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Reminders from the previous lecture



Alice’s jewelry shop (C. Gentry, CACM 53(3), 2010)

(source)

Alice the jeweler puts precious materials in a glove box, which
she locks with her private key.
Bob the worker can assemble the jewel but not take it with him.
When the jewel is done, Alice unlocks the box and takes the
jewel.
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Alice’s jewelry shop (C. Gentry, CACM 53(3), 2010)

(source)

Problem: the gloves harden rapidly when used.
They become solid and unusable before the jewel is finished.
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Alice’s jewelry shop (C. Gentry, CACM 53(3), 2010)

(source)

Solution: Alice puts the glove box in a bigger box, along with the
key for the first box, and locks the bigger box.
Bob unlocks the first box, fetches the jewel and the materials,
and continues working.
This “bootstrap” procedure is repeated until the jewel is finished.
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Alice’s jewelry shop (C. Gentry, CACM 53(3), 2010)

(source)

Problem: Alice’s locks are complicated and rusty. Bob is unable to
open them before his gloves become solid.
Solution: Alice puts a can of oil in the box so that Bob can grease
the locks and open them more easily.
Caution: the oil could weaken the security of the boxes!
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Reminder: constructing a cipher based on noise

The encryption of a bit b with the private key p is

Ep(b) = pq+ 2r + b q random nonnegative integer ≫ p
r random integer, |r| < p/4

General form: ciphertext = noise1 · key+ noise2

The cleartext b is inserted in noise2 and masked by noise1.

Decryption is possible as long as |r| < p/4, by cancelling noise1 :

Dp(c) = (c− p⌊c/p⌉) mod 2
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A somewhat homomorphic cipher

Ep(b1) + Ep(b2) = an encryption of b1 ⊕ b2

Ep(b1) · Ep(b2) = an encryption of b1 · b2

as long as the noise r of the result remains < p/4.

The noise N(c) (in bits) increases

• slowly during addition max(N(c1),N(c2)) + 1
• rapidly during multiplication N(c1) + N(c2) + 1
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Waht can be evaluated homomorphically with this cipher?

• Multivariate polynomials of low degree (≤ λ).
The number of monomials can be high.

• Boolean circuits of low multiplicative depth (AND, OR)
(between log2 λ and λ depending on circuit shape).
The additive depth (XOR, NOT) can be high.
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Reminder: the bootstrapping procedure (Gentry, 2009)

De-noise a ciphertext by homomorphic evaluation of the
decryption circuit D.

D
private key p

ciphertext c = pq+ 2r + b
cleartext b
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Reminder: the bootstrapping procedure (Gentry, 2009)

De-noise a ciphertext by homomorphic evaluation of the
decryption circuit D.

D̂
encrypted key Ep(p)

“encrypted” ciphertext E0(c)
encrypted cleartext
pq′ + 2r′ + b

The result is a ciphertext equivalent to c, whose noise depends
only on the multiplicative depth of the circuit D.
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Towards fully homomorphic encryption

Somewhat homomorphic encryption + bootstrap
⇒ fully homomorphic encryption

(able to evaluate any Boolean circuit)

Provided the decryption circuit D is of low enough multiplicative
depth. . .

Gentry’s approach: “grease encryption”
(add redundant info to ciphertexts)
so as to simplify the decryption circuit.

Dp(c, z1 . . . zN) = LSB(
⌊∑

i

si · zi
⌉
)⊕ LSB(c)
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In this lecture: how to improve this approach

1. Better somewhat homomorphic ciphers

Based on the LWE (Learning With Errors) problem.

2. Multiplication that increases noise less rapidly

The BGV approach, using “leveled” somewhat homomorphic
encryption.

3. Less costly bootstrapping procedures

The TFHE approach and its “programmable bootstrap”
(de-noise while evaluating tabulated functions).
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The LWE problem
(Learning With Errors)



The LWE problem (Oded Regev, 2005)

Solve a system of “approximate” linear equations over integers
modulo q.

Example:

14s1 + 15s2 + 5s3 + 2s4 ≈ 8 (mod 17)
13s1 + 14s2 + 14s3 + 6s4 ≈ 16 (mod 17)
6s1 + 10s2 + 13s3 + 1s4 ≈ 3 (mod 17)

10s1 + 4s2 + 12s3 + 16s4 ≈ 12 (mod 17)
9s1 + 5s2 + 9s3 + 6s4 ≈ 9 (mod 17)
3s1 + 6s2 + 4s3 + 5s4 ≈ 16 (mod 17)

6s1 + 7s2 + 16s3 + 2s4 ≈ 3 (mod 17)

where ≈ means “equal to within 1”. (Solution: s = (0, 13, 9, 11).)
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The LWE problem

14s1 + 15s2 + 5s3 + 2s4 = 8

± 1

(mod 17) (1)
13s1 + 14s2 + 14s3 + 6s4 = 16

± 1

(mod 17) (2)
6s1 + 10s2 + 13s3 + 1s4 = 3

± 1

(mod 17) (3)
10s1 + 4s2 + 12s3 + 16s4 = 12

± 1

(mod 17) (4)

If the error is zero, the problem is easily solved by Gaussian
elimination, as soon as we have 4 independent equations.
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The LWE problem

14s1 + 15s2 + 5s3 + 2s4 = 8 ± 1 (mod 17) (1)
13s1 + 14s2 + 14s3 + 6s4 = 16 ± 1 (mod 17) (2)
6s1 + 10s2 + 13s3 + 1s4 = 3 ± 1 (mod 17) (3)

10s1 + 4s2 + 12s3 + 16s4 = 12 ± 1 (mod 17) (4)

If the error is not zero, it explodes during Gaussian elimination.
For instance, 3 × (4) − 5 × (3) eliminates s1 and results in

13s2 + 5s3 + 9s4 = 4 ± 8 (mod 17)

All values of the left-hand side are possible (modulo 17).
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The LPN problem (Learning Parity with Noise)

LWE generalizes an older problem: LPN.

A parity function is a XOR of a subset of its inputs:

P3,4,7(x1, . . . , x8) = x3 ⊕ x4 ⊕ x7

It’s a dot product with a bit vector s, which characterizes the
function uniquely:

Ps(x1, . . . , xn) =
n∑

i=1
si · xi (mod 2)
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The LPN problem (Learning Parity with Noise)

The LP problem (Learning Parity): given a number of samples
(x, Ps(x)) for randomly-chosen x, find s.

Easy by Gaussian elimination if we have n independent samples.
Difficult for learning algorithms based on gradient descent.
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The LPN problem (Learning Parity with Noise)

The LP problem (Learning Parity): given a number of samples
(x, Ps(x)) for randomly-chosen x, find s.

The LPN problem (Learning Parity with Noise): find s given a
number of “noisy” samples

(x, Ps(x) + e) x random
e = 1 with probability ε, e = 0 otherwise

Problem known to be difficult, even in the average case, even for
a quantum computer.

The best known algorithms are in sub-exponential time and
space.
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Euclidean lattices

3 LATTICE THEORY

In this section, we will review some concepts of the lattice theory that are useful for this chapter. For more
details on lattice theory, we refer to [Micciancio et al.,2002] and [de Weger,2012]. We also describe some
classical lattice problems, especially the Shortest Vector Problem (SVP) and the Closest Vector Problem
(CVP) and their connection to cryptography. Finally, we describe the LLL algorithm, which is the main
technique in lattice reduction.

3.1 Basic notions on lattices

The LLL algorithm was invented in 1982 and was called LLL after its inventors A.K. Lenstra, H.W.
Lenstra et L. Lovász [Lenstra et al.,1982]. Originally, it was aimed to factor polynomials with integer
coefficients. Since its invention, the LLL algorithm has served in many topics such as solving diophantine
equations and cryptanalysis of certain cryptosystems. It is mainly used to find a very good basis for
discrete sets of Rn, called lattices.

Definition 1. Let n and d be two positive integers. Let b1 · · · , bd 2 Rn be d linearly independent vectors.
The lattice L generated by (b1 · · · , bd) is the set

L =

dX

i=1

Zbi =

(
dX

i=1

xibi | xi 2 Z

)
.

The vectors b1 · · · , bd are called a vector basis of L. The lattice rank is n and the lattice dimension is d.
If n = d then L is called a full rank lattice.

If L ⇢ Rn is a lattice of dimension d, then it is an additive subgroup of Rn and a basis for L can be
written as the rows of a d ⇥ n matrix.

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

b1

b2

Figure 1: A lattice with the basis (b1, b2)

A lattice L with dimension d � 2 has infinitely many bases. Any two such bases have the same number
of elements and are related with a unimodular matrix.

5

A lattice = the set of vectors with integer coordinates in a given
base B = (b1, . . . ,bn). { n∑

i=1
pi bi

∣∣∣∣∣ pi ∈ Z

}
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The CVP problem (Closest Vector Problem)

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

b1

b2

v

v0

Figure 3: The closest vector to v is v0

Some of such problems have been shown to be NP-hard, and in general, are known to be hard when the
dimension is sufficiently large. No efficient algorithm is known to find the shortest vector nor the closest
vector in a lattice. The next result, due to Minkowski gives a theoretical explicit upper bound in terms of
dim(L) and det(L).

Theorem 10 (Minkowski). Let L be a lattice with dimension n. Then there exists a non-zero vector
v 2 L satisfying

kvk  p
n det(L)

1
n .

On the other hand, the Gaussian Heuristic implies that the expected shortest non-zero vector in a lattice
L is approximately �(L) where

�(L) =

r
dim(L)

2⇡e
(det(L))

1
dim(L) .

We notice that Minkowski’s theorem as well as the Gaussian Heuristic are not useful for practical imple-
mentations. For implementation purposes, the LLL algorithm is more useful and approximately solves
the SVP within a factor of 2n/2.

3.2 The LLL algorithm

The LLL algorithm is the most useful tool in the algorithmic study of lattices. It provides a partial answer
to SVP since it runs in polynomial time and approximates the shortest vector of a lattice of dimension n
up to a factor of 2n/2. On the other hand, Babai [Babai,1986] gave an algorithm that approximates the
CVP problem by a factor of

�
3/

p
2
�n

. In some cases, the LLL algorithm gives extremely striking results
both in theory and practice that are enough to solve lattice problems.
The LLL algorithm uses the well known Gram-Schmidt orthogonalization method. The Gram-Schmidt
process is an iterative method to orthonormalize the basis of a vector space.

Theorem 11 (Gram-Schmidt). Let V be a vector space of dimension n and (b1 · · · , bn) a basis of V .
Let (b⇤1 · · · , b⇤n) be n vectors such that

b⇤1 = b1, b⇤i = bi �
i�1X

j=1

µi,jb
⇤
j ,

8

Given a vector v, find the coordinates of a vector v0 of the lattice
that is closest to v.
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The SIVP problem (Shortest Independent Vectors Problem)

The condition (6) is called Lovász’s condition. If µi,j = 0 for all i and j, then the basis is orthogonal,
and consequently is minimal according to Hadamard’s inequality as in Corollary 12.
Since a lattice has infinitely many basis, some basis are better than others. A good basis is generally a
basis with short and almost orthogonal vectors. Consequently, a LLL-reduced basis is a candidate for a
good basis.

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

b1

b2

Figure 4: A lattice with a bad basis (b1, b2)

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

b1

b2

u1

u2

Figure 5: The same lattice with a good basis (u1, u2)

The original version of the LLL algorithm is presented in Algorithm (2).
An LLL-reduced basis has various properties such as the following ones.

Theorem 14. Let (b1 · · · , bn) be an LLL-reduced basis with Gram-Schmidt orthogonolization (b⇤1, · · · , b⇤n).
Then

1. kb⇤jk2  2i�jkb⇤i k2 for 1  j  i  n.

2.
Qn

i=1 kbik  2
n(n�1)

4 det(L).

3. kbjk  2
i�1
2 kb⇤i k for 1  j  i  n.

10

Find n independent lattice vectors of minimal length.
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Other hard problems on Euclidean lattices

SVP (Shortest Vector Problem): find the shortest non-null vector
of the lattice. (Or just determine its length.)

GapSVP: is the length of the shortest non-null vector ≤ 1 or ≥ β

(for a fixed β > 1) ?

All these problems are NP-hard, even when approximated.

Several reductions “worst-case hard” =⇒ “average-case hard”
(Ajtai, 1995).
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LWE and CVP

LWE can be viewed as a generalization of the CVP problem in Zq
(integers modulo q).

Solving

a11x1 + · · · a1nxn ≈ b1

...
an1x1 + · · · annxn ≈ bn

amounts to finding the coordinates x of an element of the lattice
generated by the base a1, . . . , an that is close enough to the
point b.
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The LWE problem

Let s ∈ Znq be the secret. Consider the numbers

⟨a, s⟩+e (mod q) a ∈ Znq uniformly random vector
e ∈ Z random integer with distribution χ

LWE problem: given a set of pairs (a, ⟨a, s⟩+ e), find s.

Decisional LWE problem: distinguish between
a set of pairs (a, ⟨a, s⟩+ e) and
a set of pairs (a, u) where u ∈ Zq is uniformly random.
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Some hardness results

(O. Regev, On lattices, learning with errors, random linear codes, and
cryptography, J. ACM, 2006).

• If q is exponential in n, LWE is at least as hard as GapSVP
approximated up to a polynomial factor.

• If q is polynomial in n, LWE is at least as hard as GapSVP or
SIVP approximated up to a polynomial factor on a quantum
computer.

• Decisional LWE is as hard as LWE.

• Decisional LWE is as hard in the average case as in the worst
case.
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Encryption based on LWE



Encrypting with LWE

Basic idea: hide the cleartext in the error term.

Symmetric encryption: (using the secret key s)

Es(m) = (a, ⟨a, s⟩+ f (m))

where a ∈ Znq is a random vector
and f : Msg→ Zq a randomized, invertible, additive function.

Decryption:
Ds((a, b)) = f−1(b− ⟨a, s⟩)

IND-CPA security follows from the decisional LWE problem:
an attacker who does not know s cannot distinguish Es(m) from (a, b)
with a and b uniformly random.
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Encoding the message in the error term

Big-endian encoding: m in the most significant bits.

f (m) = ∆m+ r with r random, |r| < ∆/2

f−1(c) = ⌊c/∆⌉

The messages m are integers in Zt, where t = q/∆.

Example if q = 2Q and t = 2T :
the messages m are T-bit words, stored in the T most significant
bits; the noise r is a signed integer of at most D = Q− T bits.

m margin noise r

DQ
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Encoding the message in the error term

Little-endian encoding: m in the least significant bits.

f (m) = ∆r +m with r random, |r| < q/2∆

f−1(c) = c mod ∆

The messages m are integers in Z∆.

Example if q = 2Q and ∆ = 2D:
the messages are D-bit words, stored in the D least significant
bits; the noise r is an integer of at most Q− D bits.

margin noise r m

DQ
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Trivial encryption

If the message m reveals no confidential information
(e.g. it is a constant, or it is already encrypted),
we have a trivial encryption:

E0(m) = (0,m) (little-endian)
E0(m) = (0,∆m) (big-endian)

These ciphers decrypt to m for any secret key s.
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Public-key encryption

A public key = k encryptions of 0.

pk =
(
(a1, ⟨a1, s⟩+ f (0)), . . . (ak, ⟨ak, s⟩+ f (0))

)

Encrypting m with the public key pk = (a1, b1), . . . , (ak, bk):
draw a subset P ⊆ {1, . . . , k} and take

Epk(m) =
(∑

i∈P
ai,

∑

i∈P
bi +m

)
(little-endian)

Epk(m) =
(∑

i∈P
ai,

∑

i∈P
bi +∆m

)
(big-endian)
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Encrypting a vector of n messages

We can encrypt a vector m of n messages like we would encrypt n
messages m1, . . . ,mn:

Es(m) = (A,A · s + f(m))

where A is a n× n random matrix
and A · s the application of A to vector s.

Problem: the ciphertext has quadratic size (n2 + n integers).

(Example: n = 1024 and q = 264 ⇒ 8396800 bytes.)
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Encrypting with RLWE (Ring Learning With Error)

Idea: instead of random matrices A, let’s use matrices with the
following shape:

A =




a0 a1 a2 · · · an−1

−an−1 a0 a1 · · · an−2

−an−2 −an−1 a0 · · · an−3
...

...
...

...
−a1 −a2 −a3 · · · a0




with a0, . . . , an−1 drawn randomly in Zq.

This matrix is not pulled out of thin air: it corresponds to the
multiplication of polynomials modulo Xn + 1 (i.e. with Xn = −1).
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Encrypting with RLWE (Ring Learning With Error)

The secret S, the randomness A, the noise R, the cleartext M and
the ciphertext C are all viewed as polynomials in Zq[X]/(Xn + 1).

ES(M) = (A, AS+∆R+ M) little-endian
ES(M) = (A, AS+∆M+ R) big-endian

A coefficients: random, uniform in Zq.
R coefficients: random, not too big.
M coefficients: in Z∆ (little-endian) or Zq/∆ (big-endian).

The ciphertext has linear size (2n integers).

Security proved by the difficulty of the RLWE problem
(LWE problem for polynomials) (provided n is a power of 2).
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GLWE (Generalized LWE)

Like RLWE, but the secret and the randomness are k-tuples of
polynomials in Zq[X]/(Xn + 1).

E(S1,...,Sk)(M) = (A1, . . . , Ak, A1S1 + · · ·+ AkSk +∆R+ M)

A unified presentation of LWE (case n = 1) and RLWE (case k = 1).

Encodes n numbers using kn+ n numbers.
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Homomorphic addition



Somewhat homomorphic encryption for addition

The pointwise sum of two LWE ciphertexts is an encryption of the
sum modulo t, if the noise doesn’t overflow.

Big-endian:

(a1, ⟨a1, s⟩+∆m1 + r1) + (a2, ⟨a2, s⟩+∆m2 + r2)

= (a1 + a2, ⟨a1 + a2, s⟩+∆(m1 +m2) + r1 + r2)

= an encryption of (m1 +m2) mod t

provided that |r1 + r2| < ∆/2
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Somewhat homomorphic encryption for addition

Little-endian:

(a1, ⟨a1, s⟩+∆r1 +m1) + (a2, ⟨a2, s⟩+∆r2 +m2)

= (a1 + a2, ⟨a1 + a2, s⟩+∆(r1 + r2) +m1 +m2)

= an encryption of (m1 +m2) mod ∆

provided that ∆|r1 + r2 + (m1 +m2)/∆| < q/2

Same properties for RLWE and GLWE.
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Multiplication by a small constant

The product of a ciphertext and a constant k is an encryption of
the product of the cleartext and k, provided k is small enough to
avoid overflow.

Big-endian:

k · (a, ⟨a, s⟩+∆m+ r)

= (k · a, ⟨k · a, s⟩+∆(k ·m) + k · r)
= an encryption of k ·m mod t

provided that |k · r| < ∆/2

Unusable if k is large w.r.t. ∆.
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Multiplication by an arbitrary constant

Assume q = βℓ. We can write the constant k in base β:

k = k0 + k1β + k2β
2 + · · ·+ kℓ−1β

ℓ−1

Consider the leveled encryption of a message m: it’s a collection
of encryptions of m scaled by 1, β, β2, . . .:

ELev(m) =
(
E(m), E(βm), E(β2m), . . . , E(βℓ−1m)

)

We can, then, compute the product km homomorphically:

k0 · E(m) + k1 · E(βm) + · · ·+ kℓ−1 · E(βℓ−1m)

= an encryption of k0m+ k1βm+ · · · kℓ−1β
ℓ−1m (mod q)

= an encryption of (k0 + k1β + · · ·+ kℓ−1β
ℓ−1)m = km (mod q)

The numbers ki are small, therefore the noise doesn’t overflow.
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Homomorphic multiplication and
leveled circuits (the BGV approach)



Intermission: the tensor product

The tensor product u ⊗ v of a vector of dimension n by a vector of
dimension m is the vector of dimension nm defined by

u ⊗ v = (u1v1, . . . , u1vm, . . . , unv1, . . . , unvm)

Tensor product commutes with dot product:

⟨u1, u2⟩ · ⟨v1, v2⟩ = ⟨u1 ⊗ v1, u2 ⊗ v2⟩
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Multiplication of two ciphertexts (BGV approach)

(Zvika Brakerski, Craig Gentry, Vinod Vaikuntanathan, (Leveled) fully
homomorphic encryption without bootstrapping, ICTS 2012, TOCT 2014)

Consider two LWE encryptions of m1 and m2 (little-endian):

c1 = (a1, b1) where b1 = ⟨a1, s⟩+∆r1 +m1

c2 = (a2, b2) where b2 = ⟨a2, s⟩+∆r2 +m2

We have

b1 · b2 = (⟨a1, s⟩+∆r1 +m1) · (⟨a2, s⟩+∆r2 +m2)

= ⟨a1, s⟩ · ⟨a2, s⟩+∆(· · · ) +m1 ·m2

= ⟨a1 ⊗ a2, s ⊗ s⟩+∆(· · · ) +m1 ·m2

Hence, (a1 ⊗ a2, b1 · b2) looks like an encryption of m1 ·m2

with the key s ⊗ s instead of s, and the dimension n2 instead of n.
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Multiplication of two ciphertexts (BGV approach)

Ciphertexts (a1, b1), (a2, b2)

(key s, dimension n, modulus q, noise B)

tensor product

Ciphertext (a1 ⊗ a2, b1 · b2)

(key s ⊗ s, dimension n2, modulus q, noise B2)

key switching

Ciphertext (a′, b′)
(key s or s′, dimension n, modulus q, noise B2)

modulus switching

Chiffré (a′′, b′′)
(key s or s′, dimension n, modulus q/B, noise B)
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Key switching

We have an encryption c = (a, b) of the message m with the key s.

We want an encryption c′ of m with another key s′.

Idea: perform a homomorphic partial decryption of c.

We give s encrypted under s′ to the computer:

Es′(s1), . . . , Es′(sn) (using the leveled form)

We can, then, compute b− ⟨a, s⟩ homomorphically:

E0(b)− a1 · Es′(s1)− · · · − an · Es′(sn)

= an encryption of b− ⟨a, s⟩ under key s′

(Must use the leveled form, since the ai coefficients are large.)
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Key switching

In little-endian representation, b− ⟨a, s⟩ = ∆r +m.

The result is an encryption (a′, b′) of ∆r +m under key s′.
Moreover,

(a′, b′) = (a′, ⟨a′, s′⟩+∆r′ + (∆r +m))

= (a′, ⟨a′, s′⟩+∆(r′ + r) +m)

= an encryption of m under s′ if |r′ + r| is small enough

Therefore,

E0(b)− a1 · Es′(s1)− · · · − an · Es′(sn)

is an encryption of m under the new key s′, if the noise doesn’t
overflow.
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Noise analysis

The noise of a ciphertext is the magnitude of ∆r.
It must remain < q for decryption to succeed.

If both operands have noise B, tensor product followed by key
switching produce a ciphertext with noise ≈ B2.

This greatly limits the multiplicative depth of circuits / the
degree of polynomials that can be evaluated homomorphically.
Example with q = B10:

Noise / Modulus
initial ciphertext B/B10

depth 1, degree 2 B2/B10

depth 2, degree 4 B4/B10

depth 3, degree 8 B8/B10

depth 4, degree 16 error! B16/B10
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Modulus switching

Idea: reduce the modulus by a factor ≈ B at each multiplication.

This way, the absolute error remains ± constant.
The limiting factor becomes the size of the modulus.

Noise / Modulus fixed modulus decreasing modulus
initial ciphertext B/B10 B/B10

depth 1, degree 2 B2/B10 B2/B10 = B/B9

depth 2, degree 4 B4/B10 B2/B9 = B/B8

depth 3, degree 8 B8/B10 B2/B8 = B/B7

depth 4, degree 16 error! B16/B10 B2/B7 = B/B6

If q0 ≈ Bn, the maximal multiplicative depth is n− constant,
instead of log2 n with a fixed modulus.
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Modulus switching (big-endian)

Let q and q′ be two moduli. Assume ∆′ = ∆q′/q is an integer.

Consider a big-endian encryption (a, b) modulo q of m:

b = ⟨a, s⟩+∆m+ r (mod q)

Define
(a′, b′) =

(⌊
a
q′

q
⌉
,
⌊
b
q′

q
⌉)

Assuming s has small coefficients (0, 1, -1), we can show

b′ = ⟨a′, s⟩+∆′m+ ⌊rq
′

q
⌉+ ε (mod q′)

with |ε| = O(n).

If ∆′ remains large enough, (a′, b′) is an encryption modulo q′

of m.
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Leveled somewhat homomorphic encryption

Fix a maximal multiplicative depth d.

The client chooses moduli q1, . . . , qd with qi/qi+1 ≈ B
(B minimal noise level) and private keys s1, . . . , sd.

It gives the computer the qi and the key switching matrices
Esi+1(si ⊗ si).

The computer can homomorphically evaluate any circuit of
multiplicative depth ≤ d, switching key and modulus at each
multiplication.
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Examples of leveled circuit: the full adder

scin

ba

cout

level ℓ level ℓ+ 1
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Example of leveled circuit: the n-bit adder

+

a0 b0

s0

+

a1 b1

s1

+

an−1 bn−1

sn−1

· · ·cin cout

level 1 level 2 level n level n+ 1
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Programmable bootstrap:
the FHEW/TFHE approach



Bootstrap vs. key change

Goal of a bootstrap: given a ciphertext c under key s,
produce a ciphertext c′ under key s′ (possibly = s)
such that

1. c′ decrypts to the same message m as c;
2. the noise level of c′ is reset to a known value, independent

of that of c.

Key switching enforces (1) but not (2):
the noise level of c′ is that of c + the noise of the switching.
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Bootstrap = key switching + table lookup

(Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, Malika Izabachène, Faster Fully
Homomorphic Encryption: Bootstrapping in less than 0.1 seconds, 2016)

Big-endian encryption: b = ⟨a, s⟩+∆m+ r.

Decryption of the ciphertext (a, b):

1. Compute e = b− ⟨a, s⟩
2. Extract m = ⌊e/∆⌉

(1) is achieved by key switching, using Es′(s).

(2) is achieved by homomorphic lookup in a table

i ∈ Zq 7−→ an encryption of ⌊i/∆⌉ under s′ with minimal noise
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Torus and tables

Assuming q = 64 and ∆ = 4:

Reduction to q = 16:

0

q/4

q/2

3q/4

0

1

2

3

0 1 2 3 0

0

q/4

q/2

3q/4

0

1

2

3

0 1 2 3 0

We can make the table smaller by switching moduli beforehand.
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Torus and tables

Assuming q = 64 and ∆ = 4: Reduction to q = 16:
0

q/4

q/2

3q/4

0

1

2

3

0 1 2 3 0

0

q/4

q/2

3q/4

0

1

2

3

0 1 2 3 0

We can make the table smaller by switching moduli beforehand.
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Indexing in a table

An N-entry table is represented by a polynomial V modulo XN + 1.

To extract entry number i ∈ [0,N):

• compute X−i · V (right rotation of i slots)
• extract the constant coefficient of X−i · V.

If we have a binary decomposition of i = i0 + 2i1 + · · ·+ 2nin, we
can use an barrel shifter:

mux
X−1·

i0

mux
X−2·

i1

mux
X−4·

i2

V · · ·

where mux(i, a, b) = a if i = 0 and = b if i = 1.
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Application to homomorphic decryption

After modulus switching if necessary, the ciphertext is (a, b) and
the index in table V is i = b− ⟨a, s⟩.
We want to multiply V by X−i = X−b+a0s0+···+an−1sn−1 .

Assume the si components of the key are 0/1 bits.
We reuse the barrel shifter design as follows:

mux
Xa0 ·

s0

mux
Xa1 ·

s1

mux
Xa2 ·

s2

X−b · V · · ·
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Application to homomorphic decryption

The mux gate can be evaluated homomorphically:

m̂ux(i, a, b) = i⊗ (b⊖ a)⊕ a

where ⊕, ⊖, ⊗ are addition, subtraction and multiplication of two
ciphertexts.

Hence, we can evaluate the barrel shifter homomorphically:

m̂ux
Xa0 ·

E(s0)

m̂ux
Xa1 ·

E(s1)

m̂ux
Xa2 ·

E(s2)

X−b · E(V) · · ·

The dot · is cleartext × ciphertext multiplication.
The E(si) are encryptions of the bits of the key s.
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Bootstrap accomplished !

The output of the barrel shifter is

X−b+a0·E(s0)+···+an−1·E(sn−1) · E(V)

from which we can extract the constant coefficient E(vi)
where i = b− ⟨a, s⟩ = ∆m+ r (the noise term),
and vi the i-th entry of the table V:

V =
N−1∑

i=0
viXi where vi = ⌊i/∆⌉

The end result is a low-noise encryption of E(m).
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Programmable bootstrap

0 1 2 3 0

F(0) F(1) F(2) F(3) F(0)

The table V used for bootstrapping is

V =
N−1∑

i=0
viXi where vi = ⌊i/∆⌉

But we can also take vi = F(⌊i/∆⌉) for any function F : Zt → Zt.

Then, the bootstrap procedure evaluates F homomorphically
while reducing the noise.
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Applications of programmable bootstrap

Many computations can be expressed as a unary function applied
to a linear combination of the inputs.

Minimum and maximum:

max(x, y) = x + relu(y − x)
min(x, y) = y − relu(y − x)

where relu(z) =




z if z ≥ 0
0 if z < 0

Artificial neuron:

φ(w1x1 + · · ·+ wnxn) where φ is the activation function

Multiplication:

x · y = F(x + y)− F(x − y) where F(z) = z2/4
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Summary



Advances in homomorphic encryption

Starting with Gentry’s 2009 conceptual breakthrough, major
progress was made in three directions:

• Efficient somewhat homomorphic ciphers, able to
homomorphically evaluate circuits of respectable
multiplicative depth.
(Brakerski-Gentry-Vaikuntanathan 2011, Brakerski-Fan-Vercauteren 2012,
Gentry-Sahai-Waters 2013, etc.)

• Efficient, programmable bootstrap: FHEW, TFHE.
(Chillotti, Gama, Georgieva, Izabachène, 2016)

⇒ Ilaria Chillotti’s seminar talk

• Approximate homomorphic computation over reals and
complex numbers: CKKS (Cheon-Kim-Kim-Song 2016)

⇒ Damien Stehlé’s seminar talk
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Practical implementations

I don’t think we’ll see anyone using Gentry’s solution
in our lifetimes.

(Butler Lampson)

Libraries: HElib, SEAL, TFHE, OpenFHE, HEEAN, . . .
(see https://github.com/jonaschn/awesome-he for a list)

Reasonable but still insufficient performance on CPUs
(homomorphic evaluation of an AES decryption: 30 sec.)

Under development: GPU and hardware (FPGA, ASIC)
implementations.
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