OLLEGE
E FRANCE
1530

g C
, D

Secure computing, fifth lecture

Secure multi-party computation:
garbled circuits and oblivious transfer

Xavier Leroy
2025-12-04

College de France, chair of Software sciences
xavier.leroy@college-de-france.fr

Key sharing and
threshold decryption

An example of electronic vote (reminder)
voter 1
: | @
voter N |

Ballots Totals Result
(encrypted) (encrypted) of the vote

A key pair (pR, sk) for a weakly-homomorphic cipher.
Ballots are encrypted with the public key pk.

Ballots are counted by homomorphic addition.

The total is to be decrypted with the private key sk.

We want to share the key sk between n trustees, so that R < n
trustees can decrypt the total.

A naive multi-party algorithm

We share the key sk between the n trustees using Shamir sharing
(polynomials of degree t = k — 1).

Once the ballots are counted, R trustees reveal their shares,
recover sk, and decrypt the total.

Problems:

- Any trustee can decrypt any ballot, not just the total.

» The key cannot be reused for another vote.

The ElGamal cipher (reminder)

A finite group (G, -) of order g generated by g.
Private key: se {1,...,9—1}.
Public key: h & g°.

Randomized encryption:
En(m)=(g",h"-m) withre{1,...,9— 1} random

Decryption:

Dy((a,b)) = b/a®

Multi-party decryption

Consider a full additive sharing of the private key s between n
participants:

Ss=81+---+5, (mod q)
To jointly decrypt (a, b)

« each participant i computes y; = a®
and sends it to the others;
+ one or several participants compute y = y;---yp, then b/y.
This correctly decrypts the message, since

y = a...g =gttt = g8

The private key s is not revealed, only a multiplicative sharing of
y=as.

Threshold decryption

If we use Shamir sharing, or some other LSSS linear sharing, the
private key is a linear combination of the shares:

S=MS1+ -+ \pSp (mod q)

where some of the \; can be 0 if we do not need the
corresponding shares. (= lecture #4)

In this case, each participant i computes y; = a*, and we have

y — y1 . _yn — a)\151 .. a)\nSn — a)\151+"'+)\n5n — aS

Multi-party computation and homomorphic encryption

We can implement a multi-party computation y = F(xq,...,Xn)
by homomorphic evaluation of the circuit F.

~

X1 % Z1 = F(S(X-]),g(Xz)) — = V1= D(Z1)

> >

X2 4((:::> Z> :?(5(X1),5(X2)) — = V= D(Zz)

We assume the private key sk is shared between the participants,
and the public key pk is known to all.

Each participant i sends its encrypted secret £y,(X;) to the other
participants.

Multi-party computation and homomorphic encryption

We can implement a multi-party computation y = F(xq,...,Xn)
by homomorphic evaluation of the circuit F.

~

X1 % Z1 = F(S(X-]),g(Xz)) — = V1= D(Z1)

> >

X2 ? Z> :?(5(X1),5(X2)) — = V= D(Zz)

Each participant i computes

zi = F(Epr(1), - - -, Epe(Xn))

where F is the homomorphic evaluation of F.

Multi-party computation and homomorphic encryption

We can implement a multi-party computation y = F(xq,...,Xn)
by homomorphic evaluation of the circuit F.

~

X1 % Z1 = F(S(X-]),g(Xz)) — = V1= D(Z1)

> >

X2 ? Z> :?(5(X1),5(X2)) — = V= D(Zz)

All the participants cooperate to decrypt the z;:
Vi = Dsi(z)) (without revealing sk)

and checkthaty; = ... = yp.

Multi-party computation and homomorphic encryption

We can implement a multi-party computation y = F(xq,...,Xn)
by homomorphic evaluation of the circuit F.

~

X1 % Z1 = F(S(X-]),g(Xz)) — = V1= D(Z1)

> >

X2 ? Z> :?(5(X1),5(X2)) — = V= D(Zz)

Point in favor: the number of communication rounds is
independent of the multiplicative depth of F.

Point against: homomorphic evaluation is costly in CPU time.

Yao's garbled circuits

Yao's millionaire problem

(Andrew C. Yao, Protocols for Secure Computation, SFCS 1982.)

Alice and Bob wish to know who is the wealthiest, without
revealing their exact wealth to the other.

A two-party variant of the call for tenders problem.

Formally: compute the Boolean value ofa > b
while keeping a and b secret.

(Variant: the socialist millionaire problem, where the result is the
Boolean value of a = b.)

A Boolean circuit for comparison

Full adder:
b -

Cout

n-bit comparator:

ao bo as b an—1bn1
P |)
1— + +F - — 4+ ——a>b
{ { {

Secure two-party evaluation of the circuit

Using one of the secret sharing protocols from lecture #4, for
example the GMW protocol.

+ Alice writes her wealth in binary A = 3" a;2' and shares the
secret bits ao, . . ., ase with Bob.

- Bob writes his wealth in binary B = 5" b;2' and shares the
secret bits by, . .., b3g with Alice.

« Alice and Bob jointly evaluate the comparison circuit.

+ Once the sharing [c] of the result is computed, Alice and Bob
reveal it, obtaining ¢, which is a > b.

Potential problem: the amount of communication
(3 multiplications par bit — at least 120 communications).

10

Yao's garbled circuits

a : Alice’s private data
¢ = F(a,b) b : Bob’s private data
c : shared results

An asymmetric alternative to secret sharing.
1. Alice prepares a “garbled” variant of the circuit F
and sends it to Bob, along with her secrets a after garbling.
2. Bob garbles his secrets b using oblivious transfer with Alice.

3. Bob evaluates the garbled circuit, obtaining ¢ = F(a, b)
garbled. (Purely local evaluation; no communication.)

4. Bob sends this result to Alice, who un-garbles it and
announces c.

1

The logical gates used

We consider AND, OR, XOR gates, possibly with a negation on one
or both inputs:

IDR IDIEEID I D
1> 1> 4> i
1> 1> 4> 4>

No need for NOT gates: negation is performed on the input of the
next gate.

12

Representing gates by truth tables

Each gate F can be represented by its truth table:

0 | value of F(0,0)
1 | value of F(0,1)
0 | value of F(1,0)
1 | value of F(1,1)

)

)

Examples:

1> -

- o = o

D:

- =2 oo

- =2 oo

- o =0

oo - o
1

- =200

- o = o
o = =0

13

Garbling the wires

For each wire w of the circuit, Alice chooses two bit-vectors
Wo representing bit 0 and wy representing bit 1.

(Each wp is one half of a symmetric encryption key,
i.e. a 128-bit vector for AES-256.)

She rewrites the truth tables accordingly.

14

—— Cout

o = = -

o - o

© o~

o - - O o oo o oo
o - o o - o o - o
o o - © o~ © o~

Cin

[
[}
©
©
(1}
=
(]}
-
=)
Y=
(=}
n
£
s
[}
-
=)
on
=
-]
-
s
o)
3]
—
[~
&
xX
Ll

o - - O

o - o

© o =

15

Example: garbling the wires of the full adder

e2/11

9d ec e2
9d 28 11
c0 ec 11
19/56 [G9 | 2c | ec ol ==
19 d7 28
2c/d7| |s6 | 2c | 28 Lgi
56 a7 €e
ec 9d 45
ec c0 45
28 9d 45
28 c0 di
19 2c 76
19 d7 76
56 2c 76
56 a7 cd

45
45
di
di

76
cd
76
cd

5¢
9f
of
9f

5¢/9f
Cout

15

Encrypting the logical gates

For the gate number g, with inputs a, b and output c:

o | bo | Cr(0,0) { Eaollbe(9 Il Cr0,0))5
ao | b1 | Cron) N ao\|b1(9 ” CF(0,1))7
a; | bo | Crr0) Ealbo (9 Il €F(1,0))5
ar | by | crap a1||b1(9 | CF(1,0)) }

Each possible value of the output (co or ¢; depending on F(i,j)) is
encrypted with the secret key a; || b;
(the concatenation of the two input values).

The 4 resulting ciphertexts are permuted randomly.

16

Example: encryption of the gates of the full adder

19/56

2c/d7|

c2c62c31
f1cd7b5b
740c6630
8a26a121

0280ee9c
c1b31£43
3937619
a71d5c29

e2/11

[

fcb7cdcd
2add6581
8eb530b2
c22e9152

af716751
77af0f52
540e5d23
bYaac3c3

de42643c
8b82ad3c
al1582ca4d
1400fe92

5¢/9f
Cout

17

Evaluating an encrypted gate

o | bo | Cr0,0) { Eaollbe(9 Il Cr0,0)
ao | b1 | Cr(o;1 ao\|b1(9 | Cr(0,1)
a1 | bo | craro a1||bo(g | Cr(1,0)
ar | by | crap a1||b1(g | CF(1,0)

~—

)

) — Y
)

)

N— N —

}

Bob only knows the gate identifier g, its 4 encrypted lines, and
the garbled inputs a, b.

He decrypts the 4 lines with the key a || b.

With very high probability, only one decryption is of the form
g || c for some code value c. (The other decryptions are noise.)

This c is the garbled output of the gate.

18

Evaluating an encrypted gate

o | bo | Cr0,0) { Eaolbe(9 Il Cr0,0))5
ao | b1 | Cron) N ao\|b1(9 | CF(0,1))7
a; | bo | Cer0 a1||b0(9 | €r(,0))5
ar | by | crap Ear| |b1(9 | CF(1,0)) }

Bob only knows the gate identifier g, its 4 encrypted lines, and
the garbled inputs a, b.

He decrypts the 4 lines with the key a || b.

With very high probability, only one decryption is of the form
g || c for some code value c. (The other decryptions are noise.)

This c is the garbled output of the gate.

Bob is able to evaluate the logic gate, but does not know which

bits a, b, ¢ stand for, and does not know the other 3 lines.
18

Example: evaluating the full adder

c2c62c31
f1cd7b5b
740c6630
8a26a121

0280ee9c
c1b31£43
3£f937619
a71d5c29

[

fcb7cdcd
2add6581
8eb530b2
c22e9152

af716751
77af0£52
540e5d23
b9aac3c3

de42643c
8b82ad3c
al582ca4d
1400fe92

—— Cout

Example: evaluating the full adder

c2c62c31
f1cd7b5b
740c6630
8a26a121

ed

0280ee9c
c1b31£43
3£f937619
a71d5c29

[

fcb7cdcd
2add6581
8eb530b2
c22e9152

af716751
77af0£52
540e5d23
b9aac3c3

cd

de42643c
8b82ad3c
al582ca4d
1400fe92

—— Cout

Example: evaluating the full adder

c2c62c31
f1cd7b5b
740c6630
8a26a121

ed

0280ee9c
c1b31£43
3£f937619
a71d5c29

[

fcb7cdcd
2add6581
8eb530b2
c22e9152

45

e2

af716751
77af0£52
540e5d23
b9aac3c3

cd

de42643c
8b82ad3c
al582ca4d
1400fe92

—— Cout

Example: evaluating the full adder

c2c62c31
f1cd7b5b
740c6630
8a26a121

ed

0280ee9c
c1b31£43
3£f937619
a71d5c29

[

fcb7cdcd
2add6581
8eb530b2
c22e9152

45

e2

af716751
77af0£52
540e5d23
b9aac3c3

cd

de42643c
8b82ad3c
al582ca4d
1400fe92

of
——— Cout

The full protocol for garbled circuits

1. Alice garbles the wires: w — wq, w, random.
Alice garbles the circuit and sends it to Bob.
For each of her inputs a with value x, she sends the garbled
input ay to Bob.

2. Oblivious transfer: for each input b of Bob’s with value y,
Alice offers by and b4, Bob chooses y, Bob receives by.

3. Bob evaluates the garbled circuit (locally).

4. For each circuit output ¢, Bob sends Alice its garbled value ¢
or ¢4, Alice recovers the corresponding 0/1 bit, and
announces it.

20

The full protocol for garbled circuits

1. Alice garbles the wires: w — wq, w, random.
Alice garbles the circuit and sends it to Bob.
For each of her inputs a with value x, she sends the garbled
input ay to Bob.

2. Oblivious transfer: for each input b of Bob’s with value y,
Alice offers by and b4, Bob chooses y, Bob receives by.

3. Bob evaluates the garbled circuit (locally).

4. For each circuit output ¢, Bob sends Alice its garbled value ¢
or ¢4, Alice recovers the corresponding 0/1 bit, and
announces it.

(Variant: use a trivial garbling ¢ — 0, 1 for the outputs c.

Then, Bob knows the result in the clear and can announce it himself.) .

Security of garbled circuits

Passive security:

- Bob learns nothing about Alice’s secrets a
(they are masked by the garbling 0,1+ ao, a4).

« Alice learns nothing about Bob’s secrets b
(assuming that the oblivious transfer is secure).

Active security:

- If Bob does not follow the protocol, with high probability
he'll get impossible values (neither ¢y nor ¢;) for the output
wires c. Alice will spot this.

« Alice can cheat in many ways. For example she can send a
garbled circuit that outputs Bob'’s secret: F(a, b) = b.

21

Speeding up the evaluation of a garbled gate

To evaluate a garbled gate {zy,...,z,} on the inputs a, b, we need
to decrypt 2.5 lines z; on an average, 4 in the worst case.

We can use the least significant bits of a and b to know in
advance which z; to decrypt.

22

Speeding up the evaluation of a garbled gate

We choose the wire garblings k — Rq, Ry so that
LSB(ko) # LSB(R:).

We sort the 4 ciphertexts &g, b, (9 || Cr(xy)) bY
2 x LSB(ay) + LSB(by).

The evaluator knows which line to decrypt: the line number
2 x LSB(a) + LSB(b).

Example: initial table / table sorted by LSB.

19 | 2c¢ | af716751 56 | 2c | 540e5d23 540e5d23

19 | d7 | 77af0£52 56 | d7 | b9aac3c3 bYaac3c3
== =—>

56 | 2c | 540e5d23 19 | 2c | af716751 af716751

56 | d7 | b9aac3c3 19 | d7 | 77af0£52 T7af0£52

23

Speeding up the decryption

We can use a hash function # to encrypt the lines.

The four z; lines are computed as
Zyx15B(ax)+LsB(by) = H(9 || ax || by) ® Crxy)
The decryption performed during the execution of the gate is

C = ZysB(a)+LsB(b) @ H(g || a || b)

24

Speeding up the decryption

We can use a hash function # to encrypt the lines.

The four z; lines are computed as
Zyx15B(ax)+LsB(by) = H(9 || ax || by) ® Crxy)
The decryption performed during the execution of the gate is

C = ZysB(a)+LsB(b) @ H(g || a || b)

(The hash function can be implemented efficiently using a block cipher
such as AES and a key known to both participants.)

24

Free XOR gates

For a wire R, instead of picking random kg and k4,
we can pick kg randomly and take Ry = Ry & A
where A is a secret chosen by Alice. (A must be odd.)

The garbling of bit x over wire k is, then, kg ® x - A.

23]

Free XOR gates

For a wire R, instead of picking random kg and k4,
we can pick kg randomly and take Ry = Ry & A
where A is a secret chosen by Alice. (A must be odd.)

The garbling of bit x over wire k is, then, kg ® x - A.

ao/a Co/C

X 0/t

Rl L
bo/bs

Consider the XOR gate above, If we choose ¢y = ag @ by, this gate
evaluates without decryption, simply as the XOR of its inputs:

ax®dby, = (ap®x-A)d(body-A)
= (ap®by)®(xBDYy) - A=co®z-A=¢

23]

Active security: the cut-and-choose technique

Can we make sure that the garbled circuit constructed by Alice
does compute the function F and not the function F'(a, b) = b for
example?

The cut-and-choose technique:

« Alice constructs n garbled circuits Cq, . . ., C, using different
randomness, and sends them all to Bob.

+ Bob choosesi € {1,...,n} and ask Alice the randomness
used to construct C; for all j # i.

+ Using the randomness, Bob can check that the circuits
Cj,j # i are correct garblings of F.

« Bob and Alice use the circuit C; to continue the protocol.

26

Active security: expanding the secret inputs

Another possible attack by Alice:

2. Oblivious transfer: for each input b of Bob’s with value y,
Alice offers by and bs, Bob chooses y, Bob receives b,.
Instead of offering by and by, Alice could offer by and 0.

If Bob produces a well-formed result nonetheless, it means that
he did not use the value 0. Alice learns that y = 0.

Counter-measure: expand the input b into n inputs by, ..., by,
with a little circuit that computes b = by @ - - - @ by,
Combine this with the cut-and-choose technique.

(Y. Lindell, B. Pinkas: An Efficient Protocol for Secure Two-Party Computation in
the Presence of Malicious Adversaries.). Cryptol, 2015).

27

Oblivious transfer

Oblivious Transfer (OT)

A protocol between two participants:
+ Alice (the sender) knows n values m4, ..., my .
+ Bob (the receiver) chooses i € {1,...,n}.

At the end of the protocol,

+ Bob knows the value m;.
+ Alice does not know Bob's choice i.

* Bob learnt nothing about the other values m; for j # i.

28

The EGL protocol for 1-out-of-2 oblivious transfer

(S. Even, O. Goldreich, A. Lempel, A Randomized Protocol for Signing Contracts,
CRYPTO 1982.)

Uses a public-key cipher (Keygen) for which we can randomly
draw “fake” public keys (PubKeySamp) indistinguishable from the
“genuine” public keys.

1. Bob the receiver draws a key pair (pk, sk) < Keygen and a fake
public key pR’ < PubKeySamp.

If he chooses i = 0, he sends (pk, pk’) to Alice.
If he chooses i = 1, he sends (pk’, pk) to Alice.

29

The EGL protocol for 1-out-of-2 oblivious transfer

2. Alice the sender receives two public keys pkg, pky and encrypts
her messages with these keys:

Co = Eprg(Mo) €1 = Eppy (M)
She sends the ciphertexts ¢y and ¢4 to Bob.
3. Bob receives cg, ¢ and decrypts ¢; using his private key:
m; = Dsp(c;)
Correctness: pk; is the public key associated with sk, hence we
have Dsg(Epk,(M;)) = m; .

30

Security of the EGL protocol

Passive security:

« Alice receives two public keys but cannot distinguish the
genuine one from the fake one.
— Alice learns nothing about Bob's choice i.

- Bob receives two ciphertexts cg, ¢; and can decrypt ¢; but not
¢,_i (he doesn’t have a private key that matches pk’).
— Bob learns nothing about m,_; .

Active security: Bob can easily cheat.

Instead of pk’ < PubKeySamp, he draws (pk’, sk’) < Keygen.

Then, he can decrypt both messages sent by Alice, and learn both
mo and my.

31

Variant: 1-out-of-4 oblivious transfer

(Easily extended to 1 out of 2".)

1. Bob the receiver draws two key pairs and two fake keys

(pRo, Sko) < Keygen pky < PubKeySamp
(pkq,sky) < Keygen pR’ < PubKeySamp

He writes his choice i in binary: i = ig + 2ij.
He sends (pko, pky) if io = 0 or (pRy, pRo) if i = 1.
He sends (pks, pR;) if iy = 0 or (pk;, pky) if iy = 1.

32

Variant: 1-out-of-4 oblivious transfer

2. Alice the sender receives two pairs of public keys (ug, u1) and
(Vo, v1). She uses them to perform double encryption of her four

messages:
Co = guo(gVo(mO))
G = 8U1 (gvo(m1))
G = guo(gw(mz))
¢ = Euy(En(mM3))
3. Bob receives o, . .., c3 and decrypts ¢; with his private keys:

Mj = Dsky(Dsk, (7))

38)

The NP protocol: oblivious transfer with active security

(M. Naor, B. Pinkas, Efficient oblivious transfer protocols, SODA 2001.)

Idea: give Alice a way to check that only one of the keys pkq, pk,

is genuine, in the sense that Bob knows the corresponding
private key.

We use the following property of the ElGamal cipher:

if pk = g° is a genuine public key.
and C an arbitrary group element, fixed in advance,
then C/pk is a fake public key
(it is computationally hard to find t such that C/pk = g).

34

The NP protocol: oblivious transfer with active security

0. Beforehand: Alice draws C randomly and sends it to Bob.

1. Bob draws a key pair (pk,sk) = (g°,s) withs € {1,...,q — 1}
random.

If he chooses i = 0, he sends (pk, C/pk) to Alice.
If he chooses i = 1, he sends (C/pk, pR) to Alice.

85

The NP protocol: oblivious transfer with active security

2. Alice receives two public keys pkg, pRs.
She checks that pkg - pky = C and fails otherwise.

She encrypts her two messages with pkg, pk;:
Co = gpko(mO) G = gpk1(m1)

She sends the ciphertexts ¢y and ¢4 to Bob.

3. Bob receives cp, ¢ and decrypts ¢; with his private key:

m; = Dsi(c;)

36

Sécurité du protocole NP

Passive security:

« Alice cannot distinguish the fake key C/pk from the genuine
key pk, because C/pk is as random as pk is.

+ Bob cannot easily find a secret key y matching C/pk:
if he could find y, he would know z = s + y such that C = g%,
and he would have computed the discrete logarithm of C.

Active security: Bob has zero degree of freedom in choosing the
fake key; it must be C/pk for Alice to accept it.

37

Variant: random oblivious transfer (ROT)

A variant of OT where Alice’s messages and Bob’s choice are
randomly chosen by the protocol.

At the beginning of the protocol: no information.
At the end of the protocol:

* Alice knows two random messages ro and ry.
+ Bob knows one random bit b € {0,1} and the message r}, .
« Alice doesn’'t know the bit b .

« Bob knows nothing about ri_p .

38

Building OT from ROT

Initially:
Alice has two my and m+; Bob has a choice b € {0,1}.

Execution of the ROT protocol:
Alice receives random rg, ry; Bob receives s € {0,1} and rs.

Bob computes t = b @& s and sends it to Alice (Masking.)

Ift = 0, Alice sends ¢ = mg @ ro and ¢; = mq & rq to Bob.
If t =1, Alice sends cg = my @ r; and ¢, = mq &€ ry to Bob.
(Masking.)

Bob recovers my = ¢, D rs.
(Correctness: ift =0, we haves =band ¢, & rs =mp B rp, & rp = My,

Ift=1wehaves=1—-bandc, ©rs=mp S ri_p Dri_p = Mp.)
39

Extending an oblivious transfer protocol

All OT protocols rely on public-key encryption, which is expensive.

The OT extension problem: after performing n oblivious transfers
using public-key encryption, can we perform N > n oblivious
transfers without any public-key encryption?

40

Random oblivious transfer using a garbled circuit

(D. Beaver, Correlated pseudorandomness and the complexity of private
computations, STOC 1996.)

Assume given a pseudo-random generator PRNG:

PRNG : seed x N — bit

Alice prepares a garbling of the following circuit:

Alice: ry,...,ryand ry...ry —»=a
cf—=g(1),...,9(N)

Bob: a seed s —=b

(0,r;) if PRNG(s,i)=0

Outputs: g(i) =
(1,r}) if PRNG(s,i) =1

41

Random oblivious transfer using a garbled circuit

Alice garbles the circuit and sends it to Bob.

Alice draws (pseudo-)randomly 2N numbers
r,...,ryandrj, ... ry, and sends them to Bob after garbling.

Bob randomly chooses a seed s and has it garbled by Alice using
standard OT (n transfers if n is the bit size of the seed.)

Bob runs the circuit, obtaining g(1),. .., g(N).

Result: the pairs ((r, r7), g(i)) fori=1,...,N
are N random oblivious transfers; they can be used later to
perform N cryptography-free oblivious transfers.

42

Extending an oblivious transfer protocol

Beaver’s construction shows that we can obtain N OTs without
public-key cryptography from n < N standard OTs.

Main limitation: the size of the garbled circuit.

For better OT extension techniques, see
section 7.3 of the book A pragmatic introduction to MPC
and Geoffroy Couteau’s seminar.

43

Summary

Summary on Yao's garbled circuits

One of the first realizations of secure multi-party computation.

One of the most efficient, still today !
(Few communication rounds + symmetric cryptography.)

Non-obvious extension to n > 2 participants.

Passive security is easily achieved
(but: never evaluate twice the same garbled circuit!).

Active security can be achieved but is expensive
(cut-and-choose techniques that sacrifice many circuits).

A

Summary on oblivious transfer

A primitive used in many protocols.
Requires some amount of public-key cryptography.

Extension techniques are able to amortize the cost of public-key
crypto on a large number of transfers.

45

References

References

For more details:

A pragmatic introduction to secure multi-party computation,
David Evans, Vladimir Kolsnikov, Mike Rosulek,
NOW Publishers, 2018.
Section 3.1: Yao's garbled circuits.
Section 3.7: oblivious transfer.

Advanced reading:

« Foundations of garbled circuits, Mihir Bellare, Viet Tung Hoang,
Phillip Rogaway, CCS 2012, https://doi.org/10.1145/2382196.2382279

« Oblivious Transfer Is in MiniQCrypt, Alex B. Grilo, Huijia Lin, Fang
Song, Vinod Vaikuntanathan, Eurocrypt 2021,
https://doi.org/10.1007/978-3-030-77886-6_18

46

https://doi.org/10.1145/2382196.2382279
https://doi.org/10.1007/978-3-030-77886-6_18

	Key sharing and threshold decryption
	Yao's garbled circuits
	Oblivious transfer
	Summary
	References

