
Secure computing, fourth lecture

Secure multi-party computation:
secret sharing

Xavier Leroy
2025-11-27

Collège de France, chair of Software sciences
xavier.leroy@college-de-france.fr

Secure multi-party computation

Secure multi-party computation (MPC) (reminder)

Computing over secret data provided by n participants:

• Each participant i has a secret xi.
• The participants work together to compute y = F(x1, . . . , xn).
• The result y is revealed to all.
• Each participant i learns nothing about xj (j ̸= i) that it

cannot deduce from y and xi.

2

Example: evaluating bids for a call for tenders (reminder)

Using a trusted third party:

• Each participant i sends their bid xi to the third party.

• The third party determines j such that xj = min(x1, . . . , xn)

and announces j.

• The participants learn that j is the lowest bidder.

• The participants learn nothing else about the bids of the
other participants.

Can we distribute this computation among the participants,
without involving a trusted third party and without revealing the
secrets xi?

3

Example: evaluating bids for a call for tenders (reminder)

Using a trusted third party:

• Each participant i sends their bid xi to the third party.

• The third party determines j such that xj = min(x1, . . . , xn)

and announces j.

• The participants learn that j is the lowest bidder.

• The participants learn nothing else about the bids of the
other participants.

Can we distribute this computation among the participants,
without involving a trusted third party and without revealing the
secrets xi?

3

Homomorphic encryption vs. secure multi-party computation

Homomorphic
encryption

Secure multi-party
computation

Paradigm delegated computation
(cloud)

distributed
computation

Participants 1 client, 1 computer n participants

Secrets held by the client only each participant has
some secrets

Results known to the client only known to all
participants

Computing power computer ≫ client ≈ the same for all

Communications few many

Protocols non-interactive interactive

4

Correctness and security criteria

Correctness: the distributed computation produces the correct
result if all participants follow the protocol.

Passive security (“honest but curious” participants): if all
participants follow the protocol, a collusion of ≤ A participants
cannot learn anything about the secrets of the other participants.

Active security (malicious participants): if ≤ A participants do
not follow the protocol, the other participants can detect it and
abort the computation.

(Note: we assume that communications between participants are encrypted
and authenticated ⇒ the only possible attackers are the participants.)

5

Additive sharing of bits:
the GMW protocol

Sharing a secret bit

How to share a secret bit b between two participants?

• Draw a random bit r.
• Give b1 = r to one participant and b2 = b ⊕ r to the other.

Each participant learns nothing about the bit b.
(One-time pad principe: b ⊕ r is as random as r).

When both participants agree to reveal the bit b, they exchange
their bits b1, b2 and recover b by computing

b1 ⊕ b2 = r ⊕ b ⊕ r = (r ⊕ r)⊕ b = b

We write [b] for a sharing of the bit b:

[b] = (b1, b2) such that b = b1 ⊕ b2

6

Sharing then revealing

Sharing a secret (of one participant, or of a third party):

Alice: [x] = (x1, x2) Alice: x1

Bob: x2

Alice: x1

Bob: x2
Trent: [x] = (x1, x2)

Revealing (opening) a shared secret:

Alice: x1 Alice: x = x1 ⊕ x2

Bob: x2 Bob: x = x1 ⊕ x2

7

The GMW protocol (Goldreich, Micali, Wigderson, 1987)

Secure two-party evaluation of

z = F(x, y)
F: a Boolean circuit
x: Alice’s secrets
y: Bob’s secrets

• Inputs: Alice draws sharings [x], Bob draws sharings [y],
they exchange the shares.

• Two-party computation: Alice computes z1 and Bob
computes z2, where (z1, z2) is a sharing of z.
(They may need to communicate during this computation.)

• Output: Alice and Bob reveal z1, z2 and recover z = z1 ⊕ z2.

8

Adding two shared bits (XOR gate)

We have two shared bits, [x] = (x1, x2) and [y] = (y1, y2).

Alice knows x1 and y1. She computes z1 = x1 ⊕ y1.

Bob knows x2 and y2. He computes z2 = x2 ⊕ y2.

The pair (z1, z2) is a sharing of x ⊕ y:

z1 ⊕ z2 = (x1 ⊕ y1)⊕ (x2 ⊕ y2) = (x1 ⊕ x2)⊕ (y1 ⊕ y2) = x ⊕ y

Purely local computation: no communication between the
participants.

9

Negation of a shared bit (NOT gate)

We have a shared bit [x] = (x1, x2).

Alice knows x1 and computes z1 = x1 ⊕ 1 = ¬x1.

Bob knows x2 and sets z2 = x2.

The pair (z1, z2) is a sharing of ¬x:

z1 ⊕ z2 = (x1 ⊕ 1)⊕ x2 = (x1 ⊕ x2)⊕ 1 = x ⊕ 1 = ¬x

10

Multiplying two shared bits (AND gates, OR gates)

We have two shared bits, [x] = (x1, x2) and [y] = (y1, y2).

We want to compute a sharing of x ∧ y = x · y
or x ∨ y = ¬(¬x · ¬y).

This cannot be done by a purely local computation. In particular,
(x1 · y1, x2 · y2) is not a sharing of x · y:

(x1 ⊕ x2) · (y1 ⊕ y2) = x1 · y1 ⊕ x1 · y2 ⊕ x2 · y1 ⊕ x2 · y2 ̸= x1 · y1 ⊕ x2 · y2

Goldreich, Micali, Wigderson (STOC 1987) propose to use a
1 out of 4 oblivious transfer.

11

Oblivious transfer (OT)

A protocol between two participants:

• Alice knows n values v1, . . . , vn.
• Bob chooses i ∈ {1, . . . , n}.

At the end of the protocol,

• Bob knows the value vi.
• Alice does not know Bob’s choice i.
• Bob learnt nothing about the other values vj for j ̸= i.

(More details in lecture #5.)

12

Multiplication by oblivious transfer

Computation of a sharing (z1, z2) of x · y :

Alice picks z1 randomly and tabulates the value of z2

as a function of the possible values of the unknowns x2, y2.

z2 = z1 ⊕ x · y = z1 ⊕ (x1 ⊕ x2) · (y1 ⊕ y2)

Presented as a table:

line x2 y2 z2

0 0 0 z1 ⊕ (x1 · y1)

1 0 1 z1 ⊕ (x1 · ¬y1)

2 1 0 z1 ⊕ (¬x1 · y1)

3 1 1 z1 ⊕ (¬x1 · ¬y1)

13

Multiplication by oblivious transfer

line x2 y2 z2

0 0 0 z1 ⊕ (x1 · y1)

1 0 1 z1 ⊕ (x1 · ¬y1)

2 1 0 z1 ⊕ (¬x1 · y1)

3 1 1 z1 ⊕ (¬x1 · ¬y1)

Oblivious transfer: Bob requests the line number 2x2 + y2

corresponding to his shares x2, y2, and receives the
corresponding z2.

We have z1 ⊕ z2 = x · y.

Alice does not know Bob’s choice ⇒ learns nothing about x2, y2.

Bob does not see the other lines ⇒ learns nothing about x1, y1.

13

Multiplication using Beaver triples

(D. Beaver, Efficient Multiparty Protocols Using Circuit Randomization,
CRYPTO 1991.)

We prepare beforehand a list of Beaver triples:
random shared bits [a], [b], [c] such that c = a · b.

Alice knows the shares a1, b1, c1 of these triples.
Bob knows the shares a2, b2, c2.

We can produce these triples in advance by oblivious transfer
between the two participants, or by using a trusted third-party.

(“Offline” communications before the actual computation starts,
instead of “online” communications during the computation, as with
the OT protocol used for GMW.)

14

Multiplication using Beaver triples

Computation of a sharing of (z1, z2) of x · y :

Alice and Bob take the next triple a, b, c on their lists.

Alice sends Bob a1 ⊕ x1 and b1 ⊕ y1

(her shares of x et y masked by a and b)

Bob sends Alice a2 ⊕ x2 and b2 ⊕ y2 (similar masking)

Alice and Bob now know d = a ⊕ x and e = b ⊕ y.

Alice computes z1 and Bob computes z2 as follows:

zi = d · yi ⊕ ai · e ⊕ ci

(z1, z2) is a sharing of x · y because

z1 ⊕ z2 = a · y ⊕ x · y ⊕ a · b ⊕ a · y ⊕ c

= x · y ⊕ (a · b ⊕ c) = x · y since c = a · b
15

Extension to n > 2 participants

We can share a bit b between n > 2 participants:

[b] = (b1, . . . , bn) where b = b1 ⊕ · · · bn

If participant 1 wishes to share the secret x, it draws b2, . . . , bn

randomly, sends bi to participant i, and keeps
b1 = x ⊕ b2 ⊕ · · · ⊕ bn.

To reveal the sharing [b] = (b1, . . . , bn), each participant i sends
its share bi to the n − 1 other participants.
All participants, then, obtain b = b1 ⊕ · · · ⊕ bn.

16

Security of the GMW protocol

Assuming the OT protocol used is secure.

• Passive security: the only way to recover a shared bit b is
that the n participants reveal their shares b1, . . . , bn.
A collusion of A < n participants learns nothing about b.

• Active security: none. If one participant produces the wrong
share bi, the result of the computation is wrong, and this
cannot be detected.

• Fault tolerance: none. If one participant fails or is cut off the
network, the result of the computation is lost.

17

Sharings k among n

Replicated sharing 2 among 3

An example of a redundant sharing between 3 participants.
Each participant has 2 shares out of the 3 shares of the secret.

b = b1 ⊕ b2 ⊕ b3

Alice has b1 and b2

Bob has b2 and b3

Charlie has b3 and b1

Any two participants can exchange their shares and recover the
secret.

Fault tolerance: resists failure of one of the 3 participants.

Passive security: one participant learns nothing about the secret.

Active security: if one participant produces wrong results, the
other two can detect it.

18

Secret sharing

To share her secret x, Alice draws x2, x3 randomly, takes
x1 = x ⊕ x2 ⊕ x3, and sends the correct xi to Bob and Charlie.

Bob can do likewise with y and Charlie with z.

x = x1 ⊕ x2 ⊕ x3Alice:

y = y1 ⊕ y2 ⊕ y3Bob:

z = z1 ⊕ z2 ⊕ z3Charlie:

x1, x2; y1, y2; z1, z2

x2, x3; y2, y3; z2, z3

x3, x1; y3, y1; z3, z1

19

Addition

The participants add their shares pointwise:

Alice x1, x2 y1, y2 → x1 ⊕ y1, x2 ⊕ y2

Bob x2, x3 y2, y3 → x2 ⊕ y2, x3 ⊕ y3

Charlie x3, x1 y3, y1 → x3 ⊕ y3, x1 ⊕ y1

If x = x1 ⊕ x2 ⊕ x3 and y = y1 ⊕ y2 ⊕ y3, the result is a redundant
sharing of x ⊕ y.

20

Multiplication

The participants combine their shares as follows:

Alice x1, x2 y1, y2 → p = x1y1 ⊕ x1y2 ⊕ x2y1

Bob x2, x3 y2, y3 → q = x2y2 ⊕ x2y3 ⊕ x3y2

Charlie x3, x1 y3, y1 → r = x3y3 ⊕ x3y1 ⊕ x1y3

Alice draws a sharing [p] of p, sends it to Bob and Charlie.
Bob draws a sharing [q] of q, sends it to Alice and Charlie.
Charlie draws a sharing [r] of r, sends it to Alice and Bob.

The 3 participants compute a sharing of p ⊕ q ⊕ r by local
addition. It is a sharing of xy, because

xy = (x1 ⊕ x2 ⊕ x3)(y1 ⊕ y2 ⊕ y3)

= x1y1 ⊕ x1y2 ⊕ x2y1 ⊕ x2y2 ⊕ x2y3 ⊕ x3y2 ⊕ x3y3 ⊕ x3y1 ⊕ x1y3

= p ⊕ q ⊕ r
21

Shamir’s secret sharing

(A. Shamir, How to share a secret, CACM 22(11), 1979.)

Secrets and shares are elements of a finite field Fq of order q > n
(n is the number of participants).

Sharing the secret x:

Pick a polynomial P of degree t < n
with the constant coefficient equal
to x and the other coefficients
randomly chosen in Fq.

The shares are xi = P(i) for
i = 1, . . . , n.

(Like Reed-Solomon codes.)

22

Shamir’s secret sharing

[x] = (P(1), . . . , P(n)) with deg(P) = t and P(0) = x

Recovering the secret x from t + 1 shares:

Knowing t + 1 shares is knowing t + 1 points (x0, y0), . . . , (xt, yt)

on the curve of P.

Since P has degree t, these t + 1 points determine P entirely.

The secret x is P(0).

Lagrange interpolation formula:

x = P(0) =
t∑

j=0
yjλj where λj =

t∏
k=0,k ̸=j

xk

xk − xj

23

Shamir’s secret sharing

Fault tolerance: t+ 1 shares among n suffice to recover the secret.

Passive security: a collusion of at most t participants learns
nothing about the secret.
(If P(i) is known for t points i ̸= 0, P(0) can still take any value.)

Active security: as with Reed-Solomon codes, we can detect up to
n − t − 1 errors and correct up to (n − t − 1)/2 errors.

24

Addition of two Shamir sharings

Let [a] = (a1, . . . , an) and [b] = (b1, . . . , bn) be Shamir sharings
for the secrets a and b.

Then, (a1 + b1, . . . , an + bn) is a sharing for a + b.

It can be computed locally by each participant.

25

Addition and multiplication by a constant

If [a] = (a1, . . . , an) is a sharing of a (with polynomial P):

• (a1 + k, . . . , an + k) is a sharing of a + k (polynomial P + k).

• (ka1, . . . , kan) is a sharing of ka (polynomial kP).

(Local computation.)

26

Multiplication of two Shamir sharings

Let [a] = (a1, . . . , an) and [b] = (b1, . . . , bn) be Shamir sharings
for the secrets a and b :

a = P(0) ai = P(i) b = Q(0) bi = Q(i)

where P and Q are degree-t polynomials.

The points (i, aibi) lie on the curve of the polynomial PQ.

However, PQ has degree 2t, hence t points do not determine
PQ(0) = ab.

Therefore, (a1b1, . . . , anbn) is not a sharing of ab.

27

Multiplication of two Shamir sharings

Assume t < n/2. Each of the first 2t participants prepares a
sharing [aibi] of the product of its two shares ai and bi, and sends
it to the other participants.

Thus, we have random polynomials R1, . . . ,R2t of degree t such
that

Ri(0) = aibi participant j knows Ri(j)

The n participants reconstruct (locally) a sharing (c1, . . . , cn)

using Lagrange’s interpolation formula:

cj =
2t∑

i=1
Ri(j)λi where λi =

2t∏
k=1,k ̸=i

k
k − i

28

Multiplication of two Shamir sharings

Ri(0) = aibi deg(Ri) = t

cj =
2t∑

i=1
Ri(j)λi where λi =

2t∏
k=1,k ̸=i

k
k − i

Consider R =
∑2t

i=1 Riλi. We have

deg R = t cj = R(j)

R(0) =
2t∑

i=1
aibiλi =

2t∑
i=1

PQ(i)λi = PQ(0) = ab

Therefore, (c1, . . . , cn) is a sharing of ab, using the polynomial R.

29

Alternative: multiplication using Beaver triples

We assume the participants received beforehand three sharings
[u], [v], [w] with u, v random and w = uv.

To compute the product ab:

The participants locally compute [a + u] and [b + v],
and reveal these sharings.

All participants, then, know α = a + u and β = b + v
(the secret operands a, b masked by random u, v).

The participants locally compute

[c] = [w] + α[b]− β[u]

It is a sharing of the product ab, since

c = uv + ab + ub − bu − vu = ab

30

Generalization:
linear secret sharing scheme

Linear secret sharing scheme (LSSS)

Defined by

• a matrix M of dimensions m × d
• a vector v of dimension d
• a surjective function φ : {1, . . . ,m} → {1, . . . , n}

(row 7→ participant).

To share the secret s, we draw a random vector k such that

s = ⟨v, k⟩

Then, we compute m parts s1, . . . , sm by applying the matrix M

M · k = (s1, . . . , sm)
⊺

We give the share si to the participant number φ(i).

31

Full additive sharing viewed as a trivial LSSS

Dimensions m = d = n (number of participants).

M =


1 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 1


v = (1, 1, . . . , 1)

φ(i) = i

To share s, we choose k = (k1, . . . , kn) such that

s = ⟨v, k⟩ = k1 + · · ·+ kn

We give the share si = ki to the participant number φ(i) = i.

32

Shamir’s sharing viewed as a LSSS

Dimensions m = t + 1 and d = n
(t degree of the polynomials, n number of participants).

M =


1 1 12 · · · 1t

1 2 22 · · · 2t

...
...

...
...

1 n n2 · · · nt


v = (1, 0, . . . , 0)

φ(i) = i

To share s, we choose k = (s, k1, . . . , kt) with random ki.
k are the coefficients of a polynomial P. We have

s = ⟨v, k⟩ M · k = (P(1), . . . , P(n))⊺

We give the i-th share P(i) to the participant number φ(i) = i.

33

Replicated sharing viewed as a LSSS

M =



0 1 0
0 0 1
1 0 0
0 0 1
1 0 0
0 1 0


v = (1, 1, 1)

φ(i) = ⌈i/2⌉

To share s, we write s = ⟨v, k⟩ = k1 + k2 + k3

with random ki.

The shares are M · k = (k2, k3, k1, k3, k1, k2)
⊺.

We give the first two shares to P1, the next two to P2, the last two
to P3.

34

Revealing the secret from a LSSS sharing

s = ⟨v, k⟩ = v⊺ · k M · k = (s1, . . . , sm)
⊺

We can recover the secret s from the shares si if there exists a
linear combination of the lines of M that is equal to v,
i.e. a vector x of dimension d such that

M⊺ · x = v

Then,

⟨x, s1, . . . , sm⟩ = x⊺ · M · k = (M⊺ · x)⊺ · k = v⊺ · k = s

35

Revealing the secret from a LSSS sharing

M⊺ · x = v

If the sharing is redundant, multiple vectors x are possible. The
zeros in x correspond to the shares that are not needed to
recover s.

Example: for Shamir’s sharing with t = 2 and n = 4,
there are 4 possible x with one 0 coefficient:

M =


1 1 2
1 2 4
1 3 9
1 4 16


v = (1, 0, 0)

x1 = (0, 6,−8, 3)
x2 = (2, 0,−2, 1)
x3 = (8/3,−2, 0, 1/3)
x4 = (3,−3, 1, 0)

36

Arithmetic operations on LSSS sharings

Addition:

• local addition of each share.

Multiplication by a constant:

• local multiplication of each share.

General multiplication:

• Schur product (linear combination of local products)
if the LSSS supports it
(like Shamir with 2t < n, or 2-3 replication).

• Beaver triples.
• Damgård-Nielsen product (not treated here).

37

Resistance against active attacks

Error detection in Shamir sharings

Valid shares

Wrong shares

If there is no polynomial P of degree t that passes through the
points (1, a1), . . . , (n, an), the sharing (a1, . . . , an) is wrong.

One or several shares ai were corrupted, probably by malicious
participants (active attack).

38

Error detection, error correction

A (n, t) Reed-Solomon code / a (n, t) Shamir sharing can:

• Detect up to n − t − 1 errors.
Simply by applying the parity matrix H to the sharing:

H · (a1, . . . , an)
⊺ ̸= 0 =⇒ the sharing (a1, . . . , an) is wrong

• Correct up to (n − t − 1)/2 errors.
Naively: find a subset of n − (n − t − 1)/2 shares that is not
wrong.
Efficiently: use the Berlekamp-Welch algorithm.

39

Active security

A malicious participants, who do not follow the protocol.

Not numerous enough to reveal the secrets: A ≤ t

Hypothesis: the malicious participants can modify their shares of
the sharings, but not those of the honest participants.

Detecting the attack:

If A ≤ n − t − 1, the attack can be detected when the n
participants reveal their shares (a1, . . . , an).
The honest participants notice that H · (a1, . . . , an)

⊺ ̸= 0.
Can be done as long as A < n/2 (by taking t ≈ n/2).

40

Active security

A malicious participants, who do not follow the protocol.

Not numerous enough to reveal the secrets: A ≤ t

Hypothesis: the malicious participants can modify their shares of
the sharings, but not those of the honest participants.

Neutralizing the attack:

If A ≤ (n − t − 1)/2, the attack can be detected as before.
Moreover, the honest participants can identify the attackers,
ignore them, and continue the computation.
Can be done as long as A < n/3 (by taking t ≈ n/3).

40

Active security of the operations over sharings

The hypothesis

The malicious participants can modify their shares of the
sharings, but not those of the honest participants.

holds for local operations (addition, multiplication by a
constant), where each participant only modifies its share.

It does not hold when a participant prepares and sends a sharing
[x] of a value x of its choice.

41

Active security of multiplication

Example: multiplication of two Shamir sharings using the Schur
product.

Each of the first 2t participants prepares a sharing [aibi]

of the product of its two shares ai and bi, and sends it to
the other participants.

If one of these 2t participants lies about its value of aibi, the
result of the multiplication is wrong, but there are no coding
errors.

42

Active security of Beaver multiplication

Multiplication using Beaver triples only involves “verifiable”
operations (addition, multiplication by a constant, revelation).

Locally compute [a + u] and [b + v]
Reveal these sharings to give α = a + u and β = b + v to all
Locally compute [c] = [w] + α[b]− β[u]

However, the attackers could have corrupted the Beaver triple:
the sharings [a], [b], [c] are well formed but c ̸= ab.

This can happen if the triples were generated beforehand using
Schur product between the participants.

43

Verification of a Beaver triple by “sacrificing” another triple

Consider two Beaver triples ([u], [v], [w]) and ([x], [y], [z]).

We want to confirm that w = uv.

Let t be a random integer known to all participants
(but not controlled by any participant).

Locally compute [ρ] = t[u]− [x] and [σ] = [v]− [y]
Reveal ρ and σ

Locally compute [e] = t[w]− [z]− σ[x]− ρ[y]− σρ

Reveal e
If e ̸= 0, reject the triple ([u], [v], [w]).

Fails with high probability if w ̸= uv or z ̸= xy.
We can sacrifice several ([x], [y], [z]) to increase confidence.

44

SPDZ: authenticating shares using a MAC

Another way to authenticate shares. It applies to all LSSS,
including the full additive sharing.

An authenticated sharing ⟨s⟩ is a pair of sharings ([s], [α · s]):

⟨s⟩ = (s1, . . . , sn,m1, . . . ,mn) where s =
∑

si and α · s =
∑

mi

α is a global, shared secret.
Participant i only knows si, mi, and αi.

We can check α
∑

si =
∑

mi when we reveal ⟨s⟩,
and compute homomorphically on the sharings ⟨s⟩.

This provides active security even for n − 1 attackers.

(See section 6.6 of Evans and al, A pragmatic introduction to secure multi-party
computation, 2018.)

45

Summary

Linear secret sharing

A way for multiple parties to compute over private data while
controlling which results are revealed to all parties.

Nice properties:

• A good match for many practical problems
(of the “let’s work together but not trust each other” kind).

• In addition to confidentiality of private data, can ensure
fault tolerance and resistance to active attacks.

• No hairy cryptography involved!

Two main limitations:

• The protocols are interactive by nature.
• Communications between participants severely limit the

speed of computation.
46

References

References

The main source for this lecture:

• Cryptography made simple, Nigel P. Smart, Springer, 2016.
Chapter 19 and section 22.3.

For further reading:

• A pragmatic introduction to secure multi-party computation,
David Evans, Vladimir Kolsnikov, Mike Rosulek,
NOW Publishers, 2018.

47

	Secure multi-party computation
	Additive sharing of bits: the GMW protocol
	Sharings k among n
	Generalization: linear secret sharing scheme
	Resistance against active attacks
	Summary
	References

