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Reminders about encryption



The interface of an asymmetric cipher

Key generation:
Keygen : public key× private key (randomized)

Encryption:
E : public key× plaintext→ ciphertext (randomized)

Decryption:
D : private key× ciphertext→ plaintext (deterministic)
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Functional correctness

Keygen : public key× private key (randomized)
E : public key× plaintext→ ciphertext (randomized)
D : private key× ciphertext→ plaintext (deterministic)

Intuitively: Dsk(Epk(m)) = m.

More precisely:

Dsk(c) = m for all (pk, sk)← Keygen, c← Epk(m)

Using probabilities:

Pr
[
(pk, sk)← Keygen;Dsk(Epk(m)) = m

]
= 1

With explicit randomness r, r′:

Dsk(Epk(m, r)) = m if (pk, sk) = Keygen(r′)
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Security of a cipher

Unconditional, information-theoretic security: (informally)

An attacker who knows (cleartext, ciphertext) pairs and a
ciphertext cannot deduce any information on the corresponding
cleartext.

Computational security: (informally)

An attacker in time polynomial in the size n of keys
who knows (cleartext, ciphertext) pairs and a ciphertext
has a probability ≤ ε(n) to deduce some information on the
corresponding cleartext, where ε is a negligible function.

(Negligible = decreasing rapidly with n, e.g. 2−n)
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Attack models

• Known plaintext attacks (KPA): The attacker obtained
(cleartext, ciphertext) pairs but did not choose them.

• Chosen plaintext attacks (CPA): The attacker can encrypt any
cleartext of their choice. (E.g. public key.)

• Chosen ciphertext attacks (CCA): CPA + the attacker can ask
for decryption of any ciphertext of their choice except the
one that is under attack.
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Security objectives

• Indistinguishability (IND): the attacker is unable to
distinguish a ciphertext from noise, or a ciphertext from
another ciphertext.

• Non-malleability (NM): given a ciphertext c, the attacker
cannot produce a ciphertext c′ that modifies the plaintext in
a controlled manner, e.g. such that D(c′) = D(c)⊕ 1.
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The IND-CPA criterion (indistinguishability with chosen plaintexts)

Presented as a two-player game, the attacker A and the
challenger C.

C: draws (pk, sk)← Keygen, sends pk to A.

A: chooses two plaintexts m1,m2, sends them to C.

C: chooses i ∈ {1, 2}, sends c = E(pk,mi) to A.

A: tries to guess whether c is the encryption of m1 or m2.

The cipher is IND-CCA if the probability that the attacker guesses
correctly is no more than 1/2 + ε(n).

(Note: a cipher with deterministic encryption is not IND-CPA.)
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Provable security

By reduction to a mathematical problem that is believed to be
algorithmically hard:

Attack that succeeds
with non-negligible probability

reduction

Probabilistic polynomial time algorithm
that solves a hard problem
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Examples of algorithmically-hard problems

For a classical computer:

• Factoring: given N, find p, q < N such that N = pq.

• The RSA problem: given N and e coprime with φ(N) and
c < N, find m such that me = c mod N.

• Discrete logarithm: given g a generator of a group G and
a ∈ G, find x ∈ N such that gx = a.

• The Diffie-Hellman problem: given gx and gy

(for unknown x, y), compute gxy.

For a quantum computer:

• The MQ problem: solve a system of degree-2 polynomial
equations with multiple unknowns.
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Quantifying security

Choose ciphers and key sizes such that the best known attack
takes time ≈ 2λ.

λ is the security parameter.

Some recommendations by NIST:

Security parameter λ 112 128 192 256
Symmetric encryption 3DES AES-128 AES-192 AES-256
Hashing SHA-224 SHA-256 SHA-384 SHA-512
RSA (factoring) 2048 3072 7680 15360
Elliptic curves (discr. log.) 224+ 256+ 384+ 512+
ML-DSA (post-quantum) — 1312 / 1952 / 2592 /

2560 4032 4896
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Weakly homomorphic encryption



Weakly homomorphic encryption

A cipher that is homomorphic for one operation only, typically
addition or multiplication of plaintexts but not both.

In the additive case, we have a ⊞ operation on ciphertexts such
that “the encryption of a sum is the ⊞ of the ciphertexts”:

c1 ⊞ c2 ∈ E(m1 +m2) for all c1 ∈ E(m1), c2 ∈ E(m2)

It follows that m1 +m2 = D(E(m1)⊞ E(m2)).

m1,m2 c1, c2

m1 +m2 c1 ⊞ c2

+ ⊞

E

E

D
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Unpadded RSA is homomorphic for multiplication

The RSA cipher: let p, q be large prime numbers;
— public key: N = pq and e coprime with (p− 1)(q− 1);
— private key: d = e−1 (mod (p− 1)(q− 1)).

E(m)
def
= me mod N D(c) def

= cd mod N

If m1,m2 are two plaintext messages,

E(m1) · E(m2) = me
1 ·me

2 = (m1 ·m2)
e = E(m1 ·m2) (mod N)

Multiplication modulo N has multiplication modulo N as its
homomorphic operation.

Unusable: without padding, RSA is not IND-CPA; but all known
random padding scheme break the homomorphism.
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The ElGamal cipher (EG)

A finite group (G, ·) of order q generated by g.

Private key: x ∈ {1, . . . , q− 1}. Public key: h def
= gx.

Randomized encryption (IND-CCA):

E(m) = (gr, hr ·m) with r ∈ {1, . . . , q− 1} random

Note: cleartext messages are elements of G.

Decryption: D((a, b)) = (ax)−1 · b

Homomorphic for the group operation:

E(m1) · E(m2) = (gr1 · gr2 , (hr1 ·m1) · (hr2 ·m2))

= (gr, hr · (m1 ·m2)) (with r = r1 + r2 mod q)
= an encryption of m1 ·m2
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The exponential ElGamal cipher (EEG)

Cleartext messages are integers m ∈ {0, . . . , q− 1},
which we map to elements of G by exponentiation gm.

Encryption:

E(m) = EG.E(gm) = (gr, hr · gm) with r random

Decryption:

D(c) = logg(EG.D(c)) (base-g discrete logarithm)

Practical for small messages m (votes, monetary amounts).

Homomorphic for the sum of messages (modulo q):

E(m1) · E(m2) = EG.E(gm1) · EG.E(gm2)

= an EG encryption of gm1 · gm2 = gm1+m2

= an EEG encryption of (m1 +m2) mod q
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Paillier’s cipher

Exploits the fact that some discrete logarithms modulo n2 are
easily computed:

(1 + n)x = 1 + xn+
(
x
2

)
n2 + . . . = 1 + xn (mod n2)

hence L((1 + n)x mod n2) = x where L(u) def= (u− 1)/n.

Key generation: p, q prime numbers of the same length.

Public key: (n, g) where n = pq and g = 1 + n.

Private key: (α, β) where α = φ(n) = (p− 1)(q− 1)
and β = L(gα mod n2)−1 mod n.
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Paillier’s cipher

Encryption: E(m) = gm · rn mod n2

with r ∈ {1, . . . , n− 1} random and coprime with n.

Decryption: D(c) = L(cα mod n2) · β mod n

This cipher is homomorphic for addition modulo n and for
multiplication by a constant k:

E(m1) · E(m2) mod n2 = gm1+m2(r1 · r2)n mod n2

= an encryption of (m1 +m2) mod n

E(m)k mod n2 = gkmrkn mod n2

= an encryption of km mod n

No relation between E(m1m2 mod n) and E(m1), E(m2).
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Somewhat homomorphic encryption



Fully homomorphic encryption (FHE) and Boolean circuits

A cipher that is homomorphic for addition and multiplication
(of integers modulo p, or just modulo 2) is said to be
fully homomorphic, since it is able to evaluate

• polynomials over several variables;
• all Boolean combinatorial circuits.

Arithmetization of circuits:

Logic gate modulo 2 modulo p > 2

NOT x + 1 1− x
AND xy xy

OR x + y + xy 1− (1− x)(1− y)
XOR x + y x + y − 2xy
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Example of a circuit: 1-bit full adder

b
a

cin

cout

s

The corresponding polynomials:

s = a+ b+ cin (mod 2)
cout = ab+ (a+ b)cin + ab(a+ b)cin = ab+ acin + bcin (mod 2)
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Example of circuits: n-bit comparators

a0
b0

cin

cout

s+

a1
b1

cin

cout

s+

an−2
bn−2

cin

cout

s+

an−1
bn−1

cin

cout

s+

1

a ≥ b ?

a0
b0

a1
b1

an−2
bn−2

an−1
bn−1

a ̸= b?
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Fully homomorphic encryption is hard

No known cipher is secure and fully homomorphic.
•fl *.4tL4 ASL4ILfl.) L4fl4 £ I I’LIt.J tIIIIJIIIJI1JIIIJIIIU

Rabin: May I add a remark? If you then propose to have
different p and q for each customer, which is quite difficult and
impractical, sometimes a non—innocent by—stander has knowledge of
how much money you deposited. The other problem again exists.
You must assume at least spotty partial information about the
data which is going to be protected.

Rivest: All the systems I’ve presented, I think, are
susceptible to variations of that kind of attack. I do not
consider any of them very satisfactory for precisely those kinds
of reasons.

(Questions and answers on the seminal article On data banks and privacy
homomorphisms by Rivest, Adleman, Dertouzos, 1978.)
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Somewhat homomorphic encryption (SHE)

We can construct somewhat homomorphic ciphers:
homomorphic for a limited number of additions and
multiplications.

This makes it possible to homomorphically evaluate circuits of
bounded depth.

The bootstrap procedure (introduced by Craig Gentry in 2009)
obtains fully homomorphic encryption from a suitable somewhat
homomorphic cipher.
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Encryption = adding noise

An approach followed by several recent cryptosystems
(based on Euclidean lattices or the LWE problem, for example).

Encryption = adding noise to the cleartext.

The noise has a hidden structure that enables us to cancel the
noise if we know the private key:

Decryption = reducing the noise with the help of the private key;
recovering the nearest cleartext
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A “noisy” cipher based on integer arithmetic

(van Dijk, Gentry, Halevy, Vaikuntanathan, Fully homomorphic encryption over
the integers, Eurocrypt 2010)

Private key: an odd integer p.

Symmetric encryption (using the private key) of a bit b:

Ep(b) = pq+ 2r + b q random nonnegative integer≫ p
r random integer, |r| < p/4

Decryption:

Dp(c) = (c− p⌊c/p⌉) mod 2 = LSB(⌊c/p⌉)⊕ LSB(c)

where ⌊·⌉ is rounding to the nearest integer, and ⊕ is xor.
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Encryption and decryption, graphically

p(q− 1) pq p(q+ 1)
c

2r + b 2r + b 2r + b

From the ciphertext c and the private key p, we recover
q = ⌊c/p⌉, and

(c− pq) mod 2 = (2r + b) mod 2 = b

Since p is odd, pq is odd iff q is odd, therefore

b = LSB(c− pq) = LSB(c)⊕ LSB(pq) = LSB(c)⊕ LSB(q)

(Note: q is enough to mask b; r is added to thwart the approximate GCD attack.)
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The approximate GCD problem

Given numbers xi of the form pqi + ei with |ei| ≤ E,
can we find p ?

If E = 0: it is enough to compute gcd(xi, xj) for a few i ̸= j.

If E = 1: likewise, but consider xi + 1 and xi − 1 as well.

If E, p, qi are large: known algorithms are exponential in E.

Recommended sizes by van Dijk et al:

ei : λ bits p : λ2 bits qi : λ5 bits

where λ is the security parameter.
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Public key encryption

Public key pk = a set of encryptions of zero pqi + 2ri
(with qi random and ri random, |ri| ≪ p).

Public key encryption:

Epk(b) =
∑
x∈S

x + 2r + b
S random subset of pk
r random integer, |r| < p/4

van Dijk et al recommend to use λ5 encryptions of 0 (??), resulting
in a public key of size λ10 bits (!!).

Note: if b is public or already encrypted, we can use a trivial
encryption

E0(b) = b

which decrypts to b for any private key p.
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Somewhat homomorphic encryption

For addition:

(pq1 + 2r1 + b1) + (pq2 + 2r2 + b2)

= p(q1 + q2) + 2(r1 + r2 + (b1 + b2)/2) + (b1 + b2) mod 2
= an encryption of b1 ⊕ b2 if r1 + r2 is small enough

For multiplication:

(pq1 + 2r1 + b1) · (pq2 + 2r2 + b2)

= p(· · · ) + 2(2r1r2 + r1b2 + r2b1) + b1b2

= an encryption of b1 ∧ b2 if r1r2 is small enough
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Noise management

The noise N(c) of a ciphertext is

N(c) = number of bits of r where c = pq+ 2r + b

In order for c to correctly decrypt to b, we need

N(c) < number of bits of p− 2

Homomorphic addition increases noise slowly:
r1, r2 7→ r1 + r2 + (b1 + b2)/2, hence

N(c1 + c2) ≤ max(N(c1),N(c2)) + 1

Homomorphic multiplication increases noise rapidly:
r1, r2 7→ 2(2r1r2 + r1b2 + r2b1), hence

N(c1 · c2) ≤ N(c1) + N(c2) + 1
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Multiplicative depth of a circuit

Multiplicative depth = max number of AND/OR gates between an
input and an output.

If the initial noise is λ bits, and if p has λ2 bits, the multiplicative
depth of an homomorphically-evaluated circuit is limited to
≈ log2 λ in the worst case and ≈ λ in the best case.

Exponential noise growth: Linear noise growth:

× × × × · · ·

× ×

×

λ

2λ+ 1

4λ+ 3
...

2dλ+ 2d − 1

×

×

×
...

λ
λ

λ

λ

2λ+ 1

3λ+ 2

dλ+ d− 1
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Noise in a 32-bit comparator circuit

a0
b0

cin

cout

s+

a1
b1

cin

cout

s+

a30
b30

cin

cout

s+

a31
b31

cin

cout

s+

λ

1

4λ+ 3

7λ+ 6

94λ+ 93

97λ+ 96
a ≥ b ?

a0
b0

a1
b1

a30
b30

a31
b31

a ̸= b?

λ 2λ+ 1

4λ+ 3

32λ+ 31
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Fully homomorphic encryption via
bootstrapping



Reducing noise at points of a circuit

To evaluate arbitrary circuits homomorphically, we must be able
to reduce noise at the points of the circuit where noise can go
over threshold.
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a31
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de-noise
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Noise reduction by decryption and re-encryption

How can we reduce noise?

It suffices to decrypt then re-encrypt!

pq+ 2r + b
Dp

b
Ep

pq′ + 2r′ + b

Very noisy ciphertext
(r ≈ p/4)

Minimally noisy ciphertext
(r′ ≪ p/4)

Problem: the circuit evaluator doesn’t know the decryption key p.
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Noise reduction by homomorphic decryption

(Craig Gentry, A fully homomorphic encryption scheme, PhD, Stanford, 2009.)

D
private key p

ciphertext c = pq+ 2r + b
cleartext b

The decryption algorithm D can be implemented by a circuit.

Dp(c) = LSB(⌊c/p⌉)⊕ LSB(c)

Assume that the multiplicative depth of this circuit is small
enough to evaluate it using our somewhat homomorphic cipher.
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Noise reduction by homomorphic decryption

(Craig Gentry, A fully homomorphic encryption scheme, PhD, Stanford, 2009.)

D̂
encrypted key Ep(p)

“encrypted” ciphertext E0(c)
encrypted cleartext
pq′ + 2r′ + b

The homomorphic evaluation D̂ of the circuit D takes as inputs
the encrypted private key and the (trivially) encrypted
ciphertext c, and outputs an encryption of the cleartext.

This results in a ciphertext equivalent to c, but whose noise level
only depends on the multiplicative depth of the circuit D.

Noise reduction achieved!
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Noise reduction by homomorphic decryption

(Craig Gentry, A fully homomorphic encryption scheme, PhD, Stanford, 2009.)

D̂
encrypted key Epi+1(pi)

“encrypted” ciphertext E0(c)
encrypted cleartext
pi+1q′ + 2r′ + b

To avoid “circular security” (encrypting a key with itself), we can
switch keys at bootstrapping time.

We have a sequence of keys p1, . . . , pi, . . .

The evaluator receives the encrypted keys
Ep2(p1), . . . , Epi+1(pi), . . ..
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Multiplicative depth of the decryption circuit

Dp(c) = LSB(⌊c/p⌉)⊕ LSB(c)

Division = multiplication by a quasi-inverse of p:

Dp(c) = LSB(⌊cp′/2N⌉)⊕ LSB(c) with p′

2N ≈
1
p

Even then, the multiplication circuit computing cp′ is a
high-degree polynomial (≥ number of bits of p) and cannot be
evaluated by our somewhat homomorphic cipher.
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Simplifying decryption

Gentry proposes to “grease” the cipher so that decryption is just
one scalar product with low multiplicative depth.

Public key: as before + some fixed-point numbers y1, . . . , yN.

Private key: a vector of N bits s = (s1, . . . , sn), with Hamming
weight α≪ N, such that 1/p ≈

∑
i si · yi

Encryption of b: an integer c = pq+ 2r + b as before + some
fixed-point numbers z1, . . . , zN such that c/p ≈

∑
i si · zi

Decryption LSB(
∑
si · zi)⊕ LSB(c) can be performed by a circuit

with maximal noise N · α · poly(logα).
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Summary



Summary

In this lecture:

• Several efficient weakly homomorphic ciphers
(homomorphic for one operation).

• One inefficient somewhat homomorphic cipher
(homomorphic for a limited number of + and × operations).

• The bootstrap procedure to obtain (laboriously)
fully homomorphic encryption from an appropriate
somewhat homomorphic cipher.

In the next lecture: how to make all this more efficient and more
usable.
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