

Secure computing, fourth lecture

Secure multi-party computation: secret sharing

Xavier Leroy

2025-11-27

Collège de France, chair of Software sciences

xavier.leroy@college-de-france.fr

Secure multi-party computation

Secure multi-party computation (MPC) (reminder)

Computing over secret data provided by n participants:

- Each participant i has a secret x_i .
- The participants work together to compute $y = F(x_1, \dots, x_n)$.
- The result y is revealed to all.
- Each participant i learns nothing about x_j ($j \neq i$) that it cannot deduce from y and x_i .

Example: evaluating bids for a call for tenders (reminder)

Using a trusted third party:

- Each participant i sends their bid x_i to the third party.
- The third party determines j such that $x_j = \min(x_1, \dots, x_n)$ and announces j .
- The participants learn that j is the lowest bidder.
- The participants learn nothing else about the bids of the other participants.

Example: evaluating bids for a call for tenders (reminder)

Using a trusted third party:

- Each participant i sends their bid x_i to the third party.
- The third party determines j such that $x_j = \min(x_1, \dots, x_n)$ and announces j .
- The participants learn that j is the lowest bidder.
- The participants learn nothing else about the bids of the other participants.

Can we distribute this computation among the participants, without involving a trusted third party and without revealing the secrets x_i ?

Homomorphic encryption vs. secure multi-party computation

	Homomorphic encryption	Secure multi-party computation
Paradigm	delegated computation (<i>cloud</i>)	distributed computation
Participants	1 client, 1 computer	n participants
Secrets	held by the client only	each participant has some secrets
Results	known to the client only	known to all participants
Computing power	computer \gg client	\approx the same for all
Communications	few	many
Protocols	non-interactive	interactive

Correctness and security criteria

Correctness: the distributed computation produces the correct result if all participants follow the protocol.

Passive security (“honest but curious” participants): if all participants follow the protocol, a collusion of $\leq A$ participants cannot learn anything about the secrets of the other participants.

Active security (malicious participants): if $\leq A$ participants do not follow the protocol, the other participants can detect it and abort the computation.

(Note: we assume that communications between participants are encrypted and authenticated \Rightarrow the only possible attackers are the participants.)

Additive sharing of bits: the GMW protocol

Sharing a secret bit

How to share a secret bit b between two participants?

- Draw a random bit r .
- Give $b_1 = r$ to one participant and $b_2 = b \oplus r$ to the other.

Each participant learns nothing about the bit b .

(One-time pad principle: $b \oplus r$ is as random as r).

When both participants agree to reveal the bit b , they exchange their bits b_1, b_2 and recover b by computing

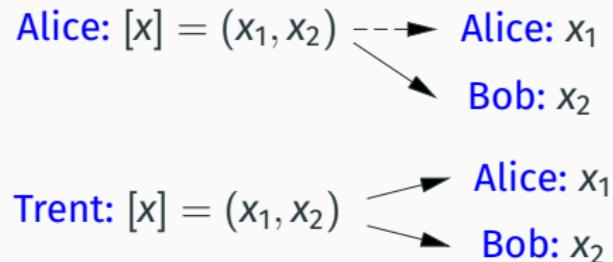
$$b_1 \oplus b_2 = r \oplus b \oplus r = (r \oplus r) \oplus b = b$$

We write $[b]$ for a sharing of the bit b :

$$[b] = (b_1, b_2) \text{ such that } b = b_1 \oplus b_2$$

Sharing then revealing

Sharing a secret (of one participant, or of a third party):



Revealing (opening) a shared secret:

Secure two-party evaluation of

$z = F(\mathbf{x}, \mathbf{y})$

F : a Boolean circuit
 \mathbf{x} : Alice's secrets
 \mathbf{y} : Bob's secrets

- Inputs: Alice draws sharings $[\mathbf{x}]$, Bob draws sharings $[\mathbf{y}]$, they exchange the shares.
- Two-party computation: Alice computes z_1 and Bob computes z_2 , where (z_1, z_2) is a sharing of z .
(They may need to communicate during this computation.)
- Output: Alice and Bob reveal z_1, z_2 and recover $z = z_1 \oplus z_2$.

Adding two shared bits (XOR gate)

We have two shared bits, $[x] = (x_1, x_2)$ and $[y] = (y_1, y_2)$.

Alice knows x_1 and y_1 . She computes $z_1 = x_1 \oplus y_1$.

Bob knows x_2 and y_2 . He computes $z_2 = x_2 \oplus y_2$.

The pair (z_1, z_2) is a sharing of $x \oplus y$:

$$z_1 \oplus z_2 = (x_1 \oplus y_1) \oplus (x_2 \oplus y_2) = (x_1 \oplus x_2) \oplus (y_1 \oplus y_2) = x \oplus y$$

Purely local computation: no communication between the participants.

Negation of a shared bit (NOT gate)

We have a shared bit $[x] = (x_1, x_2)$.

Alice knows x_1 and computes $z_1 = x_1 \oplus 1 = \neg x_1$.

Bob knows x_2 and sets $z_2 = x_2$.

The pair (z_1, z_2) is a sharing of $\neg x$:

$$z_1 \oplus z_2 = (x_1 \oplus 1) \oplus x_2 = (x_1 \oplus x_2) \oplus 1 = x \oplus 1 = \neg x$$

Multiplying two shared bits (AND gates, OR gates)

We have two shared bits, $[x] = (x_1, x_2)$ and $[y] = (y_1, y_2)$.

We want to compute a sharing of $x \wedge y = x \cdot y$
or $x \vee y = \neg(\neg x \cdot \neg y)$.

This cannot be done by a purely local computation. In particular,
 $(x_1 \cdot y_1, x_2 \cdot y_2)$ is not a sharing of $x \cdot y$:

$$(x_1 \oplus x_2) \cdot (y_1 \oplus y_2) = x_1 \cdot y_1 \oplus x_1 \cdot y_2 \oplus x_2 \cdot y_1 \oplus x_2 \cdot y_2 \neq x_1 \cdot y_1 \oplus x_2 \cdot y_2$$

Goldreich, Micali, Wigderson (STOC 1987) propose to use a
1 out of 4 oblivious transfer.

Oblivious transfer (OT)

A protocol between two participants:

- Alice knows n values v_1, \dots, v_n .
- Bob chooses $i \in \{1, \dots, n\}$.

At the end of the protocol,

- Bob knows the value v_i .
- Alice does not know Bob's choice i .
- Bob learnt nothing about the other values v_j for $j \neq i$.

(More details in lecture #5.)

Multiplication by oblivious transfer

Computation of a sharing (z_1, z_2) of $x \cdot y$:

Alice picks z_1 randomly and tabulates the value of z_2 as a function of the possible values of the unknowns x_2, y_2 .

$$z_2 = z_1 \oplus x \cdot y = z_1 \oplus (x_1 \oplus x_2) \cdot (y_1 \oplus y_2)$$

Presented as a table:

line	x_2	y_2	z_2
0	0	0	$z_1 \oplus (x_1 \cdot y_1)$
1	0	1	$z_1 \oplus (x_1 \cdot \neg y_1)$
2	1	0	$z_1 \oplus (\neg x_1 \cdot y_1)$
3	1	1	$z_1 \oplus (\neg x_1 \cdot \neg y_1)$

Multiplication by oblivious transfer

line	x_2	y_2	z_2
0	0	0	$z_1 \oplus (x_1 \cdot y_1)$
1	0	1	$z_1 \oplus (x_1 \cdot \neg y_1)$
2	1	0	$z_1 \oplus (\neg x_1 \cdot y_1)$
3	1	1	$z_1 \oplus (\neg x_1 \cdot \neg y_1)$

Oblivious transfer: Bob requests the line number $2x_2 + y_2$ corresponding to his shares x_2, y_2 , and receives the corresponding z_2 .

We have $z_1 \oplus z_2 = x \cdot y$.

Alice does not know Bob's choice \Rightarrow learns nothing about x_2, y_2 .

Bob does not see the other lines \Rightarrow learns nothing about x_1, y_1 .

Multiplication using Beaver triples

(D. Beaver, *Efficient Multiparty Protocols Using Circuit Randomization*, CRYPTO 1991.)

We prepare beforehand a list of **Beaver triples**:
random shared bits $[a]$, $[b]$, $[c]$ such that $c = a \cdot b$.

Alice knows the shares a_1, b_1, c_1 of these triples.
Bob knows the shares a_2, b_2, c_2 .

We can produce these triples in advance by oblivious transfer
between the two participants, or by using a trusted third-party.

(“Offline” communications before the actual computation starts,
instead of “online” communications during the computation, as with
the OT protocol used for GMW.)

Multiplication using Beaver triples

Computation of a sharing of (z_1, z_2) of $x \cdot y$:

Alice and Bob take the next triple a, b, c on their lists.

Alice sends Bob $a_1 \oplus x_1$ and $b_1 \oplus y_1$

(her shares of x et y masked by a and b)

Bob sends Alice $a_2 \oplus x_2$ and $b_2 \oplus y_2$ (similar masking)

Alice and Bob now know $d = a \oplus x$ and $e = b \oplus y$.

Alice computes z_1 and Bob computes z_2 as follows:

$$z_i = d \cdot y_i \oplus a_i \cdot e \oplus c_i$$

(z_1, z_2) is a sharing of $x \cdot y$ because

$$\begin{aligned} z_1 \oplus z_2 &= a \cdot y \oplus x \cdot y \oplus a \cdot b \oplus a \cdot y \oplus c \\ &= x \cdot y \oplus (a \cdot b \oplus c) = x \cdot y \quad \text{since } c = a \cdot b \end{aligned}$$

Extension to $n > 2$ participants

We can share a bit b between $n > 2$ participants:

$$[b] = (b_1, \dots, b_n) \quad \text{where} \quad b = b_1 \oplus \dots \oplus b_n$$

If participant 1 wishes to share the secret x , it draws b_2, \dots, b_n randomly, sends b_i to participant i , and keeps $b_1 = x \oplus b_2 \oplus \dots \oplus b_n$.

To reveal the sharing $[b] = (b_1, \dots, b_n)$, each participant i sends its share b_i to the $n - 1$ other participants.

All participants, then, obtain $b = b_1 \oplus \dots \oplus b_n$.

Security of the GMW protocol

Assuming the OT protocol used is secure.

- **Passive security:** the only way to recover a shared bit b is that the n participants reveal their shares b_1, \dots, b_n . A collusion of $A < n$ participants learns nothing about b .
- **Active security:** none. If one participant produces the wrong share b_i , the result of the computation is wrong, and this cannot be detected.
- **Fault tolerance:** none. If one participant fails or is cut off the network, the result of the computation is lost.

Sharings k among n

Replicated sharing 2 among 3

An example of a redundant sharing between 3 participants.

Each participant has 2 shares out of the 3 shares of the secret.

$$b = b_1 \oplus b_2 \oplus b_3$$

Alice has b_1 and b_2
Bob has b_2 and b_3
Charlie has b_3 and b_1

Any two participants can exchange their shares and recover the secret.

Fault tolerance: resists failure of one of the 3 participants.

Passive security: one participant learns nothing about the secret.

Active security: if one participant produces wrong results, the other two can detect it.

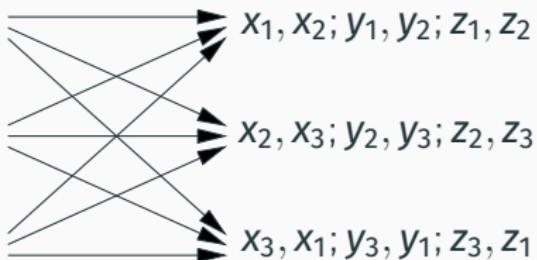
Secret sharing

To share her secret x , Alice draws x_2, x_3 randomly, takes $x_1 = x \oplus x_2 \oplus x_3$, and sends the correct x_i to Bob and Charlie. Bob can do likewise with y and Charlie with z .

Alice: $x = x_1 \oplus x_2 \oplus x_3$

Bob: $y = y_1 \oplus y_2 \oplus y_3$

Charlie: $z = z_1 \oplus z_2 \oplus z_3$



Addition

The participants add their shares pointwise:

$$\text{Alice } x_1, x_2 \quad y_1, y_2 \rightarrow x_1 \oplus y_1, x_2 \oplus y_2$$

$$\text{Bob } x_2, x_3 \quad y_2, y_3 \rightarrow x_2 \oplus y_2, x_3 \oplus y_3$$

$$\text{Charlie } x_3, x_1 \quad y_3, y_1 \rightarrow x_3 \oplus y_3, x_1 \oplus y_1$$

If $x = x_1 \oplus x_2 \oplus x_3$ and $y = y_1 \oplus y_2 \oplus y_3$, the result is a redundant sharing of $x \oplus y$.

Multiplication

The participants combine their shares as follows:

$$\text{Alice } x_1, x_2 \quad y_1, y_2 \quad \rightarrow \quad p = x_1y_1 \oplus x_1y_2 \oplus x_2y_1$$

$$\text{Bob } x_2, x_3 \quad y_2, y_3 \quad \rightarrow \quad q = x_2y_2 \oplus x_2y_3 \oplus x_3y_2$$

$$\text{Charlie } x_3, x_1 \quad y_3, y_1 \quad \rightarrow \quad r = x_3y_3 \oplus x_3y_1 \oplus x_1y_3$$

Alice draws a sharing [p] of p , sends it to Bob and Charlie.

Bob draws a sharing [q] of q , sends it to Alice and Charlie.

Charlie draws a sharing [r] of r , sends it to Alice and Bob.

The 3 participants compute a sharing of $p \oplus q \oplus r$ by local addition. It is a sharing of xy , because

$$xy = (x_1 \oplus x_2 \oplus x_3)(y_1 \oplus y_2 \oplus y_3)$$

$$= x_1y_1 \oplus x_1y_2 \oplus x_2y_1 \oplus x_2y_2 \oplus x_2y_3 \oplus x_3y_2 \oplus x_3y_3 \oplus x_3y_1 \oplus x_1y_3$$

$$= p \oplus q \oplus r$$

Shamir's secret sharing

(A. Shamir, *How to share a secret*, CACM 22(11), 1979.)

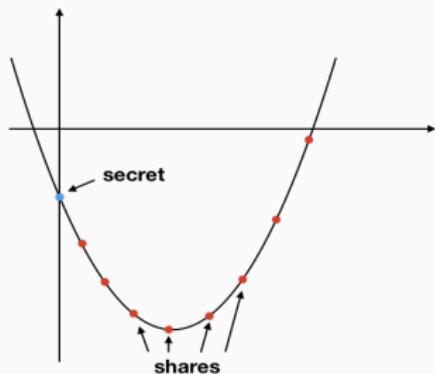
Secrets and shares are elements of a finite field \mathbb{F}_q of order $q > n$ (n is the number of participants).

Sharing the secret x :

Pick a polynomial P of degree $t < n$ with the constant coefficient equal to x and the other coefficients randomly chosen in \mathbb{F}_q .

The shares are $x_i = P(i)$ for $i = 1, \dots, n$.

(Like Reed-Solomon codes.)



Shamir's secret sharing

$[x] = (P(1), \dots, P(n))$ with $\deg(P) = t$ and $P(0) = x$

Recovering the secret x from $t + 1$ shares:

Knowing $t + 1$ shares is knowing $t + 1$ points $(x_0, y_0), \dots, (x_t, y_t)$ on the curve of P .

Since P has degree t , these $t + 1$ points determine P entirely.

The secret x is $P(0)$.

Lagrange interpolation formula:

$$x = P(0) = \sum_{j=0}^t y_j \lambda_j \quad \text{where} \quad \lambda_j = \prod_{k=0, k \neq j}^t \frac{x_k}{x_k - x_j}$$

Shamir's secret sharing

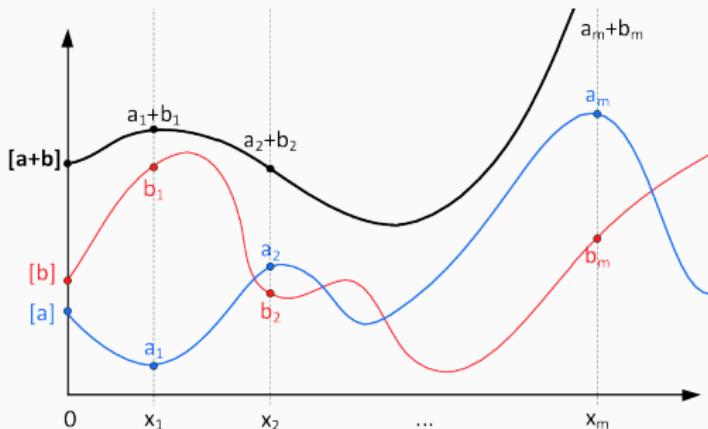
Fault tolerance: $t + 1$ shares among n suffice to recover the secret.

Passive security: a collusion of at most t participants learns nothing about the secret.

(If $P(i)$ is known for t points $i \neq 0$, $P(0)$ can still take any value.)

Active security: as with Reed-Solomon codes, we can detect up to $n - t - 1$ errors and correct up to $(n - t - 1)/2$ errors.

Addition of two Shamir sharings



Let $[a] = (a_1, \dots, a_n)$ and $[b] = (b_1, \dots, b_n)$ be Shamir sharings for the secrets a and b .

Then, $(a_1 + b_1, \dots, a_n + b_n)$ is a sharing for $a + b$.

It can be computed locally by each participant.

Addition and multiplication by a constant

If $[a] = (a_1, \dots, a_n)$ is a sharing of a (with polynomial P):

- $(a_1 + k, \dots, a_n + k)$ is a sharing of $a + k$ (polynomial $P + k$).
- (ka_1, \dots, ka_n) is a sharing of ka (polynomial kP).

(Local computation.)

Multiplication of two Shamir sharings

Let $[a] = (a_1, \dots, a_n)$ and $[b] = (b_1, \dots, b_n)$ be Shamir sharings for the secrets a and b :

$$a = P(0) \quad a_i = P(i) \quad b = Q(0) \quad b_i = Q(i)$$

where P and Q are degree- t polynomials.

The points $(i, a_i b_i)$ lie on the curve of the polynomial PQ .

However, PQ has degree $2t$, hence t points do not determine $PQ(0) = ab$.

Therefore, $(a_1 b_1, \dots, a_n b_n)$ is not a sharing of ab .

Multiplication of two Shamir sharings

Assume $t < n/2$. Each of the first $2t$ participants prepares a sharing $[a_i b_i]$ of the product of its two shares a_i and b_i , and sends it to the other participants.

Thus, we have random polynomials R_1, \dots, R_{2t} of degree t such that

$$R_i(0) = a_i b_i \quad \text{participant } j \text{ knows } R_i(j)$$

The n participants reconstruct (locally) a sharing (c_1, \dots, c_n) using Lagrange's interpolation formula:

$$c_j = \sum_{i=1}^{2t} R_i(j) \lambda_i \quad \text{where} \quad \lambda_i = \prod_{k=1, k \neq i}^{2t} \frac{k}{k-i}$$

Multiplication of two Shamir sharings

$$R_i(0) = a_i b_i \quad \deg(R_i) = t$$

$$c_j = \sum_{i=1}^{2t} R_i(j) \lambda_i \quad \text{where} \quad \lambda_i = \prod_{k=1, k \neq i}^{2t} \frac{k}{k-i}$$

Consider $R = \sum_{i=1}^{2t} R_i \lambda_i$. We have

$$\deg R = t \quad c_j = R(j)$$

$$R(0) = \sum_{i=1}^{2t} a_i b_i \lambda_i = \sum_{i=1}^{2t} PQ(i) \lambda_i = PQ(0) = ab$$

Therefore, (c_1, \dots, c_n) is a sharing of ab , using the polynomial R .

Alternative: multiplication using Beaver triples

We assume the participants received beforehand three sharings $[u], [v], [w]$ with u, v random and $w = uv$.

To compute the product ab :

The participants locally compute $[a + u]$ and $[b + v]$, and reveal these sharings.

All participants, then, know $\alpha = a + u$ and $\beta = b + v$ (the secret operands a, b masked by random u, v).

The participants locally compute

$$[c] = [w] + \alpha[b] - \beta[u]$$

It is a sharing of the product ab , since

$$c = uv + ab + ub - bu - vu = ab$$

Generalization: linear secret sharing scheme

Linear secret sharing scheme (LSSS)

Defined by

- a matrix \mathbf{M} of dimensions $m \times d$
- a vector \mathbf{v} of dimension d
- a surjective function $\varphi : \{1, \dots, m\} \rightarrow \{1, \dots, n\}$
(row \mapsto participant).

To share the secret s , we draw a random vector \mathbf{k} such that

$$s = \langle \mathbf{v}, \mathbf{k} \rangle$$

Then, we compute m parts s_1, \dots, s_m by applying the matrix \mathbf{M}

$$\mathbf{M} \cdot \mathbf{k} = (s_1, \dots, s_m)^\top$$

We give the share s_i to the participant number $\varphi(i)$.

Full additive sharing viewed as a trivial LSSS

Dimensions $m = d = n$ (number of participants).

$$\mathbf{M} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} \quad \mathbf{v} = (1, 1, \dots, 1) \quad \varphi(i) = i$$

To share s , we choose $\mathbf{k} = (k_1, \dots, k_n)$ such that

$$s = \langle \mathbf{v}, \mathbf{k} \rangle = k_1 + \cdots + k_n$$

We give the share $s_i = k_i$ to the participant number $\varphi(i) = i$.

Shamir's sharing viewed as a LSSS

Dimensions $m = t + 1$ and $d = n$

(t degree of the polynomials, n number of participants).

$$\mathbf{M} = \begin{pmatrix} 1 & 1 & 1^2 & \cdots & 1^t \\ 1 & 2 & 2^2 & \cdots & 2^t \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & n & n^2 & \cdots & n^t \end{pmatrix} \quad \begin{aligned} \mathbf{v} &= (1, 0, \dots, 0) \\ \varphi(i) &= i \end{aligned}$$

To share s , we choose $\mathbf{k} = (s, k_1, \dots, k_t)$ with random k_i .

\mathbf{k} are the coefficients of a polynomial P . We have

$$s = \langle \mathbf{v}, \mathbf{k} \rangle \quad \mathbf{M} \cdot \mathbf{k} = (P(1), \dots, P(n))^T$$

We give the i -th share $P(i)$ to the participant number $\varphi(i) = i$.

Replicated sharing viewed as a LSSS

$$\mathbf{M} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \quad \mathbf{v} = (1, 1, 1) \quad \varphi(i) = \lceil i/2 \rceil$$

To share s , we write $s = \langle \mathbf{v}, \mathbf{k} \rangle = k_1 + k_2 + k_3$
with random k_i .

The shares are $\mathbf{M} \cdot \mathbf{k} = (k_2, k_3, k_1, k_3, k_1, k_2)^\top$.

We give the first two shares to P1, the next two to P2, the last two to P3.

Revealing the secret from a LSSS sharing

$$s = \langle \mathbf{v}, \mathbf{k} \rangle = \mathbf{v}^T \cdot \mathbf{k} \quad \mathbf{M} \cdot \mathbf{k} = (s_1, \dots, s_m)^T$$

We can recover the secret s from the shares s_i if there exists a linear combination of the lines of \mathbf{M} that is equal to \mathbf{v} , i.e. a vector \mathbf{x} of dimension d such that

$$\mathbf{M}^T \cdot \mathbf{x} = \mathbf{v}$$

Then,

$$\langle \mathbf{x}, s_1, \dots, s_m \rangle = \mathbf{x}^T \cdot \mathbf{M} \cdot \mathbf{k} = (\mathbf{M}^T \cdot \mathbf{x})^T \cdot \mathbf{k} = \mathbf{v}^T \cdot \mathbf{k} = s$$

Revealing the secret from a LSSS sharing

$$\mathbf{M}^T \cdot \mathbf{x} = \mathbf{v}$$

If the sharing is redundant, multiple vectors \mathbf{x} are possible. The zeros in \mathbf{x} correspond to the shares that are not needed to recover s .

Example: for Shamir's sharing with $t = 2$ and $n = 4$, there are 4 possible \mathbf{x} with one 0 coefficient:

$$\mathbf{M} = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \\ 1 & 4 & 16 \end{pmatrix} \quad \begin{aligned} \mathbf{v} &= (1, 0, 0) \\ \mathbf{x}_1 &= (0, 6, -8, 3) \\ \mathbf{x}_2 &= (2, 0, -2, 1) \\ \mathbf{x}_3 &= (8/3, -2, 0, 1/3) \\ \mathbf{x}_4 &= (3, -3, 1, 0) \end{aligned}$$

Arithmetic operations on LSSS sharings

Addition:

- local addition of each share.

Multiplication by a constant:

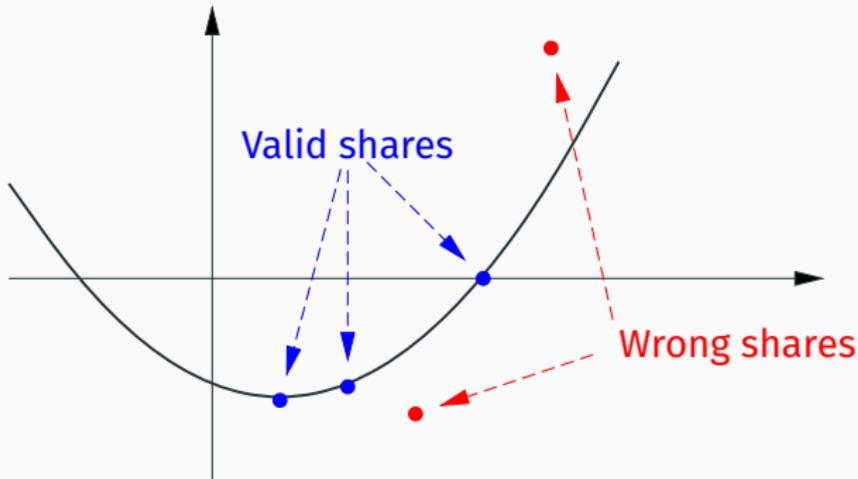
- local multiplication of each share.

General multiplication:

- Schur product (linear combination of local products)
if the LSSS supports it
(like Shamir with $2t < n$, or 2-3 replication).
- Beaver triples.
- Damgård-Nielsen product (not treated here).

Resistance against active attacks

Error detection in Shamir sharings



If there is no polynomial P of degree t that passes through the points $(1, a_1), \dots, (n, a_n)$, the sharing (a_1, \dots, a_n) is wrong.

One or several shares a_i were corrupted, probably by malicious participants (active attack).

Error detection, error correction

A (n, t) Reed-Solomon code / a (n, t) Shamir sharing can:

- Detect up to $n - t - 1$ errors.

Simply by applying the parity matrix H to the sharing:

$$H \cdot (a_1, \dots, a_n)^\top \neq \mathbf{0} \implies \text{the sharing } (a_1, \dots, a_n) \text{ is wrong}$$

- Correct up to $(n - t - 1)/2$ errors.

Naively: find a subset of $n - (n - t - 1)/2$ shares that is not wrong.

Efficiently: use the Berlekamp-Welch algorithm.

Active security

A malicious participants, who do not follow the protocol.

Not numerous enough to reveal the secrets: $A \leq t$

Hypothesis: the malicious participants can modify their shares of the sharings, but not those of the honest participants.

Detecting the attack:

If $A \leq n - t - 1$, the attack can be detected when the n participants reveal their shares (a_1, \dots, a_n) .

The honest participants notice that $H \cdot (a_1, \dots, a_n)^\top \neq \mathbf{0}$.

Can be done as long as $A < n/2$ (by taking $t \approx n/2$).

Active security

A malicious participants, who do not follow the protocol.

Not numerous enough to reveal the secrets: $A \leq t$

Hypothesis: the malicious participants can modify their shares of the sharings, but not those of the honest participants.

Neutralizing the attack:

If $A \leq (n - t - 1)/2$, the attack can be detected as before.

Moreover, the honest participants can identify the attackers, ignore them, and continue the computation.

Can be done as long as $A < n/3$ (by taking $t \approx n/3$).

Active security of the operations over sharings

The hypothesis

The malicious participants can modify their shares of the sharings, but not those of the honest participants.

holds for local operations (addition, multiplication by a constant), where each participant only modifies its share.

It does not hold when a participant prepares and sends a sharing $[x]$ of a value x of its choice.

Active security of multiplication

Example: multiplication of two Shamir sharings using the Schur product.

Each of the first $2t$ participants prepares a sharing $[a_i b_i]$ of the product of its two shares a_i and b_i , and sends it to the other participants.

If one of these $2t$ participants lies about its value of $a_i b_i$, the result of the multiplication is wrong, but there are no coding errors.

Active security of Beaver multiplication

Multiplication using Beaver triples only involves “verifiable” operations (addition, multiplication by a constant, revelation).

Locally compute $[a + u]$ and $[b + v]$

Reveal these sharings to give $\alpha = a + u$ and $\beta = b + v$ to all

Locally compute $[c] = [w] + \alpha[b] - \beta[u]$

However, the attackers could have corrupted the Beaver triple: the sharings $[a]$, $[b]$, $[c]$ are well formed but $c \neq ab$.

This can happen if the triples were generated beforehand using Schur product between the participants.

Verification of a Beaver triple by “sacrificing” another triple

Consider two Beaver triples $([u], [v], [w])$ and $([x], [y], [z])$.

We want to confirm that $w = uv$.

Let t be a random integer known to all participants
(but not controlled by any participant).

Locally compute $[\rho] = t[u] - [x]$ and $[\sigma] = [v] - [y]$

Reveal ρ and σ

Locally compute $[e] = t[w] - [z] - \sigma[x] - \rho[y] - \sigma\rho$

Reveal e

If $e \neq 0$, reject the triple $([u], [v], [w])$.

Fails with high probability if $w \neq uv$ or $z \neq xy$.

We can sacrifice several $([x], [y], [z])$ to increase confidence.

SPDZ: authenticating shares using a MAC

Another way to authenticate shares. It applies to all LSSS, including the full additive sharing.

An authenticated sharing $\langle s \rangle$ is a pair of sharings $([s], [\alpha \cdot s])$:

$\langle s \rangle = (s_1, \dots, s_n, m_1, \dots, m_n)$ where $s = \sum s_i$ and $\alpha \cdot s = \sum m_i$

α is a global, shared secret.

Participant i only knows s_i , m_i , and α_i .

We can check $\alpha \sum s_i = \sum m_i$ when we reveal $\langle s \rangle$, and compute homomorphically on the sharings $\langle s \rangle$.

This provides active security even for $n - 1$ attackers.

(See section 6.6 of Evans and al, *A pragmatic introduction to secure multi-party computation*, 2018.)

Summary

Linear secret sharing

A way for multiple parties to compute over private data while controlling which results are revealed to all parties.

Nice properties:

- A good match for many practical problems (of the “let’s work together but not trust each other” kind).
- In addition to confidentiality of private data, can ensure fault tolerance and resistance to active attacks.
- No hairy cryptography involved!

Two main limitations:

- The protocols are interactive by nature.
- Communications between participants severely limit the speed of computation.

References

References

The main source for this lecture:

- *Cryptography made simple*, Nigel P. Smart, Springer, 2016.
Chapter 19 and section 22.3.

For further reading:

- *A pragmatic introduction to secure multi-party computation*,
David Evans, Vladimir Kolsnikov, Mike Rosulek,
NOW Publishers, 2018.