
Secure computing, sixth lecture

Zero-knowledge proofs

Xavier Leroy
2025-12-11

Collège de France, chair of Software sciences
xavier.leroy@college-de-france.fr

Zero-knowledge proofs (ZKP)

At the start of the protocol:

• The prover knows a secret x that satisfies a property P(x).

At the end of the procol:

• The verifier is convinced that the prover knows x s.t. P(x).
• The verifier learned nothing about x that is not implied

by P(x).

2

An example of a zero-knowledge proof (reminder)

Peggy (the prover) draws a card from a deck and wishes to
convince Victor (the verifier) that it is a red card, without showing
him the card.

7
7

8
8

9
9

10
10

J
J

Q
Q

K
K

A
A

7
7

8
8

9
9

10
10

J
J

Q
Q

K
K

A
A
7

7
8

8
9

9
10

10
J

J
Q

Q
K

K
A

A
7

7
8

8
9

9
10

10
J

J
Q

Q
K

K
A

A

3

An example of a zero-knowledge proof (reminder)

Peggy (the prover) draws a card from a deck and wishes to
convince Victor (the verifier) that it is a red card, without showing
him the card.

7
7

8
8

9
9

10
10

J
J

Q
Q

K
K

A
A

7
7

8
8

9
9

10
10

J
J

Q
Q

K
K

A
A
7

7
8

8
9

9
10

10
J

J
Q

Q
K

K
A

A
7

7
8

8
9

9
10

10
J

J
Q

Q
K

K
A

A

1. Peggy and Victor check the deck of cards:
16 red cards, 16 black cards.

3

An example of a zero-knowledge proof (reminder)

Peggy (the prover) draws a card from a deck and wishes to
convince Victor (the verifier) that it is a red card, without showing
him the card.

7
7

8
8

9
9

10
10

J
J

Q
Q

K
K

A
A

7
7

8
8

9
9

10
10

J
J

Q
Q

K
K

A
A

2. Peggy takes the cards, keeps one, puts the other cards face
down, and turns 16 black cards over.

3

An example of a zero-knowledge proof (reminder)

Peggy (the prover) draws a card from a deck and wishes to
convince Victor (the verifier) that it is a red card, without showing
him the card.

7
7

8
8

9
9

10
10

J
J

Q
Q

K
K

A
A

7
7

8
8

9
9

10
10

J
J

Q
Q

K
K

A
A

3. Victor is convinced that the card kept by Peggy is red, but
knowns nothing else about this card.

3

Some uses of zero-knowledge proofs

Proving facts about private data
(“my vote is well formed”, “there’s enough money in my account”,
“I am 18 or over”, etc)

Anonymous authorization
(accessing non-free Web sites; anonymity in cryptocurrencies)

Delegating computations with correctness guarantees
(“rollups” on blockchains)

4

Sigma protocols

The shape of a Sigma protocol

Peggy must convince Victor that she knows x such that P(x).

A 3-exchange protocol: commitment, challenge, response.

Prover Verifier

Commitment k← Commit(x) k−→

Challenge c←− c← Challenge

Response r ← Resp(x, c) r−→

Verification Verif (k, c, r)

5

Example of a Sigma protocol: Schnorr’s protocol
(knowledge of a discrete logarithm)

Peggy must convince Victor that she knows x such that gx = a
(g generator of a group G of order q; a ∈ G, known to all).

Prover Verifier

Commitment y ∈ Zq random
k = gy k−→

Challenge c←− c ∈ Zq random
Response r = y + x · c (mod q) r−→

Verification gr = k · ac ?

(Application: Peggy can authenticate herself without revealing
her password x.)

6

Expected properties of a zero-knowledge proof

Completeness: if both participants follow the protocol and if the
prover knows x such that P(x), the verification always succeeds.

Correctness: if the verification succeeds, the prover knows x such
that P(x) with overwhelming probability.

Zero-knowledge: the verifier learns nothing about x beyond what
it can deduce from the fact P(x).

7

Completeness of a Sigma protocol

Completeness: if both participants follow the protocol and if the
prover knows x such that P(x), the verification always succeeds.

k← Commit(x)
c← Challenge
r ← Resp(x, c)

=⇒ Verif (k, c, r) succeeds

In the case of Schnorr’s protocol:

k = gy

r = y + x · c
=⇒ gr = gy · (gx)c = k · ac

8

Correctness of a Sigma protocol

Correctness: if verification succeeds, the prover knows x such
that P(x) with overwhelming probability.

Idea: if the prover doesn’t reply randomly, and if we have full
access to the code of the prover and to the values of its local
variables, we can recover x.

A recovery method that works for most Sigma protocols:
execute the protocol twice while forcing the prover to commit on
the same k twice.

9

Special correctness of a Sigma protocol

Special correctness: there exists an extraction function Extr in
polynomial probabilistic time that recovers x from two valid
protocol traces (k, c1, r1) and (k, c2, r2) having the same
commitment k and different challenges c1 ̸= c2.

x = Extr((k, c1, r1), (k, c2, r2))

satisfies P(x) with overwhelming probability

In the case of Schnorr’s protocol:

r1 = y + x · c1

r2 = y + x · c2
=⇒ x =

r1 − r2
c1 − c2

(mod q)

10

Zero-knowledge for a Sigma protocol

Zero-knowledge: the verifier learns nothing about x beyond what
he can deduce from the fact P(x).

Idea: if the prover did not know x but could time-travel and
change her commitment k after receiving the challenge c, would
she be able to produce a correct reply r?

If so, we see that the existence of a trace (k, c, r) that passes
verification implies nothing about x, not even that it exists.

11

Zero-knowledge for a Sigma protocol

Zero-knowledge: there exists a function Simu(c) = (k, r)
producing a valid trace (k, c, r) for a given challenge c.

c← Challenge
(k, r)← Simu(c)

=⇒ Verif (k, c, r) succeeds

In the case of Schnorr’s protocol, take

Simu(c) = (gr · a−c, r) for a random r ∈ Zq

The verification gr = k · ac passes, since k · ac = gr · a−c · ac = gr.

12

Generalization: Maurer’s protocol

(U. Maurer, Unifying Zero-Knowledge Proofs of Knowledge, AFRICACRYPT 2009.)

Two groups G,H of order q and a one-way morphism φ : G→ H.

Given a ∈ H, prove that ∃x ∈ G, φ(x) = a.

Prover Verifier

Commitment y ∈ G random
k = φ(y) k−→

Challenge c←− c ∈ Zq random
Response r = y · xc r−→

Verification φ(r) = k · ac ?

13

Security of Maurer’s protocol

Completeness: if a = φ(x) and k = φ(y) and r = y · xc,

φ(r) = φ(y) · φ(x)c = k · ac (since φ is a morphism)

Correctness: given two executions r1 = y · xc1 and r2 = y · xc2 ,
we have r1/r2 = xc1/xc2 = xc1−c2 hence x = (r1/r2)

c2−c1 .

Zero-knowledge: for a given c, we simulate a valid execution
(k, c, r) by choosing r ∈ G randomly and taking k = φ(r) · a−c.

We have k · ar = φ(r) · a−c · ar = φ(r).

14

Instantiations of Maurer’s protocol

Schnorr: knowledge of a discrete logarithm ∃x, gx = a

φ : Zq → G φ(x) = gx

Guillou-Quisquater: knowledge of a e-th root ∃x, xe = a mod m

φ : Z∗
m → Z∗

m φ(x) = xe mod m

Chaum-Pedersen: ∃x, a = gx ∧b = hx that is, logg(a) = logh(b)

φ : Zq → G× G φ(x) = (gx, hx)

(a, b) is an ElGamal encryption of m: ∃x, a = gx ∧ b = hx ·m

(Example used in lecture #1. Use Chaum-Pedersen with a and b/m.)

15

Prouver une disjonction

Étant donnés des protocoles Sigma pour les propriétés P1 et P2,
peut-on construire une preuve Sigma pour la disjonction P1 ∨ P2?

Exemple d’utilisation: prouver qu’un bulletin de vote chiffré avec
ElGamal est soit un chiffré de 0 soit un chiffré de 1,
sans révéler dans quel cas on se trouve.

Idée: une réponse à un défi est une paire de réponses:
une “vraie” réponse construite avec Respi (si Pi est vraie);
une réponse simulée construite avec Simuj pour j ̸= i.

16

Zero-knowledge proof of a disjunction P1 ∨ P2

Commitment: a pair (k1, k2) of commitments for the protocols P1

and P2.

Response: a quadruple (c1, c2, r1, r2)

where r1 is a P1-response to challenge c1

and r2 a P2-response to challenge c2.

Verification of a response to the challenge c:

Verif ((k1, k2), c, (c1, c2, r1, r2)) = c = c1 ⊕ c2

∧ Verif1(k1, c1, r1)

∧ Verif2(k2, c2, r2)

The verification is symmetrical in P1 and P2, and gives no hint to
which property P1 or P2 is true.

17

Zero-knowledge proof of a disjunction P1 ∨ P2

Assume P1(x) is true. In general, we have no proof for P2(x), so
the prover simulates one for a challenge c2 of her choosing.

Prover Verifier
Commitment k1 ← Commit1(x)

c2 ← Challenge

(k2, r2)← Simu2(c2)
k1,k2−−−→

Challenge c←− c← Challenge

Response c1 = c⊕ c2

r1 ← Resp1(x, c1)
c1,c2,r1,r2−−−−−→

Verification c = c1 ⊕ c2 ?
Verif1(k1, c1, r1) ?
Verif2(k2, c2, r2) ?

18

Non-interactive proofs

Towards a non-interactive protocol

Prover Verifier

Commitment k← Commit(x) k−→

Challenge c←− c← Challenge

Response r ← Resp(x, c) r−→

Verification Verif (k, c, r)

The challenge c does not need to be chosen by the verifier.
Anyone could choose c, provided that

• c is chosen after the commitment;
• c is not controlled by the prover;
• c is “random enough”.

19

The Fiat-Shamir heuristic

(A. Fiat, A. Shamir, How To Prove Yourself: Practical Solutions to Identification
and Signature Problems, CRYPTO 1986.)

Use a hash functionH to produce the challenge from the
commitment k and the public parameters pp of the problem:

c = H(pp ∥ k)

IfH is viewed as a random oracle, c is random; moreover, we
cannot manipulate k to obtain a c of our choosing.

IfH is a standard cryptographic hash function (such as SHA-256),
we strongly believe these properties of c still hold.

20

Making a Sigma protocol non-interactive

Prover Verifier

Commitment k← Commit(x)

Challenge c = H(pp ∥ k)

Response r ← Resp(x, c) k,r−→

Verification c = H(pp ∥ k)

Verif (k, c, r)

Fiat-Shamir: the challenge is obtained from k and pp usingH.

The proof is the pair (k, r). It can be checked at any time and as
many times as desired, without interacting with the prover.

21

Example of a non-interactive proof

I know the discrete logarithm of a in base g in Z∗
p .

p = 256442692006529804507668201642461539353
g = 781944113
a = 66023749147436302773648336985745907535

Here is my proof:

k = 20029956831221546449854943237402073831
r = 22182459886080977115472713921546772068

(Schnorr protocol + Fiat-Shamir with SHA-256 hash).

22

Arithmetic circuits
and quadratic programs

Arithmetic circuits

Combinatorial circuits that go beyond standard Boolean circuits:

• Wires carry values taken from a field Fq of order q.
• Base gates: addition, multiplication, constants.

+ × 6

• We can constrain the output of a gate to be equal to a
constant or to the output of another gate.
Example: the isbool(b) circuit that enforces b ∈ {0, 1}.

× 0
+

−1

b

23

Examples of arithmetic circuits

Multiplexer: mux(b, u, v) = if b then v else u

+

×

×
mux(b, u, v)

v

u

+

1

×
−1

b

isbool

24

Combining arithmetic operations and Boolean operations

Binary decomposition: a = b0 + 2b1 + . . .+ 2nbn

+ + +

×

2b1

isbool

×

4b2

isbool

×

2nbn

isbool

b0
isbool a

25

Combining arithmetic operations and Boolean operations

Fast exponentiation: y = xa where a = b0 + 2b1 + · · · 2nbn.

mux

1

×

b0 mux

1

×

b1 mux

1

×

bn

1 y

×x ×x2 x4 x2n

If we constrain x and y, this circuit proves the knowledge of the
discrete logarithm of y in base x .

26

From gates to equations

We decompose the circuit in macro-gates comprising exactly one
“product” gate each, with two inputs and one output that are
affine combinations of wires.

× a.c.
a.c.

a.c.

In the case of the isbool circuit:

× 0
b

b−1

27

From gates to equations

× a.c.
a.c.

a.c.

c
a

b

Let w1, . . . ,wn be the values of the n wires of the circuit. Take
w0 = 1.

The two inputs a, b and the output c of the product gate are
linear combinations of the wi:

a = a0w0+· · ·+anwn b = b0w0+· · ·+bnwn c = c0w0+· · ·+cnwn

Since c = a× b, we obtain the constraint

(a0w0 + · · ·+ anwn) (b0w0 + · · ·+ bnwn) = c0w0 + · · ·+ cnwn

28

Rank-1 constraint system

Applying this encoding to each of the m product gates of the
original circuit, we obtain a set of m equations of degree 2 with
unknowns wi.

(a1,0w0 + · · ·+ a1,nwn) (b1,0w0 + · · ·+ b1,nwn) = c1,0w0 + · · · c1,nwn

...
...

(am,0w0 + · · ·+ am,nwn) (bm,0w0 + · · ·+ bm,nwn) = cm,0w0 + · · · cm,nwn

The coefficients aj,i, bj,i, cj,i describe the structure of the circuit.

29

Quadratic Arithmetic Program

An encoding of a rank-1 constraint system using polynomials.

We choose m points x1, . . . , xm of Fq.
The point xj identifies the j-th product gate.

Using Lagrange interpolation, we build polynomials A0, . . . , An,
B0, . . . ,Bn, C0, . . . , Cn such that

Ai(xj) = aj,i Bi(xj) = bj,i Ci(xj) = cj,i

Then, we build the polynomial

P = (w0A0 + · · ·+wnAn) (w0B0 + · · ·+wnBn)− (w0C0 + · · ·+wnCn)

30

Quadratic Arithmetic Program

P = (w0A0 + · · ·+wnAn) (w0B0 + · · ·+wnBn)− (w0C0 + · · ·+wnCn)

The initial circuit executes correctly if and only if

P(xj) = 0 for each j ∈ {1, . . . ,m}

or, equivalently, if and only if P can be written as

P = H T where T = (X − x1) (X − x2) · · · (X − xm)

31

Connection with zero-knowledge proofs

Our proofs are “arguments of knowledge”:

I know values x such that Prop(x) holds.

If the property Prop can be expressed as a circuit C, the argument
of knowledge becomes

I know wire values w that satisfy the circuit C.

After encoding the circuit as a QAP, the argument becomes

I know values w and a polynomial H such that
(w0A0+ · · ·+wnAn) (w0B0+ · · ·+wnBn)−(w0C0+ · · ·+wnCn) = H T

where the polynomials Ai,Bi, Ci and the target polynomial T are
publically known and depend only on the circuit.

32

Masked evaluation of polynomials

Proving equality of two polynomials

Alice knows a degree-n polynomial A = a0 + a1X + · · ·+ anXn.

Bob knows a degree-n polynomial B = b0 + b1X + · · ·+ bnXn.

They want to check that A = B.

Naive proof: check that a0 = b0, . . . , an = bn

⇒ proof of size O(n).

Succint proof: evaluate A and B at a random point z.
If A(z) = B(z), then A = B with high probability.

33

Proving equality of two polynomials

If two degree-n polynomials A and B are different, they coincide
on at most n points.

We use a finite field Fq of order q≫ n. The probability that
z ∈ Fq is one of the intersection points is n/q≪ 1.

Hence, if A(z) = B(z), we have A = B with high probability 1− n/q.

34

Proving that a polynomial has some given roots (first try)

Peggy has a secret polynomial P and wants to convince Victor
that P is zero at points x1, . . . xn.

Prover Verifier

T = (X − x1) · · · (X − xn)
T,z←− z ∈ Fq random

H = P/T

p = P(z) h = H(z) p,h−−→
p = h · T(z) ?

If p = h · T(z), with high probability we have P = H · T
and therefore x1, . . . , xn are roots of P.

35

Masking the evaluation of a polynomial

In the previous protocol, the prover can easily cheat.
For example, she picks h at random and takes p = h · T(z).

Idea: to limit what the prover can compute, we transmit z
encrypted and we use homomorphic evaluation.

Let E be a one-way function that is homomorphic for addition
and multiplication by a constant:

E(x + y) = E(x)⊕ E(y)

E(c · x) = c⊙ E(x)

but definitely not homomorphic for general multiplication:

E(x · y) cannot be computed easily from E(x) and E(y)

36

Example of homomorphic one-way function

Let (G, ·) be a group of order q where discrete logarithms are
hard to compute. Let g be a generator of G.

Define E : Fq → G as E(x) = gx.

We have

E(x + y) = gx+y = gx · gy = E(x) · E(y) (⊕ is the product in G)
E(c · x) = gcx = (gx)c = E(x)c (⊙ is exponentiation in G)

But from gx and gy we cannot easily compute gxy

(Diffie-Hellman hypothesis).

Note: equality of ciphertexts E(x) = E(y) implies equality of
plaintexts x = y (mod q).

37

Homorphic evaluation of a polynomial

We can evaluate linear combinations homomorphically:

E(c1x1 + · · ·+ cnxn) = c1 ⊙ E(x1)⊕ · · · ⊕ cn ⊙ E(xn)

If we are given the encryptions of the first n powers of z

E(1), E(z), . . . , E(zn)

we can evaluate P(z) for any polynomial P of degree n:

E(c0 + c1z + · · ·+ cnzn) = c0 ⊙ E(1)⊕ c1 ⊙ E(z)⊕ · · · ⊕ cn ⊙ E(zn)

38

Proving that a polynomial has some given roots (second try)

Prover Verifier

T = (X − x1) · · · (X − xn)

z ∈ Fq random
T,z0,...,zn←−−−−− zi = E(zi) for i = 0, . . . , n

H = P/T

p = E(P(z)) h = E(H(z)) p,h−−→
p = T(z)⊙ h ?

Note: the prover can still cheat!
E.g. h = E(r) and p = r ⊙ E(T(z)) for a random r.

39

Proving that a polynomial has some given roots (second try)

Prover Verifier

T = (X − x1) · · · (X − xn)

z ∈ Fq random
T,z0,...,zn←−−−−− zi = E(zi) for i = 0, . . . , n

H = P/T

p = E(P(z)) h = E(H(z)) p,h−−→
p = T(z)⊙ h ?

Note: the prover can still cheat!
E.g. h = E(r) and p = r ⊙ E(T(z)) for a random r.

39

Authenticated encryption

Let k ∈ Fq be a secret known only to the verifier.

An authenticated encryption of x is a pair of encryptions
of x and kx:

Ē(x) = (E(x), E(kx))

Knowing k, the verifier can easily check that the encryption (a, b)
is valid by testing b = k⊙ a.

40

Authenticated encryption

Ē(x) = (E(x), E(kx))

Without knowing k, the prover can compute homomorphically on
authenticated ciphertexts:

Ē(x + y) = Ē(x)⊕ Ē(y) (pointwise)
Ē(c. x) = c⊙ Ē(x) (pointwise)

Without knowing k, the only valid authenticated ciphertexts that
the prover can construct are linear combinations of
authenticated ciphertexts provided by the verifier.
(This is known as the Knowledge of Exponent Assumption (KEA).)

41

Proving that a polynomial has some given roots (secure version)

Prover Verifier

T = (X − x1) · · · (X − xn)

z ∈ Fq random
T,z0,...,zn←−−−−− zi = Ē(zi) for i = 0, . . . , n

H = P/T

p = Ē(P(z)) h = Ē(H(z)) p,h−−→
check validity of p and h
p = T(z)⊙ h ?

42

Zero-knowledge version

To make the protocol zero-knowledge, it is enough to mask the
responses of the prover by a random multiplicative factor r:

p = r ⊙ Ē(P(z)) h = r ⊙ Ē(H(z))

The verification p = T(z)⊙ h still works.

43

Non-interactive version

To obtain a non-interactive protocol, we need to choose the
secrets z and k in advance, and to share encrypted data with the
provers and the verifiers:

Evaluation key: Ē(1), Ē(z), . . . , Ē(zn)

Verification key: E(1), E(T(z)), E(k)

Problem: without knowing k in the clear, how can we check the
validity of an authenticated ciphertext (a, b) ?
(It is no longer possible to test b = k⊙ a.)

⇒ Use a pairing.

44

Pairing (bilinear map)

Given two multiplicative groups G (generated by g) and G′,
a pairing e : G× G→ G′ is a non-degenerate bilinear map:

e(ga, gb) = e(g, gb)a = e(ga, g)b = e(g, g)ab

e(g, g) ̸= 1 is a generator of G′

Efficiently-computable pairings exist for some elliptic curves.

A pairing gives a way to homomorphically check the equality of
two products:

e(ga, gb) = e(gc, gd) ⇐⇒ ab = cd

45

Pairing-based verifications

Validity of an authenticated ciphertext (a, b):

Knowing k: b = k⊙ a

Knowing only E(k): e(b, E(1)) = e(E(k), a)

Verification of P(z) = H(z) · T(z):

Knowing T(z): p = T(z)⊙ h

Knowing only E(T(z)): e(p, E(1)) = e(E(T(z)), h)

46

The Pinocchio protocol:
ZK-SNARKs for QAP

The Pinocchio protocol

(B. Parno, J. Howell, C. Gentry, M. Raykova, Pinocchio: Nearly Practical Verifiable
Computation, S&P 2013, CACM 2016.)

A ZK-SNARK protocol:

Zero-Knowledge
Succint (proofs of constant size)
Non-interactive
ARgument of Knowledge (there exists s such that Prop(s))

The property Prop is expressed as an arithmetic circuit
represented in QAP form as degree-m polynomials

T, A0, . . . , An,B0, . . . ,Bn, C0, . . . , Cn

where n is the number of secrets and m the number of product
gates in the circuit.

47

Argument of knowledge

The prover must demonstrate that it knows secrets s0, . . . , sn and
a poynomial H such that

(s0A0 + · · ·+ snAn) (s0B0 + · · ·+ snBn)− (s0C0 + · · ·+ snCn) = H T

We write A =
∑

siAi B =
∑

siBi C =
∑

siCi .

We use a variant of the protocol that proves that a polynomial
has some given roots:

• Show that A(z) B(z)− C(z) = H(z) T(z) for a random z.
• Moreover, show that A,B, C are linear combinations of the Ai,

Bi, Ci with the same coefficients s0, . . . , sn.

48

Protocol setup

An authority picks random z, k, α, β, γ, δ in Fq and publishes the
following “Common Reference String” (CRS), to be used by all
provers and verifiers:

Evaluation key:

Ē(zi) for i = 0, . . . ,m

Ē(Ai(z)) for i = 0, . . . , n

Ē(Bi(z)) for i = 0, . . . , n

Ē(Ci(z)) for i = 0, . . . , n

E(αAi(z) + βBi(z) + γCi(z))
for i = 0, . . . , n

Verification key:

E(1) E(k) E(T(z))

E(δ) E(αδ) E(βδ) E(γδ)

49

Proof generation

Knowing the secrets s0, . . . , sn, the prover

• builds the polynomials A =
∑

siAi B =
∑

siBi C =
∑

siCi

• computes H such that A B− C = H T by polynomial division.

The proof consists of the authenticated encryptions of the values
of A,B, C,H at point z:

Ē(A(z)) Ē(B(z)) Ē(C(z)) Ē(H(z))

and of the “checksum”

E(αA(z) + βB(z) + γC(z)) =
⊕

si ⊙ E(αAi(z) + βBi(z) + γCi(z))

(Size of the proof: 9 elements of group G, independently of the
size m of the circuit and the number n of secrets.)

(Zero-knowledge: add a random multiple of T to A, B, C.)
50

Proof verification

The verifier receives four authenticated ciphertexts a, b, c and h,
plus an encrypted checksum ck.

He checks that a, b, c and h are valid. This ensures they are linear
combinations of values from the CRS.

He checks the divisibility condition:

e(a, b) = e(c, E(1)) · e(E(T(z)), h)

This proves that A(z) B(z) = C(z) + T(z) H(z).

He checks that

e(ck, E(δ)) = e(a, E(αδ)) · e(b, E(βδ)) · e(c, E(γδ))

This proves that A,B, C are linear combinations of the Ai,Bi, Ci

with the same coefficients si.
(Non-obvious consequence of the KEA.) 51

Summary

Summary

Sigma protocols:

• The main “design pattern” to describe and analyze
interactive ZK protocols.

• Transformation to non-interactive protocols via the
Fiat-Shamir heuristic.

ZK-SNARK proofs:

• Able to prove the knowledge of a solution to a wide class of
problems.

• The QAP approach: arithmetic circuits encoded as
poynomials.

• Other approaches are possible, see the survey by Nitulescu
(2020).

52

References

References

Sigma protocols:

• Cryptography made simple, Nigel P. Smart, Springer, 2016.
Chapter 21.

A survey on ZK-SNARKS:

• Anca Nitulescu, zk-SNARKs: A Gentle Introduction, 2020.
https://www.di.ens.fr/~nitulesc/files/Survey-SNARKs.pdf

A step-by-step tutorial on the QAP approach:

• Maksym Petkus, Why and How zk-SNARK Works: Definitive
Explanation, 2019, http://arxiv.org/abs/1906.07221

An overview of QAP and its applications to blockchains:

• Thomas Chen, Hui Lu, Teeramet Kunpittaya, Alan Luo,
A Review of zk-SNARKs, 2023, https://arxiv.org/abs/2202.06877

53

https://www.di.ens.fr/~nitulesc/files/Survey-SNARKs.pdf
http://arxiv.org/abs/1906.07221
https://arxiv.org/abs/2202.06877

	Sigma protocols
	Non-interactive proofs
	Arithmetic circuits and quadratic programs
	Masked evaluation of polynomials
	The Pinocchio protocol: ZK-SNARKs for QAP
	Summary
	References

