
Proving the correctness of a compiler

Xavier Leroy

Collège de France and Inria

EUTypes Summer School 2019

1

The compilation process

In general: any translation from a computer language to another.

More specifically:
automatic translation
from a high-level language suitable for programming by humans
to a low-level language executable by machines
with a concern for e�ciency (“optimizing” compilers).

2

Miscompilation

Traduttore, traditore (“Translator, traitor”)

Bugs in the compiler can make it produce wrong executable code for a
correct source program.

For ordinary so�ware:
negligible compared with bugs in the program itself;
painful to track down.

For critical so�ware:
a risk that needs to be handled;
can invalidate the guarantees obtained by formal verification of the
source program.

3

The formal verification of compilers

To prove (with mathematical certainty) that a compiler is free of
miscompilation and preserves the semantics of the source programs.

To transport the guarantees obtained by source-level verification all the
way to the executable code.

4

Teaching compiler verification at EUTypes

An opportunity to study:
An approach to program proof where the program and the proof are
both written using a proof assistant (Coq).

The semantics of two languages (source & target) and how to
mechanize them.

Some nontrivial algorithms and their correctness proofs.

5

Lecture material

https://xavierleroy.org/courses/EUTypes-2019/

The Coq development (source archive + HTML view).

These slides.

Further reading.

6

https://xavierleroy.org/courses/EUTypes-2019/

Course outline

1 Compiling IMP to a simple virtual machine; first compiler proofs.
2 Notions of semantic preservation; more on semantics; finishing the

proof of the IMP→ VM compiler.
3 Verification of an optimizing program transformation (constant

propagation) and the static analysis it uses.
4 More on static analyses: fixpoint iterations, liveness analysis,

applications to dead code elimination.

Homework: exercises (some recommended, others optional).

7

I

The IMP language

Warm-up: Arithmetic expressions

A language of expressions comprising
variables x, y, . . .
integer constants 0, 1, −5, . . . , n
e1 + e2 and e1 − e2
where e1, e2 are themselves expressions.

9

Abstract syntax

We manipulate expressions not via their concrete syntax (1 + x - 2)
but via their abstract syntax represented by an inductive type.

Definition ident := string.

Inductive aexp : Type :=

| CONST (n: Z) (* a constant, or *)

| VAR (x: ident) (* a variable, or *)

| PLUS (a1: aexp) (a2: aexp) (* a sum, or *)

| MINUS (a1: aexp) (a2: aexp). (* a difference *)

CONST, VAR, PLUS, MINUS are functions that construct terms of type aexp.

All terms of type aexp are finitely generated by these 4 functions
→ enables case analysis and induction.

10

Semantics of arithmetic expressions

In denotational style: a function [[e]] s that gives the denotation of
expression e (the integer it evaluates to) in store s (a mapping from
variable names to integers).

In ordinary mathematics, the denotational semantics is presented as a
set of equations:

[[x]] s = s(x)
[[n]] s = n

[[e1 + e2]] s = [[e1]] s + [[e2]] s
[[e1 − e2]] s = [[e1]] s− [[e2]] s

In Coq: recursive function + pattern-matching. (See file IMP.v.)

11

The IMP language
A prototypical imperative language with structured control flow.

Composed of expressions (arithmetic, Boolean) and commands.

Arithmetic expressions:
a ::= n | x | a1 + a2 | a1 − a2

Boolean expressions:
b ::= true | false | a1 = a2 | a1 ≤ a2
| not b | b1 and b2

Commands (statements):
c ::= skip (do nothing)
| x := a (assignment)
| c1; c2 (sequence)
| if b then c1 else c2 fi (conditional)
| while b do c done (loop)

12

An example of an IMP program

Euclidean division by repeated subtraction.

// input: dividend in a, divisor in b

r := a;

q := 0;

while b <= r do

r := r - b;

q := q + 1

done

// output: quotient in q, remainder in r

13

Formalizing IMP

Abstract syntax: three inductive types: aexp, bexp, com.

Denotational semantics: not representable as a Coq function!
Classically, the denotation [[c]] s of a command is either ⊥
(nontermination) or the final store s′ (termination).
IMP being Turing-complete, this denotation is not computable and
cannot be represented as a Coq function.

Operational semantics: in big-step style, as a relation c/s⇒ s′
(“started in store s, command c terminates and the final store is s′ ”).

14

Big-step operational semantics

skip/s⇒ s x := a/s⇒ s[x← [[a]] s]

c1/s⇒ s1 c2/s1 ⇒ s2

c1; c2/s⇒ s2

c1/s⇒ s′ if [[b]] s = true

c2/s⇒ s′ if [[b]] s = false

if b then c1 else c2/s⇒ s′

[[b]] s = false

while b do c done/s⇒ s

[[b]] s = true c/s⇒ s1 while b do c done/s1 ⇒ s2

while b do c done/s⇒ s2

In Coq: an inductive predicate cexec s c s’.

15

II

The IMP virtual machine

Virtual machines

Producing machine code for real processors (x86, ARM, . . .) is rather
di�cult.

Many compilers (e.g. Java, C#) use a virtual machine as an intermediate
step between source language and true machine code.

Like real machines, virtual machines execute sequences of simple
instructions: no complex expressions, no control structures, . . .

The instructions of the virtual machine are chosen to be close to the
basic operations of the source language.

17

The IMP virtual machine

Components of the machine:

The code C : a list of instructions.

The program counter pc : an integer, giving the position of the
currently-executing instruction in C.

The store s : a mapping from variable names to integer values.

The stack σ : a list of integer values
(used to store intermediate results temporarily).

(Inspiration: old HP pocket calculators; the Java Virtual Machine.)

18

The instruction set

i ::= Iconst(n) push n on stack
| Ivar(x) push value of x
| Isetvar(x) pop value and assign it to x
| Iadd pop two values, push their sum
| Iopp pop one value, push its opposite
| Ibranch(δ) unconditional jump
| Ibeq(δ1, δ0) pop two values, jump δ1 if = , jump δ0 if 6=
| Ible(δ1, δ0) pop two values, jump δ1 if ≤ , jump δ0 if >
| Ihalt end of program

By default, each instruction increments pc by 1.
Exception: branch instructions increment it by 1 + δ.
(δ is a branch o�set relative to the next instruction.)

19

Example

stack ε 12
1
12 13 ε

store x 7→ 12 x 7→ 12 x 7→ 12 x 7→ 12 x 7→ 13

p.c. 0 1 2 3 4

code Ivar(x); Iconst(1); Iadd; Isetvar(x); Ibranch(−5)

20

Semantics of the machine

Given in small-step operational style: a transition relation that
represents the execution of one instruction.

Definition code := list instruction.

Definition stack := list Z.

Definition config : Type := (Z * stack * store)%type.

Inductive transition (C: code): config -> config -> Prop :=

...

(See file Compil.v.)

21

Executing machine programs

By iterating the transition relation:
Initial states: pc = 0, initial store, empty stack.
Final states: pc points to a Ihalt instruction, empty stack.

Definition transitions (C: code): config -> config -> Prop :=

star (transition C).

Definition machine_terminates

(C: code) (s_init: store) (s_final: store) : Prop :=

exists pc,

transitions C (0, nil, s_init) (pc, nil, s_final)

/\ instr_at C pc = Some Ihalt.

(star is reflexive transitive closure. See file Sequences.v.)

22

III

The compiler

Compilation of arithmetic expressions

General contract: if a evaluates to n in store s,

code for a

pc
σ

s
Before:

pc′ = pc + |code|
n :: σ
s

A�er:

Compilation is just translation to “reverse Polish notation”.

(See Coq function compile_aexp)

24

Compilation of arithmetic expressions

Base case: if a = x,

Ivar(x)

pc
σ

s

pc′ = pc + 1
s(x) :: σ
s

Recursive decomposition: if a = a1 + a2,

code for a1 code for a2 Iadd

pc
σ

s

pc′
n1 :: σ

s

pc′′
n2 :: n1 :: σ

s

pc′′ + 1
(n1 + n2) :: σ
s

25

Compilation of boolean expressions

compile bexp b cond δ1 δ0 should
skip δ1 instructions forward if b evaluates to true

skip δ0 instructions forward if b evaluates to false.

code for b

pc′pc
σ

st
Before

pc′ + δ0
σ

st

A�er (if result is false)

pc′ + δ1
σ

st

A�er (if result is true)

26

Compilation of boolean expressions

A base case: b = (a1 = a2)

code for a1 code for a2 Ibeq(δ1, δ0)

pc
σ

st

pc′
n1 :: σ

st

pc′′
n2 :: n1 :: σ

st

pc′′ + 1 + δ1
σ

st

pc′′ + 1 + δ0
σ

st

27

Short-circuiting “and” expressions

If b1 evaluates to false, so does b1 and b2: no need to evaluate b2!

→ In this case, the code generated for b1 and b2 should skip over the
code for b2 and branch directly to the correct destination.

code for b1 code for b2

δ0 + |code(b2)|

δ0

0
δ1

28

Compilation of commands

If the command c, started in initial store s, terminates in final store s′,

code for c

pc
σ

s
Before:

pc′ = pc + |code|
σ

s′
A�er:

(See function compile_com in Compil.v)

29

The mysterious o�sets

Code for IFTHENELSE b c1 c2:

code for b code for c1 Ibranch code for c2

skip |code(c1)|+ 1 instrs if b false

skip |code(c2)| instrsskip 0 instrs if b true

30

The mysterious o�sets

Code for WHILE b c:

code for b code for c Ibranch

skip |code(c)|+ 1 instrs if b false

skip 0 instrs if b true

go back |code(b)|+ |code(c)|+ 1 instrs

31

IV

First compiler correctness results

Compiler verification

We now have two ways to run a program:
Interpret it using e.g. the cexec_bounded function
(which follows the IMP semantics cexec)
Compile it, then run the generated virtual machine code
(following the VM semantics transition).

Will we get the same results either way?

The compiler verification problem
Prove that the compiler preserves semantics: the generated code
behaves as prescribed by the semantics of the source program.

33

First verifications

Let’s try to formalize and prove the intuitions we had when writing the
compilation functions.

Intuition for arithmetic expressions: if a evaluates to n in store s,

code for a

pc
σ

s
Before:

pc′ = pc + |code|
n :: σ
s

A�er:

A formal claim along these lines:

Lemma compile_aexp_correct:

forall s a pc stk,

transitions (compile_aexp a)

(0, stk, s)

(codelen (compile_aexp a), aeval s a :: stk, s).

34

Verifying the compilation of expressions

For this statement to be provable by induction over the structure of the
expression a, we need to generalize it so that

the start PC is not necessarily 0;
the code compile_aexp a appears as a fragment of a larger code C.

To this end, we define the predicate code_at C pc C’ capturing the
following situation:

C’C =

pc

35

Verifying the compilation of expressions

Lemma compile_aexp_correct:

forall C s a pc stk,

code_at C pc (compile_aexp a) ->

transitions C

(pc, stk, s)

(pc + codelen (compile_aexp a), aeval st a :: stk, s).

Proof: a simple induction on the structure of a.

The base cases are trivial:
a = n: a single Iconst transition.
a = x: a single Ivar(x) transition.

36

An inductive case
Consider a = a1 + a2 and assume

code at C pc (code(a1) ++ code(a2) + + Iadd :: nil)

We have the following sequence of transitions:

(pc, σ, s)

↓ ∗ ind. hyp. on a1

(pc + |code(a1)|, aeval s a1 :: σ, s)

↓ ∗ ind. hyp. on a2

(pc + |code(a1)|+ |code(a2)|, aeval s a2 :: aeval s a1 :: σ, s)

↓ Iadd transition

(pc + |code(a1)|+ |code(a2)|+ 1, (aeval s a1 + aeval s a2) :: σ, s)

37

Historical note

As simple as this proof looks, it is of historical importance:
First published proof of compiler correctness.
(McCarthy and Painter, 1967).
First mechanized proof of compiler correctness.
(Milner and Weyrauch, 1972, using Stanford LCF).

38

Mathematical Aspects of Computer Science, 1967

39

Machine Intelligence (7), 1972.

40

(Even the proof scripts look familiar!)

41

Verifying the compilation of expressions

Similar approach for boolean expressions:

Lemma compile_bexp_correct:

forall C s b d1 d0 pc stk,

code_at C pc (compile_bexp b d1 d0) ->

transitions C

(pc, stk, s)

(pc + codelen (compile_bexp b d1 d0)

+ (if beval s b then d1 else d0), stk, s).

Proof: induction on the structure of b.

42

Verifying the compilation of commands

Lemma compile_com_correct_terminating:

forall s c s’,

cexec s c s’ ->

forall C pc stk,

code_at C pc (compile_com c) ->

transitions C

(pc, stk, s)

(pc + codelen (compile_com c), stk, s’).

An induction on the structure of c fails because of the WHILE case.
An induction on the derivation of cexec s c s’ works perfectly.

43

Summary so far

Piecing the lemmas together, and defining

compile_program c = compile_command c ++ Ihalt :: nil

we obtain a rather nice theorem:

Theorem compile_program_correct_terminating:

forall s c s’,

cexec s c s’ ->

machine_terminates (compile_program c) s s’.

But is this enough to conclude that our compiler is correct?

44

What could have we missed?

Theorem compile_program_correct_terminating:

forall s c s’,

cexec s c s’ ->

machine_terminates (compile_program c) s s’.

What if the generated VM code could terminate on a state other than s’?
or loop? or go wrong?

What if the program c started in s diverges instead of terminating? What
does the generated code do in this case?

Needed: more precise notions of semantic preservation
+ richer semantics (esp. for non-termination).

45

V

Notions of semantic preservation

Semantic preservation

We’ve claimed that compilers should “preserve semantics” or “produce
code that executes in accordance with the semantics of the source
program”.

What does this mean, exactly?

What should be preserved? Answer: observable behaviors

How to characterize preservation? Answer: simulations

47

Observable behaviors

For classroom languages, observable behaviors are, typically:
Normal termination, with final value or final state.
Divergence, a.k.a. nontermination.
Abnormal termination, a.k.a. “going wrong”, “crashing”, . . .

For more realistic languages, we also observe
Inputs and outputs,
for example as a trace of I/O actions performed.

48

Examples of behaviors

Normal termination Divergence Going wrong

IMP x := 1 while true impossible
(result: store [x 7→ 1]) do skip done

VM Ihalt Ibranch(-1) Iadd

(result: initial store)

λ-calculus (λx.x) 0 (λx.x x)(λx.x x) 0 1
with constants (result: 0)

C return 0; for(;;) { } *NULL = 42;

49

Notions of preservation: Bisimulation

Definition (Bisimulation)
The source program S and the compiled program C have exactly the
same behaviors.

Every possible behavior of S is a possible behavior of C.
Every possible behavior of C is a possible behavior of S.

Example (for the IMP to VM compiler)
compile com(c) terminates if and only if c terminates

(with the same final store)
compile com(c) diverges if and only if c diverges.
compile com(c) never goes wrong.

50

Forward simulation

Definition (Forward simulation)
Every possible behavior of the source program S is a possible behavior of
the compiled program C.

Example (for the IMP to VM compiler)
If c terminates, compile com(c) terminates with the same final store.

(theorem compile_com_correct_terminating)
If c diverges, compile com(c) diverges.

This looks insu�cient: what if the compiled code C has more behaviors
than the source S? For example, if C can terminate or go wrong?

51

Forward simulation + determinism = bisimulation

A language is deterministic if every program has only one observable
behavior.

Lemma
If the target language is deterministic, forward simulation implies
backward simulation and therefore bisimulation.

Proof.
Let C be a compiled program and S its source.
Let b be a behavior of C and b′ a behavior of S.
By forward simulation, b′ is a behavior of C.
By determinism of C, b′ = b.
Hence every behavior b of C is a behavior of S.

52

Reducing non-determinism during compilation

If the source language has internal nondeterminism, forward simulation
may not hold. For example, the C language leaves evaluation order
partially unspecified.

int x = 0;

int f(void) { x = x + 1; return x; }

int g(void) { x = x - 1; return x; }

The expression f() + g() can evaluate either
to 1 if f() is evaluated first (returning 1), then g() (returning 0);
to −1 if g() is evaluated first (returning −1), then f() (returning 0).

Every C compiler chooses one evaluation order at compile-time.

The compiled code therefore has fewer behaviors than the source
program (1 instead of 2). Forward simulation and bisimulation fail.

53

Backward simulation, a.k.a. refinement

Definition (Backward simulation)
Every possible behavior of the compiled program C is a possible behavior
of the source program S. However, C may have fewer behaviors than S.

Backward simulation su�ces to show the preservation of properties
established by source-level verification:

If all behaviors of S satisfy a specification Spec,
then all behaviors of C satisfy Spec as well.

54

Should “going wrong” behaviors be preserved?

Compilers routinely “optimize away” going-wrong behaviors. For
example:

x := 1 / y; x := 42

(goes wrong if y = 0)
optimized to x := 42

(always terminates normally)

Justifications:
We know that the program being compiled does not go wrong

I because it was type-checked with a sound type system
I or because it was formally verified.

Or “it is the programmer’s responsibility to avoid going-wrong
behaviors, so the compiler can optimize under the assumption that
there are none”. (This is what the C standards say.)

55

Simulations for safe programs

Safe forward simulation: any behavior of the source program S other
than “going wrong” is a possible behavior of the compiled code C.

Safe backward simulation: for any behavior b of the compiled code C, the
source program S can either have behavior b or go wrong.

56

Small-step semantics based on transition systems

For many languages we have semantics presented in small-step
operational style, as a transition relation a→ a′

machine languages (real or virtual, e.g. our VM)
lambda-calculi
process calculi (with labeled transitions a τ→ a′).

57

Transition systems

Behaviors are defined in terms of sequences of transitions:
Termination: finite sequence of transitions to a final state.

a→ a1 → · · · → an ∈ Final

Divergence: infinite sequence of transitions.

a→ a1 → · · · → an → · · ·

Going wrong: finite sequence of transitions to a state that cannot
make a transition and is not final

a→ a1 → · · · → an 6→ with an /∈ Final

58

Simulation diagrams

Forward simulation from a source S to a compiled code C can be proved
as follows:

Show that every transition in the execution of S
is simulated by some transitions in C
while preserving a relation between the states of S and C.

(Backward simulation is similar, but simulates transitions of C by
transitions of S.)

59

Lock-step simulation

Every transition of the source is simulated by exactly one transition in
the compiled code.

s1 c1

s2 c2

≈

≈

(Black = hypotheses; red = conclusions.)

60

Lock-step simulation

Further show that initial configurations are related:

sinit ≈ cinit

Further show that final configurations are related:

s ≈ c ∧ s ∈ Final =⇒ c ∈ Final

61

Lock-step simulation

Forward simulation follows easily:

sinit cinit

s1 c1

sn cnFinal 3 ∈ Final

≈

≈

≈

≈

Likewise if sinit makes an infinity of transitions.

62

“Plus” simulation diagrams

In some cases, each transition in the source program is simulated by one
or several transitions in the compiled code.

(Example: compiled code for ASSIGN x a consists of several instructions.)

s1 c1

s2 c2

≈

≈
+

Forward simulation still holds.

63

“Star” simulation diagrams (incorrect)

In other cases, each transition in the source program is simulated by
zero, one or several transitions in the compiled code.

s1 c1

s2 c2

≈

≈
∗

Forward simulation is not guaranteed:
terminating executions are preserved;
but diverging executions may not be preserved.

64

The “infinite stuttering” problem

s1 c

s2

sn

sn+1

≈
≈
≈
≈

The source program diverges but the compiled code can terminate,
normally or by going wrong.

This denotes an incorrect optimization of diverging programs, e.g. adding
a special case compile_com (WHILE TRUE SKIP) = nil.

65

“Star” simulation diagrams (corrected)

Find a measure M(s) : nat over source terms that decreases strictly when
a stuttering step is taken. Then show:

s1 c1

s2 c2

≈

≈
+

s1 c1

s2

≈

≈or

and M(s2) < M(s1)

Forward simulation, terminating case: OK (as before).

Forward simulation, diverging case: OK.
(If s diverges, it must perform infinitely many non-stuttering steps, so the
compiled code executes infinitely many transitions.)

(Note: can use any well-founded ordering between source terms s.)

66

The next steps

Equip IMP with a small-step semantics.

Prove a forward simulation diagram (of the “star” kind) between IMP
transitions and VM transitions.

Conclude that all IMP programs, terminating or not, are correctly
compiled.

67

VI

Small-step semantics for IMP

A reduction semantics for IMP

Broadly similar to β-reduction in the λ-calculus:

M β→ M′ represents an elementary computation.
M′ is the residual: it represents all the other computations that
remain to be done

Since IMP is an imperative language, we reduce not commands but pairs
c/s of a command c and the current store s.

The reduction relation is, therefore: c/s→ c′/s′.

69

A reduction semantics for IMP

x := a / s→ skip / s[x← [[a]] s]

c1 / s→ c′1 / s′

(c1; c2) / s→ (c′1; c2) / s′
(skip; c) / s→ c / s

[[b]] s = true

(if b then c1 else c2) / s→ c1/s

[[b]] s = false

(if b then c1 else c2) / s→ c2/s

[[b]] s = false

(while b do c done) / s→ skip/s

[[b]] s = true

(while b do c done) / s→ (c; while b do c done) / s

70

Equivalence with the big-step semantics

A classic result:

c/s⇒ s′ if and only if c/s ∗→ skip/s′

(See Coq file IMP.v.)

71

Spontaneous generation of commands

IMP reductions, like β-reduction in the λ-calculus, can create commands
that are “fresh”, that is, not sub-terms of the original program:

((if b then c1 else c2); c)/s→ (c1; c)/s

This is problematic for compiler verification because the compiled code
does not change during execution! The compiled code for the initial
command (if b then c1 else c2); c

code for b code for c1 Ibranch code for c2 code for c

does not contain the compiled code for c1; c, which is:

code for c1 code for c

72

A transition semantics with continuations

A variant of reduction semantics that avoids the spontaneous generation
of commands.

Idea: instead of rewriting whole commands:

c/s→ c′/s′

rewrite pairs of (subcommand under focus, remainder of command):

c/k/s→ c′/k′/s′

(Very related to continuation-based abstract machines such as the CEK.)
(Also related to focusing in proof theory.)

73

Standard reduction semantics

Rewrite whole commands, even though only a sub-command (the redex)
changes.

Context C

c = C[redex]

redex

Context C

c′ = C[reduct]

reduct

reduction

head
reduction

74

Focusing the reduction semantics

Rewrite pairs (subcommand, context in which it occurs).

x ::= a , → SKIP ,

The sub-command is not always the redex: add explicit focusing and
resumption rules to move nodes between subcommand and context.

(c1; c2) , → c1 ,

; c2

SKIP , → c2 ,

; c2

Focusing on the le� of a sequence Resuming a sequence

75

Representing contexts “upside-down”

Inductive ctx := Inductive cont :=

| CThole: ctx | Kstop: cont

| CTseq: com -> ctx -> ctx. | Kseq: com -> cont -> cont.

CTseq

CTseq

CTseq

CThole

z
y

x

Kseq

Kseq

Kseq

z
y

x

Kstop

CTseq (CTseq (CTseq CThole x) y) z
Kseq x (Kseq y (Kseq z Kstop))

Upside-down context ≈ continuation.
(“Eventually, do x, then do y, then do z, then stop.”)

76

Transition rules

x := a/k/s → skip/k/s[x← [[a]] s]

(c1; c2)/k/s → c1/Kseq c2 k/s

if b then c1 else c2/k/s → c1/k/s if [[b]] s = true

if b then c1 else c2/k/s → c2/k/s if [[b]] s = false

while b do c end/k/s → c/Kwhile b c k/s
if [[b]] s = true

while b do c end/k/s → skip/c/k if [[b]] s = false

skip/Kseq c k/s → c/k/s

skip/Kwhile b c k/s → while b do c done/k/s

Note: no spontaneous generation of fresh commands.

77

VII

Full proof of compiler correctness

A proof by simulation diagram

Let’s build a forward simulation diagram between source transitions (in
the continuation-based semantics of IMP) and machine transitions.

This will show behavior preservation both for terminating IMP programs
(we already proved this) and for diverging IMP programs (new!).

Since the machine has deterministic semantics, we will get full
bisimulation between the source and compiled code.

Two di�culties:
1 Rule out infinite stuttering.
2 Match the current command-continuation c, k (which changes

during transitions) with the compiled code C (which is fixed
throughout execution).

79

Anti-stuttering measure

Stuttering reduction = no machine instruction executed. These include:

(c1; c2)/k/s → c1/Kseq c2 k/s
SKIP/Kseq c k/s → c/k/s

(IFTHENELSE TRUE c1 c2)/k/s → c1/k/s
(WHILE TRUE c)/k/s → c/Kwhile TRUE c k/s

No measure M on the command c can rule out stuttering: for M to
decrease in the second case above, we should have

M(SKIP) > M(c) for all commands c, including c = SKIP

→ We must measure (c, k) pairs.

80

Anti-stuttering measure

A�er some trial and error, an appropriate measure is:

M(c, k) = size(c) +
∑

c′ appears in k
size(c′)

In other words, every constructor of com counts for 1, and every
constructor of cont counts for 0.

M((c1; c2), k) = M(c1, Kseq c2 k) + 1
M(SKIP, Kseq c k) = M(c, k) + 1

M(IFTHENELSE b c1 c2, k) ≥ M(c1, k) + 1
M(WHILE b c, k) = M(c, Kwhile b c k) + 1

81

Relating continuations with compiled code

In the big-step proof: code_at C pc (compile_com c).

compile com cC =

pc

In a proof based on the small-step continuation semantics: we must also
relate continuations k with the compiled code:

compile com c IhaltC =

pc pc’

machine instructions that “execute” k

82

Relating continuations with compiled code

A predicate compile cont C k pc, meaning “there exists a code path in C
from pc to a Ihalt instruction that executes the pending computations
described by k”.

Base case k = Kstop:

Ihalt

pc
Sequence case k = Kseq c k′:

compile com c

pc pc’ s.t. compile cont C k’ pc’

83

Relating continuations with compiled code

A “non-structural” case allowing us to insert branches at will:

Ibranch

pc
pc’ s.t. compile cont C k pc’

Useful to handle continuations arising out of IFB b THEN c1ELSE c2:

code for b code for c1 Ibranch code for c2

pc s.t. compile cont C k pc

84

The simulation invariant

A source-level configuration (c, k, s) is related to a machine configuration
C, (pc, σ, s′) i�:

the memory states are identical: s′ = s
the stack is empty: σ = ε

C contains the compiled code for command c starting at pc
C contains compiled code matching continuation k starting at
pc + |code(c)|.

85

The simulation diagram

c1/k1/s1 (pc1, ε, s′1)

c2/k2/s2 (pc2, ε, s′2)

C ` c1/k1/s1 ≈ (pc1, ε, s1)

C ` c2/k2/s2 ≈ (pc2, ε, s2)

+

∨
∗ ∧ M(c2, k2) < M(c1, k1)

Proof: by copious case analysis on the source transition on the le�.

86

Wrapping up

As a corollary of this simulation diagram, we obtain both:
An alternate proof of compiler correctness for terminating programs:
if c/Kstop/s ∗→ SKIP/Kstop/s′
then machine terminates (compile program c) s s′

A proof of compiler correctness for diverging programs:
if c/Kstop/s reduces infinitely,
then machine diverges (compile program c) s

Mission accomplished!

87

VIII

An optimization: constant propagation

Compiler optimizations

Automatically transform the programmer-supplied code into equivalent
code that

Runs faster
I Removes redundant or useless computations.
I Use cheaper computations (e.g. x * 5→ (x << 2) + x)
I Exhibits more parallelism (instruction-level, thread-level).

Is smaller
(For cheap embedded systems.)
Consumes less energy
(For battery-powered systems.)
Is more resistant to attacks
(For smart cards and other secure systems.)

Dozens of compiler optimizations are known, each targeting a particular
class of ine�ciencies.

89

Compiler optimization and static analysis

Some optimizations are unconditionally valid, e.g.:

x ∗ 2 → x + x

x ∗ 4 → x << 2

Most others apply only if some conditions are met:

x / 4 → x >> 2 only if x ≥ 0
x + 1 → 1 only if x = 0

if x < y then c1 else c2 → c1 only if x < y

x := y + 1 → skip only if x unused later

→ need a static analysis prior to the actual code transformation.

90

Static analysis

Determine some properties of all concrete executions of a program.

O�en, these are properties of the values of variables at a given program
point:

x = n x ∈ [n,m] x = expr a.x+ b.y ≤ n

Requirements:
The inputs to the program are unknown.
The analysis must terminate.
The analysis must run in reasonable time and space.

91

Running example: constant propagation

Perform at compile-time all arithmetic operations involving known
quantities, e.g. constants, or variables whose values are known at
compile-time.

Examples: (x is unknown)

a = 1 + 2; a = 3;

b = a - 4; ----> b = -1;

c = (x + 1) + 2; c = x + 3;

d = (x - 1) + a; d = x + 2;

Acieved by a combination of
local, algebraic simplifications of expressions;
global, static analysis to keep track of the values of variables.

92

Algebraic simplifications

Many algebraic identities can be used to make expressions simpler. The
problem is to find a good strategy for applying them.

Example: using associativity and commutativity to bring constants
together.

simp((a + N) + M) = simp(a + (N + M))

simp((N + a) + M) = simp(a + (N + M))

simp(M + (a + N)) = simp(a + (N + M))

simp(M + (N + a)) = simp(a + (N + M))

simp(a + b) = simp(a) + simp(b)

There are many patterns for the same simplification.
Recursive calls to simp are not structurally decreasing.

93

Smart constructors

An e�ective strategy based on bottom-up rewriting and smart
constructors: functions that

look like constructors of the AST
mk_PLUS: aexp -> aexp -> aexp

are proved to have the same semantics as a constructor
aeval s (mk_PLUS a1 a2) = aeval s a1 + aeval s a2

normalize the shape of generated expressions, e.g. mk_PLUS will
never return PLUS (CONST n) a, returningn PLUS a (CONST n)

instead
perform simplifications “on the fly”, e.g.

mk_PLUS (PLUS a (CONST n)) (CONST m) = PLUS a (CONST (n+m))

(See Coq file Constprop.v.)

94

Static analysis: the dataflow view
(the traditional presentation in compiler textbooks)

Connect definitions and uses of variables in the control-flow graph so as
to exploit, at use sites, properties established at definition sites (or
conversely).

x := 1 + 3

if

y := x + 1A: x := 0

z := x + 1B:

At use point A, only one definition of x reaches: x = 4.
At use point B, two incompatible definitions reach: x = 4 and x = 0.

95

Static analysis: the abstract interpretation view

Execute (“interpret”) the program using a non-standard semantics that:
Computes over an abstract domain of the desired properties
(e.g. “x = N” for constant propagation; “x ∈ [n1, n2]” for interval
analysis) instead of concrete “things” like values and states.

Handles boolean conditions, even if they cannot be resolved
statically.
(then and else branches of if are considered both taken.)
(while loops execute arbitrarily many times.)

Always terminates.

96

Abstract domains for constant propagation

Abstract integers (type option Z):
Some n if statically known, None if unknown

Abstract Booleans (type option bool):
Some b if statically known, None if unknown

Abstract stores (type Store):
morally a function ident -> option Z

for algorithmic reasons, a finite partial map from ident to Z

(variables not represented are mapped to None)

97

The abstract evaluation functions

Evaluating arithmetic and Boolean expressions using abstract integers
and abstract Booleans:

Aeval: Store -> aexp -> option Z

Beval: Store -> bexp -> option bool

Executing a command in the abstract. Input: the abstract store “before”
execution. Output: the abstract store “a�er”.

Cexec: Store -> com -> Store

(See Coq Constprop.v.)

98

Analyzing conditionals

Fixpoint Cexec (S: Store) (c: com) : Store :=

match c with

...

| IFTHENELSE b c1 c2 =>

match Beval S b with

| Some true => Cexec S c1

| Some false => Cexec S c2

| None => Join (Cexec S c1) (Cexec S c2)

end

If the condition b is statically known, we known which branch c1 or c2
will always be executed, and analyze only this branch.

Otherwise, either branch can be taken at run-time, so we analyze both
and take the join of the resulting abstract stores.

Join s1 s2 maps x to a known value n only if s1 and s2 map x to n.

99

Analyzing loops

Fixpoint Cexec (S: Store) (c: com) : Store :=

match c with

...

| WHILE b c =>

fixpoint (fun x => Join S (Cexec x c)) S

Let X be the abstract store at the beginning of the loop body c.
On the first iteration, we enter c with abstract store S.
Hence, S v X

On later iterations, we enter c with abstract store Cexec X c coming
from the previous iteration. Hence, Cexec X c v X.

The usual way to solve for X is to compute a post-fixpoint of the function

F def
= λX. S t Cexec X c

i.e. an X such as F(X) v X.

100

The mathematician’s approach to fixpoints
Let A,≤ be a partially ordered type. Consider F : A→ A.

Theorem (Knaster-Tarski)
The sequence

⊥, F(⊥), F(F(⊥)), . . . , Fn(⊥), . . .

converges to the smallest fixpoint of F, provided that
F is increasing: x ≤ y ⇒ F(x) ≤ F(y).
⊥ is a smallest element.
There are no infinite, strictly ascending chains
x0 < x1 < . . . < xn < . . .

This provides an e�ective way to compute the smallest post-fixpoint, but
is di�cult to implement in Coq. We’ll attempt this in the next lecture. In
the meantime. . .

101

The engineer’s approach to fixpoints

F = λX. S t Cexec X c

Compute F(S), F(F(S)), . . . , FN(S) up to some fixed N.

Stop as soon as a pre-fixpoint is found (Fi+1(S) v Fi(S)).

Otherwise, return a safe over-approximation: >
(the abstract store that maps all variables to “unknown”).

A compromise between analysis time and analysis precision.

(Coq implementation: see function fixpoint in Constprop.v.)

102

The code transformation

The results of the analysis are used to optimize expressions by
replacing a variable VAR x by CONST n if x is mapped to n in the
abstract store
further simplify the expression by applying the smart constructors.

x + (1 + y) −→ 3 + (1 + y) −→ y + 4

Within commands, all expressions are optimized, then conditionals and
loops can be simplified if their conditions are statically known:

IFTHENELSE TRUE c1 c2 −→ c1

IFTHENELSE FALSE c1 c2 −→ c2

WHILE FALSE c −→ SKIP

(Coq development: functions cp_aexp, cp_bexp, cp_com.)

103

Correctness proof

The soundness of the static analysis is expressed in terms of “matching”
between concrete stores s arising during execution and abstract stores S
inferred by the analysis:

Definition matches (s: store) (S: Store) : Prop :=

forall x n, IdentMap.find x S = Some n -> s x = n.

In abstract interpretation terms, this is the γ concretization function:
matches s S means that s ∈ γ(S).

104

Correctness proof

The two main results: if cexec s1 c s2 and matches s1 S, then

Soundness of the analysis: matches s2 (Cexec S c)

(the final concrete store matches the prediction of the analysis)

Semantic preservation for the code transformation:
cexec s1 (cp_com S c) s2

(the optimized code terminates on the same final store).

105

IX

More about fixpoints

Back to the mathematician’s approach

Theorem (Knaster-Tarski)
The sequence

⊥, F(⊥), F(F(⊥)), . . . , Fn(⊥), . . .

converges to the smallest fixpoint of F, provided that
F is increasing: x ≤ y ⇒ F(x) ≤ F(y).
⊥ is a smallest element.
There are no infinite, strictly ascending chains
x0 < x1 < . . . < xn < . . .

Can we formalize and prove this result in Coq?

In a way that is computationally e�ective and provides a “fixpoint
calculator” that we can use in a static analysis?

107

The ascending chain condition

There are no infinite, strictly ascending chains
x0 < x1 < . . . < xn < . . .

Too many negatives! Let’s reformulate more positively:

All strictly ascending chains are finite:
x0 < x1 < . . . < xn 6<

Getting closer. . .

An element x is accessible if all strictly ascending chains starting
with x are finite: x < x1 < . . . < xn 6< .

An order < is well-founded if all x are accessible.

108

Well-founded orders in type theory

Key insight: the “is accessible” predicate is inductive by nature!
x is accessible i� all y > x are accessible.
This rule must be applied a finite number of times only.

Section Well_founded.

Variable A : Type.

Variable R : A -> A -> Prop.

Inductive Acc (x: A) : Prop :=

Acc_intro : (forall y:A, R y x -> Acc y) -> Acc x.

Definition well_founded := forall a:A, Acc a.

Structural induction on a derivation of Acc(x) is Noetherian induction!
(“To prove P(x) you can assume P(y) for all y such that R y x”)

109

From Knaster-Tarski to e�ective fixpoint computation

Noetherian induction can prove the existence of a fixpoint:

exists x : A, eq x (F x)

Replacing Prop with Type, the proof shows that an x that is a fixpoint
can be e�ectively computed:

{ x : A | eq x (F x) }

Alternate approach: use Program Fixpoint to write explicitly the
fixpoint iteration algorithm, dropping into proof mode to fill in the
necessary proof terms.

(See file Fixpoints.v)

110

Using the new fixpoint for constant analysis

The type of abstract states (finite maps) has the ascending chain
property. So, we should be able to drop the new fixpoint function in the
analysis of commands:

Fixpoint Cexec (S: Store) (c: com) : Store :=

match c with

| SKIP => S

| ASSIGN x a => update’ x (Aeval S a) S

| SEQ c1 c2 => Cexec (Cexec S c1) c2

| IFTHENELSE b c1 c2 => [...]

| WHILE b c1 =>

fixpoint (fun x => Join S (Cexec x c1)) S

end.

Problem: our new fixpoint applies to increasing functions only. But we
haven’t proved yet that Cexec is increasing!

111

Using the new fixpoint for constant analysis

The solution is to define the static analysis function and simultaneously
prove that it is increasing!

Program Fixpoint Cexec (c: com) :

{ F: Store -> Store | increasing’ F } :=

match c with

| SKIP => fun S => S

| ASSIGN x a => fun S => update’ x (Aeval S a) S

| SEQ c1 c2 => compose (Cexec c2) (Cexec c1)

| IFTHENELSE b c1 c2 => fun S => [...]

| WHILE b c1 =>

fun S => fixpoint_join S (fun S => Cexec c1 S) _

end.

Many proof obligations related to monotonicity are generated, but it
works in the end.

112

X

Liveness analysis and dead code
elimination

Dead code elimination

Remove assignments x := e, turning them into skip, whenever the
variable x is never used later in the program execution.

Example
Consider: x := 1; y := y + 1; x := 2

The assignment x := 1 can always be eliminated since x is not used
before being redefined by x := 2.

Builds on a static analysis called liveness analysis.

114

Notions of liveness

A variable is dead at a program point if its value is not used later in any
execution of the program:

either the variable is not mentioned again before going out of scope
or it is always redefined before further use.

A variable is live if it is not dead.

Easy to compute for straight-line programs (sequences of assignments):

(def x)
x := . . .

(use x)
. . . x . . .

(def x)
x := . . .

(use x)
. . . x . . .

(use x)
. . . x . . .

x dead

x live

115

Notions of liveness
Liveness information is more delicate to compute in the presence of
conditionals and loops:

def x

if

use x def x

use x

Conservatively over-approximate liveness, assuming all if conditionals
can be true or false, and all while loops are taken 0 or several times.

Note: this is a “backward” analysis that does not fit the abstract
interpretation framework.

116

Liveness equations

Given a set L of variables live “a�er” a command c, write live(c, L) for
the set of variables live “before” the command.

live(SKIP, L) = L

live(x := a, L) =

{
(L \ {x}) ∪ FV(a) if x ∈ L;
L if x /∈ L.

live((c1; c2), L) = live(c1, live(c2, L))

live((if b then c1 else c2), L) = FV(b) ∪ live(c1, L) ∪ live(c2, L)

live((while b do c done), L) = X such that
X ⊇ L ∪ FV(b) ∪ live(c, X)

The while case is solved by taking a fixpoint. See file Deadcode.v.

117

Liveness for loops

test b

c

test b

c

... exit point

entry point

X

live(c, X)

L

X

live(c, X)

L

X

We must have:
FV(b) ⊆ X
(evaluation of b)
L ⊆ X
(if b is false)
live(c, X) ⊆ X
(if b is true and c is
executed)

118

Dead code elimination

The program transformation eliminates assignments to dead variables:

x := a becomes SKIP if x is not live “a�er” the assignment

Presented as a function dce : com→ IdentSet.t→ com

taking the set of variables live “a�er” as second parameter
and maintaining it during its traversal of the command.

(Implementation & examples in file Deadcode.v)

119

The semantic meaning of liveness

What does it mean, semantically, for a variable x to be live at some
program point?

Hmmm. . .

What does it mean, semantically, for a variable x to be dead at some
program point?

That its precise value has no impact on the rest of the program execution!

120

The semantic meaning of liveness

What does it mean, semantically, for a variable x to be live at some
program point?

Hmmm. . .

What does it mean, semantically, for a variable x to be dead at some
program point?

That its precise value has no impact on the rest of the program execution!

120

Liveness as an information flow property

Consider two executions of the same command c in two initial states:

c/s1 ⇒ s2

c/s′1 ⇒ s′2

Assume that the initial states agree on the variables live(c, L) that are
live “before” c:

∀x ∈ live(c, L), s1(x) = s′1(x)

Then, the two executions terminate on final states that agree on the
variables L live “a�er” c:

∀x ∈ L, s2(x) = s′2(x)

The proof of semantic preservation for dead-code elimination follows
this pattern, relating executions of c and dce c L instead.

121

Agreement and its properties

Definition agree (L: IdentSet.t) (s1 s2: state) : Prop :=

forall x, IdentSet.In x L -> s1 x = s2 x.

Agreement is monotonic w.r.t. the set of variables L:

Lemma agree_mon:

forall L L’ s1 s2,

agree L’ s1 s2 -> IdentSet.Subset L L’ -> agree L s1 s2.

Expressions evaluate identically in states that agree on their free
variables:

Lemma aeval_agree:

forall L s1 s2, agree L s1 s2 ->

forall a, IdentSet.Subset (fv_aexp a) L -> aeval s1 a = aeval s2 a.

Lemma beval_agree:

forall L s1 s2, agree L s1 s2 ->

forall b, IdentSet.Subset (fv_bexp b) L -> beval s1 b = beval s2 b.

122

Agreement and its properties

Agreement is preserved by parallel assignment to a variable:

Lemma agree_update_live:

forall s1 s2 L x v,

agree (IdentSet.remove x L) s1 s2 ->

agree L (update s1 x v) (update s2 x v).

Agreement is also preserved by unilateral assignment to a variable that
is dead “a�er”:

Lemma agree_update_dead:

forall s1 s2 L x v,

agree L s1 s2 -> ~IdentSet.In x L ->

agree L (update s1 x v) s2.

123

Forward simulation for dead code elimination

Theorem dce_correct_terminating:

forall s c s’, cexec s c s’ ->

forall L s1, agree (live c L) s s1 ->

exists s1’, cexec s1 (dce c L) s1’ /\ agree L s’ s1’.

(Proof: an induction on the derivation of cexec s c s’.)

s

s′

s1

s′1

agree (live c L)

eval c eval (dce c L)
agree L

124

XI

In closing

From this lecture. . .

IMP

V.M.

Compilation

Constant
analysis

Liveness
analysis

Constant
propagation

Dead code
elimination

126

. . . to the CompCert verified C compiler . . .

CompCert C Clight C#minor

CminorCminorSelRTL

LTL Linear Mach

Asm PPCAsm ARMAsm x86

side-e�ects out
of expressions

type elimination
loop simplifications

stack allocation
of “&” variables

instruction
selection

CFG construction
expr. decomp.

register allocation (IRC)
calling conventions

linearization
of the CFG

layout of
stack frames

asm code generation

Optimizations: constant prop., CSE,
inlining, tail calls, dead code

127

. . . and the Verasco verified static analyzer . . .

source→ C→ Clight→ C#minor→ Cminor→ · · ·
CompCert compiler

Abstract interpreter

Memory & pointers abstraction

Z→ int

Channel-based combination of domains

NR→ R NR→ R

Integer & F.P.
intervals

Integer
congruences

Symbolic
equalities

Convex
polyhedra

Octagons

OK / AlarmsControl

State

Numbers

128

. . . some key ideas scale very well !

Operational semantics based on transition systems
(using continuations to handle structured control).
Forward simulation diagrams.
Big-step semantics to help with discovery.
A “naive abstract interpretation” view of static analyses.
(Concretization relations, but no full Galois connections.)
Bounded fixpoint iterations.
Programming the analyses and transformations as Coq functions
(followed by extraction to executable OCaml code).

129

Other key ideas not seen in this lecture

For verified compilers: (e.g. CompCert)
Labeled transition semantics to deal with I/O.
Other representations of control: control-flow graphs,
assembly-style code with labels and jumps.
Complex, low-level memory model.
Optimizing memory accesses despite pointers and aliasing.

For verified static analyzers: (e.g. Verasco)
Modular, compositional construction of abstract domains.
Relational analyses.
Fixpoint iteration with widening and narrowing.

130

Other applications of mechanized semantics

Embedding powerful program logics in a proof assistant, e.g.
Iris @ MPI SWS and Aarhus
VST @ Princeton
the seL4 verification infrastructure @ NICTA / Data61

Verifying properties of testing frameworks, e.g.
Quickchick @ UPenn (randomized property testing)

131

In closing

Interactive or automatic theorem provers are taking programming
language research to new heights, and producing programming tools
that we can really trust.

Go forth and mechanize!

132

	The IMP language
	The IMP virtual machine
	The compiler
	First compiler correctness results
	Notions of semantic preservation
	Small-step semantics for IMP
	Full proof of compiler correctness
	An optimization: constant propagation
	More about fixpoints
	Liveness analysis and dead code elimination
	In closing

