Using a call-by-value functional language as an example, this article illustrates the use of coinductive definitions and proofs in big-step operational semantics, enabling it to describe diverging evaluations in addition to terminating evaluations. We formalize the connections between the coinductive big-step semantics and the standard small-step semantics, proving that both semantics are equivalent. We then study the use of coinductive big-step semantics in proofs of type soundness and proofs of semantic preservation for compilers. A methodological originality of this paper is that all results have been proved using the Coq proof assistant. We explain the proof-theoretic presentation of coinductive definitions and proofs offered by Coq, and show that it facilitates the discovery and the presentation of the results. (See http://gallium.inria.fr/~xleroy/coindsem/ for the Coq on-machine formalization of these results.)
[ bib | DOI | Local copy | At publisher's site ] Back
This file was generated by bibtex2html 1.99.