
�

�

�������	�
��
���
�����
�������

����������������������
�����������

�! #"%$%&'$)(*$���+,$%&.-/ #+/0
132 � 2547682:974;682
2 <�! 3=>- 9)? +,$%&.@A(2
2 $ 2 B��(*$7- ? +/$%&C@D(2

��- ? +/&' 2�132E -/0'(452 +,(
��- 4 @D(2 4 -/(9 $
F�GIHJGLK5MAN

O,P*KQN/RTS 2 � 6#2 "% #+5U<� 2V1*2:W
X 9 +, 452

� �2 0!G'Y'Z)K\[�R^]`_^RDN`NaK`K

bdc#efe�gih\j/kml�npo/qfrts!uwvxnpk

y<z;{8{*|

}J~x�*�f~t�#�������
���8���8�����������J�8�����f���*�x���`�3�w�`�8������ ;���8¡

�# B¢¤£�`¡f���B���*�w���^���`�

¥§¦©¨ ª¬«A¯® ¨±°³²§¨B´�«Dµ ¨B¶¥�·
¸ ¨¹®�º»¼º»µ «#® ¸³½

«Aµ ² ½ ¨<µ ¨B¶¥ ¸ ¥§«#º» º¿¾
¥§¦À¨ µ ½ ½Á¸ ¯Â�Ã ¸ ÂÄ¨

ÅÆ5ÇpÈ.É:Ê�ËwÌxÍ�Î�Ï

Ð¬ÑÉ:ÇpÊ%ÈCÉ:ÊÒ5Ó`Ó`Ô

1

L’expérience ZINC:
une mise en œuvre à l’économie du langage ML

Xavier Leroy∗

Résumé

Ce rapport présente en détail la conception et la réalisation du système ZINC. C’est une mise
en œuvre du langage ML, se fixant pour objectif de permettre l’expérimentation de diverses ex-
tensions du langage, ainsi que de nouvelles techniques d’implémentation. Ce système est conçu
pour permettre la compilation indépendante et la production de petits programmes autonomes;
le respect du typage est assuré par par un système de modules à la Modula-2. ZINC utilise des
techniques simples et facilement adaptables, telles que l’interprétation de code abstrait; un modèle
d’exécution raffiné compense en partie le ralentissement dû à l’interprétation. A noter également
une représentation efficace des records avec inclusion (sous-typage).

The ZINC experiment:
an economical implementation of the ML language

Xavier Leroy∗

Abstract

This report details the design and implementation of the ZINC system. This is an implemen-
tation of the ML language, intended to serve as a test field for various extensions of the language,
and for new implementation techniques as well. This system is strongly oriented toward separate
compilation and the production of small, standalone programs; type safety is ensured by a Modula-
2-like module system. ZINC uses simple, portable techniques, such as bytecode interpretation; a
sophisticated execution model helps counterbalance the interpretation overhead. Other highlights
include an efficient implementation of records with inclusion (subtyping).

∗Ecole Normale Supérieure et INRIA Rocquencourt, projet Formel.

2

Contents

1 Motivations 7

2 Design principles 9
2.1 Modules . 9

2.1.1 Modules in Standard ML . 9
2.1.2 Modula-like modules for ML . 10
2.1.3 Giving sense to non-qualified idents . 11

2.2 Efficient currying vs. N -ary functions . 12
2.2.1 The need for functions with several arguments 12
2.2.2 The power of currying . 13
2.2.3 Right-to-left evaluation order . 14

2.3 Execution methods . 15
2.3.1 Native code generation . 15
2.3.2 Abstract machines and code expansion . 15
2.3.3 Translation to another high-level language . 16
2.3.4 Interpreting abstract machine code . 17

2.4 Toplevels considered harmful . 20
2.4.1 The toplevel-oriented approach . 20
2.4.2 The standalone-oriented approach . 21

3 The abstract machine 23
3.1 Krivine’s machine . 23

3.1.1 Presentation . 23
3.1.2 Correctness . 25
3.1.3 Multiple applications . 26

3.2 Krivine’s machine with marks on the stack . 27
3.2.1 Presentation . 27
3.2.2 Correctness . 27
3.2.3 Compiling call-by-value . 28

3.3 The ZINC machine . 28
3.3.1 Accessing local variables . 29
3.3.2 Application . 29
3.3.3 Abstractions . 29
3.3.4 Local declarations . 30
3.3.5 Primitives . 31

3

4 CONTENTS

3.3.6 Control structures . 31
3.4 Another representation for the environment . 31
3.5 Conclusion . 34

4 Data representation 35
4.1 Data structures . 35

4.1.1 Sums and pairs . 35
4.1.2 Sums and products . 36
4.1.3 Sums of products . 37
4.1.4 Records with inclusion . 38
4.1.5 Extensible sums . 38

4.2 A memory model . 39
4.2.1 Unallocated objects . 39
4.2.2 Allocated objects . 40

4.3 Encoding ML values . 41
4.3.1 Atomic types . 41
4.3.2 Functions . 41
4.3.3 Concrete types . 42
4.3.4 Records with inclusion . 43

5 The compiler 47
5.1 Some intermediate representations . 47

5.1.1 Abstract syntax tree . 47
5.1.2 Enriched λ-calculus . 49
5.1.3 Graph of code . 51
5.1.4 Linear code . 52

5.2 Compilation steps . 52
5.2.1 Parsing . 53
5.2.2 Type inference . 57
5.2.3 Compiler, front end . 58
5.2.4 Compiling pattern matching . 63
5.2.5 Compiler, back end . 69
5.2.6 Global environment . 76

6 The linker and the runtime system 79
6.1 The complete instruction set . 79
6.2 The linker . 83
6.3 The runtime system . 83

6.3.1 The loader . 84
6.3.2 The interpreter . 84
6.3.3 The garbage collector . 86
6.3.4 Primitive functions . 86

7 Assessment 87

CONTENTS 5

A Benchmarks 91
A.1 Simple benchmarking of abstract machines . 91
A.2 Real-sized benchmarking of ZINC . 93

6 CONTENTS

Chapter 1

Motivations

There is no cure for it.
(Samuel Beckett)

Originally designed as the control language of the LCF proof assistant [26], the ML language
has grown to a general-purpose, very high-level language particularly well-suited to teaching and
fast prototyping. A lot of work has been devoted to its implementation, not only to get efficient ML
compilers, but also to build good programming environments for ML: among others, the original
Edimbourgh ML, the Lazy ML of Göteborg developed at Chalmers University, CAML at INRIA,
Standard ML of New Jersey at Bell Labs, Matthews’ Poly/ML at Cambridge, . . . This leads to
believe that the area of ML implementation has been fully investigated, and that it is no more a
hot research topic.

However, my own experience with the CAML system, both as a user and a developer, made me
feel the need for yet another implementation of ML, with the following goals in mind:

• to get a small, portable implementation of ML. Current ML implementations require lots
of resources, both in CPU power and in memory (for instance, CAML needs at least three
MIPS and five megabytes of memory to get decent response time). And they work only on
specific architectures (e.g. Vaxes and Sun workstations), since they usually generate native
machine code. This restricts severely the potential audience of ML. For instance, there is no
ML implementation running on a microcomputer, and this is the main obstacle to its getting
widely used for teaching.

• to serve as a testbench for extensions of the language. One may fear that ML was a bit
hastily standardized, since many extensions have been proposed lately, to integrate features
coming from other computational paradigms such as logic programming, object-oriented pro-
gramming, or communicating processes with the strong static typing, type inference, and
higher-orderness of ML. Some of these propositions are extensions of the type system: records
with structural subtyping [15, 31, 53], the type classes of Haskell [60], the dynamic objects
[1]. Others introduce new mechanisms in the execution model: call-by-unification (narrow-
ing), communicating processes. Finally, new efficient implementation techniques have been
proposed, such as high-level program transformations and powerful static analysis [22].

7

8 CHAPTER 1. MOTIVATIONS

It would be nice to see these extensions at work on a real implementation of ML. But my pre-
vious experience with CAML showed me that adding a feature to a full-sized implementation
such as CAML requires much more work than strictly needed, due to the fact that this is a
large system, not written in a very modular way, with lots of unexpected dependencies among
the various parts, serious bootstrapping problems, and so on. Therefore, CAML is not suited
to experimentation anymore, and I have felt the need for a much smaller implementation,
allowing to toy with new features quite easily.

• for pedagogical purposes. One of the best ways to really understand a language is to look
at an actual implementation. While, for instance, toy implementations of Pascal abound in
the literature, there is no work describing in detail an actual implementation of ML. Peyton-
Jones’ book [50] is an excellent introductory text, but not totally relevant to ML, since it uses
Miranda, not ML, as its source language, and it focuses on lazy evaluation through graph
reduction, while ML usually has strict semantics. A few papers on the Standard ML of New
Jersey implementation have been published [5, 6, 4], but they are fairly high-level — they
don’t show much of the code! And regarding the CAML system, nothing has been published
yet, Ascánder Suárez’s thesis [59] is still forthcoming, and in the meantime the curious mind
is left with 70000 lines of very sparsely commented source code.

Such were my motivations for developing yet another ML implementation. And now, the name of
the game. ZINC is a recursive acronym for “ZINC Is Not CAML”, and this name emphasize the fact
that it does not have exactly the same intents and purposes as one of the existing implementations.
(And to insist on this work being mostly practical in nature, I nicknamed it “un projet informel”.)

This report presents the state of the current ZINC implementation. Chapter 2 gives the main
design decisions, the guiding principles for the implementation. Chapter 3 introduces the execution
model used, described as an abstract machine. Chapter 4 shows how ML values are represented,
and how memory is structured. Chapter 5 details the compiler, with actual ML code taken from
the source. Finally, chapter 6 gives an overview of the runtime system. Concluding remarks are to
be found in chapter 7, and benchmark results in appendix A.

Chapter 2

Design principles

This chapter presents the main decisions I made when designing ZINC, and why they lead to a
system differing slightly from classical ML implementations.

2.1 Modules

Decomposing programs in several relatively independent parts called modules has emerged as an
efficient way to tackle programming in the large [49]. Programming with modules can be done in
any programming language, even Fortran — provided that the programmer has the required forti-
tude. It is easier, however, when the language provides features to express dependencies between
modules, allowing the compiler to check automatically their consistency. And from a more practical
standpoint, language support for modules is the only way to combine separate compilation with
strong static typing. Such are the reasons why ZINC had to provide some kind of modules.

2.1.1 Modules in Standard ML

A system of modules for the ML language has been proposed by MacQueen [42], and it is now part
of the Standard ML definition [28]. It introduces very powerful notions, such as functors, making
it one of the most advanced system of modules ever integrated into a programming language. And
it has received a fairly satisfactory formal treatment, if a bit complicated [43]. Nonetheless I had
to dismiss it as inadequate to the ZINC system.

First, it is still unclear whether such a sophistication is really needed, and if it really helps when
dealing with large software systems. We lack experience with very large software systems written
in a modular way in Standard ML. Second, Standard ML modules are not particularly convenient
to use. The problem is that to use some values or types defined in another module (to “import”
them), the programmer has to insert their signature (their type in case of a value, their constructors
in case of concrete types) at the beginning of the current module. This is just unbearable in case of
very frequently imported values, such as those of the so-called “prelude” of ML implementations:
one has to declare map : (’a -> ’b) -> ’a list -> ’b list at the beginning of each module
usign map, that is to say almost every module. Finally, inconsistencies between modules are not
detected at compile time, but only at link time, when all modules have been written and compiled.
This goes against “true” separate compilation.

9

10 CHAPTER 2. DESIGN PRINCIPLES

More simple module systems do not have these drawbacks. Take for instance the one of Modula-2
[63]. This is a very simple module system (one can view it as a mere cleanup of the C practice
of “include files”). Yet there are huge systems (thousands of modules) written in Modula-2, and
such systems demonstrate that even this very simple module system suffices to break these systems
into manageable parts and to handle their dependencies. In addition, it is fairly convenient to use.
All informations regarding imported globals do not have to be retyped at the beginning of each
module using them, since they are stored once for all in the “interface” files of the modules defining
those globals. Finally, this allows to report type clashes between modules during compilation, as
soon as possible. Therefore, it seems that Modula-2-like modules are more in accordance with the
“economy of means” principle of ZINC.

2.1.2 Modula-like modules for ML

As a simpler alternative to Standard ML modules, I propose a system of modules very close to the
one found in Modula-2 [63]. It uses an interface file associated with each module and declaring
what it exports, and the dot notation (e.g. module.data) to refer to a value (or a type) defined in
another module. It is extended by a simple mechanism for type abstraction, as in Modula-3 [47].
Among functional languages, a similar module system can be found in Cardelli’s Quest language
[14], where modules are built on top of a more elementary data structure called abstract tuples
(i.e. generalized second-order dependent products). It requires second-order typing, however, and
it leads to a slightly different treatment for “manifest types”, that is, types exported with their
definition. Some foundations for this approach to modules, and especially the way it handles type
abstraction, can be found in [16].

A module in ZINC is composed of two parts: an interface and an implementation. The interface
part declares all that the module exports (i.e. makes publicly available to the outside):

• value identifiers, with their type: value f : int -> int;;

• definition of concrete types: type foo = Bar of int | Gee of bool;;

• abstract types: type foo;; The definitions of such types, that is their constructors in the case
of ML concrete types, remain hidden, making it impossible to directly build or destructure
a value of that type outside of the module. In other words, abstraction is ensured here by
representation hiding.

• declaration of exceptions: exception missed of int;;

The implementation part is a sequence of usual ML phrases, binding identifiers to (the value
of) expressions, defining concrete types and exceptions, or evaluating single expressions. It must
provide definitions to the values and the abstract types declared by the interface. It may contain
other bindings, but these are private, that is not known outside of the implementation.

As an example, here is the interface of a module set implementing the set data structure:

type ’a set;; (* its representation remains hidden *)
value emptyset: ’a set
and singleton: ’a -> ’a set
and union: ’a set -> ’a set -> ’a set
and empty: ’a set -> bool
and member: ’a -> ’a set -> bool;;

2.1. MODULES 11

A corresponding implementation is :

type ’a set = EmptySet | Singleton of ’a | Union of ’a set * ’a set;;
let emptyset = EmptySet
and singleton x = Singleton x;;
let rec empty = function

EmptySet -> true
| Singleton _ -> false
| Union(s1,s2) -> empty s1 & empty s2;;

let rec member x = function
EmptySet -> false

| Singleton y -> x=y
| Union(s1,s2) -> member x s1 or member x s2;;

let union s1 s2 = Union(s1,s2);;

To use one of the values and types provided by a module outside of this module, the dot notation
is used, that is module.data to refer to the identifier data exported by the module named module.
The same notation is used for types, and it can be used in interfaces as well as in implementations.
In other words, modules are imported implicitly, with the signature found in their interface files.
For instance, we could write:

type intset_tree =
Leaf of int set.set

| Node of intset_tree * intset_tree;;
let rec ints_of_intset_tree = function

Leaf s -> s
| Node(t1,t2) -> set.union (ints_of_intset_tree t1) (ints_of_intset_tree t2)

;;
let contains_zero is = set.member 0 (ints_of_intset_tree is)
;;

2.1.3 Giving sense to non-qualified idents

Composite identifiers such as module.data are sometimes called “qualified identifiers”. In Modula-
2, non-qualified identifiers, that is data without the module. part, refer to values and types be-
longing to the module being defined. This is just syntactic sugar: non-qualified identifiers such as
data could be transformed into mc.data, where mc is the name of the module being compiled, and
lead to an equivalent program.

In ZINC, this idea of automatic completion of non-qualified identifiers is carried further. The
compiler maintains a list of “default” modules, and when it encounters a global identifier s without
qualification, it searches through that list to find a module m which defines s; then, it substitutes
m.s for s, thereby disambiguating the global name s. The list of default modules always includes
the module being compiled (searched first) and a special module basics defining very primitive
operations such as + (searched last).

In addition, two compilation directives are provided, #open"module" to add module to the list of
default modules, and #close"module" to remove module from that list. They are very convenient for

12 CHAPTER 2. DESIGN PRINCIPLES

library modules defining values and types very frequently used (the “prelude”, for instance): just in-
sert #open"prelude" at the beginning and you won’t have to type prelude.map prelude.fst (a prelude.:: b)
anymore, map fst (a::b) will work just fine.

This disambiguating process is purely syntactical in nature; we only need to know what the
binding constructs are (in order to tell a global variable from a local variable) to be able to trans-
form a program into an equivalent one where all global identifiers are qualified. This process does
not interfere with typechecking, as opposed to classical overloading, which uses types to resolve
ambiguities, making the type inference algorithm much more complex, and causing it to fail some-
times.

Yet this simple mechanism proves very useful in common situations. First, it makes the transi-
tion to modular programming easier, since to program in old, non-modular style, without qualified
idents, it suffices to “open the world” at the beginning of the file, that is to put a #open ... for each
module used. Second, it allows to choose between several implementations of the same operations.
For instance, operations on strings such as getting character number n, extracting a sub-string, and
so on, usually come in two flavors, a cautious one, which checks bounds and so on, and a fast one,
which does not check anything. Usually, the user chooses the desired flavor through compilation
switches. With modules, two modules are defined, cautious_string and fast_string, which
exports exactly the same names, but with different semantics; the user can explicitly request one
or the other (e.g. cautious_string.nth_char or fast_string.nth_char), or if one of the two
semantics, the fast one or the cautious one, is used throughout a file, “open” one of the modules
and use non-qualified names (e.g. #open"fast_string";; ... nth_char ...).

Similarly, ML systems usually offer several kinds of numbers: integers, floating-point numbers,
arbitrary-precision rationals, with the same basic operations (e.g. +, *) defined on each. These
operations are usually named add_int, add_float, add_ratio, to distinguish between them. Of
course, it would be nice to use the usual syntax + instead, and have the system choose automatically
between add_int and add_float; this is one of the first motivations for overloading. With ZINC
modules, we could type 1 int.+ 2 or 1.2 float.+ 3.4 to precisely state which kind of addition
we want, while retaining the nice syntax and evocative power of the + symbol. And if we use
solely integers throughout a file, a open"int" at the beginning allows the usual syntax 1 + 2. To
conclude, this mechanism makes the need for overloading less acute, and while it does not offer the
same power as “true” overloading, it does not have its drawbacks either.

2.2 Efficient currying vs. N-ary functions

There are no N -ary functions in ZINC, but this lack is deliberate, and I shall justify it.

2.2.1 The need for functions with several arguments

Functions with several arguments are a common feature of most programming languages, even
those with functions as first-order values (Scheme, well-implemented Pascal, . . .). Passing several
parameters is just as easy as passing one, after all. Yet ML has been impervious to this notion,
and still offers but unary functions. Functions with several arguments, as f(x, y) = x + 3y, are
implementing either as a function taking a pair:

let f = function (x, y) -> x + 3 * y in f(5,7);;

2.2. EFFICIENT CURRYING VS. N -ARY FUNCTIONS 13

or as a function returning a function (this encoding is known as currying):

let g = function x -> function y -> x + 3 * y in g 4 6;;

Both are inefficient, however, with usual execution models such as the FAM [11] or the CAM
[20]. Calling the uncurried version means allocating a tuple to hold the arguments; this cannot be
avoided, since the called function may use the tuple itself as a value (e.g. fun (x,y as z) -> (z,z)).
And the curried version builds intermediate closures (one for each argument but the last), which
are immediately applied and then never reused. On the other hand, for “true” n-ary functions, we
have much more efficient calling conventions (stack-based or register-based) that do not allocate
anything in the heap.

Therefore, it seems that to have efficient function calls, we need to add n-ary functions to ML.
Yet there is no universally accepted way to do it. A first approach is to explicitly introduce n-ary
functions in the language, as in Scheme [58]. But we don’t know yet how they should behave w.r.t.
higher-order functions, polymorphism, and type inference: should a binary function belong to the
type scheme α → β ? If not, some polymorphism is lost; if so, then the type variable α represents
not only all values, but also sequences of values, yet this is not the case for α in α list . . . This
problem is even more acute if we consider functions with p results as well, for the sake of symmetry,
as in Amber [12] for instance. An alternate approach is to leave the ML language unmodified and to
transparently replace functions taking n-uples into n-ary functions. But this requires a non-trivial
static analysis, which does not work very well with higher-order functions.

2.2.2 The power of currying

Before starting to argue on n-ary function, let me mention a fact which is overlooked in the dis-
cussion above: curried functions and the corresponding uncurried ones (functions taking a tuple as
well as n-ary functions) are not equivalent. The curried version is in a sense more powerful, since
it allows partial application. In the example above, (g 4) is a legal object, we can do, for instance,

map (g 4) [1; 2; 3; 4; 5];;

With the uncurried function f, we would have to write instead

map (fun y -> f(4,y)) [1; 2; 3; 4; 5];;

Here, the differences are not very important. But partial evaluation may become extremely efficient
if the called function performs some computation between the passing of the first and the second
argument:

let h x = let z = fibonacci x in fun y -> y + z;;
map (h 30) L;;

In this example, fibonacci 30 is computed once, not once for each element of the list L. Therefore,
partial application of a curried function leads to a partial evaluation of the body of the function. This
may save a lot of computation, and expresses very elegantly invariants when used in conjunction
with iterators.

That’s why I chose to forget about n-ary functions, and concentrated instead on curried func-
tions. The challenge was to find an abstract machine where a multiple application to k arguments,

14 CHAPTER 2. DESIGN PRINCIPLES

that is (. . . ((M N1) N2) . . . Nk), is more efficient than a single application to the k-uple of all ar-
guments (M (N1, . . . , Nk)), and if possible almost as efficient as applying a k-ary function. This
means at least not building any intermediate closures to do so. A detailed account of this quest is
given in the next chapter.

This approach has a few drawbacks, however. First, with ZINC’s abstract machine, it is the
case that multiple application to k arguments does not allocate any closures, but it is still slower
than applying a k-ary function, since some run-time tests have to be performed. Also, functions
computing several results still have to be encoded as functions returning a tuple; functional encod-
ings similar to currying (e.g. transforming fun x -> e1 e2 into fun f -> fun x -> f e1 e2 are
definitely too clumsy, if more efficient.

2.2.3 Right-to-left evaluation order

This emphasis on multiple application has an unexpected consequence on the evaluation order of
application (M N). As far as I know, all strict functional languages use left-to-right evaluation,
that is they evaluates M first, then N . But left-to-right evaluation does not put up well with
multiple application, as we shall see now.

To evaluate (M N1 . . . Nk), the usual, left-to-right strategy is to reduce M first, then evaluate
N1, then A1 = (M N1), then N2, then A2 = (A1 N2), and so on until Ak = (Ak−1 Nk). The
order of computation is therefore M, N1, A1, . . . , Nk, Ak. The evaluations of the arguments Ni and
of the partial applications Ai are interleaved. That’s the reason why we need to actually build the
closures representing A1, . . . , Ak−1: when the reduction of M reaches Ai, we must suspend this
reduction and start evaluating Ni+1, and in term-as-code models, suspending means allocating a
closure.

To be more efficient, we need to precompute N1, . . . , Nk before starting to reduce inside M ;
that way, we won’t have to stop each time we cross a λ-abstraction in order to receive a value for
the parameter, since these values are already available. Hence, an efficient multiple application will
be evaluated left-to-right in the following order: M, N1, . . . , Nk, A1, . . . , Ak. This is not consistent
with the case of simple applications.

With a right-to-left evaluation order, the evaluation order is Nk, . . . , N1, M, A1, . . . , Ak, regard-
less of any special treatment for multiple application. Right-to-left evaluation is therefore necessary
to have an efficient but transparent mechanism for multiple application.

Evaluation order is more than an implementation issue: due to the imperative features of ML
(exceptions, mutable values, input/output performed as side effects, . . .), the order in which the
subexpressions of an expression are evaluated is meaningful: a different evaluation order may change
the semantics of a program. Some especially vicious examples can be found in Huet [30], where
a left-to-right evaluation order is assumed, and exceptions are used to share data representations
as much as possible; with a right-to-left evaluation order, the functions return the same results,
but all sharing is lost, and the program performs much more heap allocation. Therefore, the user
must know the evaluation order that the compiler implements, in order to be able to know what
his programs do.

Another standpoint is to leave the evaluation order unspecified, except for some construc-
tions with strongly sequential connotations, such as the sequence operator “;” and the declaration
let...in.... This is the case in C, for instance. The motivations are mostly practical: modern
code generation algorithms, such as the dynamic programming algorithm of Aho and Ulmann [3,

2.3. EXECUTION METHODS 15

chap. 9], choose the order of evaluation of subexpressions so as to minimize the number of registers
needed. In this case, we can only give non-deterministic semantics to programs. Then, program-
mers have to write their program so that they can only have one meaning, taking advantage of
the few constructs whose evaluation order is specified. Notice that this constraint usually leads to
clearer programs, since temporal dependencies have been made explicit. This standpoint is not yet
widely accepted in the Lisp/ML community, however.

2.3 Execution methods

What kind of code should the ZINC compiler generate? This implementation issue engages many
aspects of ZINC, in particular portability, execution speed, and interactivity. I shall review the
most common approaches to justify the choice of direct interpretation of abstract machine code.

2.3.1 Native code generation

Real compilers for real languages generate native machine code (or maybe assembly language), in
order to produce compiled programs that run as fast as possible on the given hardware. However,
this is the “blood, sweat and tears” approach: writing a code emitter that generates good machine
code, say, comparable to hand-written assembly code, is by no way trivial. Chapter 9 of [3] gives
a good overview of that task. On conventional, CISC architectures such as the VAX or Motorola
68000 family, the main difficulty is to choose the right sequence of instructions among the huge
set of instructions and addressing modes, and coping with their asymmetries (some instructions
don’t work with all addressing modes, some registers are specialized for some operations, . . .) On
RISC architectures, instruction selection is easier, but new problems arise in trying to exploit new
features such as delayed branches (instruction scheduling). In both case, good register allocation
is crucial to reduce memory accesses, and this also needs fairly complex algorithms. In addition,
a code emitter is specific to one processor, so this work must be done again from scratch for each
new target processor. And the correctness of the code emitter is often compromised by clever
optimizations.

To automate part of this work, many attempts at automatic generation of a code emitter, start-
ing from a formal description of the target machines, have been made. A popular, well-documented
example is the GNU C compiler [57]. However, real architectures are hard to describe formally,
so it seems that descriptions are either over-simplified, leading to very naive code generators, or
almost as difficult to write than the code emitter itself.

2.3.2 Abstract machines and code expansion

To write more portable compilers, a popular approach is to generate code for a given machine, then
translate this code into native code for various target machines. The intermediate machine need
not be an actual one: it can be an abstract machine, specially designed to fit the source language.
For instance, the Le Lisp system of Chailloux et al. [18] is entirely built around the LLM3 abstract
machine [17]. In this approach, it is intended that the machine-independent part of the compiler
makes all hard decisions itself (e.g. register allocation). Then, the mapping of the abstract machine
onto a real architecture is essentially trivial: each abstract instruction is expanded into a sequence
of real ones, regardless of the context. Such code expanders are quite easy to write, therefore

16 CHAPTER 2. DESIGN PRINCIPLES

porting a system to another architecture becomes manageable (a competent hacker needs but one
or two weeks to port the whole Le Lisp system). The problem is that they usually generate ugly
code, with a lot of redundancies, and using a tiny subset of the target machine’s abilities.

To get more efficient code, the obvious solution is to perform peephole optimization after ex-
pansion, to detect and remove useless instruction sequences, condense several instructions into
one, . . . The problem is that good peephole optimizers are hard to write, and they are highly
machine-dependent, just as the code generators considered above. An alternative is to complicate
the expansion of abstract machine code into native code. For instance, a well-known trick to map
stack-based abstract machine on register-based processors is to try and simulate stack moves during
translation, in order to replace a “push” instruction and its matching “pop” by moves to and from
a free register, which is less costly [50, p. 328] (see also [52] for a description of a real-sized imple-
mentation, used in the CAML system). In both cases, it is usually too late to generate truly good
code, since the abstract machine code contains much less information than the original program.
For instance, the abstract machine code fixes the evaluation order, so it is almost impossible to
permute the evaluations of subexpressions (and to know if we’re allowed to do it, that is if those
subexpressions do not have side-effects). When the compiler is particularly dumb, it might be
possible to infer such information from the abstract machine code, but this is clearly absurd (it
would be easier to skip the compiler entirely and start directly from an abstract syntax tree!)

2.3.3 Translation to another high-level language

The main weakness of the previous approach is that the output of the compiler, that is abstract
machine code, is too low-level to allow good code generation. Let us investigate the converse
approach: translating the source program to some other high-level language, and then using any
good compiler for this language. It seems we could save a lot of work this way: all the hard work,
that is generating good code for many machines, would have been done by someone else, all we
would have to do is to deal with the unique, very high-level features of ML such as type inference
and pattern-matching compilation. In addition, if we choose a sufficiently standardized, popular
target language, then our implementation would be highly portable, and fairly efficient as well if
good compilers exist for the target language. There is one point we must be careful about, however:
to completely hide the target language from the user.

Two well-known languages are obvious candidates to be our target language. The first is some
dialect of lexically-scoped Lisp, such as Common Lisp or Scheme. These languages have important
points in common with ML: they have functions as first-class values, and everything has a value
(i.e. there are no statements, solely expressions). In addition, a lot of work has been devoted
to implementing efficient compilers for them (for instance, the Orbit compiler for Scheme [35]). I
dismiss Lisp, however, for the following reasons. First, there is not yet a good Lisp compiler on every
machine, and the fact that many dialects still coexist (Lisp is not standardized yet) restricts further
the number of potential users of our implementation. Second, Lisp implementations are usually
built around a toplevel, so they are not well-suited to be used as part of a “pipe” of programs;
therefore it might be hard to hide the underlying Lisp system from the user (as developers and users
of ML 6.2, the Le Lisp-based ancestor of CAML, know quite well). Finally, Lisp is too high-level:
it does not give access to the innards of the machine. For instance, most Lisp dialects are unable
to express their own garbage collector and runtime system, or to talk directly to the operating
system. Therefore, we have to use the services provided by the implementation only, and these are

2.3. EXECUTION METHODS 17

not necessarily well adapted to ML. A typical example is the memory model: Lisp puts a strong
emphasis on “conses” (pairs), to the point of neglecting other data structures such as arbitrary
tuples, or providing them, but with an inefficient implementation (as in Le Lisp [18], for instance):
they are so scarcely used! But, in ML, triples or singletons are almost as frequent as pairs, so the
Lisp memory model is not particularly well-adapted to encoding ML values, but at the same time
Lisp prevents us from building a memory model specially adapted to ML!

A better target language would therefore be C. A C compiler is available on all Unix machines,
Unix is getting widespread, and other platforms, especially in the microcomputer field, are switching
to C as their main development language. In addition, C is in the process of being standardized, and
even if most Unix C compilers are not ANSI-standard compliant, they all implement a core language
fairly precisely defined in the first edition of [33], and their idiosyncrasies are minor (nothing that
cannot be overcome with a handful of macros!) Due to very accommodating semantics, C is usually
compiled very efficiently. In addition, it gives full access to the innards of the machine, thanks to
pointer types, pointer arithmetics, and a very laxist “cast” operator. And Unix C compilers are
“batch” compilers, designed to be used as part of a pipe. Therefore, it seems that C is the portable
assembly language we were looking at. We are not the only ones to think so, since C is already
the target language of the original Bell Labs implementation of C++, of the DEC and Olivetti
implementations of Modula-3, and of Kyoto Common Lisp, to name a few.

Generating C has a few drawbacks, however. First, it makes interactivity difficult, since calling
a batch C compiler takes too much time to do it for each phrase entered at toplevel; we have to
revert to a ML interpretor to run toplevel computations. Second, interfacing a garbage collector
with a C program is not easy and quite messy. A piece of non-portable assembly language is needed
to get the contents of the registers and give them to the garbage collector, since these contents are
roots of the memory graph. But these roots are ambiguous: a register may contain a compiler-
generated temporary whose bit pattern looks like a pointer in the heap, without being a pointer in
the heap. The object pointed by this ambiguous root cannot be freed, nor relocated. Therefore, the
usual, efficient copying collectors cannot be used, and we must use either inefficient non-compacting
collectors, or “mostly copying” collectors, such as the one of [8], which are more complex.

2.3.4 Interpreting abstract machine code

Using an abstract machine is not a bad idea per se: it is a very convenient way to explain and
precisely specify an execution model. What’s not very satisfactory is to try and map it on existing
hardware. Another approach is to use a simulator for the abstract machine, that is a program
which interprets directly abstract machine code (conventionally called bytecode in this case).

Interpreters have a bad reputation in the field of programming languages; in most people’s
mind, it is associated with Lisp (at best) or Basic (at worst). The approach considered here is
quite different: we do not interpret the source program directly, but first compile it into a very
low-level code. Parsing, scoping, symbol table handling, reduction of high-level constructs into
low-level ones, and all other complex jobs have already be performed statically by a compiler; all
the interpreter has to do dynamically is to emulate some low-level machine.

This approach addresses the issue of portability. The abstract machine is fixed, it does not
depend on any actual hardware, therefore the compiler is totally machine-independent. And if the
bytecode interpreter is written in some popular, high-level language such as C, it can run on any
machine having a C compiler with few, if any, modifications. At worst, one may have to rewrite

18 CHAPTER 2. DESIGN PRINCIPLES

entirely the bytecode interpreter to port it to another machine; but this is a small and simple
program, compared with the compiler, which has not to be modified.

More generally speaking, we get full control over the target code, at last. In previous approaches,
the final output of the compilation line was always native machine code, so it was impossible to
tailor it to our needs. This is not the case anymore. For instance, it is easy to desing a totally
machine-independent bytecode, which can run unchanged on any kind of machine; this is important
in case of heterogeneous networks. We can also require the code to be fully “standalone”, that is
relocatable and without references to external data. Then, a piece of code can be manipulated
just as any other data, for instance written to a file, or sent through a network; this is crucial for
functional languages, which claim that functions are first-class values, just as integers or strings.
Cardelli’s Amber language [12] was the first to allow this, thanks to a bytecode designed with this
requirement in mind [13]. Finally, bytecode which is machine-independent and “standalone” at the
same time opens new perspectives: for instance, one can imagine several interpreters running on
the various machines of an heterogeneous network and distributing computation among themselves
by exchanging pieces of code through the network . . .

The main drawback of interpreting bytecode is, of course, execution speed: the infamous “in-
terpretative overhead”. Let us consider this issue more closely. The interpreter contains code
to execute each instruction of the abstract machine. This code is roughly speaking the one that
expansion to machine code would produce. Therefore, that’s not where the slowdown introduced
by interpretation comes from. It comes from the following additional computations needed by
interpretation:

• additional encodings. If it is written in a high-level language, the interpreter might not be
able to manipulate directly objects used by the bytecode, and some kind of encoding becomes
necessary. For instance, it may be difficult to store the registers of the abstract machine
in actual registers of the host processor. Similarly, an interpreter written in Pascal cannot
perform pointer arithmetic, therefore it has to represent the heap of the abstract machine
as an array, with addresses as offsets in the array, and memory access in bytecode becomes
array indexing, which is slower than pointer dereferencing.

• instruction fetching and decoding. This consists in reading the next instruction from the
bytecode stream, extracting the possible operands from the operation code, and branching
to the part of the interpreter which will execute the instruction read. All this computation is
performed in hardware or microcode in the case of an actual machine.

• unspecialized code. The code executing one bytecode instruction is generic, since it must
cope with all possible values of operands. Sometimes, however, cheaper instruction sequences
could be used; for instance, it is usually faster to increment an integer by one than to add
two integers; but an Add instruction whose second operand is 1 will of course be executed by
a generic addition, not the cheaper increment operation.

The first issue, additional encodings, is addressed by writing the interpreter in some language
giving full access to the innards of the host machine. Assembly language is an obvious candidate,
but it is not portable. C is portable, and gives almost the same facilities to “talk” directly to the
host processor, thanks to pointer arithmetic, and the ability to put some local variables in registers.

The third source of inefficiency, unspecialized code, is not very important in practice (much
less than the cost of instruction fetching!), and can be easily fixed by introducing new, specialized

2.3. EXECUTION METHODS 19

instructions in the bytecode, e.g. a Succ instruction to perform the same work as a Add instruction
with 1 as second operand.

The second issue, the cost of instruction fetching, is critical. First, the decoding of opcodes
must be reduced as much as possible. This prohibits putting addressing modes in the opcodes. The
location of the operands must be implicit, and not explicitly contained in the opcode. That’s the
reason why bytecode interpretation is much more suited to stack-based machines than to register-
based machines. With a stack-based machine, it is possible to have a very simple format for
instructions: one byte to hold the opcode, and nothing else; additional operands (e.g. constants)
are stored in the following bytes. Then, instruction decoding and fetching is simply one memory
access followed by one jump through table. In C, we would write, for instance:

char * pc;
while(1)
switch(*pc++) {
case 0: /* Push */ *--stack_pointer = accu; break;
case 1: /* Pop */ accu = *stack_pointer++; break
case 2: /* Quote */ accu = *(long *)pc; pc += sizeof(int); break;
/* etc */ }

This code looks optimal. Yet in case of simple instructions such as Push, instruction fetching (i.e.
the switch construct) takes more time than actual execution (the code performing the Push). This
means that interpretation slows down execution by a factor of two. To lower this overhead, there
are two things we can do.

First, we can reduce the number of instructions to be executed. This means of course having
more complex instructions, performing more work. One way to achieve this is to condense frequently
used sequences of instructions into one instruction. For instance, assuming that Quote loads a
constant in the accumulator and Push stores the accumulator on top of a stack, the sequence Quote
<cst>; Push is quite common, and could be replaced by a single instruction QuotePush <cst>,
which will execute much faster, since it requires one instruction fetching instead of two. And more
complex instructions have an additional benefit: the bigger the C code executing an instruction,
the more it can be “optimized” by a good compiler.

We can also perform partial evaluation of the instruction fetching and decoding loop. For
instance, we can represent an instruction by the address of the routine interpreting it, instead of its
opcode. That way, the jump through table is replaced by a cheaper indexed jump. If C understood
indexed jumps, this would read:

label * pc;
goto *pc++; /* To start */

Push:
*--stack_pointer = accu; goto *pc++;

Pop:
accu = *stack_pointer++; goto *pc++;

/* etc */

To each instruction, we would associate a routine that executes it, and then fetch the next instruc-
tion, that is the address of the next routine to execute, and directly jump to it. This technique is
known as threaded code interpretation, and is commonly used to implement Forth, for instance [41].

20 CHAPTER 2. DESIGN PRINCIPLES

It cuts down interpretative overhead by a factor of two. Alas, I did not succeed in implementing
this technique in C, so it requires some assembly language. This seems to be the most efficient in-
terpretative technique. The next step toward partial evaluation is of course to suppress completely
instruction fetching by concatenating directly the routines executing the instructions, in the right
order, but this is exactly expansion to native machine code, as presented above!

To summarize, interpreting code for an abstract machine seems to be the only way to get a truly
portable implementation of ML, as well as to be able to manipulate code as any other value (e.g.
writing a function to a file). The overhead of interpretation is not negligible, but can be lowered
by careful design of the abstract machine (to reduce the number of instructions needed) and using
some tricks for the interpreter (e.g. threaded code instead of bytecode). By using these techniques
in ZINC, I tried to see whether they suffice to make this overhead tolerable in practice.

2.4 Toplevels considered harmful

This section deals with the way users can interact with an ML compiler.

2.4.1 The toplevel-oriented approach

Usual ML implementations, such as SML-NJ or CAML, are essentially built around a “toplevel”
loop. The spirit is the same as the famous “read, eval, print” loop of Lisp. Unlike Lisp, every phrase
is compiled on the fly, and then executed to get its value, so this is actually a “read, compile, execute,
print” loop. This leads to fully interactive systems, perfect for learning the language. In particular,
it is fascinating to see not only the value, but also the inferred type of the phrase just typed. In
addition, toplevels give an easy way to “talk” to the system, that is to specify compilation options,
load a file, set a breakpoint on a function, and so on: it suffices to call some system functions, just
as if they were user-defined. To trace function foobar, one simply evaluates trace "foobar".

Of course, it is possible to load the contents of a file, but this is almost nothing more than
input redirection. In particular, all phrases of the file are recompiled at each loading. To save some
work here, CAML is able to put the compiled code in another file, and then load the compiled
code directly, without recompiling. This separate compilation facility is totally unsafe, however,
since the file was typechecked when compiled, in a given global environment, but nothing prevents
it from being loaded later on, in a different environment. For instance, a file referring to a function
foo, and compiled in an environment where foo has type int->int, can be loaded in a core image
where foo is undefined, or (worse) is defined but with another type.

To prevent this from happening, module systems were added to SML as well as to CAML.
Basically, a module must declare explicitly what global values it expects to find in the current
global environment, along with their type, and checks at loading time that these globals are really
defined, and with the expected type. That way, type safety is ensured, even in case of separate
compilation.

This toplevel-oriented approach has serious flaws, however. First, “batch” use is sometimes
useful, especially in the Unix world. The Unix programming environment is designed with “batch”
compilers in mind, so that they can easily be composed with other general-purpose utilities —
programs that just perform one simple task, but perform it well: dependency handlers (make),

2.4. TOPLEVELS CONSIDERED HARMFUL 21

revision control systems (sccs, rcs), text preprocessors (sed, m4, awk), and so on. A toplevel-
based implementation cannot be easily piped with one of these; for instance, it is almost impossible
to use make to handle the dependencies of a program. With toplevels, the only way to have all the
facilities above is to integrate them in the system. This is impractical, since the system gets bigger
and bigger, and users have to learn again how to use these facilities.

Second, the fact that there is but one global symbol table, that gets updated when a module is
loaded, is sometimes misleading. After recompiling and reloading a module, the bindings performed
by the old module are not thrown away, they are simply hidden behind the bindings performed
by the new module, but they can remain apparent if some exported globals were renamed. For
instance, I have a module exporting a function fobar, and another importing and using fobar.
Later, I realize that fobar is misspelled, so I rename it to foobar in the first module, but forget to
do so in the second. In addition, I discover a bug in the definition of foobar, so I modify it. Then I
reload both modules. No errors occur, since there is still a global named fobar in the environment.
And the second module still uses the old, buggy version of foobar (uh, fobar, I meant). Of course,
if we started again from scratch, the module system would catch this mistake. The problem is that
toplevels keep the history of definitions made since the beginning of the session, therefore several
successive versions of the user’s program may coexist in memory, and interact in strange ways.

Finally, the user’s program is loaded into the same process running the toplevel, the compiler,
the debugger, . . . ; there is no way compiled code can be executed otherwise. As a consequence, it
is not possible to produce truly standalone programs: even if it is possible to produce executable
“core images”, which contains the user’s program at startup, these “cores” still contain the whole
system (several megabytes of code), even if it is no more useful. And this makes bootstrapping
more complex: some tricks are necessary to get a core image of the latest version of the system
which does not contain in addition the code of the previous version, used to compile the latest
one. More generally speaking, there is no distinction at all between the user’s program and the
meta-level programs (toplevel, compiler, . . .), they both live in the same world, and this is often
absurd, especially in the case of bootstrapping.

2.4.2 The standalone-oriented approach

As an alternative to toplevel-oriented implementations, I propose an architecture a la Unix, oriented
toward separate compilation and the production of small, standalone programs. The heart is a
standalone compiler, taking one source file, either the interface or the implementation of a module,
and producing the corresponding object file, a compiled interface or a stream of symbolic code
respectively. When all the modules of a program have been compiled, a standalone linker gathers
the object code files together, fixes cross-references and the like, and produces an executable file.
In case of bytecode interpretation, this “executable” actually contains bytecode, and must be run
through the bytecode interpreter. These three programs, compiler, linker and interpreter, are all
we need to produce standalone programs, and to bootstrap the compiler and the linker if they are
written in ZINC.

They do not address the issue of learning the language, nor testing and debugging programs,
however. To do so, some interactive system has to be provided. The idea is that most parts of
the compiler and the linker can be reused in an interactive context, if they are able to work phrase
by phrase; then, a phrase can be compiled, linked with the phrases already defined, and executed
on the fly. That’s all what we need to build a conventional toplevel a la CAML. But since the

22 CHAPTER 2. DESIGN PRINCIPLES

toplevel is no more the basic mechanism provided to use ZINC, it might be interesting to specialize
it for teaching and debugging purposes, by restricting it on the one hand (prohibit compilation and
loading of entire modules, for instance), extending it on the other (being able to ask for the values
of “hidden” variables, such as local variables of a closure, or private global variables of a module),
and even changing the semantics of some operations (for instance, let f = E where f is already
defined could be interpreted as a redefinition of f, replacing all previous occurrences of f by E,
instead of a rebinding of f, which does not update previous references to f; the first is definitely
more useful for debugging purposes). In other words, this interactive ZINC system would be a
cross-breed between conventional, Lisp-like toplevels and modern source-level debuggers. Close
integration with a powerful text editor such as Emacs [56] would be nice, too.

Chapter 3

The abstract machine

This chapter introduces the execution method used by ZINC. As usual, it will be specified using
an abstract machine.

Abstract machines for strict functional languages abound in the literature: Landin’s seminal
SECD [37], Cardelli’s FAM [11], Curien’s CAM [20], . . . Yet it was necessary to develop a new ma-
chine for ZINC. Indeed, one of the design requirements is that multiple application to k arguments
should be efficient, almost as efficient as applying a k-ary function. As we saw in section 2.2, this
is not the case with the existing abstract machines mentioned above, since they all build k − 1
intermediate closures to evaluate this multiple application.

We may fear that this requirement is totally unrealistic; maybe there is a deep result stating
that this apparently bad behavior is unavoidable, and that these closures are the price to pay for
the additional flexibility of curried functions (e.g. partial evaluation). However, it seems that this
requirement is achieved in lazy graph reducers such as the G-machine [32, 50]. An evidence is their
use of supercombinators to speed up reduction: supercombinators are special cases of functions with
several arguments, yet they are curried, and applying a supercombinator to several arguments seems
much faster than applying it argument by argument, otherwise lambda-lifting (the transformation
of a program into a set of supercombinators) would not be very interesting.

To make this intuition clearer, and start the shift from lazy graph reducers to strict environment
machines, I shall first present an environment machine performing standard reduction, and enjoying
some of the interesting properties of graph reducers: Krivine’s machine.

3.1 Krivine’s machine

This abstract machine, due to J.-L. Krivine [36, 21], performs reduction to weak head normal
form, following the standard (leftmost-outermost) strategy. However, λ-terms are represented by
closures, hence substitutions are not performed on the fly, but delayed till variables are reduced.

3.1.1 Presentation

This machine has but three instructions: Access, Push, and Grab. A term in de Bruijn’s notation
[10] is compiled as follows:

[[n]] = Access(n)

23

24 CHAPTER 3. THE ABSTRACT MACHINE

Terms M ::= n | (M N) | λM | M [s]
Substitutions s ::= Id | Shift | M · s | s ◦ t | ⇑(s)

(Beta) (λM)N = M [N · Id]
(App) (M N)[s] = M [s] N [s]
(Lambda) (λM)[s] = λ(M [⇑(s)])
(Closure) (M [s])[t] = M [s ◦ t]
(VarShift1) n[Shift] = n + 1
(VarShift2) n[Shift ◦ s] = n + 1[s]
(FVar) 1[M · s] = M
(FVarLift1) 1[⇑(s)] = 1
(FVarLift2) 1[⇑(s) ◦ t] = 1[t]
(RVar) n + 1[M · s] = n[s]
(RVarLift1) n + 1[⇑(s)] = n[s ◦ Shift]
(RVarLift2) n + 1[⇑(s) ◦ t] = n[s ◦ (Shift ◦ t)]
(AssEnv) (s ◦ t) ◦ u = s ◦ (t ◦ u)
(MapEnv) (M · s) ◦ t = M [t] · (s ◦ t)
(Shift) Shift ◦ (M · s) = s
(ShiftLift1) Shift ◦ ⇑(s) = s ◦ Shift
(ShiftLift2) Shift ◦ ⇑(s ◦ t) = s ◦ (Shift ◦ t)
(Lift1) ⇑(s) ◦ ⇑(t) = ⇑(s ◦ t)
(Lift2) ⇑(s) ◦ (⇑(t) ◦ u) = ⇑(s ◦ t) ◦ u
(LiftEnv) ⇑(s) ◦ (M · t) = M · (s ◦ t)
(IdL) Id ◦ s = s
(IdR) s ◦ Id = s
(LiftId) ⇑(Id) = Id
(IdEnv) M [Id] = M

Table 3.1: The calculus λenv

3.1. KRIVINE’S MACHINE 25

[[(M N)]] = Push([[N]]); [[M]]
[[λM]] = Grab; [[M]]

The machine is equipped with a code pointer, a register holding the current environment (a
list of closures, that is, pairs of code pointers and environments), and a stack of closures. The
transition function is as follows:

Code Env. Stack Code Env. Stack
Access(0); c (c0, e0) · e s c0 e0 s
Access(n + 1); c (c0, e0) · e s Access(n); c e s
Push(c′); c e s c e (c′, e) · s
Grab; c e (c0, e0) · s c (c0, e0) · e s

At all times the stack represents the spine of the term being reduced (that is, the term whose
code is in the code pointer). The Push instruction performs one step of unrolling, and Grab corre-
sponds to one step of β-reduction, that is it records the substitution in the environment.

3.1.2 Correctness

For a more formal correctness argument, I shall use the λenv-calculus of Hardin and Lévy [27] (see
also [2] for a similar calculus, with less pleasant properties, however). This variant of the λ-calculus
manipulates explicitly substitutions, and therefore provides a good framework for reasoning about
implementations where substitutions are delayed. Table 3.1 recalls the syntax of terms, along with
the equational theory defining the equivalence of two terms. Notice that usual λ-terms are also
valid terms of this calculus; indeed, two λ-terms are β-convertible if and only if the corresponding
λenv terms are equivalent.

A state of Krivine’s machine encodes a λσ term in the following way. To a sequence of instruc-
tions c, and an environment e, we associate a term c and a substitution e:

Access(n); c = n

Push(c2); c1 = (c1 c2)
Grab; c = λc

(c0, e0) · · · (cn, en) = c0[e0] · · · cn[en] · Id

Then, to the state (c, e, s) of Krivine’s machine, we associate a term (c, e, s) as follows:

(c, e, (c0, e0) · · · , (cn, en)) = (c[e] c0[e0] . . . cn[en])

Proposition 1 (Correctness of Krivine’s machine) If (c1, e1, s1) → (c2, e2, s2) is a transition
of Krivine’s machine, then (c1, e1, s1) = (c2, e2, s2).

Proof: It is enough to prove it for all four transitions, that is to check the following equalities:

26 CHAPTER 3. THE ABSTRACT MACHINE

1[c0[e0] · e] = c0[e0]
(n + 1)[c0[e0] · e] = n[e]

(c1 c2)[e] = (c1[e] c2[e])
((λc)[e] c0[e0]) = c[c0[e0] · e]

The first three equalities are exactly the FVar, RVar and App axioms. The last one is more
complex. Writing M = c, s = e and N = c0[e0], we have:

((λM)[s] N) = ((λ(M [⇑(s)])) N) (Lambda)
= M [⇑(s)][N · Id] (Beta)
= M [⇑(s) ◦ (N · Id)] (Closure)
= M [N · (s ◦ Id)] (LiftEnv)
= M [N · s] (IdR)

which is the expected result. 2

3.1.3 Multiple applications

Let us consider the evaluation of a multiple application (M N1 . . . Nk). This term is compiled into
Push([[Nk]]); . . . ; Push([[N1]]); [[M]]. At runtime, the closures representing Nk, . . . , N1 are pushed on
the stack, then M is evaluated. Each time a Grab instruction is encountered, that is each time
an abstraction is reduced, one of the arguments is popped and added to the environment, then
evaluation proceeds with the remaining code, that is the body of the abstraction. The crucial point
is that no closures are ever built to represent the intermediate applications (M N1), (M N1 N2),
. . . , (M N1 . . . Nk). The sole closures built are those needed to “freeze” the arguments N1, . . . , Nk,
and these are unavoidable with a lazy strategy.

Contrast this behavior to the one of the lazy CAM [20, 44], for instance: the lazy CAM reduces
M to weak head normal form first, then applies it to the closure of N1. The result, the closure
representing (M N1) is then applied to the closure of N2, leading to the closure representing
(M N1 N2), and so on. Thus, the lazy CAM builds 2k− 1 closures to evaluate (M N1 . . . Nk), and
Krivine’s machine builds but k closures. By comparison, the strict CAM as well as the FAM don’t
build the closures of N1, . . . , Nk, since these are reduced on the fly to weak head normal form,
but they do build closures for the intermediate applications (M N1), . . . , (M N1 . . . Nk), totalizing
k − 1 closures. To summarize:

lazy strict
without spine Lazy CAM Strict CAM

2k − 1 closures k − 1 closures
with spine Krivine’s machine ?

k closures 0 closures

At that point, one may hope to replace the question mark (“The Functional Abstract Ma-
chine That Hardly Ever Conses”) by some machine analogous to Krivine’s, but performing strict
evaluation instead of lazy evaluation.

3.2. KRIVINE’S MACHINE WITH MARKS ON THE STACK 27

3.2 Krivine’s machine with marks on the stack

To perform strict evaluation with some variant of Krivine’s machine, we need first to be able to
reduce some subterms of a given term to weak head normal form. The problem with Krivine’s
machine is that it does not stop until the stack is empty. What we need is a way to stop reduction
even if there are arguments available on the stack. To this end, let’s put a mark on some of the
closures awaiting in the stack; this mark says “don’t put me in the environment, stop reducing, and
resume another reduction”. This idea of marks comes from Fairbairn and Wray’s Three-Instruction
Machine [24], though it uses marks for different purposes (to share reductions); Crégut [21] then
applied it to Krivine’s machine, again for sharing purposes.

3.2.1 Presentation

The modified Krivine’s machine has a fourth instruction, Reduce(c), to force reduction of c to weak
head normal form, and a different semantics for Grab. In the following, marked closures are written
〈c, e〉 instead of (c, e).

Code Env. Stack Code Env. Stack
Access(0); c (c0, e0) · e s c0 e0 s
Access(n + 1); c (c0, e0) · e s Access(n); c e s
Push(c′); c e s c e (c′, e) · s
Grab; c e (c0, e0) · s c (c0, e0) · e s
Grab; c e 〈c0, e0〉 · s c0 e0 (Grab; c, e) · s
Reduce(c′); c e s c′ e 〈c, e〉 · s

3.2.2 Correctness

To prove correctness, we proceed as previously, by associating a term to code sequences. An
additional case is needed:

Reduce(c2); c1 = (c1 c2)

The encoding of machine states is generalized as follows:

(c, e, empty) = c[e]
(c, e, s · (c0, e0)) = ((c, e, s) c0[e0])
(c, e, s · 〈c0, e0〉) = (c0[e0] (c, e, s))

Proposition 2 (Correctness of Krivine’s machine with marks) If (c1, e1, s1) → (c2, e2, s2)
is a transition of Krivine’s machine with marks, then (c1, e1, s1) = (c2, e2, s2).

Proof: The first four transitions are exactly those of Krivine’s machine, so it suffices to check
the last two transitions. For the penultimate one, the result comes from the following syntactic
identity:

(c, e, 〈c0, e0〉 · s) ≡ (c0, e0, (c, e) · s)
which is easy to prove by induction on s. For the last transition, we have

(Reduce(c2); c1, e, empty) ≡ (c1 c2)[e] = (c1[e] c2[e]) ≡ (c1, e, 〈c2, e〉 · empty)

and this result holds for non-empty stacks as well, by trivial induction. 2

28 CHAPTER 3. THE ABSTRACT MACHINE

3.2.3 Compiling call-by-value

A strict application (M N)s, that is the application of M to the weak head normal form of N , can
be compiled as follows:

[[(M N)s]] = Reduce([[N]]); [[M]]

The reader can check that a strict multiple application (M N1 . . . Nk)s, that is

(. . . ((M N1)s N2)s . . . Nk)s,

evaluates without building the closures corresponding to (M N1)s, . . . , (M N1 . . . Nk)s, as the
original Krivine’s machine, nor the closures of N1, . . . , Nk, since this is call-by-value. Therefore,
strict multiple applications evaluate without allocating any regular closures. Of course, it allocates
k marked closures on the stack. But these closures do not need to be heap-allocated: it is easy to
check that they cannot be put in an environment. Actually, it suffices to push both components
of these marked closures on the stack. Therefore, strict multiple application does not perform any
allocation in the heap. This is the expected result.

3.3 The ZINC machine

The ZINC not-so-abstract machine can be seen as a Krivine’s machine with marks specialized to
call-by-value only, and extended to handle constants as well. To tell the truth, it was designed well
before Pierre-Louis Curien suggested me this viewpoint. My original approach was more down-
to-earth: designing a stack-based calling conventions where functions may not consume all their
arguments (as in C), but then their result must be applied to the remaining arguments. This
explains a few cosmetic differences between the two machines. Yet it is easy to see the underlying
Krivine’s machine at work, and this is enough to convince oneself of the correctness of the ZAM.

As Krivine’s machine, the ZAM is equipped with a code pointer and a register holding the
current environment. Environments are lists of values, that is, either closures representing functions,
or constants (integers, booleans, . . .). An accumulator has been added to hold intermediate results.
It is unnecessary in Krivine’s machine, since it handles only closures, hence the code pointer and
the environment register are enough to represent results. When we add constants, an explicit
accumulator becomes necessary.

The stack of Krivine’s machine has been split into two stacks. One stack, the argument stack,
holds arguments to function calls, that is sequences of values, separated by marks. Marks are no
more specially tagged closures, but simply a distinguished value written ε. The other stack, the
return stack, holds (unallocated) closures, that is pairs of a code pointer and an environment. This
design helps reducing stack moves, and allows further refinements in the way environments are
represented.

In the following, I shall define two compilation schemes: one, written T [[E]], is only valid for
expressions E in tail-call position, that is expressions whose value is the value of the function body
being evaluated; the other, written C[[E]], is always valid, but usually less efficient. Then, I give
the transitions of the ZAM corresponding to the generated instructions. The first line is the state
before the transition, the second one is the state after the transition.

3.3. THE ZINC MACHINE 29

3.3.1 Accessing local variables

The compilation scheme for the local variable of index n is:

T [[n]] = C[[n]] = Access(n)

The Access instruction has the following semantics:

Code Accu Env. Arg. stack Return stack
Access(n); c a e = v0 . . . vn . . . s r

c vn e s r

3.3.2 Application

T [[(M N1 . . . Nk)]] = C[[Nk]];Push; . . . ; C[[N1]];Push; C[[M]];Appterm

C[[(M N1 . . . Nk)]] = Pushmark; C[[Nk]];Push; . . . ; C[[N1]];Push; C[[M]];Apply

The applications we consider are naturally multiple. The compiled code remains correct if k is not
maximal, for instance if we consider (M N P) as (M Q) where Q = (N P), but less efficient, since
unnecessary closures will be built.

Tail applications are treated as in Krivine’s machine, since there is no need to allocate a new
argument stack by pushing a mark. The sole difference is that the Appterm instruction takes care
of consing the first argument with the environment of the closure; this way, we do not have to put
a Grab instruction at the beginning of each function. For other applications, we must push a mark
on the argument stack to separate the “new” arguments and force reduction to weak head normal
form.

Code Accu Env. Arg. stack Return stack
Appterm; c0 a = (c1, e1) e0 v.s r

c1 a v.e1 s r

Apply; c0 a = (c1, e1) e0 v.s r
c1 a v.e1 s (c0, e0).r

Push; c0 a e s r
c0 a e a.s r

Pushmark; c0 a e s r
c0 a e ε.s r

3.3.3 Abstractions

T [[λE]] = Grab; T [[E]]
C[[λE]] = Cur(T [[E]];Return)

In tail-call position, the Grab instruction simply pops one argument from the argument stack,
and puts it in front of the environment. If all arguments have already been consumed, that is if
there is a mark at the top of the stack, it builds the closure of the current code with the current
environment and returns it to the caller, while popping the mark.

30 CHAPTER 3. THE ABSTRACT MACHINE

Otherwise, we could push a mark, to allocate a new argument stack, and then do the same
thing. Of course, Grab would always fail and return immediately the desired closure. To save
pushing a mark, and then immediately test it, we use the cheaper Cur instruction, in this case.

The Return instruction that terminates the body of a function does not simply jump back to
the caller. It is actually the symmetric of Grab: it has to check if the argument stack is “empty”
(i.e. if the top of stack is a mark). If this is the case, it destroys the mark and returns to the caller.
But otherwise, it applies the result of the function (necessarily a closure, if the original program
is well-typed) to the remaining arguments. This situation is the converse of partial application: a
single function is given more arguments than it can use. This is the case of the identity function
in the following example:

((λx.x) (λy.y + 1) 4)

Code Accu Env. Arg. stack Return stack
Cur(c1); c0 a e s r

c0 (c1, e) e s r

Grab; c0 a e0 ε.s (c1, e1).r
c1 (c0, e0) e1 s r

Grab; c a e v.s r
c a v.e s r

Return; c0 a e0 ε.s (c1, e1).r
c1 a e1 s r

Return; c0 a = (c1, e1) e0 v.s r
c1 a v.e1 s r

3.3.4 Local declarations

T [[let 1 = N in M]] = C[[N]]; Let; T [[M]]
C[[let 1 = N in M]] = C[[N]]; Let; C[[M]];Endlet

T [[let rec 1 = N in M]] = Dummy; C[[N]];Update; T [[M]]
C[[let rec 1 = N in M]] = Dummy; C[[N]];Update; C[[M]];Endlet

The special case of let, that is ((λx.M) N), is so common that it deserves a faster and sim-
pler compilation scheme than actually applying an abstraction. It is enough to evaluate N and
add its value to the environment, using the Let instruction, then to evaluate M in this modified
environment; then, the Endlet instruction restores the original environment, if needed.

For recursive definitions, I use the same trick suggested for the CAM [20]: first, a dummy value
is added to the environment (instruction Dummy), and N is evaluated in this modified environment;
the dummy value is then physically updated with the actual value of N (instruction Update). This
may fail to reach a fixpoint, since the physical update may be impossible (in case of an unboxed
value, an integer for instance). However, it works fine for the most commonly used case: when M
is an abstraction λ.P . It is true that in this case, more efficient compilation schemes could be used:
for instance, it is possible to loop directly in the code, rather than building a circular environment,
as noticed by Mauny and Suárez [46] in the setting of the CAM. Their solutions can be easily
applied to the ZAM as well.

3.4. ANOTHER REPRESENTATION FOR THE ENVIRONMENT 31

Code Accu Env. Arg. stack Return stack
Let; c a e s r

c a a.e s r

Endlet; c a v.e s r
c a e s r

Dummy; c a e s r
c a ?.e s r

Update; c a e = v.e1 s r
c a e[v ← a] s r

3.3.5 Primitives

T [[p(M1, . . . , Mk)]] = C[[p(M1, . . . ,Mk)]] = C[[Mk]];Push; . . . C[[M2]];Push; C[[M1]];Prim(p)

We write Prim(p) for the instruction associated with the primitive operation p (e.g. +, =,
car) This instruction takes its first argument in the accumulator, the remaining arguments in the
argument stack, and puts its result in the accumulator.

Code Accu Env. Arg. stack Return stack
Prim(p); c a e v2 . . . vk.s r

c p(a, v2, . . . , vk) e s r

3.3.6 Control structures

Conditionals, loops, . . . , are compiled in a very classical way, but I shall not describe them formally,
since to describe code sharing, we need to introduce labels in the code; this will be done in the
description of the implementation.

3.4 Another representation for the environment

The discussion above assumes that environments are always allocated in the heap, so that they can
be put in a closure at any time. This is also the case in most environment machines (SECD, CAM,
FAM), though they differ on the way environments are represented (linked lists or vectors). Given
the high frequency of closure building, little else can be done. For instance, a curried function
of several arguments adds a value to the environment and immediately builds a closure for each
argument it receives. However, the ZINC machine was specially designed to build less closures.
This opens the way for less costly (in terms of heap allocation) representations of environments.

The idea is as follows: when we don’t have to build any closures, the current environment does
not have to survive the evaluation of the current function body. Therefore we can store it, or
part of it, in some volatile location (stack or registers) that will be automatically reclaimed when
the current function returns. We can go even further: assuming few closures are built, a sensible
policy is to systematically put values being added to the environment in one of these volatile
locations, and to copy them back to persistent storage (i.e. in the heap) when a closure is built. (In
other terms, we add a write-back cache on the environment). In this approach, the environment
0 ← a0, . . . , n ← an is represented by a persistent part ak, . . . , an, which is the environment part of
the closure most recently applied or built, and a volatile part a0, . . . , ak−1, which holds values added

32 CHAPTER 3. THE ABSTRACT MACHINE

to the environment since then. Hence, a given environment has several different representations;
this makes the access operation slightly more complex.

More formally, let Env be an environment structure, that is an abstract type equipped with a
constant empty : Env and the following operations:

• accessn : Env → Value, to return the value associated to n;

• add : Value,Env → Env , to bind the given value to 0 and shift all other bindings up by one;

• remove : Env → Env , to shift all bindings down by one.

Then we can define a new environment structure Env ′ as follows: objects of that type are pairs
〈S,E〉 of a stack S of values and of an environment E : Env ; operations on Env ′ are defined as:

empty ′ = 〈∅, empty〉
access ′n〈S, E〉 = S[n] if n < ‖S‖
access ′n〈S, E〉 = accessn−‖S‖E if n ≥ ‖S‖

add ′(v, 〈S, E〉) = 〈v.S, E〉
remove ′〈v.S, E〉 = 〈S, E〉

remove ′〈∅, E〉 = 〈∅, remove E〉
We write ‖S‖ for the size of the stack S, and S[n] for its nth element, the top of the stack being
S[0]. Alternatively, if the remove operation is too costly, we can define remove ′ as:

remove ′〈∅, E〉 = 〈access0E . . . accessnE, empty〉
To produce an equivalent environment, but without volatile components, hence suitable for a
closure, we have an additional operation called perpetuate : Env ′ → Env ′, consisting in:

perpetuate〈ak . . . a1.a0.∅, E〉 = 〈∅, add(a0, add(a1, . . . add(ak, E)))〉
To convince oneself that adding a cache this way does not compromise correctness, it is enough to
notice that environments with cache can be mapped to simple environments as follows:

〈a0.a1 . . . ak.∅, E〉 = add(a0, add(a1, . . . add(ak, E)))

and this maps the transition of some machine with a cache on transitions of the same machine
without cache.

Such a cache can be added to any environment structure: vector, linear linked list, linked list
of vectors, . . . However, adding a cache makes the add and remove operations much less frequent;
in addition, remove can be eliminated entirely, and when we extend the persistent environment, we
do not add one value at a time any more, but rather several values at once. The vector structure
really shines here, since it allows accesses in constant time, and thanks to the cache we can afford
the price of full copying when a perpetuate operation is needed, that is, when building a closure.

Each active function needs its own cache, and it must be preserved during function call. How-
ever, caches follow a stack discipline (at any time, only the most recently allocated cache is active),
so we can allocate them in a stack. The return stack of the ZAM is perfectly suited to this purpose.
In other words, the return stack still holds unallocated closures, but these closures now include the
volatile part of environments as well. More precisely, the return stack is now a sequence of blocks
holding:

3.4. ANOTHER REPRESENTATION FOR THE ENVIRONMENT 33

Code Accu. Env. Size Arg. stack Return stack
Access(n); c a e m > n s r = v0 . . . vn . . . vm−1.r0

c vn e m s r

Access(n); c a e = (vm . . . vn . . .) m ≤ n s r = v0 . . . vm−1.r0

c vn e m s r

Appterm; c0 a = (c1, e1) e0 m v.s r
c1 a e1 1 s v.r

Apply; c0 a = (c1, e1) e0 m0 v.s r
c1 a e1 1 s v.(c0, e0,m0).r

Cur(c1); c0 a (vm . . . vn) m s v0 . . . vm−1.r0

c0 (c1, (v0 . . . vn)) (v0 . . . vn) 0 s r0

Grab; c0 a (vm . . . vn) m ε.s v0 . . . vm−1.(c1, e1,m1).r
c1 (c0, (v0 . . . vn)) e1 m1 s r

Grab; c a e m v.s r
c a e m + 1 s v.r

Return; c0 a e0 m ε.s v0 . . . vm−1.(c1, e1,m1).r
c1 a e1 m1 s r

Return; c0 a = (c1, e1) e0 m v.s v0 . . . vm−1.r0

c1 a e1 1 s v.r0

Let; c a e m s r
c a e m + 1 s a.r

Endlet; c a e m > 0 s v0.r
c a e m− 1 s r

Endlet; c a (v0.v1 . . . vn) 0 s r0

c a () n− 1 s v1 . . . vn.r0

Table 3.2: The ZINC abstract machine with cache

• a code pointer

• a (pointer to a) vector representing the persistent part of an environment

• an integer n, the size of the volatile part

• n values representing the volatile part itself.

In addition, the topmost block is not complete, it contains only the volatile part of the current
environment, since special registers hold the current code pointer, persistent environment, and size
of volatile environment.

We are now ready to give the semantics of the basic instructions of the ZAM with cache (figure
3.2). To make deciphering easier, we write r for a return stack with an incomplete block at the
top, as described above, and r0 for a sequence of complete blocks.

34 CHAPTER 3. THE ABSTRACT MACHINE

3.5 Conclusion

Trying to reduce the number of closures and environment blocks allocated in the heap has lead
us quite naturally to a fairly complex abstract machine, much more complex than the SECD, for
instance, and one may fear that the improvement in performances over classical abstract machines
is not worth the additional complexity. At that point, it is reassuring to have a look at the results of
a few preliminary benchmarks, given in appendix A. They demonstrate that the special mechanisms
of the ZAM often lead to dramatic savings of heap space (several orders of magnitude) compared
with the SECD or the CAM, while raw execution times remain very close (and these times do not
take into account time spent for garbage collection).

Another source of concern is the sheer number of tests performed during execution, either to
see whether the argument stack is empty, or when accessing the environment, to know whether the
desired value is bound in the persistent part or in the volatile part. It is true that so many tests
would lead to very inefficient code, if we were to expand it into native code of a traditional processor.
But this is much less serious in the case of bytecode interpretation, since the time spent performing
these tests is negligible compared to the interpretative overhead; and these tests helps reducing the
number of instructions executed, which is crucial in the case of bytecode interpretation.

Chapter 4

Data representation

To complete the execution model defined in the previous chapter, it remains to find a representation
for ML values, and add instructions to manipulate these representations.

4.1 Data structures

ML data types can be split in three classes:

• atomic, predefined types: “small” integers, floating-point numbers, characters, strings, and
possibly arbitrary-precision integers.

• predefined type constructors: functions (closures), vectors, dynamics.

• all other type constructors can be defined in ML, through a very general mechanism called
“concrete types”. For instance:

type envir = Empty
| Regular of int * string list * envir
| Special of int * string list * envir
| Weird of string list * envir;;

The remaining part of this section investigates more precisely the meaning of such a declaration in
terms of more elementary type constructions such as sums and products.

4.1.1 Sums and pairs

The original ML has only one kind of type constructs, the sums. In addition, a built-in pair
operator is provided to allow grouping of values. Among the constructors (that is, the summands)
of a sum type, classic ML distinguishes between nullary constructors (constant constructors), and
unary constructors (functional constructors). This is mostly a question of syntax: a constant
constructor C can always be viewed as a functional constructor C of unit, where unit is a built-in
type with only one value () of that type. In this model, the value e = Regular(a, b, c) is parsed
as Regular(a, (b, c)) and therefore represented as follows (R stands for a tag associated to the
constructor Regular):

35

36 CHAPTER 4. DATA REPRESENTATION

R
A
A
AU

a
A
A
AU

b c

This representation is very inefficient, both in space and in time to access a, b, and c. Conversely,
it allows a very fine-grained destructuring of e, since the sequence of its arguments (a, b, c) and even
the suffix (b, c) are legal ML values. For instance, the following phrase is perfectly legal:

match e with Regular x -> Special x
| Special (x,y) -> Weird y

To be more efficient, Lazy ML of Göteborg [7] provides not only a built-in pair type, but also
a triple type, a quadruple type, . . . Then, int * string list * envir is parsed as a triple type,
hence Regular(a, b, c) has a more efficient representation, that is:

R
A
A
AU

a b c

But now (b, c) is no more a valid ML value, and match e with Special(x,y) -> Weird y is
ill-typed ((x, y) is a pair, and the argument of Special is expected to be a triple). It must be re-
placed by match e with Special(x,y,z) -> Weird (y,z). The price to pay for a more efficient
representation is a (very slight) loss of expressiveness. However, match e with Regular x ->
Special x remains legal.

4.1.2 Sums and products

In both solutions, the components of a tuple are still identified by their position, and this is error-
prone. The next step is to give names to the components of a tuple. To this end, Standard ML and
CAML 2.6 provide another kind of concrete types, the records. These are ordered, named products.
For instance:

type envir = Empty | Regular of envir_triple
| Special of envir_triple | Weird of envir_pair

and envir_triple = { size: int; names: string list; rest: envir}
and envir_pair = { names: string list; rest: envir }

Records usually make programs clearer, if less concise, and they eliminate the need for built-in
tuple types. However, the previous example illustrates their most unpleasant feature: a given label
may belong to several record types. This overloading of labels seems to be necessary, given the
natural tendency of programmers to reuse such evocative names as size, rest and name. But it
does not interact very well with type inference. For instance, function {size = x; _} -> x+1
has no principal type if the label size belongs to several record types!

4.1. DATA STRUCTURES 37

4.1.3 Sums of products

ZINC retains sums as the sole type formation operator, but generalizes the nullary and unary
constructors of classic ML to n-ary constructors. In other words, this operator performs the sum
of several products of types. Also, notice the analogy with sorted free algebras.

Such sums of products lend themselves to a compact and “flat” representation. The term
Regular(a, b, c) is represented by:

R a b c

Such an efficient representation is made possible by the fact that the sequence of the arguments
of a constructor is no more a valid ML object. As a consequence, both cases of

match e with Regular x -> Special x
| Special (x,y) -> Weird y

are now ill-typed: Regular and Special must have exactly three arguments, and Weird two argu-
ments. This phrase has to be rewritten as:

match e with Regular(x,y,z) -> Special(x,y,z)
| Special (x,y,z) -> Weird(y,z)

This phrase may seem less concise and less elegant than the original one. But one may argue that
it is definitely easier to read, since it makes clear that Regular takes three arguments, not one that
happens to be a triple. Elegant but confusing code might be fun to write, but should be avoided.

There is no need for built-in tuple types, since they can easily be defined (with some special
syntax) as:

type ’a & ’b = (* the empty string *) of ’a * ’b;;

That way, we can also represent old-fashioned concrete types, with unary constructors and trees of
pairs as arguments.

Then, for each argument of a constructor, we can give additional information on how it should
be computed and updated, as in CAML 2.6 [62, p. 71]. For instance, we can declare that an
argument may be physically modified using the keyword mutable. Updating is performed by the
construction id <- expr, where id is an identifier bound by pattern matching. As an example,
physical concatenation of lists is done as follows:

type ’a mlist = MNil | MCons of ’a * mutable ’a mlist;;
let rec physical_append =
fun MNil x -> x
| (Mcons(elt, (Mnil as tail)) as whole) x -> tail <- x; whole
| (Mcons(elt, tail) as whole) x -> physical_append tail x; whole;;

Finally, it is possible to add labels naming the arguments of a constructor, and use these labels
for pattern matching:

38 CHAPTER 4. DATA REPRESENTATION

type envir = Empty
| Regular of { size: int; names: string list; rest: envir}
| ...;;

let firstname = function Regular{ names = n::_ ; _ } -> n | ...;;

This time, there is no problem with using several times the same label, since the constructor suffices
to identify the concrete type to which the value belongs.

4.1.4 Records with inclusion

Another approach to the problem of reusing label names is to consider that a record r′ with more
fields than a record r (that is, r′ has all the labels of r, and then some) is really a special case of
r, that is anywhere r can be used, it should be possible to use r′ instead. In other terms, the type
of r′ is a subtype of the one of r. This approach elegantly solves the problem of giving a principal
type to, for instance, our previous example function {size = x; _} -> x+1. More importantly,
subtyping integrates inheritance with static typing, and therefore opens the door to the realm of
object-oriented programming. A more detailed introduction, and very convincing examples can
be found in Cardelli and Wegner [15]. Such records with inclusion can be integrated to the ML
language quite nicely, and still allow type inference, as in the systems proposed by Jategaonkar and
Mitchell [31], by Ohori and Buneman [48], and by Rémy [53, 54].

Records with inclusions are not implemented in ZINC yet, but it should not be too difficult,
using the typechecker presented in Rémy’s thesis [54], and the efficient representation for records
presented below (section 4.3.4).

4.1.5 Extensible sums

The last extension we shall consider here is to allow “extending” a sum concrete type by adding new
constructors to it, after it has been defined. For instance, after having declared extensible type ’a
list = Nil | Cons of ’a * ’a list, one should be able to add a special case for, say, single-
element lists, by declaring extend ’a list with Singleton of ’a. All values of the “old” list
type also belong to the “new” list type. All functions defined before the extension, and taking
an argument of the old type list, accept arguments of the new type list. Of course, previously
defined pattern matchings fail on terms containing the new constructor Singleton.

This extension seems absolutely necessary to get a clean, general treatment of exceptions. In
ML, exceptions have a symbolic name, and possibly one or more arguments. It is very natural to
consider them as constructors of a given concrete type, exc. That way, the raise construct needs no
special typing anymore, it is just a primitive with type exc -> ’a. Similarly, try ... with ... is
now just syntactic sugar on top of the basic primitive handle with type ’a * (exc -> ’a) -> ’a.
The problem is that this type exc have to be extensible, since the user can define new exceptions
(e.g. exception End_of_file of int), and this corresponds closely to extending the type exc
with the constructor End_of_file of int.

Local extensions of a type raise a subtle typing issue: though the extension is local, say, to a
module, it is not possible to check statically that the module does not export a value (or a function
returning values) containing the constructor locally added to an extensible type. Continuing the
example above, I can define the function f x = Singleton x, export it with type ’a -> ’a list,
but without exporting the constructor Singleton. This is not harmful by itself. What we must

4.2. A MEMORY MODEL 39

prevent is the extension of the same type with a constructor having the same name, but differ-
ent arguments, as in extend ’a list with Singleton of int. This would allow the following
violation of the type system:

let f x =
extend ’a list with Singleton of ’a in Singleton x;;

let coerce_anything_to_int x =
extend ’a list with Singleton of int in
match f x with Singleton i -> i;;

One solution is to give different representations to all local extensions of a type, that is stop
distinguishing on the constructor name, and use some kind of unique stamp instead. Another
solution is to simply prohibit extending twice the same type with the same constructor, even if
these extensions are local. ZINC implements an intermediate scheme: local extensions are local to
a module (extensions that are local to an expression, as above, are not allowed, since I consider
them useless), constructors are identified by their full, qualified name (e.g. module1.Singleton or
module2.Singleton), and it is not possible to extend twice a given type with the same constructor
in the same module.

For the time being, ZINC implements a restricted form of extensible sums: there is but one
extensible type, the type exc of exception values, and declaring an exception is treated internally
as extending it. This is mostly due to historical reasons (and to my own lazyness). Basically,
everything is ready to implement general open sums.

4.2 A memory model

This section describes the format of the data handled by compiled programs. It engages not only
the ZINC compiler (which must encode ML values in this format), but also the garbage collector.
The garbage collector was written independently by Damien Doligez [23], and was supposed to be
usable for other implementations as well; this lead us to try and find a memory model as general
as possible.

In this model, a value is a 32-bit word which represents either a small integer, or a pointer
in the heap. The GC must be able to distinguish between them at runtime, therefore a tagging
scheme is necessary.

4.2.1 Unallocated objects

The only kind of unallocated (unboxed) objects is small integers. As the heap contains only 32-bit
words, all pointers in the heap are 32-bit aligned, so their low-order bits are always 00. Integers
are therefore encoded with a 1 as low-order bit: the integer n is represented by the 32-bit field
n = 2n + 1. Arithmetic operations on these 31-bit integers are fairly simple:

−n = 2− n

succn = n + 2
n + m = n + m− 1
n−m = n−m + 1

40 CHAPTER 4. DATA REPRESENTATION

n.m = (n− 1)(m/2) + 1

n/m =
n− 1
m/2

+ 1

Tag schemes using the high-order bits are much less efficient, since they require to mask all operands
and result for each operation. An alternate encoding is to take n = 2n and to shift all pointers by
one; that way, integer arithmetic is even simpler (e.g. n + m = n + m), but memory accesses can
be slightly slower or not, depending on the hardware.

4.2.2 Allocated objects

Some structure for the heap is necessary to make garbage collection possible. The heap is therefore
divided in blocks of arbitrary size n, preceded by a one-word header. All pointers into the heap
must point to a header. The header consists of:

• 2 bits used by the garbage collector for marking purposes.

• 22 bits holding the size of the block, in words (header excluded)

• 8 bits for the kind of the block, since the GC needs to distinguish between blocks containing
valid values, which should be recursively traversed, and blocks containing unstructured data
such as the characters of a string, which are terminal objects for the GC. For this purpose,
one bit would suffice, but we take advantage of the additional tag bits to encode compactly
values of concrete types.

size = n GC tag = t

field 1
...

field n

The value t of the tag field has the following meaning: if t < C, the block is structured, it
contains valid values in every field; if t > C, the block contains unstructured words only; and
if t = C, the block represents a closure. Distinguishing closures is not very useful, except as a
possible hint to the GC, and to write dirty polymorphic functions such as polymorphic equality.
The constant C varies according to my mood, but stays fairly close to the highest possible value,
28 − 2, since the tag field is mostly used to encode values of concrete types, and such values are
always a structured block.

Pointers outside of the heap are permitted anywhere. This allows allocating statically data
which should not be collected, either because such objects are never freed, or because we do not
know how to collect them. For instance, this is the case of zero-length blocks, that is blocks
consisting only in a header. Such blocks are perfectly legal, and very useful to encode constant
constructors, but they cannot be allocated in the heap if the collector is a copying one, since there
is no room to store a forwarding pointer in these blocks!

4.3. ENCODING ML VALUES 41

4.3 Encoding ML values

4.3.1 Atomic types

Small integers (type int) are of course represented by unboxed, 31-bit integers. This is also the
case for characters (type char).

Floating-point numbers are allocated in the heap as unstructured blocks of length one, two
or three words, depending on the possibilities of the hardware and on the required precision. An
unboxed representation is possible, using the 10 suffix for instance, but this gives only 30 bits to
represent floating-point numbers. Such a format lacks precision, and does not correspond to any
standard format, so it involves fairly brutal truncations. Good old 64-bit, IEEE-standard floating
point numbers seem more useful, even if they have to be allocated.

Arbitrary precision integers have to fit into unstructured blocks, that is vectors of 32-bit words.
This is fine for the package of Vuillemin et al. [55] that I plan to use.

Strings are also stored into unstructured blocks. They are zero-terminated, and padded with
additional zeros at the end to fill an entire number of words. To compute their length in constant
time, and to avoid prohibiting null bytes in the middle of the string, the following scheme was
proposed by Damien Doligez: the last byte of the last word contains an integer n ∈ {2, 3, 4, 5}
such that the length of the string is 4m − n, where m is the size of the block in words. In other
terms, assuming the last six characters of the string are b6b5b4b3b2b1, the last two words of its
representation are either b6b5b4b3− b2b101, b5b4b3b2− b1003, b4b3b2b1−0004, or b3b2b10−0005. (He
seems to find this quite enjoyable. . .)

Most extra atomic types, bit vectors for instance, can also be represented as unstructured blocks.

4.3.2 Functions

Functional values are of course represented by closures, that is pairs of a code pointer and an
environment (a vector, that is a structured block). The code itself is not allocated in the heap, but
in a separate, static zone, without garbage collection. The reason is that the program counter, and
all return addresses stored on the return stack, generally point in the middle of a code block, not
necessarily on its first word, and the garbage collector does not know how to cope with these infix
pointers.

Therefore, code blocks will not be collected. This is not a problem in case of standalone
programs, where code blocks are not dynamically created, and all of them are always accessable
through global variables containing closures, hence code blocks are never freed, and it would be
pointless to try to collect them! In case of interactive use, unused code blocks can appear when
a global variable, previously bound to a closure, is rebound. Even in this case, code blocks have
a relatively long lifespan, and occupy little space, due to the compactness of the bytecode, so one
may hope that the static area will not grow too quickly. And explicit deallocation is often possible.

Once code blocks are put in the static area, they cannot contain pointers to the heap, since
the GC would not know about them: it does not walk the static area at all; and chaining these
pointers into the heap together, so that they become additional roots for the GC, would make the
GC slower and more complex. This means that structured (non-atomic) constants cannot be at the
same time allocated in the heap, and directly put into the code, as immediate operands. Either we
allocate them in the static area as well (if they do not contain any mutable object, which could be
updated later, and then point into the heap). Or we store them in the global table, along with the

42 CHAPTER 4. DATA REPRESENTATION

values of global variables, and access them through one additional indirection. I chose the latter
solution, for the sake of simplicity.

4.3.3 Concrete types

The sum-of-products approach allows for a very compact representation of values of concrete types.
Not only is the constructor stored in the same tuple as its arguments, but we try to put it in the tag
field of the header of the tuple, so that the constructor does not require an extra field in the tuple.
More precisely, the constructors C0, C1, . . . , Cn of a concrete type are numbered starting from zero,
and the value Ci(v1, . . . , vk) is represented by a block of size k words, tagged i, containing the
representations of v1, . . . , vk.

size = k GC tag = i

v1
...

vk

size = k + 1 GC tag = 0
i

v1
...

vk

Of course, this limits the number of constructors in a concrete type, since the tag field of
structured blocks must lie between 0 and C (C is something like 253). For concrete types with
more than C constructors, we must revert to a less compact representation for Ci(v1, . . . , vk): the
(k +1)-tuple of the integer i and of the representations of v1, . . . , vk. Such large sums are very rare
in common programs, however.

Constant constructors

Constant constructors, that is constructors without arguments, are not treated specially: they
are represented by a block of size 0, whose header holds the number of the constructor. This
representation looks a bit unnatural at first; using integers to represent constant constructors seems
more natural and more efficient. First, zero-sized blocks are just as inexpensive as integers, since
there is no need to allocate a new one each time we evaluate a constant constructor: all zero-sized
blocks having the same tag can be safely shared, since they contain no data, so we can preallocate
them at link-time, and then we just have to manipulate (unique) pointers to these blocks, which
is as efficient as manipulating integers. Then, having a uniform representation for constant and
non-constant constructors is more efficient; in particular, discriminating on the constructor, as in

match x with C0 -> a | C1 x -> b | C2(x,y) -> c | C3 -> d | ...

can be done in a single jump indexed by the tag of the block:

case (tag_of x) of
0 -> a; 1 -> b; 2 -> c; 3 -> d; ...

If we used integers for constant constructors, we would have to test whether the representation is
an integer, if so jump through one table, if not jump through another:

4.3. ENCODING ML VALUES 43

if is_int x then
case x of 0 -> a; 1 -> d; ...

else
case (tag_of x) of 0 -> b; 1 -> c; ...

The latter code is approximately two times slower than the first. This is critical, since all pattern
matchings ultimately reduce to a sequence of tests of this kind.

4.3.4 Records with inclusion

Without subtyping, a record with n fields labeled l1, . . . , ln can be represented by a vector of size n,
and it is easy to know statically the offset of each label, that is the vector element holding the value
associated to this label. With subtyping, we have the additional constraint that the representation
of a record with fields l1, . . . , ln must be a valid representation for records whose fields are a subset
of l1, . . . , ln. This prevents us from having at the same time a compact representation and static
determination of offsets.

Indeed, the only way to have statically-known offsets is to gather the set L = {l1, . . . , lN} of
labels used in the whole program, and represent any record as a vector of size N , with the value vi

of label li in slot i.

1
vi

i N

Of course, most records use only a small subset of L, so we waste a lot of space. In addition, we
need to look at the whole program to attribute offsets, so this cannot be done until link time, and
it prevents interactive use of the language. Notice however that the space wasting can be reduced
by the use of a header: the record (li1 = v1, . . . , lin = vn) can be represented by a (n + 1)-tuple,
with fields 1, . . . , n holding values v1, . . . , vn, and field 0 pointing to a vector of size N , the header,
with slots i1, . . . , in holding the integers 1, . . . , n, and the other slots undefined.

0
v1

1
vn

n

?

1
k
ik N

The trick is that this header can be shared among all records whose fields are l1, . . . , ln. Con-
versely, we need an extra indirection to get the value associated with label li: first, look up the ith

element of the header, and use it as an offset in the tuple. This saves some space, but not enough
to make this solution practical.

A more compact representation is to use association tables. For instance, Amber [13] represents
the record (l1 = v1, . . . , ln = vn) as the 2n-tuple l1, v1, . . . , ln, vn. Retrieving the value of label l
requires a run-time linear search through the tuple. This representation is fairly compact, and we
can even save space by sharing a header containing the labels l1, . . . ln and only put the values
v1, . . . , vn and a pointer to this header in the record representation.

44 CHAPTER 4. DATA REPRESENTATION

l1

1
v1

2
ln vn

2n 0
v1

1
vn

n

?
l1
1

ln
n

Also, it does not require the “closed program” assumption (i.e. that we know all labels in
use). But the linear search makes retrieving quite slow. Indeed, accessing a field in a record takes
time proportional to the number of fields in the record. Amber uses a caching scheme to improve
performance: it stores the last accessed label and its offset in some fixed location, so that if it is
accessed a second time in succession (such as in r.lbl <- r.lbl+1, for instance), we won’t have
to perform the search again. This trick seems quite efficient in practice, but the average behavior
is still proportional to the record length. Of course, more efficient representations for association
tables can be used, but it is still impossible to get constant-time access.

The discussion above overlooks an important fact, however. Strong static typing guarantees
that when at run-time we request the value associated to a label l in a record r, then r will
always contain a field labeled l. We do not know where it is stored in r, but we do know it is
here. The previous representations do not make use of this assumption; actually, they are more
suited to a dynamically-typed setting such as Lisp or Smalltalk, since they are able to detect at
run-time that we are trying to access a nonexistent field. In other words, to represent the record
(li1 = v1, . . . , lin = vn), these approaches were to represent partial functions from the set of all labels
into {1, . . . , n}, while static typing allows us to represent only a total function from {l1, . . . , ln} to
{1, . . . , n}. This opens the way to efficient representations, both in space and time, as we shall see
now.

First, I assume that all labels are integers. Associating (unique) integers to the label names is
quite easy to do at link time, and it can be done incrementally in case of interactive use. Then, it
remains to represent a mapping of a set of integers {l1, . . . , ln} on {1, . . . n}. I suggest the following
scheme: take an integer m such that

li 6= lj (mod m) for all i 6= j (4.1)

(such an m exists, e.g. m = 1 + maxi6=j |li − lj |). Then, fill a vector h of size m as follows: slot
number li mod m holds the integer i, for all i. (This can be done as soon as labels are numbered,
i.e. at compile time or at link time in the worst case.)

0
v1

1
vn

n

?

0
i

li mod m m− 1

Condition 4.1 guarantees that no slot can be assigned two different integers. Then, the record
(l1 = v1, . . . , ln = vn) itself is represented by the (n+1)-tuple (h, v1, . . . , vn).To get the value of the

4.3. ENCODING ML VALUES 45

field labeled l, one computes l mod sizeof (h), use the value as an offset in h, getting the offset of
the desired value in the tuple. Therefore, access is performed in constant time. And the constant is
quite low: one division and three memory accesses. This is the same order of magnitude than usual
access in simple records (one indirection). And it is one order of magnitude faster than Amber-like
schemes for medium-sized records.

It remains to show that the size of the shared header h is manageable. Let m0 be the smallest
m for which condition 4.1 holds. We have the obvious inequalities:

n ≤ m0 ≤ 1 + max
i6=j

|li − lj |

This upper bound is not very reassuring, since it can be equal to the number of labels used in
the program. However, it seems very pessimistic in practice; for instance, with n = 2, l1 = 1 and
l2 = 1000000, we have m0 = 2, while the upper bound is 1000000. Some simulations using random
sets of labels between 0 and L, for various values of L, showed that the average m0 is quite close
to its lower bound n. (See figure 4.1.)

Actually, given the experimental results, one may consider skipping the header, and representing
(l1 = v1, . . . , ln = vn) by a vector of size m0, with vi stored in the slot number li mod m0:

0
vi

li mod m m− 1

This way, we save one indirection at each access. This might be worth the additional waste of
space.

This representation is a first step toward efficient implementations of multiple inheritance, and
to the best of my knowledge it has not been considered before, maybe because it requires strong
static typing, while most object-oriented languages are dynamically typed. This gives me the
opportunity to sing the praises of static typing once more: it is well-known that static typing leads
not only to safer programs, but also to faster programs than dynamic typing, since there are less
run-time checkings to perform; here, we see that, by not having to check at run-time the presence
of a label in a record, we can change the complexity of the record access operation, and switch from
linear time to constant time! Allelujah.

46 CHAPTER 4. DATA REPRESENTATION

L = 50

L = 100

L=200

L=500

L=5000

L=50000

m

n
0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

200.00

220.00

240.00

260.00

280.00

300.00

0.00 10.00 20.00 30.00 40.00 50.00

Figure 4.1: Average size m of the header, for random records with n labels between 0 and L.

Chapter 5

The compiler

This chapter describes the compiler for ZINC. It produces symbolic object code files from mod-
ule implementations, and signature files from module interfaces; a separate program, the linker
(described in next chapter), takes all these object code files and produces a bytecode file directly
executable by the runtime system. The compiler is written in ML, in CAML for the time being,
but I intend to bootstrap it as soon as possible. This chapter is illustrated with actual CAML code
taken from the very sources of ZINC implementation.

5.1 Some intermediate representations

The ZINC compiler is a multi-pass compiler, since such compilers are much easier to write, maintain,
and expand than single-pass compilers. These passes are partially determined by the kind of
program representation they take, and the one they output. Therefore, I shall first present a few
intermediate representations worth considering, before describing the various steps of the compiler.
Not all of them are used in the ZINC compiler, since so many steps are useless for such a simple
compiler.

5.1.1 Abstract syntax tree

The first internal representation, produced during parsing, is an abstract syntax tree. Here is the
abstract syntax for expressions used for ZINC:

type expression =

mutable Zident of expr_ident (* variable "x" or "module.y" *)

| Zconstant of struct_constant (* constant "3.14" *)

| Zconstruct of constr_desc global & expression list (* constructor application *)

| Zapply of expression & expression list (* multiple application *)

| Zlet of (pattern & expression) list & expression (* local binding *)

| Zletrec of (pattern & expression) list & expression (* local recursive binding *)

| Zfunction of (pattern list & expression) list (* functions (with pattern matching) *)

| Ztrywith of expression & (pattern & expression) list (* exception handling *)

| Zsequence of expression & expression (* sequence *)

| Zcondition of expression & expression & expression (* if...then...else... *)

| Zwhile of expression & expression (* "while" loop *)

| Zsequand of expression & expression (* sequential "and" *)

| Zsequor of expression & expression (* sequential "or" *)

47

48 CHAPTER 5. THE COMPILER

| Zconstraint of expression & type_syntax (* type constraint *)

| Zassign of string & expression (* assignment *)

and expr_ident =

Zglobal of value_desc global (* global variable, with its descriptor *)

| Zlocal of string (* local variable *)

using the following auxiliary type definitions:

type pattern =

Zwildpat (* underscore "_" *)

| Zvarpat of string (* variable *)

| Zaliaspat of pattern & string (* alias "... as y" *)

| Zconstantpat of atomic_constant (* constant *)

| Zconstructpat of constr_desc global & pattern list (* construction *)

| Zorpat of pattern & pattern (* alternative *)

| Zconstraintpat of pattern & type_syntax (* type constraint *)

type atomic_constant =

ACnum of num

| ACint of int

| ACfloat of float

| ACstring of string

and struct_constant =

SCatom of atomic_constant

| SCblock of constr_tag & struct_constant list

It is a compromise between contradictory requirements. On the one hand, the abstract syntax
should be as close as possible to the “concrete syntax” (the textual representation), in order to
keep parsing simple, and also to be able to pretty-print the abstract syntax and get something
close to the original text. On the other hand, the abstract syntax should reflect the “true” meaning
of the program, and this means that syntactic sugar of all kinds has been translated into more
basic constructs during parsing, and also that ambiguous constructs have been disambiguated. For
instance, in genuine ML, an identifier can represent a constructor as well as a global or local variable,
and it is not possible to distinguish syntactically between them, yet they perform quite differently,
especially in patterns! However, the pretty-printing requirement is crucial only if we choose to
report the locations of typing errors by pretty-printing the corresponding piece of abstract syntax,
as CAML does [62, pp. 395–396]. We shall soon see an alternate approach. Therefore, I choose
to favor the second requirement, and try to reflect the true semantics of the source program. For
instance, the type definition above clearly distinguishes constructors from variables, and constructor
application from function application.

It would be useful to put some annotations at each node of the syntax tree. For instance, each
subtree should contain a pointer to the corresponding source text (e.g. two integers giving the
position in the source file of the first and the last characters). Then it would be trivial to report the
location of an error, by reprinting the corresponding source code, or even by sending a message to
some clever text editor, that will highlight the guilty expression directly in the source text. That
way, we get perfectly accurate error locations, and we save the non-trivial work of writing a good
pretty-printer for ML. These annotations are very easy to synthesize during parsing: it suffices to
transform all grammar rules such as (in Yacc notation)

A : B1 B2 B3 { $$ = ... $1 ... $2 ... $3 ...; }

5.1. SOME INTERMEDIATE REPRESENTATIONS 49

into

A : B1 B2 B3 { $$.start = $1.start; $$.end = $3.end;
$$.syntax = ... $1.syntax ... $2.syntax ... $3.syntax ...; }

and some parser generators (e.g. Bison) even do it automatically. Then, the concrete type
expression becomes:

type expression = { start: int; end: int; syntax: expression_syntax }
and expression_syntax =

mutable Zident of expr_ident
| Zconstant of struct_constant
| Zconstruct of constr_desc global & expression list
| ...

Another useful annotation is the type inferred for each subexpression. This would make type-
checking error report easier to understand, especially in conjunction with a clever text editor (e.g.
just select a subexpression and see the type inferred for it). It would also allow a debugger to
display the value of any subexpression, since to print a value, it is necessary to know its type.

5.1.2 Enriched λ-calculus

A classical intermediate language [50, chap. 3] is the λ-calculus with constants, primitive operations,
global variables, conditional constructs, and let and let rec bindings. The fundamental difference
with abstract syntax is that pattern matching has been expanded into sequences of elementary
tests. Also, the remaining ambiguities have been fully resolved: local and global identifiers are
distinguished; globals bound to primitive operations (e.g. +) have been identified and expanded; all
global identifiers are now qualified with the module they belong to; and name clashes among local
variables have been solved either by generating new, unique names, or by using de Bruijn’s indexes
[10]. The latter solution is elegant and saves work during the translation to abstract machine code
(which uses de Bruijn’s indexes anyway), but complicates many clever analysis, where one wants
to gather information on all local variables of an expression. Here is an example using de Bruijn’s
numbers:

type lambda =

Lvar of num (* local variable (de Bruijn’s number) *)

| Lconst of struct_constant (* constants *)

| Lapply of lambda & lambda list (* multiple application *)

| Lfunction of num & lambda (* curried function (num = arity) *)

| Llet of lambda list & lambda (* local binding *)

| Lletrec of lambda list & lambda (* local recursive binding *)

| Lprim of primitive & lambda list (* primitive operation *)

| Lcond of lambda & (atomic_constant & lambda) list (* equality tests with constants *)

| Lswitch of num & lambda & (constr_tag & lambda) list (* jump through table *)

| Lstaticfail (* as "raise failure", but with static scope *)

| Lstatichandle of lambda & lambda (* handler for static failures *)

| Lhandle of lambda & lambda (* handler for "real" exceptions (dynamic scope) *)

| Lifthenelse of lambda & lambda & lambda (* conditional *)

| Lsequence of lambda & lambda (* sequence *)

| Lwhile of lambda & lambda (* "while" loop *)

50 CHAPTER 5. THE COMPILER

| Lsequand of lambda & lambda (* sequential "and" *)

| Lsequor of lambda & lambda (* sequential "or" *)

and primitive =

Pget_global of string & string (* access to global variables *)

| Pset_global of string & string (* modification of global variables *)

| Pmakeblock of constr_tag (* building a tuple in the heap *)

| Pfield of num (* accessing one field of a tuple *)

| Psetfield of num (* modifying one field of a tuple *)

| Pccall of num (* calling a C primitive *)

| Praise (* raising an exception *)

| Ptest of bool_test (* comparisons *)

| ... (* arithmetic operations, and much more *)

and bool_test =

Pequal_test

| Pnotequal_test

| Peq_test

| Pnoteq_test

| Pnum_test of num prim_test

| Pint_test of int prim_test

| Pfloat_test of float prim_test

| Pstring_test of string prim_test

| Peqtag_test of constr_tag

| Pnoteqtag_test of constr_tag

and ’a prim_test =

PTeq

| PTnoteq

| PTnoteqimm of ’a

| PTlt

| PTle

| PTgt

| PTge

Lcond and Lswitch are both multi-way tests, used for efficient pattern matching: Lcond matches
its argument against a list of constants, and returns the value of the associated expression. In other
terms, Lcond(exp, [cst1,exp1; ...;cstN,expN]) means

let x = exp in
if x = cst1 then exp1
elsif ...
elsif x = cstN then expN
else raise staticfail

Similarly, Lswitch discriminates on the tag of its argument, which is assumed to be a tuple:
Lswitch(n, exp, [tag1, exp1; ..., tagN, expN]) means

let x = tag_of exp in
if x = tag1 then exp1
elsif ...
elsif x = tagN then expN
else raise staticfail

5.1. SOME INTERMEDIATE REPRESENTATIONS 51

Lstaticfail and Lstatichandle implement statically-scoped exceptions (which cannot escape the
current function); such exceptions are compiled very efficiently by a mere goto, and they permit
to express code sharing in this representation.

This intermediate representation is both simpler (due to the expansion of pattern matching)
and more precise than abstract syntax, while retaining the overall program structure; it is therefore
the representation of choice to perform program analysis and transformation, such as compile-time
β-reduction (“function inlining”) and constant propagation.

5.1.3 Graph of code

Enriched λ-calculus is still a tree-like structure. Machine code is essentially “flat”, that is list-like.
Hence we will have to sequentialize λ-expressions at some point. It might be convenient to break
this process into two parts: first, generate basic blocks, that is chunks of code whose execution is
purely sequential, and connect their entry and exit points; then, flatten this graph-like structure by
inserting labels and jumps. The intermediate graph of code is well-suited to express code sharing
and flow of control. For instance, while constructs simply become loops in the graph. Here is such
a structure for ZINC machine code (it is not used in the current ZINC compiler):

type graph_code =
Gstop (* end of toplevel phrase *)

| Greturn (* end of function *)
| Gtermapply (* tail function application *)
| Gquote of quoteconst & code (* loading a constant *)
| Ggrab of code (* eat up one argument *)
| Gpush of code (* push one argument *)
| ... (* a lot more simple instructions *)
| Gclosure of labeled_code & code (* build up a closure *)
| Gbranch of labeled_code (* unconditional jump *)
| Gtest of labeled_code & labeled_code (* conditional jump (if-then-else) *)
| Gswitch of labeled_code vect (* jump through table *)

and labeled_code =
{ mutable lbl : code_label; (* the label *)
code : graph_code } (* the contents of the basic block *)

and code_label = Unlabeled | Label of num

Most instructions take as argument the code that should be executed after them (their con-
tinuation). Some don’t have any continuation. Other have several continuations, for instance
conditional tests. To have a more compact representation, we use two different types: graph_code
and labeled_code. Sharing is ignored for objects of type graph_code; therefore, they represent
the body of a basic block. Objects of type labeled_code bear an additional “label” field, which
allows to detect sharing during linearization. Labels are initially undefined, but they get defined
during the flattening phase, when they are visited the first time; the second time, the labeled code
is not emitted again, but replaced by a jump to the code generated the first time. Most instruc-
tions are intended to continue execution sequentially, so their continuation is of type graph_code.
Branch instructions explicitly connect basic blocks together, so their continuations are of type

52 CHAPTER 5. THE COMPILER

labeled_code. Notice how these subtle structure constraints are automatically enforced by the
type system.

5.1.4 Linear code

The last representation is a linear list of instructions, as close as possible to the string of bytes
given to the interpretor. Some informations have to remain symbolic, however. For instance, global
variables are still named, while the bytecode refers to them by their address; this is because global
variable allocation can only be done at link time. Similarly, jumps refer to labels, while the bytecode
contains the offsets of the destinations; the reason is that the size of bytecode instructions are not
known to the compiler. Here is the type of instructions used in ZINC:

type instruction =

Kquote of struct_constant (* put a constant in the accumulator *)

| Kget_global of string & string (* get the value of a global ident *)

| Kset_global of string & string (* set the value of a global ident *)

| Kaccess of num (* fetch a local variable from the env. *)

| Kgrab (* eat one argument and put it in the env. *)

| Kpush (* push one argument *)

| Kpushmark (* push a mark *)

| Klet (* add a value in front of the env. *)

| Kendlet of num (* remove the first values from the env. *)

| Kdummies of num (* add dummy closures to the env. *)

| Kupdate of num (* update a dummy closure with its final value *)

| Kapply (* function call *)

| Ktermapply (* tail function call *)

| Kstartfun (* entry point in a function *)

| Kreturn (* end of a function *)

| Kclosure of label (* builds a closure *)

| Kmakeblock of constr_tag & num (* allocates a tuple in the heap *)

| Kprim of primitive (* various primitive operations *)

| Kpushtrap of label (* set up an exception handler *)

| Kpoptrap (* remove an exception handler *)

| Klabel of label (* defines a label *)

| Kbranch of label (* unconditional jump *)

| Kbranchif of label (* conditional jump *)

| Kbranchifnot of label (* reverse conditional jump *)

| Kstrictbranchif of label (* almost the same thing as above *)

| Kstrictbranchifnot of label (* (quick fix for a subtle bug) *)

| Ktest of bool_test & label (* various conditional jumps (= < > etc) *)

| Kswitch of label vect (* jump through table *)

and label = Nolabel | Label of num

5.2 Compilation steps

Before delving into the details of the compiler, let me give here an overview of the compilation
process. Zinc compiles files phrase by phrase. For interface files, each phrase is a declaration (of
value, type, or exception); all these declarations are parsed, then stored into an initially empty
symbol table. At the end of the file, the symbol table contains the full signature of the module; it
is written to the compiled interface file.

5.2. COMPILATION STEPS 53

Implementation files can hold three different kinds of phrases. Simple expressions (such as
1+2;;) are parsed, typechecked, then translated to the lambda intermediate representation, then
to symbolic ZAM code, which is appended to the object code file. Value definitions (such as
let f,g = h 3;;) are compiled similarly; in addition, the defined globals (f and g here) are
entered into the symbol table, with their inferred types. Type and exception declarations are
simply stored in the symbol table. At the end of the file, the symbol table is compared with the
one contained in the compiled interface file, to check that the implementation defines everything
the interface declares.

5.2.1 Parsing

The parsing phase produces the abstract syntax tree for each phrase of the input file. For the
time being, it uses the grammar facility of CAML [62, chap. 16], which combines a LR(1) parser
generator built on top of Yacc with type checking and inference for the semantic actions and
grammar attributes, and a parameterized lexical analyzer. Here are the main entries of ZINC
grammar definition, in CAML syntax. (This grammar was written by Yannick Martel.)

(* Parsing auxiliaries (must come first for precedence reasons!) *)

rule Simple_expr_list =

parse Simple_expr e; Simple_expr_list el -> e :: el

| Simple_expr e -> [e]

and Expr_comma_list =

parse Expr e; ","; Expr_comma_list el -> e :: el

| Expr e with precedence "," -> [e]

and Expr_constr_list =

parse "("; Expr_comma_list el; ")" -> el

| Simple_expr e -> [e]

and Expr_sm_list =

parse Expr e; ";"; Expr_sm_list el -> Zconstruct(cons_desc, [e;el])

| Expr e -> Zconstruct(cons_desc, [e; Zconstruct(nil_desc, [])])

(* Expressions *)

and entry Expr =

parse Expr e; Simple_expr_list el with precedence APP -> Zapply(e,el)

| Constr c; Expr_constr_list el with precedence APP-> Zconstruct(c, el)

| Simple_expr e -> e

| Expr e; ","; Expr_comma_list el -> Zconstruct(tuple_desc, e::el)

| "-"; Expr e1 with precedence UMINUS -> Zapply(Zident(Zlocal "~"), [e1])

| "!"; Expr e1 with precedence UMINUS -> Zapply(Zident(Zlocal "!"), [e1])

| Expr e1; "*"; Expr e2 -> Zapply(Zident(Zlocal "*"), [e1;e2])

| Expr e1; "/"; Expr e2 -> Zapply(Zident(Zlocal "/"), [e1;e2])

| Expr e1; "+"; Expr e2 -> Zapply(Zident(Zlocal "+"), [e1;e2])

| Expr e1; "-"; Expr e2 -> Zapply(Zident(Zlocal "-"), [e1;e2])

| Expr e1; "::"; Expr e2 -> Zconstruct(cons_desc, [e1;e2])

| Expr e1; "@"; Expr e2 -> Zapply(Zident(Zlocal "@"), [e1;e2])

| Expr e1; "^"; Expr e2 -> Zapply(Zident(Zlocal "^"), [e1;e2])

| Expr e1; "<"; Expr e2 -> Zapply(Zident(Zlocal "<"), [e1;e2])

54 CHAPTER 5. THE COMPILER

| Expr e1; ">"; Expr e2 -> Zapply(Zident(Zlocal ">"), [e1;e2])

| Expr e1; "="; Expr e2 -> Zapply(Zident(Zlocal "="), [e1;e2])

| Expr e1; "=="; Expr e2 -> Zapply(Zident(Zlocal "=="), [e1;e2])

| Expr e1; ">="; Expr e2 -> Zapply(Zident(Zlocal ">="), [e1;e2])

| Expr e1; "<="; Expr e2 -> Zapply(Zident(Zlocal "<="), [e1;e2])

| Expr e1; "<>"; Expr e2 -> Zapply(Zident(Zlocal "<>"), [e1;e2])

| "not"; Expr e -> Zapply(Zident(Zlocal "not"), [e])

| Expr e1; "&"; Expr e2 -> Zsequand(e1,e2)

| Expr e1; "or"; Expr e2 -> Zsequor(e1,e2)

| Expr e1; ":="; Expr e2 -> Zapply(Zident(Zlocal ":="), [e1;e2])

| IDENT s; "<-"; Expr e -> Zassign(s,e)

| "if"; Expr e1; "then"; Expr e2; "else"; Expr e3 -> Zcondition(e1,e2,e3)

| "if"; Expr e1; "then"; Expr e2 -> Zcondition(e1,e2, Zconstruct(ok_desc,[]))

| "while"; Expr e1; "do"; Expr e2 -> Zwhile(e1,e2)

| Expr e1; ";"; Expr e2 -> Zsequence(e1,e2)

| "match"; Expr e; "with"; Function_match M -> Zapply(Zfunction M, [e])

| "let"; Binding_list L; "in"; Expr e with precedence LET -> Zlet(L,e)

| "let"; "rec"; Binding_list L; "in"; Expr e with precedence LET -> Zletrec(L,e)

| "fun"; Fun_match M -> Zfunction M

| "function"; Function_match M -> Zfunction M

| "try"; Expr e; "with"; Try_match M -> Ztrywith(e,M)

| Expr e; "where"; Binding_list L with precedence WHERE -> Zlet(L,e)

| Expr e; "where"; "rec"; Binding_list L with precedence WHERE -> Zletrec(L,e)

and Simple_expr =

parse Struct_constant sc -> Zconstant sc

| Ext_ident gr -> ident_of_gr gr

| "("; ")" -> Zconstruct(ok_desc,[])

| "["; Expr_sm_list e; "]" -> e

| "["; "]" -> Zconstruct (nil_desc, [])

| "("; Expr e; ":"; Type ty; ")" -> Zconstraint(e,ty)

| "("; Expr e; ")" -> e

| "begin"; Expr e; "end" -> e

| Constr c -> Zconstruct (c, [])

and entry Struct_constant =

parse Atomic_constant ac -> SCatom ac

and entry Atomic_constant =

parse NUM n -> ACnum n

| INT i -> ACint i

| FLOAT f -> ACfloat f

| STRING s -> ACstring s

(* Bindings and matchings *)

and Fun_match =

parse Simple_pattern_list pl; "->"; Expr e; "|"; Fun_match M -> (pl,e) :: M

| Simple_pattern_list pl; "->"; Expr e -> [pl,e]

and Function_match =

parse Pattern p; "->"; Expr e; "|"; Function_match M -> ([p],e) :: M

| Pattern p; "->"; Expr e -> [[p],e]

5.2. COMPILATION STEPS 55

and Try_match =

parse Pattern p; "->"; Expr e; "|"; Try_match M -> (p,e) :: M

| Pattern p; "->"; Expr e -> [p,e]

and Binding_list =

parse Binding b; "and"; Binding_list bl -> b :: bl

| Binding b -> [b]

and Binding =

parse Pattern p; "="; Expr e with precedence DEFINE -> p,e

| Ide s; Simple_pattern_list pl; "=";

Expr e with precedence DEFINE -> Zvarpat s, Zfunction [pl,e]

(* Patterns *)

and Pattern_sm_list =

parse Pattern p; ";"; Pattern_sm_list pl -> Zconstructpat(cons_desc, [p;pl])

| Pattern p -> Zconstructpat(cons_desc,

[p; Zconstructpat(nil_desc,[])])

and Pattern_constr_list =

parse "("; Pattern_comma_list pl; ")" -> pl

| Simple_pattern p -> [p]

and Pattern_comma_list =

parse Pattern p; ","; Pattern_comma_list pl -> p :: pl

| Pattern p with precedence "," -> [p]

and Simple_pattern_list =

parse Simple_pattern p; Simple_pattern_list pl -> p :: pl

| Simple_pattern p -> [p]

and entry Pattern =

parse Simple_pattern p -> p

| Pattern p; "as"; IDENT s -> Zaliaspat(p,s)

| Pattern p1; "::"; Pattern p2 -> Zconstructpat(cons_desc, [p1;p2])

| Pattern p1; ","; Pattern_comma_list pl -> Zconstructpat(tuple_desc, p1::pl)

| Constr c; Pattern_constr_list pl -> Zconstructpat (c, pl)

| Pattern p1; "|"; Pattern p2 -> Zorpat(p1,p2)

and Simple_pattern =

parse Atomic_constant ac -> Zconstantpat ac

| "_" -> Zwildpat

| Ide s -> Zvarpat s

| Constr c -> Zconstructpat(c,[])

| "("; ")" -> Zconstructpat(ok_desc,[])

| "["; "]" -> Zconstructpat(nil_desc,[])

| "["; Pattern_sm_list p; "]" -> p

| "("; Pattern p; ":"; Type ty; ")" -> Zconstraintpat(p,ty)

| "("; Pattern p; ")" -> p

(* etc., etc. *)

56 CHAPTER 5. THE COMPILER

Parsing ML is not easy: there is a huge number of possible ambiguities, since most constructs are
“open”(i.e. without closing delimitor), and even more so if one wants to provide the same amount
of syntactic sugar provided by CAML, for compatibility reasons. The conventional approach is
to multiply the nonterminals of the grammar (e.g. having several entry points for expressions,
corresponding to expressions with various priorities), in order to resolve these ambiguities in the
grammar definition itself. This leads to very convoluted and hard to read grammars; the actual
grammar of CAML [62, appendix Z] is a very convincing example of this tendency!

Yannick Martel and I dismissed this approach and chose instead to write a very natural gram-
mar, but highly ambiguous, and rely on Yacc’s disambiguating mechanisms (precedences, associa-
tivities, etc.) to get correct parsing. The result is a concise grammar (about five times smaller than
the corresponding fragment of CAML grammar), fairly easy to read (even for a non-specialist like
me), but with some 50 reduce/reduce conflicts and 500 shift/reduce conflicts! As it is impossible
to check each conflict to see if it was resolved correctly, it is not possible to know exactly what the
resulting parser does, and getting a parser that works correctly on test CAML programs required
quite a bit of trial and error. . . Yacc is partly responsible for this situation, since the conflict report
and disambiguation tools it provides are fairly crude. For instance, precedences and associativities
are not taken into account to solve reduce/reduce conflicts. And to understand where the conflicts
lie, one has to look at the generated automata, which requires training and fortitude. We conclude
that common parser generator technology is not yet powerful enough to easily tackle languages
with such a tricky syntax as CAML.

I experienced a few problems with lexical analysis, too. CAML does not provide a lexer generator
such as Lex, indeed it always uses the same lexer. Admittedly, this lexer can be parameterized
by e.g. the set of keywords or the string delimitor. However, it is not possible to add new lexical
units unused in CAML, for instance the token CHAR corresponding to character constants such as
‘a‘. Also, it is not possible to perform specific actions when a token has been recognized. For
instance, when a valid identifier is read, one may want to query the symbol table to determine
whether it is a constructor or a variable name, and return accordingly the token CONSTR with the
constructor description, or the token VAR with the variable description. Admittedly, this could be
done in the actions of the grammar, but complicates it dramatically, so much that I had to use
different syntaxes for constructors and variable names: constructors are prefixed with a quote, as
in ’true.

bootstrap, I have written a simple lexer generator in the same vein as Lex. Inputs look like
functions defined by pattern matching, except that patterns are replaced by regular expressions.
Actions are arbitrary ML expressions; most of the time, they compute values of a user-defined
concrete type, representing all the possible tokens along with their attributes. For instance, a lexer
for ZINC would look like:

type token =

Tint of int

| Tstring of string

| Tident of string

| Tconstructor of constr_desc

| Tfunction | Tlet | Tin | ...;;

<:lexer<let lex_main = function

[‘0‘-‘9‘]+ as s -> Tint(int_of_string_deci s)

| ‘0‘ (‘x‘|‘X‘) ([‘0‘-‘9‘, ‘A‘-‘F‘, ‘a‘-‘f‘]+ as s) -> Tint(int_of_string_hexa s)

5.2. COMPILATION STEPS 57

| ‘"‘ (([except ‘"‘] | (‘\\‘ [‘"‘, ‘n‘, ‘r‘, ‘\\‘]))* as s) ‘"‘ -> Tstring(parse_string s)

| "(*" -> lex_comment instream; lex_main instream

| "function" -> Tfunction

| (* etc. *)

and lex_comment = function

"*)" -> ()

| ‘"‘ ([except ‘"‘] | (‘\\‘ [‘"‘, ‘n‘, ‘r‘, ‘\\‘]))* ‘"‘ -> lex_comment instream

| "(*" -> lex_comment instream; lex_comment instream

| _ -> lex_comment instream >>

The sets of regular expressions are transformed into deterministic automata using the Berry-
Sethi algorithm [9] (see also [3, pp. XXX]). The resulting automata are not output as transition
tables to be interpreted by some driver program, but directly as a set of mutually recursive functions,
one per state of the automaton, performing pattern-matching on the next character, as for instance:

let rec state_0_2 lexbuf =

match getchar lexbuf with

‘9‘|‘8‘|‘7‘|‘6‘|‘5‘|‘4‘|‘3‘|‘2‘|‘1‘ -> state__0_1 lexbuf

| ‘0‘ -> state__0_1_3_4 lexbuf

| _ -> backtrack lexbuf

and state__0_1_3_4 lexbuf =

remember lexbuf action_0;

match getchar lexbuf with

‘9‘|‘8‘|‘7‘|‘6‘|‘5‘|‘4‘|‘3‘|‘2‘|‘1‘|‘0‘ -> state__0_1 lexbuf

| ‘x‘|‘X‘ -> state_5 lexbuf

| _ -> backtrack lexbuf

and state_5 lexbuf =

match getchar lexbuf with

‘f‘|‘e‘|‘d‘|‘c‘|‘b‘|‘a‘|‘F‘|‘E‘|‘D‘|‘C‘|‘B‘|‘A‘|‘9‘|‘8‘|‘7‘|‘6‘|‘5‘|

‘4‘|‘3‘|‘2‘|‘1‘|‘0‘ -> state__1 lexbuf

| _ -> backtrack lexbuf

and ...

This way, execution can be very fast (especially if the compiler is able to generate indexed
jumps for pattern-matching), and this representation is much more compact than plain transition
tables, without reverting to intricate compaction schemes. It is quite easy to implement, thanks
to CAML’s extensive possibilities to manipulate its own syntax trees [62, chap. 18]. There is no
need for a special typechecking mechanism, since a lexer definition is well-typed (i.e. all actions
belonging to the same entry point have the same type) if and only if it translates to a well-typed
ML program.

For bootstrapping purposes, similar needs arise for parsing. It should be possible to reuse most
of the parser generator of CAML, and to modify only the output routines. Currently, it generates
tables driving a pushdown automaton. A functional encoding, in the same vein as above, can be
considered.

5.2.2 Type inference

For the time being, there is no typechecker in the ZINC implementation. Several simple implemen-
tations of the type inference algorithm of ML can be found in the literature. First, [50] explains the

58 CHAPTER 5. THE COMPILER

algorithm in the setting of another language (Miranda) and presents a very naive, very inefficient
implementation, due to the fact that it does not use destructive unification, Miranda oblige. A
more realistic typechecker for a subset of ML can be found in Michel Mauny’s course notes [45]. It
does use destructive unification, and the sole source of inefficiency is the way types are generalized.
Otherwise, it is comparable with “real” typecheckers such as the one used in the CAML system.
For very efficient type inference, the reader is referred to Didier Rémy’s thesis [54]. He gives the
sources of two prototypes, one for the core ML language, the other extended with records and
variants with subtyping. It is the latter one that I plan to integrate to the ZINC compiler.

5.2.3 Compiler, front end

The first pass of the compiler properly speaking translates the abstract syntax tree into a term of
the enriched λ-calculus. It performs the following transformations:

• expansion of pattern-matching into sequences of simple tests

• replacing local variables by de Bruijn indexes and access paths

• recognizing primitive operations

• simple constant folding.

I shall first give the source code of the main function (the one that compiles an expression)
interleaved with a few comments. Then, the handling of local environments will be explained.
Compiling pattern-matching shall be explained in the next section.

let rec translate env = transl where rec transl = function
Zconstant cst ->
Lconst cst

| Zconstruct(c,args) ->
let tr_args = map transl args in

if c.desc.pure then
try

Lconst(SCblock(c.desc.tag,
map (fun Lconst c -> c

| _ -> failwith "const") tr_args))
with failure _ ->

Lprim(Pmakeblock c.desc.tag, tr_args)
else

Lprim(Pmakeblock c.desc.tag, tr_args)

In case of constructor application C(e1, . . . , en) where C is “pure”, that is none of its arguments
is mutable, we trap the case where e1, . . . , en are all constants. In this case, there is no need to
build a new block in the heap at each evaluation, we can share a single one, built once for all at
link time. Therefore, the whole expression is transformed into a (structured) constant.

| Zapply(Zfunction matchlist, args) ->
if size_of_match matchlist = length args then

Llet(transl_let env args, transl_match partial_fun matchlist)
else

5.2. COMPILATION STEPS 59

Lapply(transl funct, map transl args)
| Zapply((Zident(Zglobal

{ desc = { prim = ValuePrim(arity,prim); _ }; _}) as f),
args) ->

if arity = length args then
Lprim(prim, map transl args)

else
Lapply(transl f, map transl args)

| Zapply(funct, args) ->
Lapply(transl funct, map transl args)

Translating an application is straightforward, but we have to trap two special cases. The first is a
function immediately applied to all its arguments; this situation corresponds to a match...with...
construct. In this case, there is no need to actually evaluate the function and immediately apply
it, it suffices to store the values of the argument in the environment and perform pattern-matching
on the fly. The second special case is the application of a primitive operation to all its arguments.
A primitive operation is a global variable bearing a ValuePrim annotation, along with its arity
and the corresponding value of the concrete type primitive. This case is transformed into a
Lprim(prim, ...) term.

| Zident(Zlocal s) as E ->
translate_access s env

| Zident(Zglobal{ desc = { prim = ValuePrim(arity,prim); _ }; _}) ->
let rec vars_list = fun 0 -> [] | n -> Lvar(n-1) :: vars_list(n-1) in

Lfunction(arity, Lprim(prim, vars_list arity))
| Zident(Zglobal g) ->

Lprim(Pget_global(g.modname, g.name), [])
| Zassign(s,E) ->

translate_update s env (transl E)

Local variables are fetched in the environment; translate_access generates the right access
sequence based on the structure of the environment described by env. Global variables are trans-
lated into the special primitive Pget_global. We have to trap here the case of primitives used as
functions (e.g. it_list (prefix +) 0 L) or partially applied (prefix + 5). Then, we actually
have to build the corresponding (curried) function, for instance fun x y -> x+y.

| Zsequence(E1, E2) ->
Lsequence(transl E1, transl E2)

| Zcondition(Eif, Ethen, Eelse) ->
Lifthenelse(transl Eif, transl Ethen, transl Eelse)

| Zwhile(Econd, Ebody) ->
Lwhile(transl Econd, transl Ebody)

| Zsequand(E1, E2) ->
Lsequand(transl E1, transl E2)

| Zsequor(E1, E2) ->
Lsequor(transl E1, transl E2)

| Zconstraint(E, _) ->
transl E

Simple control structures have exact counterparts in the intermediate representation, so we just
have to translate recursively their arguments.

60 CHAPTER 5. THE COMPILER

| Zfunction(matchlist) ->
Lfunction(size_of_match matchlist, transl_match partial_fun matchlist)

| Ztrywith(body, pat_exprlist) ->
Lhandle(transl body,

transl_match partial_try
(map (fun (pat,expr) -> [pat], expr) pat_exprlist))

| Zlet(pat_exprlist, body) ->
let cas = map fst pat_exprlist
and args = map snd pat_exprlist in

Llet(transl_let env args, transl_match partial_let [cas, body])
| Zletrec(pat_exprlist, body) ->

let cas = map fst pat_exprlist
and args = map snd pat_exprlist in
let transl_in_newenv = translate (make_env env cas) in

Lletrec(map transl_in_newenv args,
transl_match partial_let [cas, body])

and transl_match failure_code casel =
let transl_action (patlist, expr) =
patlist, translate (make_env env patlist) expr in

translate_matching failure_code (map transl_action casel)

and transl_let env = function
[] -> []

| a::L -> translate env a :: transl_let (Treserved env) L
;;

Here come the cases actually performing pattern-matching. The hard work — transforming
sets of patterns into simple tests — is done by the transl_match function (see below). Its first
argument indicates what should be done if the match fails: raising a special exception match_fail
in case of a function or a let, or raising again the trapped exception in case of a try...with....
The second argument is a “square” set of patterns and λ-expressions:

p11 p12 . . . p1n → e1
...

...
. . .

...
...

pk1 pk2 . . . pkn → ek

It represents the simultaneous matching of local variables number n, n − 1, . . . , 1 (in de Bruijn’s
notation) against the first, second, . . . , nth columns of patterns. (To be pedantic: it evaluates to
ei where i is the smallest j such that for all m, pjm filters the value of variable number m.) It is
stored internally as a list of pairs (list of patterns, expression).

Notice that this matching is exactly the one performed by functions (more precisely fun rather
than function), since the n arguments of a curried function have numbers n, n−1, . . . , 1. Therefore,
the case for Zfunction is straightforward. For Ztrywith, we just have to transform a simple
matching on but one value (the exception bucket) into the more general form above.

The case of let and letrec bindings is more delicate. An expression such as:

let pat1 = expr1 and pat2 = expr2 and pat3 = expr3 in expr4

5.2. COMPILATION STEPS 61

is basically compiled as:

let var1 = expr1 and var2 = expr2 and var3 = expr3 in
match var1 var2 var3 with

pat1 pat2 pat3 -> expr4
| _ _ _ -> raise match_fail

This simple let (without matching) corresponds exactly to the semantics of the Llet term con-
structor; its body is the one-line matching on var1 var2 var3, which is translated into a λ-term
by transl_match.

Another subtlety is the way expressions expr1, expr2, . . . are compiled. This is done by the
function transl_let. What we want to do is evaluate expr1, add its value in front of the envi-
ronment, evaluate expr2, add it, and so on. So, after evaluating expr1, all de Bruijn indexes are
off by one: assume the variable x had number 1 before, it has number 2 now. We must take this
into account and compile expr2 in a compilation environment where all bindings are shifted, and
that’s the aim of the function Treserved (a constructor, actually). Hence, expr1 is compiled in
environment env, expr2 in Treserved env, expr3 in Treserved (Treserved env), and so on.

For recursive bindings, we proceed as above, with Lletrec instead of Llet. This time, expres-
sions expr1, expr2, expr3 must be compiled in an environment where the variables introduced by
pat1, pat2, pat3 are already defined.

We can now explain what the function transl_match does: it simply translates the actions
(to the right of the arrows) into λ-expressions and transmits this modified matching to the
transl_matching function, described below. This way, we avoid messy mutual recursion between
translate_expr and the pattern-matching compiler. Notice that the action ei must be translated
in an environment where the free variables of p1i, . . . , pni are defined.

Environment handling

There are two ways to handle variables bound by pattern matching: either the pattern matching
code actually puts the values of bound variables into new slots in the environment; or it does not
extend the environment, which is assumed to contain the term being matched, and in the right-
hand side of the arrow, each reference to a variable is translated in an access in the environment,
followed by a sequence of indirections (the access path) to extract the value given to this variable.
The former way is presumably more efficient, especially with a flat environment structure, but it
is slightly more complex to implement, so I chose the latter way for ZINC.

Therefore, we need to associate to each local variable a position in the environment and an
occurrence (a sequence of integers a1 . . . an representing the an

th son of the an−1
th son of . . . of

the a1
th son of the root found in the environment). However, as positions in the environment are

shifted when a new binding is performed, we won’t record them as is.
Compilation environments have the following representation:

type transl_env =
Tnullenv

| Treserved of transl_env
| Tenv of (string & num list) list & transl_env

62 CHAPTER 5. THE COMPILER

A Tenv node represents the introduction of a new value in front of an existing environment. In
this slot, we put the list of local variables that refer to subterms of this value, associated to
the corresponding occurrences (the integer list [an; . . . ; a1] representing the occurrence a1 . . . an).
A Treserved node simply reserves one slot in front of the environment without declaring local
variables; Treserved E is equivalent to Tenv([],E}. It is only used to compile let bindings, as
described above.

The function search_env retrieves the de Bruijn’s number and access path of a variable:

let search_env s = search_rec 0 where rec search_rec i = function
Tnullenv -> zinc_error "search_env : unknown local"

| Treserved env -> search_rec (i+1) env
| Tenv(L,env) -> try (i, assoc s L)

with failure "find" -> search_rec (i+1) env

Using this function, it’s easy to generate the term accessing or modifying the value of a local
variable:

let translate_access s env =
let (i,path) = search_env s env in

list_it (fun n lambda -> Lprim(Pfield n, [lambda])) path (Lvar i)

and translate_update s env lambda =
match search_env s env with

(i, n::path) ->
Lprim(Psetfield n,

[list_it (fun m lambda -> Lprim(Pfield m, [lambda]))
path (Lvar i);

lambda])
| _ -> zinc_error "translate_update : not mutable"

;;

Keeping track of bindings is easy, since there is but one binding construct, multiple pattern
matching:

p11 p12 . . . p1n → e1
...

...
. . .

...
...

pk1 pk2 . . . pkn → ek

The action ei must be compiled in an environment extended by the definitions of the free variables
of pi1, . . . , pin. First, we compute the occurrences of all variables of a given pattern:

let rec paths_of_pat path = function
Zvarpat s ->
[s, path]

| Zaliaspat(pat,s) ->
(s, path) :: paths_of_pat path pat

| Zconstructpat(_, patlist) ->
let rec paths_of_patlist i = function

[] -> []
| p::pl -> paths_of_pat (i::path) p @ paths_of_patlist (i+1) pl

5.2. COMPILATION STEPS 63

in paths_of_patlist 0 patlist
| Zconstraintpat(pat,_) ->

paths_of_pat path pat
| _ -> []

Then, the extension of environment E used to compile ei is simply

Tenv(paths_of_pat [] pin, . . . Tenv(paths_of_pat [] pi1, E) . . .)

since patterns pi1, . . . , pin correspond to variables number n, . . . , 1. More concisely, we write in
ML:

let make_env = it_list (fun env pat -> Tenv(paths_of_pat [] pat, env))

5.2.4 Compiling pattern matching

Compiling pattern matching — that is transforming a pattern matching into a sequence of elemen-
tary if...then...else tests — is not easy, hence I tried to keep this part of the compiler as simple
as possible. In particular, I imposed a left-to-right walk of the term being matched. Therefore, the
sequence of tests produced is not necessarily optimal: some tests may be performed while they were
not strictly necessary to recognize one of the cases. More sophisticated methods choose the ordering
of tests in order to produce an optimal sequence of tests whenever possible, for instance the one
of Laville [39, 40], or the one of Puel and Suárez [51]. This problem is crucial in the framework of
lazy evaluation, since unnecessary tests may trigger the evaluation of parts of the arguments, which
may not terminate; therefore, in some cases, non-optimal pattern matching may fail to terminate,
while optimal pattern matching would have succeeded. With strict semantics, this cannot occur:
an optimal pattern matching is faster, but has the same semantics as a non-optimal one.

In the following, we call matching a matrix of patterns, with one additional row of lambda
expressions, the actions, and one additional line of lambda expressions, the access paths:

path1 . . . pathk

↓ ↓
p11 . . . p1k → act1
...

. . .
...

...
pn1 . . . pnk → actn

The patterns belong to the concrete type pattern, but actually we perform some identifica-
tions between patterns. For instance, variable names are meaningless (ML patterns are linear),
so we identify variable patterns Zvarpat and “wildcard” Zwildpat, and we write Ω for all these
patterns. Also, aliases Zaliaspat(p, s), that is p as s, are identified with p. Type constraints
Zconstraintpat disappear similarly. Finally, for alternatives (p1 | p2), we shall use the following
transformation:

path1 . . . pathk

↓ ↓
...

. . .
...

...
(p1|p′1) . . . pk → act i

...
. . .

...
...

7−→

path1 . . . pathk

↓ ↓
...

. . .
...

...
p1 . . . pk → act i

p′1 . . . pk → act i
...

. . .
...

...

64 CHAPTER 5. THE COMPILER

Matchings are represented by the following ML concrete type:

type pattern_matching = Matching of (pattern list & lambda) list & lambda list

Let me define a few trivial functions manipulating this representation. The first simply adds one
line to a matching:

let add_to_match (Matching(casel,pathl)) cas =
Matching(cas :: casel, pathl)

The next two build matchings from a list of patterns and an action, by adding the right list of
access paths:

let make_constant_match (path :: pathl) cas =
Matching([cas], pathl)

and make_construct_match numargs (path :: pathl) cas =
Matching([cas], make_path 0)
where rec make_path i =

if i >= numargs then pathl else Lprim(Pfield i, [path]) :: make_path (i+1)

In other terms, make_constant_match extracts one line from a matching, discards the leftmost
pattern (assumed to be a leaf, e.g. a constant pattern), and builds the corresponding matching:

path1 . . . pathk

↓ ↓
...

. . .
...

...
p1 . . . pk → act i
...

. . .
...

...

7−→

path2 . . . pathk

↓ ↓
p2 . . . pk → act i

Similarly, make_construct_match correspond to the “flattening” of a pattern with a constructor:

path1 . . . pathk

↓ ↓
...

. . .
...

...
C(q1, . . . , qm) . . . pk → act i

...
. . .

...
...

7−→

path1; [0] . . . path1; [m− 1] path2 . . . pathk

↓ ↓ ↓
q1 . . . qm p2 . . . pk → act i

where we write path1; [i] for Lprim(Pfield i, [path1]).

The pattern matching compiler is of course a divide-and-conquer algorithm. Let us try to divide
a matching into smaller matchings first. We distinguish two cases: whether the leftmost-topmost

5.2. COMPILATION STEPS 65

pattern is a variable or not. If it is a variable, we perform the following transformation:

path1 path2 . . . pathk

↓ ↓ ↓
Ω p12 . . . p1k → a1
...

...
. . .

...
...

Ω pn2 . . . pnk → an

q11 6= Ω q12 . . . q1k → b1
...

...
. . .

...
...

qm1 qm2 . . . qmk → bm

7−→

path2 . . . pathk

↓ ↓
p12 . . . p1k → a1
...

. . .
...

...
pn2 . . . pnk → an

path1 path2 . . . pathk

↓ ↓ ↓
q11 q12 . . . q1k → b1
...

...
. . .

...
...

qm1 qm2 . . . qmk → bm

The corresponding ML function is as follows:

let split_matching (Matching(casel, (_ :: endpathl as pathl))) =
split_rec casel where rec split_rec = function

((Zwildpat | Zvarpat _) :: patl, action) :: rest ->
let vars, others = split_rec rest in

add_to_match vars (patl, action),
others

| (Zaliaspat(pat,v) :: patl, action) :: rest ->
split_rec ((pat::patl, action) :: rest)

| (Zconstraintpat(pat,ty) :: patl, action) :: rest ->
split_rec ((pat::patl, action) :: rest)

| (Zorpat(pat1, pat2) :: patl, action) :: rest ->
split_rec ((pat1::patl, action) :: (pat2::patl, action) :: rest)

| casel ->
Matching([], endpathl), Matching(casel, pathl)

Let us now consider the case where the leftmost-topmost pattern is not a variable. As in the
previous case, we split the matching horizontally just before the first variable in the left column:

path1 . . . pathk

↓ ↓
p11 6= Ω . . . p1,k−1 → a1

...
. . .

...
...

pn1 6= Ω . . . pn,k−1 → an

Ω . . . q1k → b1
...

. . .
...

...
qm1 . . . qmk → bm

7−→

66 CHAPTER 5. THE COMPILER

path1 . . . pathk

↓ ↓
p11 . . . p1,k → a1
...

. . .
...

...
pn1 . . . pn,k → an

path1 path2 . . . pathk

↓ ↓ ↓
Ω . . . q1k → b1
...

. . .
...

...
qm1 . . . qmk → bm

Then, in the first matching thus obtained (the one without variables in the first row), we group
together the lines whose leftmost pattern have the same toplevel symbol (i.e. either constant
patterns with the same constant, or constructor patterns with the same constructor), and build
sub-matchings with them. For instance:

path1 path2 . . . pathn

↓ ↓ ↓
1 p2 . . . pn → a
2 q2 . . . qn → b
1 r2 . . . rn → c

7−→

1,

path2 . . . pathn

↓ ↓
p2 . . . pn → a
r2 . . . rn → c

 2,

path2 . . . pathn

↓ ↓
q2 . . . qn → b

For constructor patterns, we also add the arguments of the constructors to the resulting matchings:

path1 path2 . . . pathn

↓ ↓ ↓
C(p′, p′′) p2 . . . pn → a

D(q′) q2 . . . qn → b
C(r′, r′′) r2 . . . rn → c

7−→

C,

path1; [0] path1; [1] path2 . . . pathn

↓ ↓ ↓ ↓
p′ p′′ p2 . . . pn → a
r′ r′′ r2 . . . rn → c

 D,

path1; [0] path2 . . . pathn

↓ ↓ ↓
q′ q2 . . . qn → b

To summarize:

let divide_matching (Matching(casel, (_ :: tailpathl as pathl))) =
divide_rec casel where rec divide_rec = function

[] ->
[], [], Matching([], pathl)

| ([],_) :: _ ->
zinc_error "divide_matching"

| (Zaliaspat(pat,v) :: patl, action) :: rest ->
divide_rec ((pat::patl, action) :: rest)

| (Zconstraintpat(pat,ty) :: patl, action) :: rest ->
divide_rec ((pat::patl, action) :: rest)

| (Zorpat(pat1, pat2) :: patl, action) :: rest ->
divide_rec ((pat1::patl, action) :: (pat2::patl, action) :: rest)

5.2. COMPILATION STEPS 67

| (Zconstantpat(cst) :: patl, action) :: rest ->
let (constant, others) = divide_rec rest in

add_to_division (make_constant_match pathl) constant
cst (patl, action),

others
| (Zconstructpat(c,args) :: patl, action) :: rest ->

let (constant, constrs, others) = divide_rec rest in
constant,
add_to_division (make_construct_match (length args) pathl) constrs

c.desc.tag (args @ patl, action),
others

| casel ->
[], [], Matching(casel, pathl)

The divide_matching function returns a triple: the last component is the remaining matching,
the one that starts by a variable; the first component is a list of pairs of an atomic constant and a
reference to a matching; the second component is a list of pairs of a constructor descriptor and a
reference to a matching. The auxiliary function add_to_division is defined as follows:

let add_to_division make_match divlist key cas =
try

let matchref = assoc key divlist in
matchref := add_to_match !matchref cas; divlist

with failure "find" ->
(key, ref (make_match cas)) :: divlist

Now, we can start to conquer. We need to define the lambda term [m] corresponding to a
matching m. The empty matching (the one with no lines) always fails:

[
path1 . . . pathn

↓ ↓

]
= staticfail

A flat matching (one whose rows have zero width) always succeeds, and executes the action of its
first line:

→ act1
...

...
→ actn

 = act1

If the matching p “starts” by a variable (i.e. if its leftmost-topmost pattern is a variable), then,
writing p1, p2 for the two matchings returned by split_matching(p):

[p] = [p1] statichandle [p2]

Indeed, in the upper half of p, the constraint on path1 is always satisfied (variables match every-
thing), so we just have to satisfy the other constraints, the one of p1; but if it fails, we execute the
remaining part of p, that is p2.

Finally, if the matching m does not start by a variable, we discriminate on the value of path1

to dispatch among the sub-matchings returned by divide_matching. For instance, in the case
divide_matching(m) = ([1,m1; 2,m2; 3,m3], [],m0), we have:

[p] = (case path1 of 1 : [m1]; 2 : [m2]; 3 : [m3]) statichandle [m0]

68 CHAPTER 5. THE COMPILER

Similarly, if divide_matching(m) = ([], [C,m1;D, m2;], [],m0), and assuming that C has tag 0
and D has tag 1,

[p] = (case tag_of(path1) of 0 : [m0]; 1 : [m1]) statichandle [m0]

To summarize:

let rec conquer_matching =
let rec conquer_divided_matching = function

[] ->
[], Total, 0

| (key, matchref) :: rest ->
let lambda1, partial1, unused1 = conquer_matching !matchref
and list2, partial2, unused2 = conquer_divided_matching rest in

(key, lambda1) :: list2,
(match (partial1, partial2) with

(Total,Total) -> Total
| (Partial, _) -> Partial
| (_, Partial) -> Partial
| _ -> Dubious),

unused1 @ unused2
in function

Matching([], _) ->
Lstaticfail, Partial, 0

| Matching(([],action) :: rest, _) ->
action, Total, rest

| Matching(_, (path :: _)) as matching ->
if starts_by_a_variable matching then

let vars, rest = split_matching matching in
let lambda1, partial1, unused1 = conquer_matching vars
and lambda2, partial2, unused2 = conquer_matching rest in

if partial1 = Total then
lambda1, Total, unused1 @ lines_of_matching rest

else
Lstatichandle(lambda1, lambda2),

(if partial2 = Total then Total else Dubious),
unused1 @ unused2

else (match divide_matching matching with
[], [], vars ->

conquer_matching vars
| constants, [], vars ->

let condlist1, _ , unused1 = conquer_divided_matching constants
and lambda2, partial2, unused2 = conquer_matching vars in
Lstatichandle(Lcond(path, condlist1), lambda2),
partial2,
unused1 @ unused2

| [], constrs, vars ->
let switchlst, partial1, unused1 = conquer_divided_matching constrs
and lambda, partial2, unused2 = conquer_matching vars in
let span = get_span_of_matching matching in
if length constrs = span & partial1 = Total then

5.2. COMPILATION STEPS 69

Lswitch(span, path, switchlst),
Total,
unused1 @ lines_of_matching vars

else
Lstatichandle(Lswitch(span, path, switchlst), lambda),
(if partial1 = Total then partial2
if partial2 = Total then Total
else Dubious),

unused1 @ unused2
| _ -> zinc_error "conquer_matching : ill_typed matching")

| _ -> zinc_error "conquer_matching"

The careful reader has noticed that this function does not simply return a lambda expression,
but also a value of the concrete type partiality = Partial | Total | Dubious, and a list of
“lines” (that is, a list of pattern and an action). These two additional results are a modest attempt
at detecting partial matchings and unused cases. As the case Dubious suggests, the “partiality”
information is approximated fairly brutally. The problem is that when we combine two partial
matchings p1 and p2 into p1 statichandle p2, the resulting matching can be total if the cases
of p1 and p2 overlap correctly, but this overlapping is very hard to detect. More sophisticated
frameworks, such as the constrained terms of Puel and Suárez [51], directly address this issue.

Finally, here is the code that glues the pattern matching compiler to the first pass of the
compiler:

let translate_matching failure_code casel =
let rec make_path =

function 0 -> []
| n -> Lvar(n-1) :: make_path(n-1) in

let (lambda, partial, unused) =
conquer_matching (Matching(casel, make_path (length (hd casel)))) in

(match unused with
[] -> ()

| [_] -> message "1 unused case in this match."
| _ -> print_num (length unused); message " unused cases in this match.");

(match partial with
Total -> lambda

| _ -> Lstatichandle(lambda, failure_code partial))

The function failure_code passed as argument is responsible for printing a suitable warning and
returning the lambda expression raising the right exception. For instance, here are the correspond-
ing functions for function ... and try...with... constructs:

let partial_fun par =
if par = Partial then print_string "Partial function.\n";
Lprim(Praise, [Lconst(SCblock(ConstrExtensible "match_fail", []))])

and partial_try par =
Lprim(Praise, [Lvar 0]) (* reraise the trapped exception *)

5.2.5 Compiler, back end

The second pass of the compiler transform intermediate λ-terms into linear lists of ZAM code. This
pass performs sequentialization of intermediate code, and nothing else: it does not attempt to fix

70 CHAPTER 5. THE COMPILER

inefficiencies in the given term, by analyzing it, reorganizing evaluations, and so on. However, it
goes to great length not to introduce new inefficiencies during sequentialization. For instance, it
never generates a jump to a jump, nor a jump to a return instruction, and does a good job at
compiling complex tests such as if a=b or c<d then e else f, which becomes:

if a=b goto 1;
if c>=d goto 2;

1: e;
goto 3;

2: f;
3:

This pass produces a list of ZAM code. There are two ways to do so: the first is to generate
sublists (one for each subterm of the original λ-term) and combine them using the list concatenation
operator @; the second way is to build the list in one right-to-left pass, by taking as arguments not
only the term to compile, but also a list of code, and consing the instructions corresponding to
the term in front of that list. The second way is usually preferred, since list concatenation is an
expensive operation (even if it can be done by physical modifications). More importantly, it allows
the compiler to know the continuation of the expression to be compiled (i.e. the code that will be
executed after it), and this continuation encodes a lot of useful information, allowing to generate
much better code. For instance, to know whether the given expression is in tail-call position, it
suffices to look at the continuation and see if it starts by a Kreturn instruction:

let is_tail = function Kreturn :: _ -> true | _ -> false

Similarly, when we are about to generate a jump to the continuation, we first look if it starts by
a Kreturn or Kbranch instruction; in the first case, it suffices to insert a KreturnL instruction; in
the second case, it is possible to jump directly to the label L:

let make_branch = function
Kreturn :: _ as C -> Kreturn, C

| (Kbranch _ as branch) :: _ as C -> branch, C
| C -> let lbl = new_label() in Kbranch lbl, Klabel lbl :: C

In the same vein, the label_code function, which puts a label on a piece of code, is written:

let label_code = function
Kbranch lbl :: _ as C -> lbl, C

| Klabel lbl :: _ as C -> lbl, C
| C -> let lbl = new_label() in lbl, Klabel lbl :: C

The main function, compile_expr, takes three arguments. The first is a label, used to compile
Lstaticfail and Lstatichandle instructions. Remember that these are statically-scoped, nullary
exception handling, therefore Lstaticfail is simply a jump to the handler part of the first enclosing
Lstatichandle. The first argument of compile_expr is precisely the label of this handler. The
second argument is a term of the intermediate syntax lambda. The third is the continuation. First,
we perform a large pattern matching on the term. Then, we may test the continuation to recognize
special cases.

5.2. COMPILATION STEPS 71

let rec compile_expr staticfail = compexp
where rec compexp = fun

(Lvar n) C ->
Kaccess n :: C

| (Lconst cst) C ->
Kquote cst :: C

| (Lapply(body, args)) ->
(function

Kreturn :: C ->
compexplist args (Kpush :: compexp body (Ktermapply :: C))

| C ->
Kpushmark ::
compexplist args (Kpush :: compexp body (Kapply :: C)))

The Lapply case is the first example of matching on the continuation. Here, we detect tail calls, and
use the more efficient Ktermapply instruction in this case (and we suppress the following Kreturn,
which will never be executed anyway). The compexplist function, defined below, simply generates
code for a list of expressions, with Kpush instructions between two expressions.

| (Lfunction(n, body)) C ->
if is_tail C then

iterate (cons Kgrab) n (compexp body C)
else
(let lbl = new_label() in

add_to_compile (n, body, lbl);
Kclosure lbl :: C)

Similarly, functions in tail position do not need to build a closure, and can be expanded in-line,
with the right number of Kgrab instructions first, to bind their parameters to their arguments.
Otherwise, we emit a Kclosure instruction; but we cannot generate code for the body of the
abstraction on the fly, since we are in the middle of a block of code, and we have no place to store
another block; therefore, we push it on a stack, using add_to_compile, and we shall pop it when
the current expression is fully compiled (see below).

| (Llet(args, body)) C ->
let C1 = if is_tail C then C else Kendlet(length args) :: C in
let C2 = compexp body C1 in
let rec comp_args = function

[] -> C2
| exp::rest -> compexp exp (Klet :: comp_args rest) in

comp_args args
| (Lletrec(args, body)) C ->

let size = length args in
let C1 = if is_tail C then C else Kendlet size :: C in
let C2 = compexp body C1 in
let rec comp_args i = function

[] -> C2
| exp::rest -> compexp exp (Kupdate i :: comp_args (i-1) rest) in

Kdummies size :: comp_args (size-1) args
| (Lprim(Pget_global qualid, [])) C ->

72 CHAPTER 5. THE COMPILER

Kget_global qualid :: C
| (Lprim(Pset_global qualid, [exp])) C ->

compexp exp (Kset_global qualid :: C)
| (Lprim(Pmakeblock tag, explist)) C ->

compexplist explist (Kmakeblock(tag, length explist) :: C)
| (Lprim(Pnot, [exp])) ->

(function
Kbranchif lbl :: C ->

compexp exp (Kbranchifnot lbl :: C)
| Kbranchifnot lbl :: C ->

compexp exp (Kbranchif lbl :: C)
| C ->

compexp exp (Kprim Pnot :: C))
| (Lprim((Ptest tst as p), explist)) ->

(function
Kbranchif lbl :: C ->

compexplist explist (Ktest(tst,lbl) :: C)
| Kbranchifnot lbl :: C ->

compexplist explist (Ktest(invert_bool_test tst,lbl) :: C)
| C ->

compexplist explist (Kprim p :: C))
| (Lprim(p, explist)) C ->

compexplist explist (Kprim p :: C)

Boolean primitives, such as not and the comparisons, are treated specially here. Sometimes, their
actual value is not needed, all we want to do is to perform a conditional branch on their result.
For instance, a not operation followed by a conditional branch need not be computed, it suffices to
invert the conditional branch. Similarly, when a comparison is followed by a conditional branch, we
can generate the Ktest instruction, which is a conditional branch on that condition, instead of com-
puting the boolean value and jump if it is true or false. As its name implies, the invert_bool_test
function maps Pequal_test to Pnotequal_test, Pint_test(PTlt) to Pint_test(PTge), and so
on.

| (Lstatichandle(body, Lstaticfail)) C ->
compexp body C

| (Lstatichandle(body, handler)) C ->
let branch1, C1 = make_branch C
and lbl2 = new_label() in

compile_expr lbl2 body (branch1 :: Klabel lbl2 :: compexp handler C1)
| (Lstaticfail) C ->

Kbranch staticfail :: C

The Lstatichandle does not generate any code per se, it simply changes the value of the current
static handler label, the parameter staticfail. The “static raise” Lstaticfail is a mere jump.

| (Lhandle(body, handler)) C ->
let branch1, C1 = make_branch C in
let lbl2 = new_label() in
let C2 = if is_tail C1 then C1 else Kendlet 1 :: C1 in

Kpushtrap lbl2 ::

5.2. COMPILATION STEPS 73

compexp body
(Kpoptrap :: branch1 :: Klabel lbl2 :: compexp handler C2)

| (Lifthenelse(cond, ifso, ifnot)) C ->
comp_test2 cond ifso ifnot C

| (Lsequence(exp1, exp2)) C ->
compexp exp1 (compexp exp2 C)

| (Lwhile(cond, body)) C ->
let lbl1 = new_label() and lbl2 = new_label() in

Kbranch lbl1 :: Klabel lbl2 ::
compexp body (Klabel lbl1 :: compexp cond (Kbranchif lbl2 :: C))

| (Lsequand(exp1, exp2)) ->
(function

Kbranch lbl :: _ as C ->
compexp exp1 (Kbranchifnot lbl :: compexp exp2 C)

| Kbranchifnot lbl :: _ as C ->
compexp exp1 (Kbranchifnot lbl :: compexp exp2 C)

| Kbranchif lbl :: C ->
let lbl1, C1 = label_code C in
compexp exp1 (Kbranchifnot lbl1 ::

compexp exp2 (Kbranchif lbl :: C1))
| C ->

let lbl = new_label() in
compexp exp1 (Kstrictbranchifnot lbl ::

compexp exp2 (Klabel lbl :: C)))
| (Lsequor(exp1, exp2)) ->

(function
Kbranch lbl :: _ as C ->

compexp exp1 (Kbranchif lbl :: compexp exp2 C)
| Kbranchif lbl :: _ as C ->

compexp exp1 (Kbranchif lbl :: compexp exp2 C)
| Kbranchifnot lbl :: C ->

let lbl1, C1 = label_code C in
compexp exp1 (Kbranchif lbl1 ::

compexp exp2 (Kbranchifnot lbl :: C1))
| C ->

let lbl = new_label() in
compexp exp1 (Kstrictbranchif lbl ::

compexp exp2 (Klabel lbl :: C)))

What we said about not and the comparisons also holds for the left-to-right and and or constructs:
when they are followed by a conditional jump, it is possible to “short-circuit” this jump (this
amounts to transforming if a and b then c else d into if a then if b then c else d else d,
without duplicating the code for d, however). Otherwise, when the actual boolean value of a and b
is needed, we compile it as if a then b else a, without re-evaluating a, of course, that is we
evaluate a, jump to the continuation if it is false, evaluate b, and continue. A subtle bug arises
here: in the discussion above, we have assumed that when an expression is followed by a conditional
branch, then its actual value is not used. This is not the case here: we test the value of a, but if
it’s false, then it is also the value of the whole a and b expression, so the boolean false must be
in the accumulator. For instance, assume we compile (a=b) or c as follows:

74 CHAPTER 5. THE COMPILER

<code for a=b>; Kbranchifnot 100; <code for c>; Klabel 100; ...

Then the compilation of a=b will be “optimized”, getting:

<code for a>; Kpush; <code for b>; Ktest(Pnotequal_test,100);
<code for c>; Klabel 100; ...

and if a 6= b, we reach label 100 with garbage in the accumulator, instead of false, as expected.
To fix this, I had to introduce two variants of Kbranchif and Kbranchifnot, Kstrictbranchif
and Kstrictbranchifnot, that have exactly the same semantics, but prohibit all the optimizations
above from being applied. Therefore, (a=b) or c is compiled as

<code for a=b>; Kstrictbranchifnot 100; <code for c>; Klabel 100; ...

and the equality test will not be optimized:

<code for a>; Kpush; <code for b>; Kprim(Ptest(Pnotequal_test));
Kstrictbranchifnot 100; <code for c>; Klabel 100; ...

Let us go back to the main function.

| (Lcond(arg, casel)) C ->
let branch1, C1 = make_branch C in
let rec comp_tests = function

[] ->
zinc_error "compile_exp (cond)"

| [a,exp] ->
Ktest(test_for_atom a, staticfail) :: compexp exp C1

| (a,exp)::rest ->
let lbl = new_label() in

Ktest(test_for_atom a, lbl) ::
compexp exp (branch1 :: Klabel lbl :: comp_tests rest) in

compexp arg (comp_tests casel)
| (Lswitch(1, arg, [ConstrRegular _, exp])) C ->

compexp exp C
| (Lswitch(2, arg, [ConstrRegular(0,_), exp0;

ConstrRegular(1,_), exp1])) C ->
comp_test2 arg exp1 exp0 C

| (Lswitch(2, arg, [ConstrRegular(1,_), exp1;
ConstrRegular(0,_), exp0])) C ->

comp_test2 arg exp1 exp0 C
| (Lswitch(size, arg, casel)) C ->

let branch1, C1 = make_branch C in
if switch_through_jumptable size casel then

let switchtable = vector size of staticfail in
let rec comp_case = function

[] ->
zinc_error "compile_exp (comp_case)" in

| [ConstrRegular(i,_), exp] ->
let lbl = new_label() in

switchtable.(i) <- lbl;
Klabel lbl :: compexp exp C1

5.2. COMPILATION STEPS 75

| (ConstrRegular(i,_), exp) :: rest ->
let lbl = new_label() in

switchtable.(i) <- lbl;
Klabel lbl :: compexp exp (branch1 :: comp_case rest)

in compexp arg (Kswitch switchtable :: comp_case casel)
else

let rec comp_tests = function
[] ->

zinc_error "compile_exp (switch)"
| [tag,exp] ->

Ktest(Pnoteqtag_test tag, staticfail) :: compexp exp C1
| (tag,exp)::rest ->

let lbl = new_label() in
Ktest(Pnoteqtag_test tag, lbl) ::
compexp exp (branch1 :: Klabel lbl :: comp_tests rest)

in compexp arg (comp_tests casel)

The last cases deal with the multi-way branches Lcond and Lswitch. A Lcond construct is simply
transformed into a sequence of elementary comparisons against constants; no attempt is done yet
to try to use jumps through tables in case of “dense” matchings with integers or characters. For
a Lswitch construct, which discriminates on the tag of its argument, we trap first the cases where
there are only one or two possible values for the tag (as guaranteed by typing); if there is but one,
we discard the test entirely (assuming the argument of the Lswitch is a pure expression, which
is always the case, since this construct is generated by the pattern-matching compiler only); if
there are two possible tags, we use a simple if ... then ... else test. Otherwise, we are left to
choose between generating an indexed branch, or a sequence of simple tests, as above. The choice
is performed by the function switch_through_jumptable. There is one important case where we
cannot generate an indexed branch: when we perform matching on values of an open sum. In this
case, the tag numbers of the constructors are not known at compile-time (they are still represented
by their name, through the ConstrExtensible constructor), so we cannot build a jump table. The
other case where a sequence of simple tests is preferred is when the matching is “sparse”, that is
when at least 80 % of the cases fall into the default action, which is implicitly Lstaticfail, and
there are less than 10 cases not defaulting to Lstaticfail.

and compexplist = fun
[] C -> C

| [exp] C -> compexp exp C
| (exp::rest) C -> compexplist rest (Kpush :: compexp exp C)

and comp_test2 cond ifso ifnot C =
let branch1, C1 = make_branch C
and lbl2 = new_label() in

compexp cond (Kbranchifnot lbl2 ::
compexp ifso (branch1 :: Klabel lbl2 :: compexp ifnot C1))

As mentioned previously, the compile_expr function does not compile the body of the ab-
stractions it encounters (by the way, where would it put the corresponding code ?), but save these
abstractions in a stack. It is time to describe this little machinery. The stack is maintained by
three functions sharing it as a local variable:

76 CHAPTER 5. THE COMPILER

let reset_to_compile, add_to_compile, get_to_compile =
let still_to_compile = ref ([] : (num & lambda & label) list) in

(fun () -> still_to_compile := []; ()),
(fun bc -> still_to_compile := bc :: !still_to_compile; ()),
(fun () -> match !still_to_compile with

[] -> failwith "finished"
| bc::rest -> still_to_compile := rest; bc)

To compile entirely a lambda expression, the procedure is as follows: apply compile_expr on
it; while the stack of abstractions is not empty, pop an expression from it, compile it, and add its
code to the code already generated. In our “continuation” style, this translates to:

let compile_lambda =
let rec compile_rest C =

try
match get_to_compile() with

(1,exp,lbl) ->
compile_rest (Klabel lbl :: Kstartfun ::

compile_expr Nolabel exp (Kreturn :: C))
| (n,exp,lbl) ->

compile_rest (Klabel lbl :: Kstartfun ::
iterate (cons Kgrab) (n-1)

(compile_expr Nolabel exp (Kreturn :: C)))
with failure "finished" ->
C in

fun expr ->
reset_to_compile(); reset_label();
(compile_expr Nolabel expr [Kbranch(Label 0)], compile_rest [])

Notice that we actually return two lists of code, one for the original lambda expression, the
other for all the closures it uses. The idea is that the first piece of code will be executed only once
(since it is not part of a closure!), so the runtime system can throw it away just after, while the
second piece of code really needs to stay in memory, since some closures may refer to it.

For each toplevel phrase, the pair of instruction lists obtained at the end of the compilation line
is written to the object code file, using the extern facility for structured data output (see [62, chap.
9] for a presentation, and [1] for the problem of its integration into a statically-typed language such
as ML).

5.2.6 Global environment

The discussion above focuses on the compilation of single expressions; it is now time to see how
global declarations are handled.

A global environment comprises three independent name spaces, one for global variables (“val-
ues”), one for constructors, and one for types. These name spaces have a regular structure: for
each global identifier, they hold its fully qualified name (name of defining module + name inside
this module), and associated informations.

type ’a global =
{ modname : string;

5.2. COMPILATION STEPS 77

name : string;
desc : ’a }

For a global value, these informations are its type, and whether it is a primitive operation or
not; if it is, we record here the corresponding primitive, and its arity.

type value_global == value_desc global
and value_desc =

{ valtype: type_expr;
prim: prim_desc

}
and prim_desc =

ValueNotPrim
| ValuePrim of num * primitive

For a constructor, we store the concrete type it belongs to, the type of its arguments (and for
each argument, whether it is mutable or not), the tag given to the constructor, and a flag telling if
it has some mutable arguments or not (used for allowing structured constant propagation).

type constr_global == constr_desc global
and constr_desc =

{ result_type: type_expr;
arg_types : (bool * type_expr) list;
tag : constr_tag;
pure : bool

}

Finally, assuming all concrete types are sums of products, the informations associated to a type
identifier are its arity, and the list of its constructors:

type type_global == type_desc global
and type_desc =

{ arity : num;
constrs: constr_desc list

}

To make symbol table lookup faster, I use hashing to associate a description to the name of
a global. Actually, this is a general-purpose implementation of hashed association tables, fully
polymorphic, thanks to the excellent “universal” (i.e. polymorphic) hash function provided in the
CAML library [62, pp. 343–345]. It uses dynamic hashing, and doubles the size of the table when
a bucket becomes too long, but without hashing again the whole table. This ensures average access
time logarithmic in the number of elements in the table.

The global environment of a module is therefore a triple of hashed tables, associating value
descriptors, constructor descriptors, and type descriptors to global names:

type module_desc =
{ name : string;

values : (string, value_desc) hashtable;
constrs : (string, constr_desc) hashtable;
types : (string, type_desc) hashtable

}

78 CHAPTER 5. THE COMPILER

Compiled interfaces or modules are also represented that way; of course, they just contain the
globals that are actually exported.

Then, the global state of the compiler comprises the description of the module being compiled,
as well as a list of description of the modules currently “opened”, that is those modules that are
searched when disambiguating non-qualified global names (as described in section 2.1.3).

type global_environment =
{ defined_module: module_desc;

mutable opened_modules: module_desc }

Global table lookup is performed as soon as a global reference was recognized: at parsing for
constructors and type identifiers, during the typechecking for value identifiers. Their descriptors
are put directly in the syntax tree. Here are the functions that actually fetch the descriptor, given
a “global reference”, which may be already qualified or not:

type global_reference =
GRname of string

| GRmodname of string & string
;;
let find_value_desc, find_constr_desc, find_type_desc =

let find_desc extract =
let find_with_name (md : module) s =
let desc = find_in_hashtable (extract md) s in

{ modname = md.name; name = s; desc = desc } in
function GRname s ->

(let gl = current_globalenv() in
try

find_with_name gl.defined_module s
with failure "find" ->

find_rec gl.used_modules where rec find_rec = function
[] -> failwith "find"

| [md] -> find_with_name md s
| md::rest -> try find_with_name md s

with failure "find" -> find_rec rest)
| GRmodname(modname,s) ->

(let gl = current_globalenv() in
if modname = gl.defined_module.name then

find_with_name gl.defined_module s
else

find_rec gl.used_modules where rec find_rec = function
[] -> failwith "find"

| md::rest -> if md.name = modname then
try find_with_name md s
with failure "find" -> find_rec rest

else
find_rec rest) in

find_desc (fun x -> x.values),
find_desc (fun x -> x.constrs),
find_desc (fun x -> x.types)

;;

Chapter 6

The linker and the runtime system

This chapter presents the remaining two parts of ZINC: the runtime system, which executes byte-
code, and the linker, which produces executable bytecode from the object code files produced by
the compiler. The former is written in C, the latter in ML.

6.1 The complete instruction set

It is time to give the exact instruction set of the bytecode interpreter, with the format of their
operands. The following notations will be used: identifiers such as Grab are operation codes, they
take up one byte in the case of bytecode, and two or four in the case of threaded code. The operands
of an instruction are written in braces, as in Cur(ofs); operands are stored just after the opcode,
in the given order. The following kinds of operands are used:

n a small integer (the size of an opcode)
ofs an offset for a relative branch, relative to the address

where it is stored; it uses two bytes
tag the tag of a block (one byte)
header a well-formed block header (four bytes)
int8 a small integer constant (one byte)
int16 a medium integer constant (two bytes)
int32 a large integer constant (four bytes)
float a floating-point number (four, eight or ten bytes,

depending on the hardware)
string a character string, stored as if it was in the heap (section 4.3.1).

Notice that the format of executable bytecode depends on the interpretation method used
(bytecode and threaded code), and also on the host machine. For instance, integer and floating-
point constants are stored using the format of the host machine; in particular, the endianness of
the host processor must be respected. Also, some processors may impose alignment constraints on
the operands: a 16-bit operand may have to be aligned on a 16-bit boundary. This must be ensured
by padding the bytecode with Nop operations, if necessary.

79

80 CHAPTER 6. THE LINKER AND THE RUNTIME SYSTEM

Constants and literals

Constbyte(int8), Constshort(int16),
Constlong(int32)

Put an integer constant in the accumulator. Const-
long allows loading any constant, as long as it is not a
pointer in the heap.

Atom(n), Atom0, . . . , Atom9 Put a pointer to a zero-sized block tagged n in the
accumulator.

GetGlobal(int16), SetGlobal(int16) Load (resp. store) the accumulator from the global
variable number int16

Function handling

Push, Pushmark Push the accumulator (resp. a mark) on the argument
stack

Apply, Appterm Call (resp. jump to) the closure contained in the
accumulator

Return If there is a mark on top of the argument stack, pop it
and return to the caller; otherwise, jump to the closure
contained in the accumulator

Grab Pop one value on the argument stack and put it in
the environment; if the top of stack is a mark, build a
closure and return it to the caller

Cur(ofs) Build the closure of ofs with the current environment,
and put it in the accumulator

Environment handling

Access(n), Access0, Access1,
Access2, Access3, Access4, Access5

Fetch the nth slot of the environment, and put it in
the accumulator

Let Put the value of the accumulator in front of the
environment

Endlet(n), Endlet1 Throw away the first n local variables from the
environment

Dummies(n) Put n dummy closures in front of the environment

Update(n) Physically update the nth slot of the environment with
the value of the accumulator

Letrec1(ofs) Same as Dummies(1); Closure(ofs);Update(0) (a very
frequent sequence, corresponding to let rec f =
function ... in ...

6.1. THE COMPLETE INSTRUCTION SET 81

Building and destructuring blocks

Makeblock(header),
Makeblock1(tag), Makeblock2(tag),
Makeblock3(tag), Makeblock4(tag)

Allocate a block with given header, initialize field 0
with the accumulator, and the remaining fields with
values taken from the argument stack

Getfield(n), Getfield0, Getfield1,
Getfield2, Getfield3

Access the nth field of the block pointed to by the
accumulator

Setfield(n), Setfield0, Setfield1,
Setfield2, Setfield3

Physically replace the nth field of the block pointed to
by the accumulator with the value popped from the
argument stack

Integers

SuccInt, PredInt, NegInt, AddInt,
SubInt, MulInt, DivInt, ModInt,
AndInt, OrInt, XorInt, ShiftLeftInt,
ShiftRightInt

Usual arithmetic operations on integers

Floating-point numbers

Floatop(n) Allocates room for one floating result, and exe-
cutes the sub-instruction n, one of AddFloat, Sub-
Float, MulFloat, DivFloat, and the usual transcenden-
tal functions

FloatOfInt, IntOfFloat Conversion from an integer, and truncation to an
integer

Strings

Makestring Allocates a string of given length (in the accumulator)

StringLength Length of the string contained in the accumulator

GetChar, SetChar Read or modify one char in a string

FillString, BlitString Fill a substring with a given character, or copy one
substring into another

Predicates

Boolnot Negation: returns “true” (the zero-sized block tagged
1) if the block in the accumulator is tagged 0, and
“false” (the zero-sized block tagged 0) otherwise

82 CHAPTER 6. THE LINKER AND THE RUNTIME SYSTEM

Eq, Equal Pointer equality (resp. structural equality) between
the accumulator and the top of stack

EqInt, NeqInt, LtInt, GtInt, LeInt,
GeInt

Usual comparison predicates on integers

EqFloat, NeqFloat, LtFloat, GtFloat,
LeFloat, GeFloat

Usual comparison predicates on floating-point
numbers

EqString, NeqString, LtString,
GtString, LeString, GeString

Usual comparison predicates on strings

Branches and conditional branches

Branch(ofs) Unconditional relative jump

Branchif(ofs), Branchifnot(ofs),
Branchifeqtag(tag, ofs),
Branchifneqtag(tag, ofs)

Conditional branches on the tag t of the block pointed
to by the accumulator: Branchif jumps if t 6= 0,
Branchifnot jumps if t = 0, Branchifeqtag jumps if
t = tag, Branchifneqtag jumps if t 6= tag

Switch(ofs0, . . . , ofsk) Jumps to the offset ofst, where t is the tag t of the
block contained in the accumulator

BranchifEq(ofs), BranchifNeq(ofs),
BranchifEqual(ofs),
BranchifNequal(ofs),
BranchifLtInt(ofs), . . . ,
BranchifGeString(ofs)

Conditional branches corresponding to the binary
predicates above

BranchifNeqImmInt(int32, ofs),
BranchifNeqImmFloat(float, ofs),
BranchifNeqImmString(string, ofs)

Compare the accumulator with the constant given as
argument, and jumps if different. (This gadget is use-
ful for fast pattern matching.)

Miscellaneous

CCall0(n), . . . , CCall5(n) Call a C function, with 0 to 5 arguments. C func-
tions are put in a special table; n is the number of the
desired function. The first argument is the value if
the accumulator, the remaining arguments are popped
from the argument stack. The result is put in the ac-
cumulator.

StartFun Perform various checks such as stack overflow, pending
break condition, and so on. Intended to be inserted at
the beginning of each function and loop body.

6.2. THE LINKER 83

Nop1, Nop2, Nop3 Do nothing, but skip respectively one, two, and
three bytes. Used to align code on 16-bit or 32-bit
boundaries.

6.2 The linker

The linker gathers together the object code files produced by the compiler, and produces a file of
bytecode (or threaded code), directly executable by the runtime system. The linker itself is written
in ML. It performs the following transformations:

• lists of ML-represented instructions (the concrete type instruction of section 5.1.4) are
transformed into a stream of opcodes and operands, with the format described above.

• labels and references to labels are replaced by offsets. This uses a classical one-pass algorithm,
with backpatching for forward references.

• global variables, which are still represented by their qualified name, are given a slot in the
data space of the executable, and global references are represented in the code by the address
of their slot. Slots are also reserved to hold structured constants, since the garbage collector
prevents them from being put directly in the code.

• constructors belonging to extensible sums (for the time being, only exceptions are in this
case) are given a tag number. This cannot be done at compile-time, since two modules can
extend the same type in independent directions.

• constants are converted into the format expected by the host processor (e.g. big-endian or
little-endian in the case of integers). Similarly, Nop instructions are inserted to align operands
on 16-bit or 32-bit boundaries, if the host requires it.

• initialization code sequences for each phrase are chained together via Branch instructions.

The sources of the linker are very simple and basically uninteresting, so I shall not detail them
here. Let me simply give the format of executable files:

• a header, which happens to be the following string (Unix specialists can easily guess the
reason): #!/usr/local/zinc/runtime/interp

• the number of global values used.

• the values of initialized globals, that is a sequence of one integer (the slot number of the
global) and one ZINC value (in prefix form). The integer -1 terminates this list.

• the bytecode (or threaded code), which can be directly executed. Entry point is at offset 0.

6.3 The runtime system

The runtime system is entirely written in portable C, with the exception of the optional threaded-
code interpreter, which is written in assembly language. It comprises the following parts:

84 CHAPTER 6. THE LINKER AND THE RUNTIME SYSTEM

6.3.1 The loader

The loader is responsible for reading the executable file, allocating and initializing the table of
globals, and loading the bytecode in memory. It is completely trivial (100 lines), since all the hard
work has been performed by the linker.

6.3.2 The interpreter

The interpreter executes bytecode, or threaded code. In the case of bytecode, it is just one large C
function of about 800 lines. (The reason is that the registers of the ZAM must be local variables,
in order to be put in actual registers by the compiler.) Here are the first and last lines:

void interprete(prog)
code prog;

{
register code pc;
register value * asp; /* argument-stack pointer */
register value * rsp; /* return-stack pointer */
register value * alloc_ptr; /* for allocation in the heap */
register int cache_size; /* number of values in the volatile env. */
register value env; /* the persistent env. */
register value accu; /* the accumulator */
register value tmp; /* to hold uninitialized allocated objects */

asp = extern_asp; rsp = extern_rsp; alloc_ptr = extern_alloc_ptr;
pc = prog; env = null_env; cache_size = 0;
accu = MLINT(0);

while(1) switch(*pc++){
case CONSTBYTE:
accu = (value) *(char *) pc; pc += 1; break;

case CONSTSHORT: /* Pour les moins petits entiers */
accu = (value) *(short *) pc; pc += 2; break;

case CONSTLONG: /* Pour une valeur hors du tas quelconque */
accu = (value) *(long *) pc; pc += 4; break;

case PUSH:
*--asp = accu; break;

case POP:
accu = *asp++; break;

/* lots of stuff deleted */
}

}

I shall not detail here the whole list of cases, since this would be a lengthy paraphrase of the
abstract machine description (sections 3.3 and 6.1). Let me simply mention how the interpreter
interacts with the outside, and especially the garbage collector. First, the registers of the ZAM
must be known to the garbage collector (to find the roots), yet they are local to the interprete
function, so we have to save them in global variables (heap and stack pointers) or in globally-
accessible areas (the accumulator is pushed on the argument stack, the environment and cache size
on the return stack), before calling the garbage collector, and reload some of them after, since the

6.3. THE RUNTIME SYSTEM 85

GC might have moved some objects in the heap. For instance, here is the macro allocating in the
heap. We perform linear allocation in the young generation (see next section), and call the minor
garbage collector when the end of the generation is reached:

#define ALLOC(hdr, size) \
{ \

tmp = VALUE(alloc_ptr); \
alloc_ptr += (size); \
if (alloc_ptr > young_end) { \

rsp -= sizeof(struct return_frame) / sizeof(value); \
(struct return_frame *) rsp->env = env; \
(struct return_frame *) rsp->cache_size = cache_size; \
*--asp = accu; \
extern_asp = asp; extern_rsp = rsp; extern_alloc_ptr = alloc_ptr - (size);\
tmp = call_minor_gc (size); \
alloc_ptr = extern_alloc_ptr; \
accu = *asp++; \
env = (struct return_frame *) rsp->env; \
rsp += sizeof(struct return_frame) / sizeof(value); \

} \
HEADER(tmp) = (hdr); \

}

In the case of threaded code, the interpreter is written in assembly language. The reason is that
C does not know about indirect jumps, but only about indirect calls, and I found no C compiler
able to transform a tail indirect call into an indirect jump, without pushing anything on the stack.
I cannot resist the pleasure of putting some 68020 assembly code in this report, so here are a few
interpretation routines:

retsp = a7
argsp = a5
hp = a4
mypc = a3
env = a2
accu = a1
csize = d7
base = d6

CONSTSHORT:
movw mypc@+, accu
movw mypc@+, a0
jmp a0@(base:l)

CONSTLONG:
movl mypc@+, accu
movw mypc@+, a0
jmp a0@(base:l)

PUSH:
movl accu, argsp@-
movw mypc@+, a0
jmp a0@(base:l)

86 CHAPTER 6. THE LINKER AND THE RUNTIME SYSTEM

POP:
movl argsp@+, accu
movw mypc@+, a0
jmp a0@(base:l)

6.3.3 The garbage collector

ZINC uses a high-tech garbage collector written by Damien Doligez. It is based upon the Lang and
Dupont algorithm [38], which unifies and generalizes the well-known “mark and sweep” and “stop
and copy” algorithms. The heap is divided in three zones: the from-space, the to-space and the
mark-space. The GC walks the memory graph; blocks in the from-space are copied to the to-space;
blocks in the mark-space are marked in use. Then, a sweep of the mark-space collects all unused
blocks. By choosing the sizes of the spaces, one can mix “mark and sweep” and “stop and copy”
in any proportions, and therefore enjoy the compacting properties of copying collectors, without
limiting heap occupancy to 50 %, as in the case of genuine “stop and copy”.

Damien Doligez combined this algorithm with the generation mechanism: objects are allocated
in a small, separate space (the young generation) and when this space is full, all active objects in
the young generation are identified and copied to the large, main heap (the old generation). This
operation, the minor collection, takes little time, yet it may recover a lot of space, since most objects
are short-lived; major collection, that is collecting the main heap, becomes all the less frequent.

The algorithms, the implementation, and the performances are fully detailed in [23]. The
implementation is fairly complex, due to intricacies such as the need to perform a major GC in the
middle of a minor GC, and then resume the minor GC as if nothing happened. The whole garbage
collector and memory allocator occupy about 1200 lines of C.

6.3.4 Primitive functions

The rest of the runtime system is composed of primitive functions. Some are utility functions
on integers and strings, implemented in C for efficiency. It is planned to include the arbitrary-
precision integer arithmetic package of Vuillemin et al. [55]. The rest is mostly interface with the
operating system. This is trivial stub code converting data back and forth between ZINC and C
representations. It ought to be generated automatically from the type of the functions. Here is a
sample (and once you’ve seen it, you’ve seen them all):

value unix_open(path, mode, rights)
value path, mode, rights;

{
return MLINT(open(CSTRING(path), CINT(mode), CINT(rights)));

}

Chapter 7

Assessment

At the time of this writing, the following parts of the ZINC system are operational. First, a
compiler and a linker, both written in CAML. The compiler does not perform typing yet, nor
consistency checks among modules; also, error reporting is almost nonexistent. Second, a runtime
system written in C, comprising a bytecode interpreter, memory allocator, garbage collector, and a
few primitives. I wrote also a threaded-code interpreter, and a translator to 68020 assembly code,
but these are not yet interfaced with the garbage collector. Primitives and libraries are almost
nonexistent, with the exception of a few Unix system calls and a small I/O library. All these parts
work well together, and not only on trivial programs; for instance, I was able to run a medium-
sized (500 lines) example taken directly from the CAML anthology [25]: an implementation of the
Knuth-Bendix completion procedure (see appendix A). I haven’t tried to bootstrap the compiler
and the linker yet, but I am confident in the ability of the compiler to compile itself; the bottleneck
is the lack of libraries and of tools such as a parser generator.

It took me about three months to get a first version of the system able to run this program. The
major part of this time went into writing and debugging the bytecode interpreter and its interface
with the garbage collector. The compiler took comparatively less time, and was less buggy; this
is especially true of the core functions (the compiler for expressions, including the expansion of
pattern-matching) which were written at the very beginning and almost did not change since then.
This first version of the system had some design flaws, however: it did not have true modules,
but simply separate compilation; and linking was performed on the fly, just before execution. Two
additional weeks were needed to implement the standalone linker and the module system.

Regarding performance, and especially execution speed, it is common saying that bytecode
interpretation is quite slow, so I did not expected very good results. However, ZINC behaves much
better than expected, especially on non-trivial programs. Some figures can be found in appendix A.
To summarize, it is true that on simple benchmarks such as the Fibonacci function, ZINC is three
to four times slower than CAML, garbage collection included. But on real programs such as the
Knuth-Bendix completion procedure, the bytecode version of ZINC is slightly faster than CAML.
This is partially due to the very inefficient GC of CAML; but even if we discard GC time, the
threaded code version of ZINC is as fast as CAML, and no more than 50 % slower than Standard
ML of New Jersey, claimed to be the fastest ML implementation to date. This is quite unexpected,
since CAML and SML-NJ generates native machine code, while poor little ZINC has to cope with
the overhead of interpretation. It demonstrates that the “baroque” mechanisms of the ZAM (special
treatment for multiple application, cache on the environment) are really efficient in case of large

87

88 CHAPTER 7. ASSESSMENT

programs. It also demonstrates that the compilers of CAML and SML-NJ are fairly naive, or more
precisely that the rather complex transformations they perform are not very rewarding, and that
they do not address the real performance bottlenecks. (A similar conclusion can be drawn from
Pierre Weis’ metacompiler [61], which is able to generate an ML compiler sometimes more efficient
than the CAML compiler.)

The other common saying about bytecode interpretation is that it is very easy to implement,
and this one, too, proved to be wrong. Compared to machine code generation, it introduces one
additional source of bugs: when a piece of assembly code crashes, we can be sure that the compiler
is the culprit; with bytecode interpretation, the bug can be in the interpreter as well. And detecting
bugs in the compiler is more complex. First, a disassembler for bytecode must be written, to be
able to read the output of the compiler. Then, it is not easy to see bugs at first sight, since the
semantics of bytecode instructions change from time to time. Finally, dynamic debugging (e.g.
putting breakpoints on some bytecode instructions) requires either adding a breakpoint and trace
facility in the bytecode interpreter itself, or putting some breakpoints on the interpreter program
itself, and trying to guess what the bytecode program is doing. This is almost as inconvenient as
debugging a program using an oscilloscope plugged on the bus of the machine

It remains to see now whether the current ZINC implementation fulfills its initial goals:

• getting a small, portable implementation of ML. ZINC is indeed fairly small: the runtime
system occupies about 100 K, compiled programs are very compact, thanks to the use of
bytecode, and they can run with fairly small heaps, thanks to the efficiency of the garbage
collector. And ZINC is indeed fully portable, at least for the bytecode version.

But ZINC can hardly be called a usable implementation of ML. An evidence is that it still
needs CAML to run its compiler and its linker! What prevents bootstrapping yet is not
missing language constructs in ZINC (it implements all the constructs used in the compiler),
but missing parts of the compiler, such as a lexical analyser, a parser, a typechecker, a
debugger and a toplevel; some libraries, such as input/output functions; and lots of primitives.
None of these is very difficult to implement, well-known techniques would suffice, but all
together they represent a fairly large amount of (rather uninteresting) work.

• providing a testbench for extensions of ML. For the time being, ZINC implements a very
classical ML, and no extensions at all. The simplicity of the system would certainly make
extensions not very difficult, though I realized the overall design is presumably not as flexible
as it could be, and this might make some extensions hard to integrate in it.

On the other hand, the ZINC implementation itself investigated some new techniques. In
particular, it puts to question the dogma according to which a good analysis is a static
analysis. ZINC demonstrates that some additional runtime tests are not always absolutely
evil, since they can save a lot of computation later on. This is the main idea behind the ZINC
execution model, and even if it leads to a slightly baroque abstract machine, it seems to work
better than traditional abstract machines in practice. The main problem with this approach
is that it requires full control over the execution line: the ZAM works fine with bytecode
interpretation, but it is not possible to map it efficiently on existing hardware (the existing
code is huge, and with lots of redundancies), since these hardware systems were designed with
different purposes in mind. To go further than bytecode interpretation, one would have to
microcode the ZAM instructions, in order to keep code size small and take advantage of the

89

fact that several steps of complex ZAM instructions can be executed in parallel. Microcodable
architectures are almost inexistent, however.

• learning how ML can be implemented. I definitely learned a lot while designing and imple-
menting ZINC, and this report is an attempt to share this experience. If you find it useful,
you should thank Gérard Huet, who caused me to write it; howewer, all criticism should be
directed to me.

90 CHAPTER 7. ASSESSMENT

Appendix A

Benchmarks

A.1 Simple benchmarking of abstract machines

These preliminary benchmarks compare the ZINC machine with the CAM as defined in [20], and
some flavour of SECD [37] (more precisely, a CAM with an additional register to hold the en-
vironment). Three variants of the ZINC machine are considered here, differing only in the way
environments are represented: by a linear list, by a linear list and a cache, and by a vector and
a cache. For each of those five machines, I wrote a bytecode interpreter in C, and a simple com-
piler in CAML. Compilers and interpreters are all written in the same spirit, so one may hope the
comparison is fair. The compilers are unable to compile more than one expression, so I had to use
fairly simple and well-known benchmarks. Here are the ML source of the tests:

let rec fib = fun n -> if n<2 then 1 else fib(n-1)+fib(n-2) in fib 26;;

let rec tak = fun x -> fun y -> fun z ->
if x > y then tak (tak (x-1) y z) (tak (y-1) z x) (tak (z-1) x y)

else z
in tak 18 12 6;;

let rec sum = function [] -> 0 | a::L -> a + sum L in
let rec interval = fun n -> if n=0 then [] else n :: interval(n-1) in
sum (interval 10000);;

let double = fun f -> fun x -> f(f x) in
let quad = double double in
let oct = quad quad in
double oct (fun x -> x+1) 1;;

let rec interval = fun n -> if n=0 then [] else n :: interval(n-1) in
let double = fun f -> fun x -> f(f x) in
let quad = double double in
let succ = fun n -> n+1 in
map (quad quad succ) (interval 1000);;

91

92 APPENDIX A. BENCHMARKS

fib 26 tak 18 12 6 sum(interval.. map (quad quad succ..

CAM 25.6 s 6.3 s 1.2 s 13.4 s
785674 words 636094 words 60012 words 1030088 words

SECD 19.1 s 5.1 s 0.9 s 11.2 s
785674 words 636094 words 60012 words 1030088 words

ZAM 21.7 s 4.6 s 1.1 s 12.3 s
no cache 785674 words 381658 words 60012 words 1030086 words
ZAM 24.0 s 4.9 s 1.2 s 14.0 s
cache+list 4 words 4 words 20008 words 4056 words
ZAM 23.3 s 4.6 s 1.2 s 13.3 s
cache+vector 4 words 4 words 20009 words 4078 words
ZAM threaded 10.6 s 2.2 s 0.5 s 6.0 s
cache+vector 4 words 4 words 20009 words 4078 words
CAML 40 3.5s (+5.2s) 2.6s (+3.9s) 0.5s (+0.7s) 2.5s (+3.3s)
version 2.6 785738 words 636158 words 60076 words 518118 words
SML-NJ 2.0 s 1.0 s 0.12 s 1.5s
version 0.33 n/a n/a n/a n/a
Handwritten C 1.4 s 0.2 s 0.1 s n/a

0 words 0 words 20000 words

Table A.1: Simple preliminary benchmarks

The classical fib function tests mostly the speed of function application (to one argument).
The tak function is highly recursive, too, but with three arguments; since it is curried here, it
tests multiple application. The sum (interval 10000) test mixes envenly recursive calls and data
building and destructuring. Finally, the test using the double functional is the only one essentially
functional, it shows how well functional values (e.g. partially applied functions) are handled.

The results of the benchmarks can be found in the first part of table A.1. For each test, I give
the execution time (measured on a Sun 3/60), and also the amount of heap requested (measured
in 32-bit words). Since there is no garbage collector in the bytecode interpreters used here (they
simply perform linear allocation in a huge heap), the cost of allocation is underestimated, compared
with an actual implementation. Therefore, the raw execution time must be tempered by the volume
of heap used.

These figures show that the CAM and the SECD have exactly the same (bad) memory behavior,
since they both allocate one pair for each function call. This is dramatic for functions performing
only arithmetic computations, such as fib; and even functions performing mostly structure build-
ing, and little else computation, such as interval and sumint, still use three times more heap
than necessary (about 60000 words instead of the 20000 needed to represent a 10000-element list).
The SECD is noticeably faster (about 25 %), because the additional register holding the current
environment saves a lot of stack shuffling (the Swap instruction of the CAM becomes unnecessary).

The simple ZINC machine (without cache) is not really better, except in the tak test, where its
efficient multiple application mechanism saves some time and cuts down the heap used by a factor
of two; this saving corresponds to the intermediate closures not built by the ZAM. Otherwise,
execution times are intermediate between the CAM and the SECD: the ZAM has an environment

A.2. REAL-SIZED BENCHMARKING OF ZINC 93

register, so it is faster than the CAM, but not as fast as the SECD because of the handling of marks
on the argument stack.

Adding a cache to the environment cuts down heap allocation by several orders of magnitude.
Indeed, for non-functional tests, the volume of heap used is almost the minimal one requested to do
the work, that is none for fib and fact, and 20000 words for sum(interval.... The functional test
map(quad quad succ) ... still allocates about twice as much as strictly necessary (2000 words),
due to the building of closures which requires to flush the cache to the heap. Execution times are
higher, of course, due mostly to the additional tests for environment access. Using a vector instead
of a list for the persistent part helps keeping this overhead acceptable. After all, in the case of fib,
a 785000-word space-saving easily compensates (in GC time) for 1.6 seconds of additional execution
time.

In the second part of table A.1, I tried to compare bytecode interpretation with other execution
methods. First, “threaded” code interpretation (that is, code consisting of sequences of pointers,
the addresses of the routines executing instructions), is twice as fast as bytecode interpretation,
for the same execution model (the ZAM with cache and vectors). Two factors contributes equally
to this speedup: first, instruction decoding is made faster (one indirect jump instead of one jump
through table); second, the interpreting routines are written directly in assembly language, since
C does not know about true indirect jumps, and I am able to write better 68020 code than usual
C compilers. As a reference point, I have included figures obtained with the CAML system itself,
that is the CAM execution model coupled with expansion of CAM code into machine code. CAML
turns out to be two to three times faster than threaded ZAM code for raw execution time, but
its memory behavior is almost exactly the one of the original CAM (with the exception of the
(quad quad succ) test, where a special optimization for combinator applications saves a lot of
conses), that is to say awful, hence if we take into account garbage collection times (written in
braces), it is not really faster than threaded ZAM code. On these simple tests, Standard ML of
New Jersey behaves much better (the given times include garbage collection). Finally, to recall the
reader what a well-compiled language would do on these tests, I have included times for equivalent
programs written in C; of course, the last test, using full functionality, cannot be translated easily.

A.2 Real-sized benchmarking of ZINC

For more realistic benchmarks, I have used an implementation of Knuth and Bendix’s comple-
tion procedure for equational theories [34]. This implementation is due to Gérard Huet, and the
original CAML source can be found in [29] and [25]. It is a simple, yet not totally naive, imple-
mentation, written in “classical ML” style (no side-effects, lots of functionals, . . .), and I think it
is representative of the use of ML for prototyping and teaching.

The original sources required very little adaptation to run on ZINC. Indeed, the sole incompat-
ibility was due to the fact that the original code relied on CAML parsing (a,b,c) as (a,(b,c)),
while in ZINC the first is a triple and the latter is a pair. A few extra braces fixed it immediately.
For conveniency, I also split the program in six small modules. The benchmark itself consists in
the completion of the axioms of groups. It was run on a Sun 3/280, using the following implemen-
tations: ZINC with a bytecode interpreter written in C; ZINC with a threaded code interpreter
written in 68020 assembly language; ZINC with a translator producing native 68020 code; the
distribution CAML version 2.6; an experimental version of CAML using the same efficient garbage

94 APPENDIX A. BENCHMARKS

System Time Size
ZINC, interpreted bytecode 29.0 s 5.4 K
ZINC, interpreted threaded code 15.5 s 8.2 K
ZINC, expansion to 68020 native code 9.7 s 31.7 K
CAML 40 (version 2.6) 36.6 s (15.4 s + GC 21.2 s) 11.7 K
CAML (new runtime) 14.7 s n/a
SML-NJ (version 0.33) 10.5 s n/a

Table A.2: The Knuth-Bendix completion benchmark

collector than ZINC, and a new runtime system; and finally, Standard ML of New Jersey, release
0.33. The results are summarized in table A.2.

The first conclusion is that interpretation performs quite well compared to naive generation of
machine code. Indeed, expansion to 68020 assembly language is just one-third faster than threaded
code interpretation. Going from bytecode interpretation to threaded-code interpretation is almost
as efficient as going from bytecode interpretation to expansion to native code. This is due to the
fact that in case of the threaded-code interpreter, the routines executing the instructions are hand-
written in assembly language, therefore they are as efficient as the pieces of assembly language
generated by the expander, while interpretation overhead is reduced to a minimum. It is not
negligible yet, however: both interpreters spend 37 % of their time fetching and decoding the next
instruction (10.7 s in case of bytecode, 5.6 s in case of threaded code).

The second conclusion is that a toy implementation such as ZINC compares quite favorably with
mature implementations such as CAML and SML-NJ. Even the portable, bytecode-interpreted
version of ZINC is faster than CAML. This is mostly due to the inefficiency of CAML garbage
collector; the new runtime, using the same garbage collector as ZINC, cuts down execution times
by a factor of two. Even then, the threaded-code interpreter is almost as fast as CAML, and only
one-third slower than SML-NJ, claimed to be one of the fastest ML implementations to date. These
results are quite unexpected, given the results of the preliminary benchmarks. They show that the
special mechanisms of the ZAM (efficient multiple application, cache on the environment, . . .) are
really efficient for non-trivial programs.

To confirm this intuition, I ran an extensive profiling of the bytecode interpreter. A summary
of instruction frequencies and execution times is given in table A.3. The special mechanisms for
multiple application prove quite efficient, since the Grab instruction almost never fails: over 345581
executions, only 43 found an empty argument stack and had to build a closure. This shows that
partial application of a curried functions seldom happens. Symmetrically, the case where Return
does not go back to the caller, but applies the result to the next remaining argument, is not
uncommon at all (78315 times out of 193431, that is about 40%).

Regarding the cache on the environment, it cuts down heap allocation for environments by a
factor of four: among the 1237285 words of data that were stored in the environment during the
test, only 410450 had to be copied back to the heap. Conversely, accesses to the environment have
a cache hit rate of 69.8%. Average size of active caches (those in the return stack) is between two
and three words.

Memory behavior is as follows: 1178465 words (without taking headers into account) are al-
located in the heap. Among these, 35.3% hold data structures, 36.5% persistent environments,
and the remaining 28.2% are closures. In contrast, CAML allocates 2027906 conses to run this

A.2. REAL-SIZED BENCHMARKING OF ZINC 95

Instruction Frequency
Access0 1449497
Push 1427445
Getfield1 792583
Getfield0 655375
Access1 512027
Appterm 433327
Getglobal 394174
Access2 355109
Branchifnot 352176
Grab 345581
Pushmark 285221
Apply 284121
Return 193431
Letrec1 157697
Switch 153208

Instruction Time (in seconds)
Letrec1 5.0 + GC 2.1
Push 3.7
Grab 3.2
Access0 3.1
Appterm 3.0
Makeblock2 1.8 + GC 1.0
Access2 2.4
Getfield1 2.3
Getfield0 2.2
Apply 2.2
Access1 2.2
Getglobal 2.0
Branchifnot 1.7
Branchifnequal 1.4
Return 1.2

Table A.3: The top 15 instruction counts and interpretation times

benchmark, that is over 4 million words, and among these, only 8.3% hold data structures.
From these figures, and especially those for the Letrec1 instruction, it seems that the main

performance bottleneck is the treatment of local function definitions: building a closure each time
is the main source of cache flushing.

96 APPENDIX A. BENCHMARKS

Bibliography

[1] Mart́ın Abadi, Luca Cardelli, Benjamin C. Pierce, Gordon D. Plotkin. “Dynamic Typing in a
Statically Typed Language.” 16th Ann. ACM Symp. on Principles of Programming Languages,
1989.

[2] Mart́ın Abadi, Luca Cardelli, Pierre-Louis Curien, Jean-Jacques Lévy. “Explicit Substitu-
tions.” To appear in 17th Ann. ACM Symp. on Principles of Programming Languages, 1990.

[3] Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman. Compilers, principles, techniques, and tools.
Addison-Wesley, 1986.

[4] A. Appel. A runtime system. Draft, Princeton University, 1989.

[5] Andrew Appel, David MacQueen. “A Standard ML Compiler.” Functional Programming Lan-
guages and Computer Architecture, Lecture Notes in Computeer Science 242, Springer-Verlag,
1987.

[6] Andrew Appel, Trevor Jim. “Continuation-passing style, closure-passing style.” 16th Ann.
ACM Symp. on Principles of Programming Languages, 1989.

[7] L. Augustsson. “A compiler for Lazy ML”. 1984 Lisp and Functional Programming Conference,
1984.

[8] Joel F. Bartlett. Compacting Garbage Collector with Ambiguous Roots. Technical report, DEC
Western Research Laboratory, February 1988.

[9] Gérard Berry, Ravi Sethi. “From regular expressions to deterministic automata.” Theoretical
Computer Science 48 (1986), 117–126.

[10] N. G. de Bruijn. “Lambda-Calculus Notation with Nameless Dummies, a Tool for Automatic
Formula Manipulation with Application to the Church-Rosser Theorem.” Indag. Math. 34, 5
(1972), 381–392.

[11] Luca Cardelli. “The Functional Abstract Machine.” Polymorphism,

[12] Luca Cardelli. “Amber.” Combinators and Functional Programming Languages, Proc. 13th
Summer School of the LITP, Le Val d’Ajol, May 1985, Lecture Notes in Computer Science
242, Springer-Verlag, 1986.

97

98 BIBLIOGRAPHY

[13] Luca Cardelli. “The Amber Machine.” Combinators and Functional Programming Languages,
Proc. 13th Summer School of the LITP, Le Val d’Ajol, May 1985, Lecture Notes in Computer
Science 242, Springer-Verlag, 1986.

[14] Luca Cardelli. “Typeful Programming.” Research report 45, DEC Systems Research Center,
1989. To appear in Proc. IFIP State of the Art Seminar on Formal Description of Programming
Concepts (Rio de Janeiro, April 1989).

[15] Luca Cardelli, Peter Wegner. “On understanding types, data abstraction, and polymorphism.”
Computing surveys, vol. 17(4), 1985.

[16] Luca Cardelli, Xavier Leroy. “Abstract Types and the Dot Notation.” To appear in Proc. IFIP
Working Conference on Programming Concepts and Methods (Sea of Galilee, April 1990).

[17] Jérôme Chailloux. La machine LLM3. INRIA technical report 55, 1985.

[18] Jérôme Chailloux et al. Le Lisp version 15.22, manuel de référence. INRIA.

[19] Guy Cousineau, Gérard Huet. The CAML Primer. INRIA.

[20] Guy Cousineau, Pierre-Louis Curien, Michel Mauny. “The Categorical Abstract Machine.” In
Functional Programming Languages and Computer Architecture, J. P. Jouannaud ed., Lecture
Notes in Computer Science 201, Springer-Verlag, 1985.

[21] Pierre Crégut. Machines abstraites pour la réduction de λ-termes. Thèse de doctorat, Univer-
sité Paris VII, forthcoming.

[22] Alain Deutsch. “On determining lifetime and aliasing of dynamically allocated data in higher-
order functional specifications. ” To appear in 17th Ann. ACM Symp. on Principles of Pro-
gramming Languages, 1990.

[23] Damien Doligez. Réalisation d’un glaneur de cellules de Lang et Dupont à générations. Mémoire
de D.E.A., Université Paris VII, Sept. 1989.

[24] J. Fairbairn, S. C. Wray. “TIM: a simple abstract machine for executing supercombinators”.
Functional Programming and Computer Architecture, 1987.

[25] Formel project. The CAML Anthology. INRIA.

[26] M. Gordon, R. Milner, C. Wadsworth. Edinburgh LCF. Lecture Notes in Computer Science
78, Springer-Verlag, 1978.

[27] Thérèse Hardin, Jean-Jacques Lévy. A confluent calculus of substitutions. Draft.

[28] Robert Harper, David MacQueen, Robin Milner. “The definition of Standard ML, Version 3”.
Laboratory for Foundations of Computer Science, University of Edinburgh, 1989.

[29] Gérard Huet. Formal structures for computation and deduction. Course notes, Carnegie-Mellon
University, May 1986.

[30] Gérard Huet. “The constructive engine.” In The Calculus of Constructions, INRIA technical
report 110, 1989

BIBLIOGRAPHY 99

[31] Lalita A. Jategaonkar, John C. Mitchell. “ML with Extended Pattern Matching and Subtypes”.
Proc. 1988 Conference on Lisp and Functional Programming.

[32] T. Johnsson. “Efficient compilation of lazy evaluation.” ACM Conference on Compiler Con-
struction, 58–69, 1985.

[33] Brian W. Kernighan, Dennis M. Ritchie. The C programming language. Prentice Hall, 1978,
1988.

[34] D. Knuth, P. Bendix. “Simple word problems in universal algebras.” In Computational Prob-
lems in Abstract Algebra, ed. J. Leech, Pergamon Press (1970), 263–297.

[35] David Krantz, Richard Kelsey, Jonathan Rees et al. “ORBIT: An Optimizing Compiler for
Scheme.” SIGPLAN Notices, 21(7), July 1986.

[36] J.-L. Krivine. Unpublished.

[37] P. J. Landin. “The mechanical evaluation of expressions. ” The Computer Journal 6 (1964),
308–320.

[38] Bernard Lang, Francis Dupont. “Incremental Incrementally Compacting Garbage Collection.”
SIGPLAN Notices, 22(7), July 1987, 253–263.

[39] Alain Laville. Evaluation Paresseuse des Filtrages avec Priorité, application au langage ML.
Thèse de doctorat, Université Paris VII, 1988.

[40] Alain Laville. “Lazy pattern matching.” Draft.

[41] R. G. Loeliger. Threaded interpretive languages. Byte Books, 1981.

[42] David MacQueen. “Modules for Standard ML.” 1984 Conference on Lisp and Functional Pro-
gramming, 198–207.

[43] David MacQueen. “Using Dependent Types to express Program Structure.” 13th Ann. ACM
Symp. on Principles of Programming Languages, 1986.

[44] Michel Mauny. Compilation des langages fonctionnels dans les combinateurs catégoriques, ap-
plication au langage ML. Thèse de troisième cycle, Université Paris VII, September 1985.

[45] Michel Mauny. Spécification CAML d’un sous-ensemble de CAML. Course notes, D.E.A.,
Université Paris VII, 1989.

[46] Michel Mauny, Ascander Suárez. “Implementing Functional Languages in the Categorical Ab-
stract Machine.” Proc. 1986 ACM conference on Lisp and Functional Programming, 266–279.

[47] Greg Nelson et al. Modula-3 Report. Research report 31, DEC Systems Research Center, 1988.

[48] Atsushi Ohori, Peter Buneman. “Type Inference in a Database Language.” Proc. 1988 ACM
Conference on LISP and Functional Programming, 174–183.

[49] D. L. Parnas. “On the criteria to be used in decomposing systems into modules.” Communi-
cations of the ACM, 15(12), 1053–1058, December 1972.

100 BIBLIOGRAPHY

[50] S. Peyton-Jones. The Implementation of Functional Programming Languages. Prentice-Hall,
1987.

[51] Laurence Puel, Ascánder Suárez. Compiling pattern matching by term decomposition. Research
report 4, DEC Paris Research Laboratory, 1989.

[52] Didier Rémy. Etude de la génération de code du langage CAML et de son optimisation. Mémoire
de D.E.A., Université Paris VII, 1987.

[53] Didier Rémy. “Records and variants as a natural extension of ML.” 16th Ann. ACM Symp.
on Principles of Programming Languages, 1989.

[54] Didier Rémy. Algèbres touffues. Application au typage polymorphe des objets enregistrements
dans les langages fonctionnels. Thèse de doctorat, Université Paris VII, forthcoming.

[55] Bernard Serpette, Jean Vuillemin, Jean-Claude Hervé. BigNum: A Portable and Efficient
Package for Arbitrary-Precision Arithmetic. Research report number 2, DEC Paris Research
Laboratory, 1989.

[56] Richard Stallman. GNU Emacs Manual. Free Software Foundation, 1985.

[57] Richard Stallman. Using and Porting GNU CC. Free Software Foundation, 1988.

[58] G. L. Steele, G. J. Sussman. Revised report on Scheme, a dialect of Lisp. MIT AI memo 452,
1978.

[59] Ascánder Suárez. Une implémentation de ML en ML. Thèse de doctorat, Université Paris VII,
forthcoming.

[60] P. Wadler, S. Blott. How to make ad-hoc polymorphism less ad-hoc. 16th Ann. ACM Symp.
on Principles of Programming Languages, 1989.

[61] Pierre Weis. Le système SAM: métacompilation très efficace à l’aide d’opérateurs sémantiques.
Thèse de doctorat, Université Paris VII, 1987.

[62] Pierre Weis et al. The CAML Reference Manual, version 2.6. INRIA, 1989.

[63] N. Wirth. Programming in Modula-2. Texts and Monographs in Computer Science, Springer-
Verlag, 1983.

