Secure computing, third lecture

Fully homomorphic encryption:
computing on encrypted data (part 2)

Xavier Leroy
2025-11-20

College de France, chair of Software sciences
xavier.leroy@college-de-france.fr



Reminders from the previous lecture



Alice’s jewelry shop (C. Gentry, CACM 53(3), 2010)

(source)

Alice the jeweler puts precious materials in a glove box, which
she locks with her private key.

Bob the worker can assemble the jewel but not take it with him.

When the jewel is done, Alice unlocks the box and takes the
jewel.


https://www.esat.kuleuven.be/cosic/blog/co6gc-homomorphic-encryption-part-1-computing-with-secrets/

Alice’s jewelry shop (C. Gentry, CACM 53(3), 2010)

(source)

Problem: the gloves harden rapidly when used.

They become solid and unusable before the jewel is finished.


https://www.esat.kuleuven.be/cosic/blog/co6gc-homomorphic-encryption-part-1-computing-with-secrets/

Alice’s jewelry shop (C. Gentry, CACM 53(3), 2010)

(source)

Solution: Alice puts the glove box in a bigger box, along with the
key for the first box, and locks the bigger box.

Bob unlocks the first box, fetches the jewel and the materials,
and continues working.

This “bootstrap” procedure is repeated until the jewel is finished.


https://www.esat.kuleuven.be/cosic/blog/co6gc-homomorphic-encryption-part-1-computing-with-secrets/

Alice’s jewelry shop (C. Gentry, CACM 53(3), 2010)

(source)

Problem: Alice’s locks are complicated and rusty. Bob is unable to
open them before his gloves become solid.

Solution: Alice puts a can of oil in the box so that Bob can grease
the locks and open them more easily.

Caution: the oil could weaken the security of the boxes!


https://www.esat.kuleuven.be/cosic/blog/co6gc-homomorphic-encryption-part-1-computing-with-secrets/

Reminder: constructing a cipher based on noise

The encryption of a bit b with the private key p is

&E(b) =pg+2r+b qrandom nonnegative integer > p
r random integer, |r| < p/4

General form: ciphertext = noise; - Rey + noise,
The cleartext b is inserted in noise, and masked by noise;.

Decryption is possible as long as |r| < p/4, by cancelling noise, :

Dy(c) = (¢ — plc/p]) mod 2



A somewhat homomorphic cipher

Ep(b1) + Ep(by) = an encryption of by @ b,
Ep(b1) - Ep(by) = an encryption of by - by

as long as the noise r of the result remains < p/4.

The noise N(c) (in bits) increases

« slowly during addition max(N(c1), N(c2)) + 1
« rapidly during multiplication N(c1) + N(c2) +1



Waht can be evaluated homomorphically with this cipher?

+ Multivariate polynomials of low degree (< \).
The number of monomials can be high.

+ Boolean circuits of low multiplicative depth (AND, OR)
(between log, A and \ depending on circuit shape).
The additive depth (XOR, NOT) can be high.



Reminder: the bootstrapping procedure (Gentry, 2009)

De-noise a ciphertext by homomorphic evaluation of the
decryption circuit D.

private key p —»
D cleartextb

ciphertextc =pq +2r+ b —



Reminder: the bootstrapping procedure (Gentry, 2009)

De-noise a ciphertext by homomorphic evaluation of the
decryption circuit D.

encrypted key &p(p) —= encrypted cleartext

pq +2r +b

“encrypted” ciphertext & (c) —»t

The result is a ciphertext equivalent to ¢, whose noise depends
only on the multiplicative depth of the circuit D.



Towards fully homomorphic encryption

Somewhat homomorphic encryption + bootstrap
= fully homomorphic encryption
(able to evaluate any Boolean circuit)

Provided the decryption circuit D is of low enough multiplicative
depth...

Gentry's approach: “grease encryption”
(add redundant info to ciphertexts)
so as to simplify the decryption circuit.
Dy(c,z1...2y) = LSB(| Y _si - z]) ® LSB(c)

1



In this lecture: how to improve this approach

1. Better somewhat homomorphic ciphers

Based on the LWE (Learning With Errors) problem.

2. Multiplication that increases noise less rapidly

The BGV approach, using “leveled” somewhat homomorphic
encryption.

3. Less costly bootstrapping procedures

The TFHE approach and its “programmable bootstrap”
(de-noise while evaluating tabulated functions).



The LWE problem
(Learning With Errors)




The LWE problem (Oded Regev, 2005)

Solve a system of “approximate” linear equations over integers
modulo g.

Example:

145, + 155, + 553 + 25, =~ 8 (mod 17)
1351 + 14s; + 1453 + 65, ~ 16 (mod 17)
651 + 10s; + 1353 4+ 15, ~ 3 (mod 17)
1087 + 4S; + 1253 4 165, ~ 12 (mod 17)
951 + 55, + 953 + 65, ~ 9 (mod 17)
351+ 65 + 453 + 55, ~ 16 (mod 17)
651 + 7S + 1653 + 25, ~ 3 (mod 17)

where ~ means “equal to within 1”. (Solution: s = (0,13,9,11).)



The LWE problem

1451 4 155, + 553 + 25, = 8 (mod 17) (1)
1351 + 145, + 1453 + 65, = 16 (mod 17) )
657 + 10s; + 1353 + 15, = 3 (mod 17) (3)
10sq + 4S5 + 1253 + 165, = 12 (mod 17) (4)

If the error is zero, the problem is easily solved by Gaussian
elimination, as soon as we have 4 independent equations.

10



The LWE problem

1451+ 155, + 553 + 25, =8 £ 1 (mod 17) (1)
1351 + 145, 4 1453 + 65, = 16 £1  (mod 17) )
6s1 + 10s; + 1353 + 1s, =3+ 1 (mod 17) (3)
1081 + 4S; + 1253 + 165, =12+ 1 (mod 17) (4)

If the error is not zero, it explodes during Gaussian elimination.
For instance, 3 x (4) — 5 x (3) eliminates s; and results in

135y + 553 +9s, =4+ 8 (mod 17)

All values of the left-hand side are possible (modulo 17).

10



The LPN problem (Learning Parity with Noise)

LWE generalizes an older problem: LPN.
A parity function is a XOR of a subset of its inputs:
P347(X1,...,X8) = X3 ® X4 © Xy

It's a dot product with a bit vector s, which characterizes the
function uniquely:

n
Ps(x1,...,Xa) = Y _sj-x; (mod 2)
i=il

1



The LPN problem (Learning Parity with Noise)

The LP problem (Learning Parity): given a number of samples
(x, Ps(x)) for randomly-chosen x, find s.

Easy by Gaussian elimination if we have n independent samples.
Difficult for learning algorithms based on gradient descent.

12



The LPN problem (Learning Parity with Noise)

The LP problem (Learning Parity): given a number of samples
(x, Ps(x)) for randomly-chosen x, find s.

The LPN problem (Learning Parity with Noise): find s given a
number of “noisy” samples

(x,Ps(x) +e)  xrandom
e = 1 with probability e, e = 0 otherwise

Problem known to be difficult, even in the average case, even for
a quantum computer.

The best known algorithms are in sub-exponential time and
space.

12



Euclidean lattices

A lattice = the set of vectors with integer coordinates in a given

base B = (b, ..., bp).
pi GZ}

n
{Z pi bi
i=il

13



The CVP problem (Closest Vector Problem)

Given a vector v, find the coordinates of a vector vy of the lattice
that is closest to v.

14



The SIVP problem (Shortest Independent Vectors Problem)

[ ) [ ] [ ] [ ) [ ] [ ] [ ) [ ] [ ] [ )
() [ ] ] () [ ] ] [ ) [ ] °
B
"’
"‘ 2
"""
. ° uz e Loy . . . .
-
====' by
““
° ° =% >e ° Py ° ° ° °

>

u;

[ ] [ ) [ ] L[] [ ) [ ] (] [ ] [ ] (]

Find n independent lattice vectors of minimal length.

15



Other hard problems on Euclidean lattices

SVP (Shortest Vector Problem): find the shortest non-null vector
of the lattice. (Or just determine its length.)

GapSVP: is the length of the shortest non-null vector <1or> g
(forafixed 3 > 1)?

All these problems are NP-hard, even when approximated.

Several reductions “worst-case hard” —> “average-case hard”
(Ajtai, 1995).

16



LWE and CVP

LWE can be viewed as a generalization of the CVP problem in Zg
(integers modulo g).

Solving

anXq + -+ - QipXn = by

An1X1 + -+ - AppXn ~ bp

amounts to finding the coordinates x of an element of the lattice
generated by the base a4, ..., a, that is close enough to the
point b.

17



The LWE problem

Lets € Zg be the secret. Consider the numbers

(a,s)+e (mod q)  a € Zg uniformly random vector
e € Z random integer with distribution x

LWE problem: given a set of pairs (a, (a,s) + e), find s.

Decisional LWE problem: distinguish between
a set of pairs (a, (a,s) + e) and
a set of pairs (a, u) where u € Zq is uniformly random.

18



Some hardness results

(0. Regev, On lattices, learning with errors, random linear codes, and
cryptography, ). ACM, 2006).

« If g is exponential in n, LWE is at least as hard as GapSVP
approximated up to a polynomial factor.

- If g is polynomial in n, LWE is at least as hard as GapSVP or
SIVP approximated up to a polynomial factor on a quantum
computer.

« Decisional LWE is as hard as LWE.

- Decisional LWE is as hard in the average case as in the worst
case.



Encryption based on LWE




Encrypting with LWE

Basic idea: hide the cleartext in the error term.
Symmetric encryption: (using the secret key s)
Es(m) = (aa <a,5> +f(m))

where a € Zg is a random vector
and f : Msg — Zq a randomized, invertible, additive function.

Decryption:
Ds((a,b)) =f'(b— (a.s))

IND-CPA security follows from the decisional LWE problem:
an attacker who does not know s cannot distinguish &(m) from (a, b)
with a and b uniformly random.

20



Encoding the message in the error term

Big-endian encoding: m in the most significant bits.

f(m) = Am +r with r random, |r| < A/2
f7(e) = c/A]

The messages m are integers in Zt, where t = q/A.

Exampleifg =2%and t = 27:

the messages m are T-bit words, stored in the T most significant
bits; the noise r is a signed integer of at most D = Q — T bits.

Q D
(R T T [ T —

-

m margin  noise r

21



Encoding the message in the error term

Little-endian encoding: m in the least significant bits.
f(m) = Ar+m with r random, |r|] < q/2A
f~'(c) = cmod A
The messages m are integers in Zna.
Example if g =22 and A = 2°:

the messages are D-bit words, stored in the D least significant
bits; the noise r is an integer of at most Q — D bits.

Q D
(LT T —

- -

margin  noiser m

22



If the message m reveals no confidential information
(e.g. it is a constant, or it is already encrypted),
we have a trivial encryption:

Eo(m) = (0, m) (little-endian)
Eo(m) = (0, Am) (big-endian)

These ciphers decrypt to m for any secret key s.

23



Public-key encryption

A public key = k encryptions of 0.
pk = ((a1, (@1,8) +£(0)), .- - (ak, (@, s) +£(0)))

Encrypting m with the public key pk = (a1, by), ..., (ak, br):
draw a subset P C {1,..., R} and take

Epr(m Za,, Zb +m) (little-endian)

icP icP

= (> a, > bi+am) (big-endian)

icP ieP

24



Encrypting a vector of n messages

We can encrypt a vector m of n messages like we would encrypt n
messages my, ..., Mpy:

Es(m) = (A,A s+ f(m))

where Aisa n x n random matrix
and A - s the application of A to vector s.

Problem: the ciphertext has quadratic size (n?> + n integers).

(Example: n = 1024 and g = 2%* = 8396800 bytes.)

23]



Encrypting with RLWE (Ring Learning With Error)

Idea: instead of random matrices A, let's use matrices with the
following shape:

Qo a, az an—1
—0Qn— Qo a -+ 0p-—2
A= |02 —0Gp—1 QA -+ 0Gn-3
—an —a; —a3 Qo
with ao, ..., an_q drawn randomly in Z,.

This matrix is not pulled out of thin air: it corresponds to the
multiplication of polynomials modulo X" +1 (i.e. with X" = —1).

26



Encrypting with RLWE (Ring Learning With Error)

The secret S, the randomness A, the noise R, the cleartext M and
the ciphertext C are all viewed as polynomials in Zg[X]/(X" + 1).

Es(M) = (A,AS + AR + M) little-endian
Es(M) = (A,AS + AM + R) big-endian

A coefficients: random, uniform in Zj.
R coefficients: random, not too big.

M coefficients: in Zx (little-endian) or Zq, A (big-endian).
The ciphertext has linear size (2n integers).

Security proved by the difficulty of the RLWE problem
(LWE problem for polynomials) (provided n is a power of 2).

27



GLWE (Generalized LWE)

Like RLWE, but the secret and the randomness are k-tuples of
polynomials in Zg[X] /(X" + 1).

E(s1y5)(M) = (A1, ... Ap, ArSy + -+ - + ArSp + AR + M)

A unified presentation of LWE (case n = 1) and RLWE (case kR = 1).

Encodes n numbers using kn + n numbers.

28



Homomorphic addition




Somewhat homomorphic encryption for addition

The pointwise sum of two LWE ciphertexts is an encryption of the
sum modulo t, if the noise doesn’t overflow.

Big-endian:

(a1, (a1,8) + Amq + ) + (az, (@z,8) + Amy +12)
= (a+a, (ar+ay,s)+ A(m +my) +r+r)

= an encryption of (m1 4+ m;) mod t

provided that |ry + 2| < A/2

29



Somewhat homomorphic encryption for addition

Little-endian:

(a17 <a1,s> + A+ m1) + (az, <a2,s> + Ary + mz)
= (a1 +ap, (a1 +az,s) + A(r + r2) + my + my)

= an encryption of (my + my) mod A

provided that A|ri 4+ r, + (mq + my)/A| < q/2

Same properties for RLWE and GLWE.

30



Multiplication by a small constant

The product of a ciphertext and a constant k is an encryption of
the product of the cleartext and R, provided k is small enough to
avoid overflow.

Big-endian:

k-(a,(a,s)+Am+r)
= (k-a,(k-a,s) +A(kR-m)+k-r)
= an encryption of k- m mod t
provided that |k - r| < A/2

Unusable if R is large w.rt. A.

31



Multiplication by an arbitrary constant

Assume g = (. We can write the constant k in base £:
k= ko + ki + RyB% + - + ky_1 B¢

Consider the leveled encryption of a message m: it's a collection
of encryptions of m scaled by 1, 3, 52, . . .:

Eev(m) = (E(m), E(Bm), E(B*m), ..., E(B'm))

We can, then, compute the product km homomorphically:
Ro - E(M) + Ry - E(BM) + -+ + Ry_q - E(85'm)

= anencryption of Rom + kiBm + - - - ky_13'm  (mod q)

= an encryption of (kg + ki3 + -+ - + k13 )m = km  (mod q)
The numbers k; are small, therefore the noise doesn’t overflow.

32



Homomorphic multiplication and
leveled circuits (the BGV approach)




Intermission: the tensor product

The tensor product u ® v of a vector of dimension n by a vector of
dimension m is the vector of dimension nm defined by

UV = (Uvq,...,U1Vm, ..., UnV1, ..., UnVm)

Tensor product commutes with dot product:

(ug,u2) - (Vq,V2) = (U @ Vq, U @ V)

38)



Multiplication of two ciphertexts (BGV approach)

(zvika Brakerski, Craig Gentry, Vinod Vaikuntanathan, (Leveled) fully
homomorphic encryption without bootstrapping, ICTS 2012, TOCT 2014)

Consider two LWE encryptions of m; and m, (little-endian):
¢ = (aq,by) where by = (aq,s) + Ary +m
¢ = (az, by) where b, = (a;,8) + Ar, + m;
We have
b1 o bz = (<a1,s> + Aﬁ =+ m1) . ((az,S> -+ Al’z + mz)
= <a1vs> : <32,S> +A() +my-my
= (@ ®a,s®Ss)+A(---)+m-m

Hence, (a1 ® az, by - by) looks like an encryption of m; - m;
with the key s ® s instead of s, and the dimension n? instead of n.

34



Multiplication of two ciphertexts (BGV approach)

Ciphertexts (a1, by), (a2, b2)
(key s, dimension n, modulus g, noise B)

tensor product l

Ciphertext (a; ® az, by - by)

(key s ® s, dimension n?, modulus g, noise B?)
key switching l

Ciphertext (a’, b’)

(key s or s/, dimension n, modulus g, noise B?)
modulus switching

Chiffré (a”,b")
(key s or s’, dimension n, modulus q/B, noise B)
35



We have an encryption ¢ = (a, b) of the message m with the key s.

We want an encryption ¢’ of m with another key s'.
Idea: perform a homomorphic partial decryption of c.
We give s encrypted under s’ to the computer:

Es(51), ..., E(sn) (using the leveled form)
We can, then, compute b — (a,s) homomorphically:

Eo(b) —ar-Eg(s1) — - —an-Es(Sn)

= an encryption of b — (a,s) under key s’

(Must use the leveled form, since the a; coefficients are large.)

36



In little-endian representation, b — (a,s) = Ar + m.
The result is an encryption (a’, b’) of Ar + m under key s'.
Moreover,
(@,b') = (a’,(@,s') + Ar' + (Ar +m))
=@, (@, s)+ A +r)+m)
= an encryption of m under s’ if |’ + r| is small enough
Therefore,

Eo(b) —ar-Eg(s1) — -~ —an-Eg(sn)

is an encryption of m under the new key s/, if the noise doesn’t
overflow.

37



Noise analysis

The noise of a ciphertext is the magnitude of Ar.
It must remain < g for decryption to succeed.

If both operands have noise B, tensor product followed by key

switching produce a ciphertext with noise ~ B.

This greatly limits the multiplicative depth of circuits / the
degree of polynomials that can be evaluated homomorphically.

Example with g = B:

Noise / Modulus

initial ciphertext
depth 1, degree 2
depth 2, degree 4
depth 3, degree 8
depth 4, degree 16

B/B10

BZ/B10

B4/B10

BS/B1O

error! B'®/B"

38



Modulus switching

Idea: reduce the modulus by a factor =~ B at each multiplication.

This way, the absolute error remains =+ constant.
The limiting factor becomes the size of the modulus.

Noise / Modulus fixed modulus | decreasing modulus
initial ciphertext B/B" B/B"
depth 1, degree 2 B?/B™ B?/B'® = B/B°
depth 2, degree 4 B*/B™ B?/B° = B/B®
depth 3, degree 8 B8/B" B?/B% = B/B’
depth 4, degree 16 | error! B'®/B™ B?/B’ = B/B®

If go =~ B", the maximal multiplicative depth is n — constant,
instead of log, n with a fixed modulus.

39



Modulus switching (big-endian)

Let g and g’ be two moduli. Assume A’ = Aq’/q is an integer.
Consider a big-endian encryption (a, b) modulo g of m:

b=<(a,s)+Am+r (mod q)

Define . ¢ 7
(@, b) = (Lag]’ Lbﬂ)
Assuming s has small coefficients (0, 1, -1), we can show
b'= (@' s)+A'm+ Lr(g] +¢ (mod q')
with |e| = O(n).

If A’ remains large enough, (@', b’) is an encryption modulo g’
of m.

40



Leveled somewhat homomorphic encryption

Fix a maximal multiplicative depth d.

The client chooses moduli gy, ..., g4 with g;/q;. 1 ~ B
(B minimal noise level) and private keys s, . . ., S4.

It gives the computer the g; and the key switching matrices
€5i+1 (Si ® Si)'

The computer can homomorphically evaluate any circuit of
multiplicative depth < d, switching key and modulus at each
multiplication.

A



Examples of leveled circuit: the full adder

42



S
@
o
S
©
5=
<
£
@
=
e
-
(%)
o=
(5]
©
9
2
]
—
Y
o
9
o
5
-
17}

1
L
3 =
() (&)
>
9
\\\\% \\\\\\\\\\\\\\\\\\
= <
O — N —
— l_l {M <
I — 0 W
< —
S
- ~
Q9 — - —
— + —a W
© 2
=) -
QO o e
o + wn W
S 2
=
()

43



Programmable bootstrap:
the FHEW/TFHE approach




Bootstrap vs. key change

Goal of a bootstrap: given a ciphertext c under key s,
produce a ciphertext ¢’ under key s’ (possibly = s)
such that

1. ¢’ decrypts to the same message m as ¢;

2. the noise level of ¢’ is reset to a known value, independent
of that of c.

Key switching enforces (1) but not (2):
the noise level of ¢’ is that of ¢ + the noise of the switching.

A



Bootstrap = key switching + table lookup

(Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, Malika Izabachéne, Faster Fully
Homomorphic Encryption: Bootstrapping in less than 0.1 seconds, 2016)

Big-endian encryption: b = (a,s) + Am +r.

Decryption of the ciphertext (a, b):

1. Computee =b — (a,s)
2. Extract m = [e/A]

45



Bootstrap = key switching + table lookup

(Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, Malika Izabachéne, Faster Fully
Homomorphic Encryption: Bootstrapping in less than 0.1 seconds, 2016)

Big-endian encryption: b = (a,s) + Am +r.

Homomorphic decryption of the ciphertext (a, b):

1. Compute e = b — (a, s) encrypted under s’

2. Extract m = |e/A] encrypted under s/, with minimal noise

45



Bootstrap = key switching + table lookup

(Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, Malika Izabachéne, Faster Fully
Homomorphic Encryption: Bootstrapping in less than 0.1 seconds, 2016)

Big-endian encryption: b = (a,s) + Am +r.

Homomorphic decryption of the ciphertext (a, b):

1. Compute e = b — (a, s) encrypted under s’

2. Extract m = |e/A] encrypted under s/, with minimal noise

(1) is achieved by key switching, using & (s).

45



Bootstrap = key switching + table lookup

(Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, Malika Izabachéne, Faster Fully
Homomorphic Encryption: Bootstrapping in less than 0.1 seconds, 2016)

Big-endian encryption: b = (a,s) + Am +r.

Homomorphic decryption of the ciphertext (a, b):

1. Compute e = b — (a, s) encrypted under s’

2. Extract m = |e/A] encrypted under s/, with minimal noise

(1) is achieved by key switching, using & (s).

(2) is achieved by homomorphic lookup in a table

i € Zq — an encryption of [i/A] under s’ with minimal noise

45



Torus and tables

Assuming g = 64 and A = 4:
0

3q/4 q/4

q/2

oL tl.2..3.]0]



Torus and tables

Assuming g = 64 and A = 4: Reduction to g = 16:
0 0
3q/4 q/4  3q/4 q/4
q/2 q/2

We can make the table smaller by switching moduli beforehand.

46



Indexing in a table

An N-entry table is represented by a polynomial V modulo X" + 1.
To extract entry number i € [0, N):

- compute X' - V (right rotation of i slots)
« extract the constant coefficient of X~/ - V.

If we have a binary decomposition of i = ig + 2i7 + - - - + 2"i,, we
can use an barrel shifter:

io i i
l l l

"4 mux mux mux — - -~
X" X2 X"

where mux(i,a,b) =aifi=0and =bifi =1.

47



Application to homomorphic decryption

After modulus switching if necessary, the ciphertext is (a, b) and
the index intable Visi =b — (a,s).

We want to multiply V by X~/ = X—b+aosot+an1sn—1

Assume the s; components of the key are 0/1 bits.
We reuse the barrel shifter design as follows:

So S1 S2
| | |

—b . mux mux mux (- - -
X V Xao . Xa1 . Xaz .

48



Application to homomorphic decryption

The mux gate can be evaluated homomorphically:
mux(i,a,b) =i® (bea)®a

where @, ©, ® are addition, subtraction and multiplication of two
ciphertexts.

Hence, we can evaluate the barrel shifter homomorphically:

&(so0) &(s1) &(s2)
1 1 1
X~b. &) FrrRELTE Pl @ |

The dot - is cleartext x ciphertext multiplication.
The £(s;) are encryptions of the bits of the key s.

49



Bootstrap accomplished !

The output of the barrel shifter is
X—b+00'5(50)+"'+an—1'E(Snf‘l) . g(v)
from which we can extract the constant coefficient £(v;)

where i = b — (a,s) = Am + r (the noise term),
and v; the i-th entry of the table V:

N—1
V= Zv,-Xi where v; = |i/A]
i=0

The end result is a low-noise encryption of £(m).

50



Programmable bootstrap

AAAAAAA

AAAAAAAAAAAAAA

The table V used for bootstrapping is

N—1
V= Zvixi where v; = [i/A]
i=0

But we can also take v; = F(|i/A]) for any function F : Zt — Z.

Then, the bootstrap procedure evaluates F homomorphically
while reducing the noise.

51



Applications of programmable bootstrap

Many computations can be expressed as a unary function applied
to a linear combination of the inputs.

Minimum and maximum:

max(x,y) = x + relu(y — x) e — z ifz>0

min(x,y) =y — relu(y — x) 0 ifz<o
Artificial neuron:
@(w1x1 + - -+ +wpxy) where ¢ is the activation function
Multiplication:
X-y=Fx+y)—F(x—y) whereF(z)=2%/4

52



Summary




Advances in homomorphic encryption

Starting with Gentry’s 2009 conceptual breakthrough, major
progress was made in three directions:

- Efficient somewhat homomorphic ciphers, able to
homomorphically evaluate circuits of respectable
multiplicative depth.

(Brakerski-Gentry-Vaikuntanathan 2011, Brakerski-Fan-Vercauteren 2012,
Gentry-Sahai-Waters 2013, etc.)

- Efficient, programmable bootstrap: FHEW, TFHE.
(Chillotti, Gama, Georgieva, Izabachéne, 2016)
= Ilaria Chillotti’s seminar talk

- Approximate homomorphic computation over reals and
complex numbers: CKKS (Cheon-Kim-Kim-Song 2016)

= Damien Stehlé’s seminar talk

53]



Practical implementations

I don’t think we’ll see anyone using Gentry'’s solution

in our lifetimes.
(Butler Lampson)

Libraries: HElib, SEAL, TFHE, OpenFHE, HEEAN, ...
(see https://github.com/jonaschn/awesome-he for a list)

Reasonable but still insufficient performance on CPUs
(homomorphic evaluation of an AES decryption: 30 sec.)

Under development: GPU and hardware (FPGA, ASIC)
implementations.

54


https://github.com/jonaschn/awesome-he

References




References

Advanced introduction to TFHE:

« Ilaria Chillotti, TFHE deep dive, 2022.
https://www.zama.org/post/tfhe-deep-dive-part-1

For reference:

« Ronny Ko, The Beginner’s Textbook for Fully Homomorphic

Encryption, 2025.
https://arxiv.org/abs/2503.05136 https://fhetextbook.github.io/

« Oded Regev, The Learning with Errors Problem, 2010.

http://www.cims.nyu.edu/~regev/papers/lwesurvey.pdf

55)


https://www.zama.org/post/tfhe-deep-dive-part-1
https://arxiv.org/abs/2503.05136
https://fhetextbook.github.io/
http://www.cims.nyu.edu/~regev/papers/lwesurvey.pdf

	Reminders from the previous lecture
	The LWE problem   (Learning With Errors)
	Encryption based on LWE
	Homomorphic addition
	Homomorphic multiplication and leveled circuits (the BGV approach)
	Programmable bootstrap:   the FHEW/TFHE approach
	Summary
	References

