
Secure computing, seventh lecture

Secure computing:
other directions and conclusions

Xavier Leroy
2025-12-18

Collège de France, chair of Software sciences
xavier.leroy@college-de-france.fr

Secure memory, 1:
Oblivious RAM

Secure computing with random memory accesses

The approaches seen so far (homomorphic encryption,
multi-party computation) represent computations by
combinatorial circuits (Boolean or arithmetic).

Theorem
Any Turing machine of size n that always terminate in time
poly(n) can be implemented by a circuit of size poly(n).

However, many computations are easier to express and faster to
execute if we can use a random access memory:

• ROM (read-only): tables of constants, data base
• RAM (read-write): to store intermediate results.

2

Secure computing with random memory accesses

We can perform random access to an address x ∈ {0, . . . , n− 1}
using circuits:

• Boolean circuits: n multiplexers arranged as a binary tree.
• Arithmetic circuit: interpolation polynomial

P(x) =
n−1∑
i=0

aiλi(x) where λi(x)
n−1∏

j=0,j ̸=i

X − i
j− i

Any access “touches” the n memory cells.

Folklore: a private access to a database must access all entries of
the database; otherwise, it reveals information on the access.

3

Oblivious RAM (ORAM)

CPU
bus

RAM

attacker

Example of use: a secure enclave that uses a standard RAM to
store data.

RAM accesses (addresses and data) are visible from the attacker,
yet must not reveal anything about the computation performed
in the enclave (passive security).

• Data must be encrypted.
• Addresses must be garbled.
• Two accesses to the same logical address must use different

garbled addresses.
4

Square-root ORAM

(O. Goldreich, R. Ostrovsky, Software protection and simulation on Oblivious
RAM, JACM, 1996.)

An ORAM of size N comprises:

• A cache of size n (ideally, n ≈
√

N, hence the name)

• A RAM of size N + n (N actual data + n decoys)

• A random permutation of addresses:
π : {0, . . . ,N + n− 1} → {0, . . . ,N + n− 1}

• The cell π(i) of the RAM contains an encryption of (i, vi)

for i ∈ {0, . . . ,N− 1}.
• The cells π(N), . . . , π(N + n− 1) are decoys.

5

Reading from the ORAM

If the adress i is not in the cache:

• Read e from address π(i) in the RAM.
• Decrypt (i, x)← D(e).
• Add i 7→ x to the cache.
• Return x.

If the address i is in the cache, with value x:

• Read from address π(N + k) in the RAM.
• Return x.

In both cases:

• Increment k.
• If k ≥ n, draw and apply a new random permutation π′.

6

Applying a permutation obliviously

The RAM contains encrypted pairs E(i, vi). We want to order them
according to the permutation π:

RAM[π(i)] = E(i, vi)

This amounts to sorting the RAM by increasing values of π(i).

We use a sorting network, so that RAM accesses follow a pattern
that is independent from the data to be sorted.

(Oskar Sigvardsson, CC BY) 7

Applying a permutation obliviously

For each pair of points (u, v), u < v in the sorting network:

• Read and decrypt
(i, vi)← D(RAM[u]) (j, vj)← D(RAM[v])

• If π(i) < π(j): re-encrypt and re-write in the same order
RAM[u]← E(i, vi) RAM[v]← E(j, vj)

• If π(i) > π(j): swap, re-encrypt and re-write
RAM[u]← E(j, vj) RAM[v]← E(i, vi)

Same RAM access patterns in all cases.
8

Implicit representation of a random permutation

The client doesn’t have enough memory to store π in extenso.

Instead, the client generates π from a pseudo-random function h:

π(i) = number of j ∈ {0, . . . ,N + n− 1} such that h(j) < h(i)

The RAM contains pairs E(i, vi) sorted by increasing h(i).

To access RAM[π(i)] we use binary search:

(j, vj)← D(RAM[p])
if j = i, found
if h(i) < h(j), move p to the left
if h(i) > h(j), move p to the right

The RAM access pattern reveals nothing more than the value of
π(i).

9

Summary: an oblivious ROM

Initially: the data v0, . . . , vN−1 are stored in
RAM[0], . . . ,RAM[N− 1].

Preparation: RAM[i]← E(i,RAM[i]) for i = 0, . . . ,N + n− 1.

Repeat until the client stops:

• Draw a pseudo-random function h
(typically, a block cipher such as AES with a random key).

• Sort the RAM by increasing h(i) using a sorting network.
• Read n values.

Amortized time for an access: O(logN + N log2 N/n)
i.e. O(

√
N log2 N) if n ≈

√
N.

10

Extension: an oblivious RAM

All accesses are Read-Modify-Write:

x← ORAM[i]; y ← f (x); ORAM[i]← y

to unify reads (f (x) = x) and writes (f (x) = v).

Every access reads from the RAM and keeps the new value y in
the cache.

After n accesses, before re-permuting the RAM, we flush the
cache by performing writes in the RAM at the same addresses
and in the same order as the previous reads.

11

Improving performance

Goldreich and Ostrovsky propose to use a hierarchy of caches of
sizes 2, 4, 8, . . . , 2p, stored in RAM, re-permuted with a frequency
inversely proportional to their sizes.
⇒ Access in amortized time O(log3 N). Total space O(N logN).

Other approach: use binary trees instead of hash tables.

Best implementation known: amortized time O(logN), about 26
RAM accesses per ORAM access for N = 1 To.
(E. Stefanov, E. Shi, D. Song, Towards practical Oblivious RAM, NDSS 2012.)

12

Secure memory, 2:
homomorphic encrypted table
lookup

Circuits that can access a read-only table

circuit 1 circuit 2 circuit 3

a1 M[a1] a2 M[a2]

memory

An intermediate model of computation between circuits and the
RAM model.

Appropriate for the computation of simple statistics on large
data.

Can we perform this computation homomorphically, using
encrypted addresses and encrypted data?

13

Private Information Retrieval (PIR)

Can we execute a request on a database DB of size n without the
DB server learning anything about the request and its result?

Folklore: all database entries must be accessed. Otherwise, the
server would learn that the request doesn’t depend on the
non-accessed entries.

⇒ Each request takes time O(n) or more.

The Doubly-Efficient PIR approach: (Lin, Mook, Wichs, 2023)

• Preprocess DB into a slightly larger base DB′,
in time superlinear in n.

• Execute each private request on DB′, in time sublinear in n.
• The access patterns in DB′ reveal no access pattern in DB.

14

Preprocessing the evaluation of a polynomial

Let P ∈ Zq[X] be a polynomial of degree d.

We want to compute P(x) for multiple values of x.

Without preprocessing:

• Evaluate P directly for each x, in time O(d).

Naive tabulation:

• Tabulate the q values of P : t[i] = P(i) for i = 0, . . . , q− 1
(time and space O(q))

• For each x, return t[x] in time O(1).

15

Preprocessing the evaluation of a polynomial

“Chinese” tabulation:

Let’s view P as a polynomial P̃ with coefficients in Z.
P(x) = P̃(x) mod q for all x ∈ {0, . . . , q− 1}.

We have 0 ≤ P̃(x) < M = d(q− 1)d for all x ∈ {0, . . . , q− 1}.

Let p1, . . . , pn be small prime numbers such that

M ≤ p1 · · · pn

(The first 16 logM primes always work.)

For each pi, we tabulate P̃ mod pi:

ti[j] = P̃(j) mod pi for j = 0, . . . , pi − 1

16

Preprocessing the evaluation of a polynomial

ti[j] = P̃(j) mod pi pour j = 0, . . . , pi − 1

“Chinese” evaluation:

To evaluate P(x) = P̃(x) mod q, we look up the n tables ti:

yi = ti[x mod pi] = P̃(x mod pi) mod pi = P̃(x) mod pi

Using the Chinese remainder theorem, we compute

y = P̃(x) mod p1 · · · pn = P̃(x) since P̃(x) < M ≤ p1 · · · pn

Hence, P(x) = y mod q.

Space optimisation: if some tables ti are too large, we can
recurse to represent P mod ti by several smaller tables.

17

Preprocessing the evaluation of a polynomial

ti[j] = P̃(j) mod pi pour j = 0, . . . , pi − 1

“Chinese” evaluation:

To evaluate P(x) = P̃(x) mod q, we look up the n tables ti:

yi = ti[x mod pi] = P̃(x mod pi) mod pi = P̃(x) mod pi

Using the Chinese remainder theorem, we compute

y = P̃(x) mod p1 · · · pn = P̃(x) since P̃(x) < M ≤ p1 · · · pn

Hence, P(x) = y mod q.

Space optimisation: if some tables ti are too large, we can
recurse to represent P mod ti by several smaller tables.

17

Example

Polynomial of degree d = 20 modulo 264. Two-level evaluation:

• 37 tables giving the values of P modulo 2, 3, 5, . . . , 157.
• Using the Chinese remainder theorem, we obtain the exact values

of P(i) for all i ≤ 1028.
• Thus, we know P mod p for p = 163, 167, . . . , 937.
• Using the Chinese remainder theorem again, we obtain P mod 264.

The calculation remains more costly than direct evaluation of P
(37 memory reads instead of 21).

But this is no longer the case for a multivariate polynomial!

Example: polynomial with 4 variables of degree 20 modulo 264:
126 tables vs 214 = 194481 coefficients.

18

Preprocessing the evaluation of a polynomial

(K. S. Kedlaya, C. Umans: Fast Polynomial Factorization and Modular
Composition, CCDP 2008, SIAM J. Comput. 2011)

This approach extends to polnomials with m variables of degree
d in each variable, and to rings R other than Zq.

Precomputation in time and space (with 2 levels of tables)

dm · poly(m,d, log |R|) · O(m · (logm + log d + log log |R|))m

Evaluation in time poly(d,m, log |R|) .

Precomputation is quasilinear in N = (d + 1)m (the number of
coefficients of P), and evaluation is polylogarithmic in N.

19

Application to Private Information Retrieval

(W-K. Lin, E. Mook, D. Wichs, Doubly Efficient Private Information Retrieval and
Fully Homomorphic RAM Computation from Ring LWE, STOC 2023.)

Assume that the database DB is an m-dimension array containing
dm entries.

We can apply the Kedlaya-Umans algorithm to the interpolation
polynomial P corresponding to DB:

P(i1, i2, . . . , in) = DB[i1][i2] . . . [in]

To make requests private, Lin, Mook and Wichs propose to apply
Kedlaya-Umans to an encrypted version P′ of P:

P′(E(i1), . . . , E(in)) = E(DB[i1][i2] . . . [in])

using an algebraic somewhat homomorphic encryption.

20

Algebraic somewhat homomorphic encryption (ASHE)

A cipher E : Zq → R, where R is a ring that can be handled by
Kedlaya-Umans. Homomorphic addition is ring addition, and
likewise for multiplication.

E(x + y) = E(x) + E(y)
E(x · y) = E(x) · E(y)

Somewhat homomorphic: all we need is to evaluate monomials
c · Xe1

1 · · · X
em
m of degree ≤ d.

Example: the cipher by van Dijk et al 2010 (lecture # 2):

Ep(b) = pn + qr + b n nonnegative random integer≫ p
r random integer, |r| < p/4q

Better ASHE ciphers can be constructed from the RLWE problem.

21

Application to homomorphic computation

circuit 1 circuit 2 circuit 3

E(a1) P′(E(a1)) E(a2) P′(E(a2))

memory = polynomial P′

FHE

ASHE

The circuits are evaluated by fully homomorphic encryption (FHE)
as in lecture #3.

Conversions FHE→ ASHE for the memory addresses and
ASHE→ FHE on the values read.

Extension to a RAM (read-write access): see Lin, Mook, Wichs.

22

Indistinguisable Obfuscation

Software obfuscation

Make executable or source code impossible to understand:
resist disassembly, code review, static analysis, etc.

Uses:

• Prevent reverse engineering
(proprietary algorithms, deactivated features, . . .)

• Prevent circumventing software protections
(anti-copy protections, digital rights management, . . .)

• For fun!
(Easter eggs, the IOCCC competition, . . .)

23

Examples of obfuscated codes

#include <stdio.h>

int l;int main(int o,char **O,

int I){char c,*D=O[1];if(o>0){

for(l=0;D[l];D[l

++]-=10){D [l++]-=120;D[l]-=

110;while (!main(0,O,l))D[l]

+= 20; putchar((D[l]+1032)

/20) ;}putchar(10);}else{

c=o+ (D[I]+82)%10-(I>l/2)*

(D[I-l+I]+72)/10-9;D[I]+=I<0?0

:!(o=main(c/10,O,I-1))*((c+999

)%10-(D[I]+92)%10);}return o;}

(Raymond Cheong, IOCCC 2001)

if(!qa)return a;try{var b=ka();a=qa.createPolicy(

"goog#html",{createHTML:b,createScript:b,

createScriptURL:b})}catch(c){}return a},

ta=function(){sa===void 0&&(sa=ra());return sa},

va=function(a){var b=ta();a=b?b.createScriptURL(a)

:a;return new ua(a)},ya=function(a){

if(a instanceof ua)return a.g;throw Error("p");},

za=function(a,b,c,d,e,f,g){var h="";a&&(h+=a+":");

c&&(h+="//",b&&(h+=b+"@"),h+=c,d&&(h+=":"+d));

e&&(h+=e);f&&(h+="?"+f);g&&(h+="#"+g);return h},

Aa=function(a,b){if(a){a=a.split("&");for(var c=

0;c<a.length;c++){var d=a[c].indexOf("="),

e=null;if(d>=0){var f=a[c].substring(0,d);

e=a[c].substring(d+1)}else f=a[c];b(f,e?

decodeURIComponent(e.replace(/\+/g," ")):"")}}},

Ba=function(a,b,c){if(Array.isArray(b))

(gmail.com)

24

Some obfuscation techniques

Renaming functions and variables.

Insertion of redundant computations:
return x + 3;

→ if ((n + 1) * n & 1) return n << 2; else return n + 3;

Encoding the control flow as tables or automata.
while (1) switch(pc) {

case 1: ...; pc = 12; break;

. . .

Changing the representation of data.

Masking or encryption of the code. Self-modifying code.

(See Goldberg and Nagra, Surreptitious Software, 2010.)

25

Cryptographic-quality obfuscation

Transform a source code containing secrets into a “black box”
executable program.

The only information that can be extracted from the black-box
executable are observations of its executions.

26

Standard compilation is not obfuscation

Consider the following C program compiled to prog.exe:
#include <stdio.h>

int main(int argc, char ** argv)

{

if (argc < 0)

printf("The secret is: AQFADHFJ\n");

else

printf("Hello, world!\n");

}

Running prog.exe will never print the secret.
(POSIX operating systems guarantee that argc >= 0).

Yet. the secret is contained in the file prog.exe and can be
extracted by strings prog.exe | grep secret

27

Cryptographic-quality obfuscation

One of the first directions proposed to implement public-key
encryption!

A more practical approach to finding a pair of easily com-
puted inverse algorithms E and D such that D is hard to
infer from E makes use of the difficulty of analyzing pro-
grams in low level languages. [. . .] Essentially what is re-
quired is a one-way compiler: one which takes an easily
understood program written in a high-level language and
translates it into an incomprehensible program in some
machine language.

(W. Diffie, M. Hellman, New Directions in Cryptography, 1976.)

28

Virtual black box (VBB) obfuscation

(B. Barak et al, On the (im)possibility of obfuscating programs, CRYPTO 2001,
JACM 2012.)

Obf : prog→ prog is a VBB obfuscator if:

1. It preserves functionality:

[[Obf(P)]](x) = [[P]](x) for all inputs x

2. The only observable properties of Obf(P) are those that can be
inferred from its I/O behavior.

For any p. p. time attacker A : program→ {0, 1}, there exists a
p. p. time simulator S : I/O traces→ {0, 1} that “performs as well
as” A despite having only access to the I/O behavior of P.∣∣∣Pr[A(Obf(P)) = 1

]
− Pr

[
S([[P]]) = 1

]∣∣∣ is negligible

29

Obfuscation: the ultimate cryptographic primitive?

Most known or proposed cryptographic protocols could easily be
implemented if we had a VBB obfuscator.

Public-key encryption:

Secret key: sk ∈ {0, 1}n random.

Public key: pk = H(sk). (H: pseudo-random function.)

The encryption of message m is the obfuscated function

Epk(m) = Obf(λs. ifH(s) = pk then m else ⊥)

Decryption is function application: Dsk(c) = c(sk).

30

Obfuscation: the ultimate cryptographic primitive?

Homomorphic encryption:

If F is a function and k a secret key, the function homomorphic to
F that computes over data encrypted with k is

F̂ = Obf(λc. Ek(F(Dk(c))))

Functional encryption:

From the private key sk, we can derive evaluation keys skF for
several functions F.

skF allows us to compute F over an encrypted input, producing
cleartext output, without revealing anything else about the input.

skF = Obf(λx. F(Dsk(x)))

31

Obfuscation: the ultimate cryptographic primitive?

Witness encryption:

The message is encrypted with respect to a proposition P, and
can be decrypted only if we provide a proof π of P.

EP(m) = Obf(λπ. if π |= P then m else ⊥)
Dπ(c) = c(π)

32

Impossibility of VBB obfuscation

There exists programs that no obfuscator can turn into a black
box.

Example (D. Wichs) Let (sk, pk) be a key pair for a fully homomorphic
cipher, and random α, β, γ.

P = λx.


Epk(α) if x = 0
β if x = α

γ if Dsk(x) = β

⊥ otherwise

By homomorphic evaluation of Obf(P), the attacker obtains Epk(β):

Ôbf(P)(Obf(P)(0)) = Ôbf(P)(Epk(α)) = Epk(Obf(P)(α)) = Epk(P(α)) = Epk(β)

and recovers γ = Obf(P)(Epk(β)).

The simulator S that has only access to [[P]] has negligible probability to
recover β and γ. 33

Indistinguishability obfuscation (IO)

(B. Barak et al, op. cit.)

iO : prog→ prog is an indistinguishable obfuscator if:

1. It preserves functionality:

[[iO(P)]](x) = [[P]](x) for all inputs x

2. The obfuscations of two programs P1, P2 with the same size and
the same I/O behavior ([[P1]] = [[P2]]) cannot be distinguished in
polynomial probabilistic time.

Given {iO(P1), iO(P2)}, a p. p. time attacker has probability
1/2 + ε to determine which of the two obfuscated programs
correspond to P1.

34

IO: the best possible obfuscation?

(S. Goldwasser, G. N. Rothblum, On Best-Possible Obfuscation, TCC 2007).

Obf(P)PiO iO

Let Obf be a functionality-preserving obfuscator.

Given a program P, we add padding to P and Obf(P) so that they
have the same size:

P1 = pad(P) P2 = pad(Obf(P)) |P1| = |P2|

[[P1]] = [[P]] = [[Obf(P)]] = [[P2]]

Then, iO(P1) and iO(P2) are indistinguishable.

Hence, nothing is gained by applying Obf before iO.
Applying iO is enough.

35

IO: the ultimate cryptographic primitive?

The indistinguishability property suffices to prove the security of
IO-based implementations of many cryptographic primitives:

• public-key encryption
• witness encryption
• deniable encryption
• homomorphic encryption
• functional encryption
• identity-based encryption
• attribute-based encryption
• short signatures
• etc.

(A. Sahai, B. Waters, How to use indistinguishability obfuscation: deniable
encryption and more, STOC 2014.)

36

Security of IO-based public-key encryption

H : {0, 1}λ → {0, 1}2λ pseudo-random function.

Epk(m) = iO(λs. ifH(s) = pk then m else ⊥)

Game #1: IND-CPA
C: draws sk ∈ {0, 1}λ, takes pk = H(sk), sends pk to A
A: chooses m0,m1 and sends them to C.
C: chooses b ∈ {0, 1}, sends Epk(mb) à A.
A: guesses the value of b.

37

Security of IO-based public-key encryption

H : {0, 1}λ → {0, 1}2λ pseudo-random function.

Epk(m) = iO(λs. ifH(s) = pk then m else ⊥)

Game #2:
C: draws r ∈ {0, 1}2λ, sends r to A
A: chooses m0,m1 and sends them to C.
C: chooses b ∈ {0, 1}, sends Er(mb) to A.
A: guesses the value of b.

The attacker cannot distinguish game #2 from game #1, since the
results ofH cannot be distinguished from random numbers.
(Assuming the random oracle hypothesis.)
The attacker advantage is the same in games #1 and #2.

37

Security of IO-based public-key encryption

H : {0, 1}λ → {0, 1}2λ pseudo-random function.

Epk(m) = iO(λs. ifH(s) = pk then m else ⊥)

Game #3:
C: draws r ∈ {0, 1}2λ, sends r to A
A: chooses m0,m1 and sends them to C.
C: chooses b ∈ {0, 1}, sends iO(λs. ⊥) to A.
A: guesses the value of b.

r is not in the image ofH with probability 1− 2−λ, and in this
case,

[[λs. ifH(s) = r then m else ⊥]] = [[λs. ⊥]]

and the obfuscations of these functions cannot be distinguished
by the attacker. Same advantage in games #2 and #3.

37

Security of IO-based public-key encryption

H : {0, 1}λ → {0, 1}2λ pseudo-random function.

Epk(m) = iO(λs. ifH(s) = pk then m else ⊥)

Game #3:
C: draws r ∈ {0, 1}2λ, sends r to A
A: chooses m0,m1 and sends them to C.
C: chooses b ∈ {0, 1}, sends iO(λs. ⊥) to A.
A: guesses the value of b.

The attacker advantage is null in game #3. It’s the same
advantage in games #1 and #2. Hence, this cipher is IND-CPA.

37

Implementing IO for circuits

Without size and time constraints:

Just represent the circuit by its truth table.

Same I/O behavior⇒ same truth table.

Without time constraints:

Enumerate all circuits in a fixed order. Take the first circuit
equivalent to the given circuit.

This gives a canonical form for every circuit.

In probabilistic polynomial time:

No canonicalization possible (if P ̸= NP).

Cryptography is required!

38

Implementing IO for circuits

Without size and time constraints:

Just represent the circuit by its truth table.

Same I/O behavior⇒ same truth table.

Without time constraints:

Enumerate all circuits in a fixed order. Take the first circuit
equivalent to the given circuit.

This gives a canonical form for every circuit.

In probabilistic polynomial time:

No canonicalization possible (if P ̸= NP).

Cryptography is required!

38

Implementing IO for circuits

Without size and time constraints:

Just represent the circuit by its truth table.

Same I/O behavior⇒ same truth table.

Without time constraints:

Enumerate all circuits in a fixed order. Take the first circuit
equivalent to the given circuit.

This gives a canonical form for every circuit.

In probabilistic polynomial time:

No canonicalization possible (if P ̸= NP).

Cryptography is required!
38

Homomorphic evaluation of a universal circuit

Ûn
x = E0(x)

E(c)
E(C(x))

A circuit C of size n can be represented by a bit vector c.

We can have it executed by a universal circuit Un (≈ a FPGA):
Un(c, x) = C(x).

We define the obfuscation of C as iO(C) = E(c),
where E is homomorphic encryption.

By homomorphic evaluation of Un, we get

z = Ûn(E(c), E0(x)) = E(Un(c, x)) = E(C(x))

Problem: z is encrypted! We want y = C(x) = D(z).

39

The decryption circuit

Ûn
x = E0(x)

E(c)
E(C(x))

D̃

E(sk)

y = C(x)

iO(C) =


To finish the computation, we must evaluate the decryption
circuit D̃

• over encrypted inputs z = E(C(x)) and E(sk) (= bootstrap)
• with cleartext output (̸= bootstrap)

40

The decryption circuit

For LWE-style encryption, decryption is simple:

Dsk((a, b)) = ⌊(b− ⟨a, sk⟩)/2k⌉

With a bit of work, it can be performed by a circuit of low
multiplicative depth d (NC0 circuit).

The bits yi of the result y = C(x) are therefore multivariate
polynomials of degree d:

yi = Pi(z, sk)

We need to evaluate these polynomials in an hybrid manner:
the sk argument is encrypted, but the result is in the clear.

41

Hybrid evaluation of a polynomial

Degree 2 polynomial: use a bilinear map (a pairing).

Example: evaluation of xy + xz.

e(gx, gy) · e(gx, gz)
pairing

e(g, g)xy+xz = 1 ?

recoding

E(x) E(y) E(x) E(z)

This computation determines whether xy + xz = 0 or xy + yz ̸= 0.

Degree d > 2 polynomial: use a multilinear map
with d arguments?

e(ga1 , . . . , gad) = e(g, . . . , g)a1···ad

42

Hybrid evaluation of a polynomial

Degree 2 polynomial: use a bilinear map (a pairing).

Example: evaluation of xy + xz.

e(gx, gy) · e(gx, gz)
pairing

e(g, g)xy+xz = 1 ?

recoding

E(x) E(y) E(x) E(z)

This computation determines whether xy + xz = 0 or xy + yz ̸= 0.

Degree d > 2 polynomial: use a multilinear map
with d arguments?

e(ga1 , . . . , gad) = e(g, . . . , g)a1···ad

42

The ups and downs of multilinear maps

2013 Garg, Gentry, Halevi, Raykova, Sahai, Waters:
Candidate indistinguishability obfuscation and functional encryption
for all circuits.

Main hypothesis: secure multilinear maps exist.

2014-2019 Barak, Boneh, Brakerski, Cheon, Coron, Fouque, Gentry,
Halevi, Han, Hopkins, Hu, Jain, Jia, Komargodski, Kothari, Lee, Lepoint,
Lin, Maji, Miles, Minaud, Raykva, Ryu, Sahai, Stehlé, Tibouchi,
Vaikuntanathan, Wu, Zhandry, Zimmerman, and several others

Cryptanalysis of multilinear maps. They are insecure. It’s hopeless!

2021 Jain, Lin, Sahai: Indistinguishability obfuscation from
well-founded assumptions.

Doesn’t use multilinear maps. Hypotheses: LPN, DLIN (security of
bilinear maps), and existence of a PRG in NC0.

43

The ups and downs of multilinear maps

2013 Garg, Gentry, Halevi, Raykova, Sahai, Waters:
Candidate indistinguishability obfuscation and functional encryption
for all circuits.

Main hypothesis: secure multilinear maps exist.

2014-2019 Barak, Boneh, Brakerski, Cheon, Coron, Fouque, Gentry,
Halevi, Han, Hopkins, Hu, Jain, Jia, Komargodski, Kothari, Lee, Lepoint,
Lin, Maji, Miles, Minaud, Raykva, Ryu, Sahai, Stehlé, Tibouchi,
Vaikuntanathan, Wu, Zhandry, Zimmerman, and several others

Cryptanalysis of multilinear maps. They are insecure. It’s hopeless!

2021 Jain, Lin, Sahai: Indistinguishability obfuscation from
well-founded assumptions.

Doesn’t use multilinear maps. Hypotheses: LPN, DLIN (security of
bilinear maps), and existence of a PRG in NC0.

43

The ups and downs of multilinear maps

2013 Garg, Gentry, Halevi, Raykova, Sahai, Waters:
Candidate indistinguishability obfuscation and functional encryption
for all circuits.

Main hypothesis: secure multilinear maps exist.

2014-2019 Barak, Boneh, Brakerski, Cheon, Coron, Fouque, Gentry,
Halevi, Han, Hopkins, Hu, Jain, Jia, Komargodski, Kothari, Lee, Lepoint,
Lin, Maji, Miles, Minaud, Raykva, Ryu, Sahai, Stehlé, Tibouchi,
Vaikuntanathan, Wu, Zhandry, Zimmerman, and several others

Cryptanalysis of multilinear maps. They are insecure. It’s hopeless!

2021 Jain, Lin, Sahai: Indistinguishability obfuscation from
well-founded assumptions.

Doesn’t use multilinear maps. Hypotheses: LPN, DLIN (security of
bilinear maps), and existence of a PRG in NC0.

43

Summary on indistinguishable obfuscation

As interesting as ever as the ultimate cryptographic primitive:
“crypto-complete”, “Obfustopia”, . . .

One construction that remains unbroken: Jain-Lin-Sahai 2021.
Several other constructions rely on false or dubious hypotheses.

Still very far from a usable implementation.

Close connections with a problem closer to applications:
functional encryption.

(→ David Pointcheval’s seminar)

44

References

References

On oblivious RAM and its applications for MPC:

• A pragmatic introduction to secure multi-party computation,
David Evans, Vladimir Kolsnikov, Mike Rosulek,
NOW Publishers, 2018. Sections 5.2 to 5.5.

On DEPIR and RAM-FHE:

• Wei-Kai Lin, Ethan Mook, Daniel Wichs, Doubly Efficient Private
Information Retrieval and Fully Homomorphic RAM Computation
from Ring LWE, STOC 2023. https://eprint.iacr.org/2022/1703

Overview articles on indistinguishable obfuscation:

• Boaz Barak, Hopes, Fears and Software Obfuscation, CACM, 2016.
https://doi.org/10.1145/2757276

• Aayush Jain, Huijia Lin, Amit Sahai, Indistinguishability
Obfuscation from Well-Founded Assumptions, CACM, 2024.
https://doi.org/10.1145/3611095 45

https://eprint.iacr.org/2022/1703
https://doi.org/10.1145/2757276
https://doi.org/10.1145/3611095

Conclusion

Three sides of cryptography

A perspective on information theory.

• One-time pad, Shannon’s early work, . . .
• Information-theoretic security vs. computational security.

A perspective on complexity theory.

• Average-case complexity.
• Different classes of computations depending on the

existence (or not) of one-way functions, pseudo-random
functions, pseudo-random generators, . . .

A new perspective on software and programming?

• What I tried to give in these lectures.
• Many circuits, not enough programming languages!
• An “extremist” approach to software security.

46

Three sides of cryptography

A perspective on information theory.

• One-time pad, Shannon’s early work, . . .
• Information-theoretic security vs. computational security.

A perspective on complexity theory.

• Average-case complexity.
• Different classes of computations depending on the

existence (or not) of one-way functions, pseudo-random
functions, pseudo-random generators, . . .

A new perspective on software and programming?

• What I tried to give in these lectures.
• Many circuits, not enough programming languages!
• An “extremist” approach to software security.

46

Three sides of cryptography

A perspective on information theory.

• One-time pad, Shannon’s early work, . . .
• Information-theoretic security vs. computational security.

A perspective on complexity theory.

• Average-case complexity.
• Different classes of computations depending on the

existence (or not) of one-way functions, pseudo-random
functions, pseudo-random generators, . . .

A new perspective on software and programming?

• What I tried to give in these lectures.
• Many circuits, not enough programming languages!
• An “extremist” approach to software security. 46

Computing over encrypted or private data:

a fruitful approach

that opens new approaches to computer security

FIN

47

	Secure memory, 1: Oblivious RAM
	Secure memory, 2: homomorphic encrypted table lookup
	Indistinguisable Obfuscation
	References
	Conclusion

