝑄))
A typical use is the application of a value to an empty stack:

𝛼 ! apply 𝑣 𝜖 ∥ 𝑃
[
𝑊,𝛼 ·𝑄

]
→ 𝛼 ! 𝑣 ∥ 𝑃

[
finish(𝛼,𝑊 ,𝑄)

]
The effect of finish is to restart all the processes that were blocked while reading from 𝛼 , adding

them to the queue of active processes. Then,𝑊 (𝛼) is set to ∅ since no process remains waiting on

𝛼 . The process 𝛼 is not added back to 𝑄 , since it has terminated and does not need to be scheduled

ever again.

Symmetrically, the need(𝛼, 𝛽,𝑊 ,𝑄) operation suspends the process 𝛼 until the process 𝛽 has

produced a value.

need(𝛼, 𝛽,𝑊 ,𝑄) = (𝑊 [𝛽 ↦→𝑊 (𝛽) ∪ {𝛼}], 𝑄) if𝑊 (𝛽) ≠ ∅
need(𝛼, 𝛽,𝑊 ,𝑄) = (𝑊 [𝛽 ↦→ {𝛼}], 𝑄 · 𝛽) if𝑊 (𝛽) = ∅

A typical use of need is the rule for applying a value read from a channel:

𝛼 ! apply 𝛽? 𝑠 ∥ 𝑃
[
𝑊,𝛼 ·𝑄

]
→ 𝛼 ! apply 𝛽? 𝑠 ∥ 𝑃

[
need(𝛼, 𝛽,𝑊 ,𝑄)

]
(i)

The process 𝛼 ! apply 𝛽? 𝑠 needs to receive a value from channel 𝛽 before it can proceed. Therefore,

𝛼 becomes inactive, 𝛽 becomes active if it was not already, and a dependency of 𝛼 on 𝛽 is added to

the map𝑊 .

Note that the need operation must not be performed if the desired value is already available. To

ensure this, for each rule like (i) above, we have a companion rule:

𝛼 ! apply 𝛽? 𝑠 ∥ 𝛽 ! 𝑣 ∥ 𝑃
[
𝑊,𝛼 ·𝑄

]
→ 𝛼 ! apply 𝑣 𝑠 ∥ 𝛽 ! 𝑣 ∥ 𝑃

[
𝑊,𝑄 · 𝛼

]
) (ii)

where the value 𝑣 produced by process 𝛽 is directly transferred to process 𝛼 . (The convention we

follow for the abstract machine is that transitions are determined by the first rule that matches.

Since rule (ii) appears before rule (i) in figure 3, (ii) takes precedence over (i).)
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A process may need to wait for several processes to produce their values. This is the case in the

rule that obtains two values to be compared:

𝛼 ! conv 𝛽? 𝛽 ′? 𝜉 ∥ 𝑃
[
𝑊,𝛼 ·𝑄

]
→ 𝛼 ! conv 𝛽? 𝛽 ′? 𝜉 ∥ 𝑃

[
need(𝛼, 𝛽, need(𝛼, 𝛽 ′,𝑊 ,𝑄))

]
Here, both 𝛽 and 𝛽 ′ need to be restarted, and 𝛼 must be marked as waiting on both 𝛽 and 𝛽 ′.
Finally, when evaluating Boolean connectors, the value of an active process may become un-

needed. For example, if we are evaluating 𝛼 ! 𝛽? ∧ 𝛾? and the process 𝛽 produces F, we no longer

need the value of 𝛾 . Therefore, we update the scheduling state to reflect this fact before producing

F on 𝛼 :

𝛼 ! 𝛽? ∧ 𝛾? ∥ 𝛽 ! F ∥ 𝑃
[
𝑊,𝛼 ·𝑄

]
→ 𝛼 ! F ∥ 𝛽 ! F ∥ 𝑃

[
finish(𝛼, unneed(𝛼,𝛾,𝑊 ,𝑄))

]
The unneed operation is defined recursively as

unneed(𝛼, 𝛽,𝑊 ,𝑄) = (𝑊 [𝛽 ↦→𝑊 (𝛽) \ {𝛼}], 𝑄) if𝑊 (𝛽) ≠ {𝛼}
unneed(𝛼, 𝛽,𝑊 ,𝑄) = unneed(𝛽,𝛾1, . . . , unneed(𝛽,𝛾𝑛,𝑊 [𝛽 ↦→ ∅], 𝑄 \ {𝛽}))

if𝑊 (𝛽) = {𝛼} and {𝛾 | 𝛽 ∈𝑊 (𝛾)} = {𝛾1, . . . , 𝛾𝑛}
The dependency of 𝛼 on 𝛽 is removed from𝑊 . Moreover, if 𝛼 was the only process waiting on 𝛽 to

produce a value, the execution of 𝛽 is stopped by removing 𝛽 from the queue 𝑄 of active processes,

and we recursively call unneed(𝛽,𝛾) on all processes 𝛾 that 𝛽 was waiting for. This is similar to

removing a reference in a reference counting system. The unneed operation can be implemented

efficiently by using a doubly linked list for 𝑄 and storing𝑊 as a pair of maps in both directions.

8 Rocq Proof
We formally verified the partial correctness of our concurrent convertibility test, using the Rocq

interactive theorem prover. The formalization includes the main algorithm presented in §5, with-

out the extensions shown in §6. It also incorporates extensions to the core 𝜆-calculus to handle

data constructors and pattern-matching. The proof only proves partial correctness; that is, if the

algorithm produces a result, then the result is correct. It does not prove termination. The proof

does not formalize scheduling either, because it is unnecessary for proving correctness.

The reduction part of the algorithm is formulated in the style of §4, as transitions over sets of

concurrent threads, leaving scheduling unspecified. Since the sharing of convertibility processes

shown in §6.3 is not included, all convertibility processes of §5 are replaced by a tree of Boolean

operations. The leaves of this tree are convertibility tests between two channels.

The development is included as an artifact for this paper. It sums up to about 10000 lines of Rocq

in total, which makes it a moderately-sized proof. Here is the final theorem:

Lemma all_correct :

forall defs t1 t2 st b,

defs_wf defs ->

closed_at t1 0 -> closed_at t2 0 ->

dvar_below (length defs) t1 -> dvar_below (length defs) t2 ->

star step (init_conv defs t1 t2) (cthread_done b, st) ->

reflect (convertible (betaiota defs) t1 t2) b.

It expresses that, given well-formed constant definitions defs and two closed terms t1 and t2
that reference only constants defined in defs, if we start the convertibility abstract machine in the

initial state corresponding to defs, t1 and t2, and if it stops after a finite number of transitions on

a final cthread_done state carrying the Boolean result b, then b is true if and only if t1 and t2 are
convertible. The betaiota relation, which should actually be called betadelta, is the union of beta
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𝑡 →𝛽𝛿 𝑡
′ 𝑡 ′ ≈ 𝑢 : 𝐵

𝑡 ≈ 𝑢 : 𝐵
red-l

𝑢 →𝛽𝛿 𝑢
′ 𝑡 ≈ 𝑢′ : 𝐵
𝑡 ≈ 𝑢 : 𝐵

red-r

𝑡 ≈ 𝑢 [𝑦 := 𝑥] : 𝐵
𝜆𝑥. 𝑡 ≈ 𝜆𝑦.𝑢 : 𝐵

lam

𝜆𝑥. 𝑡 ≈ 𝑦 𝑢1 · · · 𝑢𝑛 : F
lam-var

𝑥 𝑡1 · · · 𝑡𝑛 ≈ 𝜆𝑦.𝑢 : F
var-lam

𝑡1 ≈ 𝑢1 : T . . . 𝑡𝑛 ≈ 𝑢𝑛 : T

𝑥 𝑡1 · · · 𝑡𝑛 ≈ 𝑥 𝑢1 · · · 𝑢𝑛 : T
var-1

𝑥 ≠ 𝑦

𝑥 𝑡1 · · · 𝑡𝑛 ≈ 𝑦 𝑢1 · · · 𝑢𝑚 : F
var-2

𝑡𝑖 ≈ 𝑢𝑖 : F
𝑥 𝑡1 · · · 𝑡𝑛 ≈ 𝑥 𝑢1 · · · 𝑢𝑛 : F

var-3

𝑡1 ≈ 𝑢1 : T . . . 𝑡𝑛 ≈ 𝑢𝑛 : T

𝑐 𝑡1 · · · 𝑡𝑛 ≈ 𝑐 𝑢1 · · · 𝑢𝑛 : T
const

Fig. 4. The inference rules for the convertibility judgment 𝑡 ≈ 𝑢 : 𝐵

reduction and unrolling of defined constants. Note that this does not guarantee termination nor

the absence of errors or deadlocks: we have not proved that a cthread_done state will be reached.

However, this guarantees that once this state is reached, then the result thus obtained is correct.

Unsurprisingly, one of the more delicate aspects of the Rocq development is the representation

of variables in terms. We use de Bruijn indices for the inputs of the convertibility test (such as the

terms t1 and t2 above) and named variables for evaluated terms. De Bruijn indices are easier to

work with, but named variables allow for sharing without the need for explicit weakenings. This

approach necessitates generating fresh variable names in the state of the reduction, and proving

numerous invariants justifying that the generated variables are indeed fresh.

One limitation of the Rocq proof is that, for a reduction step from a configuration representing a

term 𝑡 to a configuration representing a term 𝑡 ′, it only shows that 𝑡 and 𝑡 ′ are convertible (𝑡 ≈ 𝑡 ′)
but not that 𝑡 reduces to 𝑡 ′ (𝑡 →+ 𝑡 ′). Knowing that 𝑡 ≈ 𝑡 ′ is enough to prove the partial correctness

of the convertibility checking algorithm. However, we would need to know that 𝑡 →+ 𝑡 ′ in order

to prove that convertibility always terminates when given two strongly normalizing terms. We

previously had a proof of 𝑡 →+ 𝑡 ′ for an earlier, simpler version of our call-by-need evaluator, but

the proof was so complex and difficult to extend that we switched to the simpler proof of 𝑡 ≈ 𝑡 ′.

9 Performance Analysis
It is not obvious how to characterize the performance of an algorithm for convertibility checking.

There is no useful upper bound as a function of the size 𝑛 of the input terms: the convertibility

problem is TOWER-complete even when restricted to simply-typed terms [Statman 1979] [Nguyên

2024]. Condoluci [2020] gives an O(𝑚𝑛) complexity bound, where𝑚 is the number of reductions

needed to fully normalize the input terms and 𝑛 is their size. Since our algorithm avoids computing

normal forms as much as it can, we would prefer a bound that does not involve𝑚.

To this end, we take a step back from the details of the algorithm and view convertibility checking

as a proof search problem. Given two terms 𝑡 and 𝑢, we aim to derive the judgment 𝑡 ≈ 𝑢 : 𝐵 where

the Boolean 𝐵 is T if 𝑡 and 𝑢 are convertible and F otherwise. The inference rules for this judgment

are given in figure 4. Rules red-l and red-r correspond to performing one reduction step →𝛽𝛿 in 𝑡

or in 𝑢, either beta-reduction (𝛽) or unrolling of a defined constant (𝛿). The other rules follow the

structure of the two terms 𝑡 and 𝑢. Rule const is the “shortcut” for proving that two applications of

a defined constant 𝑐 are convertible without unrolling 𝑐 .
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A goal 𝑡 ≈ 𝑢 : 𝐵 generally admits multiple proofs, but some proofs are smaller than others. For

example, 𝑐 𝑥 ≈ 𝑐 𝑥 : T has a proof of size 2 (rules const and var-1) and other, longer proofs obtained

by first unrolling 𝑐 on both sides (rules red-l and red-r).

The algorithm of §7 can be viewed as a breadth-first search of the tree of possible proofs. For

example, given the problem 𝑐 𝑡1 · · · 𝑡𝑛 ≈ 𝑐 𝑢1 · · · 𝑢𝑛 : 𝐵, the algorithm searches in parallel for

three kinds of possible proofs, those ending with rule const, those ending with rule red-l, and

those ending with rule red-r. In contrast, other convertibility checkers, such as Rocq’s, perform a

depth-first search for a proof of convertibility, guided by heuristics.

The first author proved that if there exists a proof of 𝑡 ≈ 𝑢 : 𝐵 of size 𝑠 , the algorithm of

§7 terminates in time O((𝑘 + 1)2𝑠 ), where 𝑘 ≥ 1 is the maximal arity of variable and constant

applications in the original terms 𝑡,𝑢 [Courant 2024, chapter 12]. In other words, our algorithm

is exponential in the size 𝑠 of the smallest proof of (non-)convertibility. In contrast, convertibility

checkers based on depth-first search can take time unbounded by any function of 𝑠 , since they can

perform an arbitrarily large amount of computation before finding a proof.

The complexity argument above needs to be made more precise: the size 𝑠 of the smallest

convertibility proof depends crucially on the inference rules and the reduction strategy used. While

the inference rules in figure 4 are somewhat canonical, the strategy used by→𝛽𝛿 reductions in rules

red-l and red-r has a huge impact on the size 𝑠 of convertibility proofs. For instance, using weak

call-by-name or weak call-by-value can result in convertibility proofs that are exponentially bigger

(or worse) than those obtained using weak call-by-need; and using optimal reduction [Lamping

1990] could lead to even smaller proofs.

To clarify this dependency on the reduction strategy used, the complexity argument of Courant

[2024, chapter 12] is formulated in terms of an effective reduction structure, which is an abstract

presentation of graph reduction. Therefore, the complexity argument is independent of the details

of our call-by-need evaluator, and only relies on the sharing properties of graph reduction.

The size 𝑠 of a convertibility proof can be decomposed as 𝑠 = 𝑟 + 𝑓 + 𝑏, where 𝑟 is the number of

reduction steps, 𝑓 the number of “forced” convertibility steps (those where only one rule applies to

the current goal), and 𝑏 the number of “branching” convertibility steps (those where several rules

apply to the current goal). Obviously, the branching convertibility steps are those responsible for

the exponential overhead of our algorithm. We conjecture that there exist scheduling strategies for

which our algorithm has a complexity bound of O((𝑟 + 𝑓 )𝐾𝑏) for some constant 𝐾 ≥ 2, instead of

O(𝐾𝑟+𝑓 +𝑏) as in the analysis above. The idea is to use non-uniform scheduling of processes, where

each process has a a share of CPU time, with all shares summing to 1. Each process is scheduled

with a frequency proportional to its share. A convertibility process that performs a branching step

would divide its share among the processes that it creates. The effect of this scheduling policy

would be to slow down the exponential explosion in the number of processes caused by branching

steps, giving more time to reduction and convertibility processes created earlier.

10 Experimental Evaluation
For the experimental evaluation, we used two OCaml implementations of our convertibility checker,

which corresponds to the version verified in Rocq extended with inductive types and fixed points.

The implementation named “Full” in the following follows the algorithm of §7 and implements

the sharing of convertibility processes described in §6.3. The implementation named “Simple” in

the following uses an earlier version of our algorithm that does not share convertibility processes

and uses a heuristic to determine which side to unfold first when encountering different head

constants, instead of trying both unfoldings in parallel. Variables in the input terms are represented

by the type string, which comes with additional costs compared to Rocq’s internal de Bruijn
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Table 1. Timings, in seconds, for the examples of convertibility problems given in the text for Rocq and our
two OCaml implementations, Simple and Full. Speedups are relative to Rocq and are expressed as base-10
logarithms, i.e. decimal orders of magnitude. Higher is faster. See the main text for the description of the test
cases and the explanation of the two results given for the last test.

Test case Rocq Simple Full

time time speedup time speedup

exp2 15 ≈ exp2 (14 + 1) 3 × 10
−5

5 × 10
−5

-0.22 6 × 10
−3

-2.3

zero (exp2 15) ≈ zero (exp2 16) 0.14 5 × 10
−6

+4.4 2 × 10
−5

+3.8

ldepth (perfect 15 L) ≈ ldepth2 (perfect 15 L) 9 × 10
−5

2 × 10
−4

-0.35 5 × 10
−5

0.26

perfect 15 L ≈ perfect 14 (N L L) 0.018 0.013 +0.14 9 × 10
−5

+2.3

(exp2 15, false) ̸≈ (exp2 16, true) 4 × 10
−6

6 × 10
−6

-0.18 8 × 10
−6

-0.30

(false, exp2 15) ̸≈ (true, exp2 16) 0.61 1 × 10
−6

+5.8 8 × 10
−6

+4.9

pair1 (exp2 15) ≈ (false, exp2 15) 3 × 10
−5

7 × 10
−5

-0.37 2 × 10
−4

-0.82

pair2 (exp2 15) ≈ (exp2 15, false) 0.078 5 × 10
−5

+3.2 2 × 10
−4

+2.6

f4(· · · (f4 (f4 0)) · · · )︸                       ︷︷                       ︸
30 applications of f4

≈ f4(· · · (f4 (f4 0)) · · · )︸                       ︷︷                       ︸
30 applications of f4

2 × 10
−5

{
6 × 10

−5

0.18

{
−0.5
−4.0

0.15 -3.9

indices. Neither implementation performs the pre-sharing of subterms described in §6.4. On the

Rocq side, we instrumented Rocq’s convertibility checker so that it prints the time taken. (This

is much more precise than just relying on Rocq’s Time command, which also accounts for other

aspects of type checking.) We used Rocq 8.15.2, extended with these changes to the convertibility

checker. Moreover, both Rocq and our implementation were compiled by OCaml 4.12.1, and the

measurements were performed on a Intel Core i7-1165G7 2.80GHz CPU and 2x 16GiB SODIMM

DDR4 Synchronous 3200 MHz (0.3 ns) RAM, running Linux 5.15.74 with NixOS 22.05.

The test cases we used are described and commented below, while the time measurements are

shown in table 1. On all the test cases, the timings are quite small, because larger inputs would

cause stack overflows, and only one digit is significant. However, these rough measurements are

already sufficient to spot nonlinear behaviors.

The test cases use the following defined constants:

Fixpoint exp2 n := match n with O => 1 | S n => 2 * exp2 n end.

Definition zero (n : nat) := 0.

Inductive tree := L : tree | N : tree -> tree -> tree.

Fixpoint perfect n t := match n with O => t | S n => perfect n (N t t) end.

Fixpoint ldepth t := match t with L => 0 | N t1 t2 => S (ldepth t1) end.

Fixpoint ldepth2 t := match t with L => 0 | N t1 t2 => ldepth2 t + 1 end.

Definition pair1 n := (is_zero n, n). Definition pair2 n := (n, is_zero n).

Definition f0 (n : nat) := n. Definition f1 n := f0 (f0 n).

Definition f2 n := f1 (f1 n). Definition f3 n := f2 (f2 n).

Definition f4 n := f3 (f3 n).

The first two tests, exp2 15 ≈ exp2 (14 + 1) and zero (exp2 15) ≈ zero (exp2 16), focus
on the heuristic used when the two head constants are the same. With Rocq, the first test is
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fast but the second one is slow. In both cases, Rocq attempts to prove the convertibility of the

arguments before unfolding the definition of the constant. This is a good strategy for exp2 15 ≈
exp2 (14+1), as it allows Rocq to prove convertibility without expanding exp2. However, in the case
of zero (exp2 15) ≈ zero (exp2 16), Rocq tries and fails to prove the convertibility of exp2 15 and

exp2 16, which costs a lot of work. Expanding zero would have immediately proved convertibility.

Here, our two convertibility checkers get the best of both worlds by doing the work in parallel,

and both checks are fast. Our Full checker performs worse on the first test: replacing 15 by 𝑛 and

varying 𝑛, we experimentally measured 𝑂 (𝑛2.8) complexity instead of the expected 𝑂 (𝑛). This
is caused by the large amount of unfolding opportunities in the branch where we unfold exp2,
causing an explosion in the number of processes. This issue could be alleviated by the non-uniform

scheduling policy outlined at the end of §9.

Next, we will consider terms whose size is exponential in the size of their memory representation,

because there is a lot of sharing within the term itself. The function perfect takes an argument

n and a tree t and generates a tree with 2
𝑛
copies of t. However, the evaluation only takes time

linear in n to evaluate, as the subtrees are shared. The definitions ldepth and ldepth2 compute

the length of the leftmost branch of their argument, in linear time for ldepth, and quadratic time

for ldepth2.
Testing the convertibility of ldepth (perfect 15 L) and ldepth2 (perfect 15 L) is fast both in

Rocq and with our convertibility checkers because terms are shared; therefore, the computation

of both sides takes only quadratic time. However, Rocq is slow to check the convertibility of

perfect 15 L and perfect 14 (N L L), because after expanding perfect, it has to prove the

convertibility of the exact same terms multiple times. For the same reason, the Simple version of

our convertibility check is slow, but the Full version, which performs more sharing, is fast.

Another interesting test concerns the order in which the arguments of constructors (or iden-

tical defined constants) are compared. We consider two very similar tests of non-convertibility,

(exp2 15, false) ̸≈ (exp2 16, true) and (false, exp2 15) ̸≈ (true, exp2 16). With Rocq, the first

test is almost instantaneous: Rocq starts by comparing true and false, since Rocq evaluates argu-

ments from right to left. They are different, so the test stops immediately. However, the second test

is much slower: Rocq starts by comparing exp2 15 and exp2 16, which fails after a long time. With

our convertibility checkers, both tests are equally fast: we test the convertibility of the arguments in

parallel, so we immediately detect that false and true are not convertible, and return this result.

Another peculiarity of Rocq is that once a constant is unfolded, it remains unfolded for future

tests, preventing us from benefiting from the optimization with folded constants. The next two

tests, pair1 (exp2 15) ≈ (false, exp2 15) and pair2 (exp2 15) ≈ (exp2 15, false) demonstrate

the problems this can cause. Again, the two tests are identical except for the order of arguments.

In the first test, Rocq first compares exp2 15 and exp2 15, which is almost instantaneous thanks

to the folded constant optimization. Then, it compares is_zero (exp2 15) with false, which
takes only linear time, thanks to Rocq’s laziness. However, in the second test, Rocq first compares

is_zero (exp2 15) with false, forcing it to unfold exp2 to prove convertibility. Once this is done,

it compares exp2 15 with a version of exp2 15 that has already been partially computed and where

exp2 has been unfolded. At this point, it has no way but to expand exp2 on the other side, and the

time taken is exponential. With our convertibility checker, both tests are fast. Indeed, when we

unfold a constant, we also keep the original folded value, allowing us to still benefit from the folded

constant optimization if we encounter it again.

Of course, this comparison wouldn’t be honest if we didn’t also show a shortcoming of our own

convertibility checker. In the final example, we have an identical term on both sides, but it is deeply

nested. Rocq is almost instantaneous there by repeatedly applying the folded constant optimization,

but since our checker explores what happens both when unfolding and when not unfolding, it is
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much slower. The Full version is always slow. The Simple version uses heuristics to choose which

side to unfold when encountering two different head constants, and the speed depends heavily on

the unfolding order. If we choose to always unfold the older constant first, we obtain the result

quickly: when we unfold f4 on one side, then we will repeatedly unfold f3, f2, f1 and then f0 on

that side until that side has only f4, preventing the folded constant optimisation from applying

and spawning new processes until that point. This severely limit the number of total convertibility

processes that are created, thus allowing the code to run quite fast, albeit slower than Rocq. On the

other hand, if we always unfold the newer constant first (which is often the best choice in Rocq),

when we unfold f4 on one side, we will match this by unfolding f4 on the other side next, making

f3 appear as the head constant on both sides, making the folded constant optimisation apply again,

and so on with f2, f1 and f0, creating in total a very large number of convertibility processes, and

thus making the code run very slowly.

However, such examples seem to be quite pathological, and we think they should not happen

in practice. Besides, we have a guaranteed complexity of our convertibility test in terms of the

shortest existing convertibility proof, which looks like a desirable property that Rocq does not

have.

11 Related Work
11.1 Convertibility Checking
The most advanced algorithms for convertibility testing can be found in the implementations

of Agda, Lean, Rocq and other dependently-typed frameworks. However, these algorithms are

undocumented and difficult to reconstruct from source code. The smalltt project by András Kovács
is a small, readable implementation of elaboration for dependent types that includes a convertibility

checker based on normalization by evaluation.

Among the published work on this topic, the one closest to ours is the MetaRocq (formerly

MetaCoq) project, which contains a verified convertibility checker as part of its verified type-

checker for the core Rocq language [Sozeau et al. 2020, 2025]. Unlike ours, their checker is proved

to terminate when given two well-typed terms as inputs, under the assumption that all well-typed

terms are strongly normalizing. The MetaRocq checker handles defined constants with a fixed

strategy (e.g. for 𝑐 𝑡 ≈ 𝑐 𝑡 ′, it always tries 𝑡 ≈ 𝑡 ′ before unfolding 𝑐) and performs reductions using

a Krivine-style machine and a call-by-name strategy, without any support for sharing.

Abel et al. [2018] describe another impressive verification of the metatheory of a dependently-

typed language, including a constructive proof that convertibility is decidable. It uses typed re-

duction and convertibility relations, which facilitate the proof of termination. Adjedj et al. [2024]

extend this approach to a verified algorithm for convertibility checking. The reduction strategy is

not specified, and no provision is made for sharing reductions. Earlier work [Abel et al. 2008] used

normalization by evaluation instead of typed reductions, and is therefore restricted to determin-

ing 𝛽𝜂-convertibility, while [Abel et al. 2018] handles both 𝛽-convertibility and 𝛽𝜂-convertibility.

Lennon-Bertrand [2025] compares and relates the typed approach to convertibility checking used

in the aforementioned work with the untyped approach that we use in this paper.

The idea that convertibility testing can be performed incrementally by alternating between

evaluation to WHNF and comparison of the resulting values goes back at least to Coquand [1996].

An early implementation of this approach is described by Grégoire and Leroy [2002]. However, their

compiled implementation of WHNF evaluation uses call by value and unrolls constants eagerly,

resulting in unnecessary computation.

All the earlier work described above, like our own work, relies on interleaved evaluations and

comparisons of values. Condoluci [2020] goes back to the more traditional approach based on
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normalization of the two terms followed by equality testing of their normal forms, but uses a clever

normalization algorithm that exploits sharing in a call-by-value strategy [Accattoli et al. 2021]

and a clever equality test that takes sharing into account and runs in time linear in the size of the

shared representation of the two normal forms [Condoluci et al. 2019].

11.2 Strong Call-by-Need Reduction
Call-by-need strategies for strong reduction (evaluation under lambda-abstractions) are difficult to

define formally and to implement correctly. Balabonski et al. [2017] develop 𝜆𝑐 , a strong call-by-need

calculus that uses explicit substitutions to represent sharing. To enforce laziness, they need to delay

reducing under a lambda-abstraction until all applications of that abstraction have been reduced.

Our enriched function closures ⟨𝑥, 𝑡, 𝑒,𝑦, 𝛿⟩ support applying a lambda-abstraction and reducing

within its body in any order, which simplifies the presentation.

Balabonski et al. [2021] extend 𝜆𝑐 with the ability to reduce under lambda-abstractions before

applying them if it can be determined that the normal form of the lambda-abstraction will be

needed. They also present an abstract machine that implements these reductions efficiently. Their

approach can perform fewer 𝛽-reductions than ours in some cases. However, their abstract machine

lacks the subterm property and therefore cannot be statically compiled to virtual machine code or

native code.

Biernacka et al. [2022] develop a call-by-need normalizer by applying memoization techniques

to a call-by-name normalization-by-evaluation function derived from the KN machine of Crégut

[2007]. Applying a mechanized CPS transformation to this normalizer, they obtain the RKNL

machine, a simple and efficient abstract machine for strong call-by-need evaluation.While developed

independently, our approach to call-by-need normalization described in §4 is essentially isomorphic

to the RKNL machine.

11.3 Semantics of Laziness
The first formal presentations of call by need and more generally of lazy evaluation used graph

reduction; see Peyton Jones [1987, part II] for a survey. Launchbury [1993] gave a big-step semantics

for lazy evaluation using terms and an explicit store for memoization. Ariola et al. [1995] and

Ariola and Felleisen [1997] give small-step semantics using let bindings or distinguished 𝛽-redexes
to express sharing and laziness of evaluations. Our process-based notation for lazy / non-strict

computations is essentially isomorphic to their let-based notation, with parallel processes 𝛼 ! 𝑡 ∥
𝐶 [𝛼?] playing the role of let 𝑥 = 𝑡 in𝐶 [𝑥] bindings in Ariola et al. [1995]. We were also inspired by

the encoding of the call-by-need weak lambda-calculus in the asynchronous pi-calculus of Sangiorgi

[2019], with the difference that Sangiorgi relies on an explicit handshake to delay evaluations until

needed, while we rely on an external scheduler.

12 Conclusions and Further Work
We hope this work sparks renewed interest in convertibility checking, which is a difficult problem

that is central to the implementation of type- and proof-checkers. The lazy, concurrent convertibility

checking algorithm described in this paper is novel in several ways: it does not rely on heuristics, it

always finds the simplest proof of (non-)convertibility, and its complexity is bounded as a function

of the size of the simplest proof. Admittedly, the bound is exponential, but this is an improvement

over heuristics-based sequential algorithms, whose complexity is unbounded in the size of the

simplest proof.

This paper focuses on the lambda-calculus with constants. However, the ideas presented here

have been extended to a richer language that includes inductive types with pattern-matching and

structural recursion [Courant 2024].
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As mentioned at the end of §9, the worst-case bound of our algorithm, as well as its actual

performance on some examples shown in §10, could probably be improved by a more sophisticated

scheduling of processes that allocates unequal amounts of time to different processes. Additionally,

constant factors could also be reduced by usingmore clever imperative data structures for scheduling

and by compiling evaluation processes to virtual machine code or even to native code. However,

we are skeptical that hardware parallelism can be used to significantly speed up our algorithm,

given the slow progress in the area of parallel graph reduction since the 1980s.

The formal proof of §8 needs more work: to prove that the convertibility checker cannot go

wrong or deadlock when given two type-safe terms as input, and that it terminates when given

two strongly normalizing terms as input. The termination proof sounds challenging, especially

if we stick to untyped reductions. Typed reductions in the context of a normalizing type system

might provide a simpler proof. However, this would make the convertibility checker specific to a

given type system.

Our convertibility checker can easily be instrumented to generate a trace of the nonobvious

unrolling decisions it made. Using this trace, (non-)convertibility can then be rechecked by a simpler,

purely sequential algorithm. This approach could facilitate the integration of our convertibility

checker into an existing proof checker. Additionally, convertibility traces can be cached to improve

proof checking times when some proof terms are checked multiple times.

Throughout this work, we have emphasized the importance of sharing in order to avoid repeated

evaluations. However, we only considered the sharing of sub-terms via lazy evaluation. Other

graph reduction techniques support the sharing of more than just lambda-terms, such as Lamping’s

optimal reduction algorithm [Lamping 1990] [Gonthier et al. 1992] [Asperti et al. 1996] and the

atomic lambda-calculus [Sherratt et al. 2020]. It would be interesting to study the usability of these

advanced graph reduction techniques in the context of convertibility checking.

Data-Availability Statement
The Rocq development described in §8 and the benchmarks described in §10 are available at

https://doi.org/10.5281/zenodo.17347533 (for reproduction) and at https://github.com/Ekdohibs/

efficient-convertibility/ (for reuse).
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