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Intermediate representations in a compiler

Between high-level languages and machine code, compilers generally go
through one or several intermediate representations where, in particular:

Expressions are decomposed in a sequence of processor-level
instructions.

x = (y + z) * (a - b)

-->

t1 = y + z; t2 = a - b; x = t1 * t2;

Temporary variables (t1, t2) are introduced to hold intermediate
results.

These temporaries, along with program variables, can later be placed
in concrete locations: processor registers or stack slots.

Various optimizations can be performed over the intermediate
representation.

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2015–2017 2 / 36



Outline

1 A conventional IR: RTL-CFG

2 CPS as a functional IR

3 Another functional IR: A-normal forms

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2015–2017 3 / 36



A conventional IR: RTL-CFG

A conventional intermediate representation: RTL-CFG

(Register Transfer Language with Control-Flow Graph.)

A function = a set of processor-level instructions operating over variables
and temporaries, e.g.

x = y + z

t = load(x + 8)

if (t == 0)

Organized in a control-flow graph:

Nodes = instructions.

Edge from I to J = J can execute just after I .
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A conventional IR: RTL-CFG

Example: some source code

double average(int * tbl, int size)

{

double s = 0.0;

int i;

for (i = 0; i < size; i++)

s = s + tbl[i];

return s;

}
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A conventional IR: RTL-CFG

Example: the corresponding RTL graph

s = 0.0

i = 0

if (i >= size)

a = i << 2

b = load(tbl + a)

c = float(b)

s = s +f c

i = i + 1

d = float(size)

e = s /f d

return(e)
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A conventional IR: RTL-CFG

Classic optimizations over RTL

Many classic optimizations can be performed on the RTL form.

Constant propagation

a = 1 a = 1

b = 2 --> b = 2

c = a + b c = 3

d = x - a d = x + (-1)

Dead code elimination

a = 1 nop

b = 2 --> b = 2

c = 3 c = 3

(if a unused later)
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A conventional IR: RTL-CFG

Common subexpression elimination

c = a c = a

d = a + b --> d = a + b

e = c + b e = d

Hoisting of loop-invariant computations

L: c = a + b c = a + b

... --> L: ...

... -> L ... -> L

Induction variable elimination

i = 0 i = 0

L: a = i * 4 --> b = p

b = p + a L: ...

... b = b + 4

i = i + 1 -> L i = i + 1 -> L

. . . and much more. (See e.g. Steven Muchnick, Advanced Compiler Design

and Implementation, Morgan Kaufmann Publishers.)
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A conventional IR: RTL-CFG

RTL optimizations and dataflow analysis
Problem: it is not obvious to see where these optimizations apply, because

1 A given variable or temporary can be defined several times.
(Unavoidable if the source language is imperative.)

2 The CFG is not a structured representation of control.

n = 1 n = 2

n = n + 1

n is 1

n statically unknown

n is 2

n statically unknown
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A conventional IR: RTL-CFG

RTL optimizations and dataflow analysis

Solution: use static analyses to determine opportunities for optimization,
e.g. dataflow analyses (a simple case of abstract interpretation).

Example: for constant propagation, use the abstract lattice

a := > | ⊥ | N

n = 1 n = 2

n = n + 1

ñ = 1

ñ = >

ñ = 2

ñ = >
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A conventional IR: RTL-CFG

Single Static Assignment (SSA)

SSA is a variant of RTL where every variable is the result of only one
instruction.

For straight-line codes: just rename variables to avoid accidental reuse.

y = x * 4

y = y + 1

if (y > 0)

Not SSA

y = x * 4

y’ = y + 1

if (y’ > 0)

SSA
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A conventional IR: RTL-CFG

Phi nodes

For join points and loops in the control-flow graph:
introduce φ instructions to merge multiple definitions of a variable.

x = ... x = ...

use x

x1 = ... x2 = ...

use x3

x3 = φ(x1,x2)

Not SSA SSA

Informal semantics: x = φ(x1, . . . , xn) assigns x = xi when entered from
the i-th predecessor node.
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A conventional IR: RTL-CFG

Why SSA?

SSA simplifies dataflow analysis: a given variable has the same abstract
value at every point where the variable is defined.

n1 = 1 n2 = 2

n3 = φ(n1,n2)

n4 = φ(n2,n5)

n5 = n4 + 1

We have ñ1 = 1 and ñ2 = 2 and ñ3 = ñ4 = ñ5 = > everywhere.
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CPS as a functional IR
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CPS as a functional IR

CPS as a functional IR

CPS terms share many features of intermediate representations. In
particular, expressions are decomposed in individual operations and
intermediate results are named.

Example: source term let x = (y + z) ∗ (a− b) in . . ..

CPS RTL

(y + z) � (λt. t = y + z;

(a - b) � (λu. u = a - b;

(t * u) � (λx. x = t * u;

...))) ...

(We write � for reverse function application: a� b = b a.)
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CPS as a functional IR

CPS as a functional IR

Likewise, let-bound continuations correspond to join points in a
control-flow graph. Applying such a continuation corresponds to a φ node
in SSA form.

Example: source term let x = (if c then y + 1 else z + 2) in . . .

let k = λx ... in

if c

then k(y+1)

else k(z+2)

x1 = y+1 x2 = z+2

x = φ(x1,x2)
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CPS as a functional IR

Optimizations on CPS terms

When expressed over CPS terms, many classic optimizations boil down to
β-reduction, or arithmetic reductions, or variants thereof.

Example: constant propagation ≈ β and arithmetic reduction.

1� (λx . . . . x + 1 . . . x + y . . .)
→ . . . 2 . . . 1 + y . . .

Example: common subexpression elimination ≈ inverse β

(a + b) � (λx. (a + b) � (λx.
... ---> ...

(a + b) � (λy. x � (λy.
... ...
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CPS as a functional IR

Back to direct style

To support stack-allocation of activation records, several functional
compilers perform an inverse CPS transformation after CPS optimization,
to recover direct-style (DS) function calls.

Source

CPS
transf.

administrative
reductions

optimizing

reductions

inverse CPS
transf.

DS

CPS
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CPS as a functional IR

The inverse CPS transformation
(Sabry and Felleisen, LFP 1992)

Grammar of CPS terms after administrative normalization:

Terms: P ::= k W | let x = W in P |W1 W2 k |W1 W2 (λk.P)

Values: W ::= N | x | λx .λk .P

Inverse CPS transformation:

U(k W ) = W

U(let x = W in P) = let x = W in U(P)

U(W1 W2 k) = W1 W2 (tail application)

U(W1 W2 (λx .P)) = let x = W1 W2 in P (non-tail application)

with N = N and x = x and λx .λk .P = λx .U(P)
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CPS as a functional IR

The origin of ANF
(Flanagan, Sabry, Felleisen, The essence of compiling with continuations, PLDI 1993.)

In 1993, Flanagan, Sabry and Felleisen showed that this detour through
CPS can be avoided, and indeed is unnecessary in the following formal
sense:

Source

CPS
transf.

administrative
reductions

optimizing

reductions

inverse CPS
transf.

DS

CPS

ANF
ANF

conversion

optimizing

reductions

inverse CPS
transf.

ANF stands for “administrative normal form”, and is the direct-style
sub-language that is the target of inv-CPS-transf ◦ adm-red ◦ CPS-transf.
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Another functional IR: A-normal forms
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Another functional IR: A-normal forms

Syntax of ANF

Atom:
a ::= x | N | λ~x .b

Computation:
c ::= a1 op a2 arithmetic
| a(~a) function application
| C (~a) datatype constructor
| closure(a, ~a) closure constructor

Body:
b ::= c tail computation
| let x = c in b sequencing
| if a then b1 else b2 conditional
| match a with . . . pi → bi . . . pattern-matching
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Another functional IR: A-normal forms

ANF as a CFG

let x = a + b in

if (x >= a)

then x

else 0

x = a + b

if (x >= a)

return x return 0
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Another functional IR: A-normal forms

Conversion to ANF

Step 1: perform monadic conversion.

Example 1

Source term: 1 + (if x >= 0 then f (x) else 0)

Monadic conversion:

bind (if x >= 0 then f(x) else ret 0)

(λt. 1 + t)
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Another functional IR: A-normal forms

Conversion to ANF

Step 2: interpret the result in the Identity monad:

ret a 7→ a

bind a (λx .b) 7→ let x = a in b

Example 2

Source term: 1 + (if x >= 0 then f (x) else 0)

Monadic conversion + identity monad:

let t = if x >= 0 then f(x) else ret 0

in 1 + t

Result is in so-called Monadic Intermediate Form, but not yet in ANF.
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Another functional IR: A-normal forms

Conversion to ANF
Step 3: “flatten” the nesting of let, if and match.

let x = (let y = a in b) in c

→ let y = a in let x = b in c (if y not free in c)

let x = (if a then b else c) in d

→ if a then (let x = b in d) else (let x = c in d)

let x = (match a with . . . pi → bi . . .) in c

→ match a with . . . pi → let x = bi in c . . .

match (match a with . . . pi → bi . . .) with . . . qj → cj . . .

→ match a with . . . pi → (match bi with . . . qj → cj . . .) . . .

Example 3

if x >= 0

then let t = f(x) in 1 + t

else let t = 0 in 1 + t
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Another functional IR: A-normal forms

Tail duplication, and how to avoid it

Note that possibly large terms can be duplicated:

if (if a then b else c) then d else e

→ if a then (if b then d else e) else (if c then d else e)

This can be avoided by using auxiliary functions: (≈ SSA φ nodes)

if (if a then b else c) then d else e

→ let f (x) = if x then d else e in if a then f (b) else f (c)

a

b

d e

c

d e

a

b c

d e
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Another functional IR: A-normal forms

Optimizations on ANF terms

As in the case of CPS, classic optimizations boil down to β-reduction or
arithmetic reductions over ANF terms.

Example: constant propagation ≈ β and arithmetic reduction.

let x = 1 in . . . x + 1 . . . x + y . . .
→ . . . 2 . . . 1 + y . . .

Example: common subexpression elimination ≈ inverse β

let x = a + b in let x = a + b in

... --> ...

let y = a + b in let y = x in

... ...
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Another functional IR: A-normal forms

Register allocation

The register allocation problem: place every variable in hardware registers
or stack locations, maximizing the use of hardware registers.

Naive approach:
Assign the N hardware registers to the N most used variables; assign stack
slots to the other variables.

Finer approach:
Notice that the same hardware register can be assigned to several distinct
variables, provided they are never used simultaneously.

Example 4

if ... then (let x = ... in ...) else (let y = ... in ...)

x and y can share a register.
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Another functional IR: A-normal forms

Register allocation on ANF

On functional intermediate representations like ANF, register allocation
boils down to α-conversion.

The register allocation problem, revisited: rename variables, using
hardware registers or stack locations as new names, in such a way that

(Correctness) the renamed term is α-equivalent to the original;

(Efficiency) hardware registers are used as much as possible.

Example 5

if ... then (let x = ... in ...) else (let y = ... in ...)

can be α-converted to

if ... then (let R1 = ... in ...) else (let R1 = ... in ...)
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Another functional IR: A-normal forms

The interference graph

An undirected graph,

Nodes: names of variables

Edges: between any two variables that cannot be renamed to the
same location, as this would violate α-equivalence.

Constructing the interference graph: at each point where a variable x is
bound, add edges with all other variables that occur free in the
continuation of this binding.

let x = c in b
→ add edges between x and all y ∈ FV (b) \ {x}

match a with . . .C (x1, . . . , xn)→ b . . .
→ add edges between xi and all y ∈ FV (b) \ {xi}.
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Another functional IR: A-normal forms

Example of an interference graph

let s = 0.0 in

let i = 0 in

let rec f(s,i) =

if (ri < size) then

let a = i*4 in

let b = load(tbl+a) in

let c = float(b) in

let s = s +f c in

let i = i + 1 in

f(s,i)

else

let d = float(size) in

s /f d

in f(s,i)

tbl

size

i

s

a

b

c

d
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Another functional IR: A-normal forms

Register allocation by graph coloring

Correct register allocations correspond to colorings of the interference
graph: each node should be assigned a color (= a register or stack
location) so that adjacent nodes have different colors.

If the interference graph can be colored with at most N colors (where N is
the number of hardware register), we obtain a perfect register allocation.

Otherwise, the coloring is a good starting point to determine which
variables go into registers.

(A. Appel, Modern compiler implementation in ML, Cambridge University Press,

chapter 11.)
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Another functional IR: A-normal forms

Register allocation by graph coloring
Any undirected graph is the interference graph of a CFG
→ perfect register allocation on RTL-CFG is NP-complete.

The interference graphs for SSA graphs and ANF terms are chordal
→ “perfect” register allocation in polynomial time.

(F. Pereira and J. Palsberg, Register allocation via coloring of chordal graphs,

APLAS 2005.)
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Another functional IR: A-normal forms

Register allocation by graph coloring

Why “perfect” and not just perfect? Two auxiliary problems remain hard
(as in NP-hard) even on chordal graphs:

1 Spilling: when not enough registers, choose which variables to “spill”
to stack slots, and insert appropriate stack-reg moves around uses of
these variables.

2 Coalescing: try to give the same color to two variables when doing so
suppresses a move instruction, e.g.

let f x = ... in ... f y ... f z ...

(Optimal: assign the same register to x, y and z.)
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Another functional IR: A-normal forms

Some uses of functional intermediate representations

Production-quality compilers:

Gambit (for Scheme, using CPS)

Standard ML of New Jersey (for SML, using CPS)

MLton (for SML, using CPS)

MLj and SML.net (for SML, using Monadic Intermediate Form)

Simple formally-verified compilers for mini-ML:

by A. Chlipala (using CPS)

by Z. Dargaye (using Monadic Intermediate Form)

Functional intermediate representations as path of least resistance towards
formally-verified functional compilers?
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