
Secure computing:
computing on encrypted or private data

Introduction and case studies

Xavier Leroy
2025-11-06

Collège de France, chair of Software sciences
xavier.leroy@college-de-france.fr

Introduction

Securing data using cryptography

Strong cryptographic techniques to protect data
• at rest (file systems, databases);
• in transit (on communication networks).

Guarantees: confidentiality (encryption); integrity (signatures).

2

Securing computations?

Usually, data is decrypted before computation.

Example: executing a query on an encrypted database.

Risk of information leaks during computation.

Need to give decryption keys to a third party that is not always
trustworthy (cloud computing).

2

Securing computations using cryptography!

“It is necessary to decrypt before computing” . . . Is it, really?
Recent cryptographic techniques:
• Homomorphic encryption: computing on encrypted data,

without knowing the decryption key.
• Secure multi-party computation: more generally, computing

on private data, without revealing it to other computers.

2

Secure computing: system-based and language-based approaches
(2022 course)

A few principles and many mechanisms:

• Hardware and software isolation of computations.
(Virtualization, sandboxing, type and memory safety, . . .)

• Access control.
(Permissions, capabilities, passwords, . . .)

• Information flow control.

Works well for integrity, not so well for confidentiality.

Vulnerable to low-level attacks
(leaking information via execution times, circumventing virtualization,
breaking sandboxes, etc.)

3

Secure computing: cryptographic approaches (this course)

Encrypted or masked data reveal no information to an attacker
who does not have the corresponding key or mask.

If we are able to compute on encrypted or masked data, they can
safely leak during computation, as long as the key remains secret.

→ The security of a small piece of data (key, mask, . . .)
guarantees the security of a large computation.

(An extension of Kerckhoff’s principle: “the security of a
cryptosystem must lie in the choice of its keys only”.)

4

Secure computing: cryptographic approaches (this course)

Encrypted or masked data reveal no information to an attacker
who does not have the corresponding key or mask.

If we are able to compute on encrypted or masked data, they can
safely leak during computation, as long as the key remains secret.

→ The security of a small piece of data (key, mask, . . .)
guarantees the security of a large computation.

(An extension of Kerckhoff’s principle: “the security of a
cryptosystem must lie in the choice of its keys only”.)

4

On data banks and privacy homomorphisms (1978)

ON DATA BANKS AND PRIVACY HOMOMORPHISMS

Ronald L. Rivest
Len Adleman

Michael L. Dertouzos

Massachusetts Institute of Technology
Cambridge, Massachusetts

I. INTRODUCTION

Encryption is a well—known technique for preserving the
privacy of sensitive information. One of the basic, apparently
inherent, limitations of this technique is that an information
system working with encrypted data can at most store or retrieve
the data for the user; any more complicated operations seem to
require that the data be decrypted before being operated on.
This limitation follows from the choice of encryption functions
used, however, and although there are some truly inherent
limitations on what can be accomplished, we shall see that it
appears likely that there exist encryption functions which permit
encrypted data to be operated on without preliminary decryption
of the operands, for many sets of interesting operations. These
special encryption functions we call “privacy homomorphisms”;
they form an interesting subset of arbitrary encryption schemes
(called “privacy transformations”).

As a sample application, consider a small loan company which
uses a commercial time—sharing service to store its records. The
loan company’s “data bank” obviously contains sensitive informa
tion which should be kept private. On the other hand, suppose
that the information protection techniques employed by the time
sharing service are not considered adequate by the loan company.
In particular, the systems programmers would presumably have
access to the sensitive information. The loan company therefore
decides to encrypt all of its data kept in the data bank and to
maintain a policy of only decrypting data at the home office ——

data will never be decrypted by the time—shared computer. The
situation is thus that of Figure 1, where the wavy line encircles
the physically secure premises of the loan company.

Copyright © 1978 by Academic Press, Inc.

5

On data banks and privacy homomorphisms (1978)

ON DATA BANKS AND PRIVACY HOMOMORPHISMS

Ronald L. Rivest
Len Adleman

Michael L. Dertouzos

Massachusetts Institute of Technology
Cambridge, Massachusetts

I. INTRODUCTION

Encryption is a well—known technique for preserving the
privacy of sensitive information. One of the basic, apparently
inherent, limitations of this technique is that an information
system working with encrypted data can at most store or retrieve
the data for the user; any more complicated operations seem to
require that the data be decrypted before being operated on.
This limitation follows from the choice of encryption functions
used, however, and although there are some truly inherent
limitations on what can be accomplished, we shall see that it
appears likely that there exist encryption functions which permit
encrypted data to be operated on without preliminary decryption
of the operands, for many sets of interesting operations. These
special encryption functions we call “privacy homomorphisms”;
they form an interesting subset of arbitrary encryption schemes
(called “privacy transformations”).

As a sample application, consider a small loan company which
uses a commercial time—sharing service to store its records. The
loan company’s “data bank” obviously contains sensitive informa
tion which should be kept private. On the other hand, suppose
that the information protection techniques employed by the time
sharing service are not considered adequate by the loan company.
In particular, the systems programmers would presumably have
access to the sensitive information. The loan company therefore
decides to encrypt all of its data kept in the data bank and to
maintain a policy of only decrypting data at the home office ——

data will never be decrypted by the time—shared computer. The
situation is thus that of Figure 1, where the wavy line encircles
the physically secure premises of the loan company.

Copyright © 1978 by Academic Press, Inc.

6

Homomorphic encryption

m1, . . . ,mn c1, . . . , cn

m c

F F̂

E

E

D

Consider F(m1, . . . ,mn) a function over cleartext data.

Can we find a cipher (E ,D) and a function F̂(c1, . . . , cn) over
ciphertexts such that

F̂(E(m1), . . . , E(mn)) = E(F(m1, . . . ,mn)) ?

If so, we can ask a third-party to compute F(m1, . . . ,mn) while
keeping the mi private:

F(m1, . . . ,mn) = D(F̂(E(m1), . . . , E(mn))
7

RSA is homomorphic for multiplication

RSA cipher: (e,N public key; d private key)

E(m)
def
= me mod N D(c) def

= cd mod N

If m1,m2 are two plaintext messages,

E(m1) · E(m2) = me
1 · me

2 = (m1 · m2)
e = E(m1 · m2) (mod N)

Multiplication modulo N can be performed homomorphically.

(→ lecture #2 for more examples)

8

Secure Multi-Party Computation (MPC)

Distributed computing on secret data coming from n participants:

• Each participant i has a secret xi.

• The participants cooperate to compute y = F(x1, . . . , xn).

• The result y is revealed to all.

• Each participant i learns nothing about xj (j ̸= i) that it
cannot deduce from y and xi.

9

Example: evaluating bids for a call for tenders

Using a trusted third party:

• Each participant i sends their bid xi to the third party.

• The third party determines j such that xj = min(x1, . . . , xn)

and announces j.

• The participants learn that j is the lowest bidder.

• The participants learn nothing else about the bids of the
other participants.

Can we distribute this computation among the participants,
without involving a trusted third party and without revealing the
secrets xi?

10

Example: evaluating bids for a call for tenders

Using a trusted third party:

• Each participant i sends their bid xi to the third party.

• The third party determines j such that xj = min(x1, . . . , xn)

and announces j.

• The participants learn that j is the lowest bidder.

• The participants learn nothing else about the bids of the
other participants.

Can we distribute this computation among the participants,
without involving a trusted third party and without revealing the
secrets xi?

10

Example: two-party computation of a Boolean “and”

Alice and Bob discuss having a second date, and would like to
avoid the embarrassing situation where one says “yes” then the
other says “no”.

A protocol with 5 cards: 3 Kings, 2 Queens.

K
K

Q
Q

K
K

K
K

Q
Q

A King is played (face down).

Alice plays King then Queen if “yes”, Queen then King if “no”.

Bob plays Queen then King if “yes”, King then Queen if “no”.

They cut the deck of cards and turn it over.

11

Example: two-party computation of a Boolean “and”

Alice and Bob discuss having a second date, and would like to
avoid the embarrassing situation where one says “yes” then the
other says “no”.

A protocol with 5 cards: 3 Kings, 2 Queens.

K
K

Q
Q
K

K
Q

Q

A King is played (face down).

Alice plays King then Queen if “yes”, Queen then King if “no”.

Bob plays Queen then King if “yes”, King then Queen if “no”.

They cut the deck of cards and turn it over.

11

Example: two-party computation of a Boolean “and”

Alice and Bob discuss having a second date, and would like to
avoid the embarrassing situation where one says “yes” then the
other says “no”.

A protocol with 5 cards: 3 Kings, 2 Queens.

K
K

Q
Q
K

K
Q

Q

A King is played (face down).

Alice plays King then Queen if “yes”, Queen then King if “no”.

Bob plays Queen then King if “yes”, King then Queen if “no”.

They cut the deck of cards and turn it over.

11

Example: two-party computation of a Boolean “and”

Alice and Bob discuss having a second date, and would like to
avoid the embarrassing situation where one says “yes” then the
other says “no”.

A protocol with 5 cards: 3 Kings, 2 Queens.

K

K

Q

Q

K
K

Q
Q

A King is played (face down).

Alice plays King then Queen if “yes”, Queen then King if “no”.

Bob plays Queen then King if “yes”, King then Queen if “no”.

They cut the deck of cards and turn it over.

11

Example: two-party computation of a Boolean “and”

Alice and Bob discuss having a second date, and would like to
avoid the embarrassing situation where one says “yes” then the
other says “no”.

A protocol with 5 cards: 3 Kings, 2 Queens.

K

K

Q

Q

K
K

Q
Q

A King is played (face down).

Alice plays King then Queen if “yes”, Queen then King if “no”.

Bob plays Queen then King if “yes”, King then Queen if “no”.

They cut the deck of cards and turn it over.

11

Example: two-party computation of a Boolean “and”

Alice and Bob discuss having a second date, and would like to
avoid the embarrassing situation where one says “yes” then the
other says “no”.

A protocol with 5 cards: 3 Kings, 2 Queens.

K

K

Q

Q

K

K

Q

Q

A King is played (face down).

Alice plays King then Queen if “yes”, Queen then King if “no”.

Bob plays Queen then King if “yes”, King then Queen if “no”.

They cut the deck of cards and turn it over.

11

Example: two-party computation of a Boolean “and”

Alice and Bob discuss having a second date, and would like to
avoid the embarrassing situation where one says “yes” then the
other says “no”.

A protocol with 5 cards: 3 Kings, 2 Queens.

K

K

Q

Q

K

K

Q

Q

A King is played (face down).

Alice plays King then Queen if “yes”, Queen then King if “no”.

Bob plays Queen then King if “yes”, King then Queen if “no”.

They cut the deck of cards and turn it over.
11

Two-party computation of a Boolean “and”

Up to a rotation (circular permutation) of cards, we have 4
possible configurations:

K

K

Q

Q

Q

Q

K

K

K

K

yes / yes
Q

Q

K

K

Q

Q

K

K

K

K

yes / no

K

K

Q

Q

K

K

Q

Q

K

K

no / yes
Q

Q

K

K

K

K

Q

Q

K

K

no / no

The result is “yes” if and only if the two Queens are adjacent up
to rotation.

The three configurations yes/no, no/yes, no/no are equal up to
rotation. The “no” result does not reveal who voted “no”.

12

Course outline

Lectures 2 and 3:
Homomorphic encryption: computing on encrypted data

Weakly homomorphic encryption (for one operation).

Somewhat homomorphic encryption (for + and × but limited).

Fully homomorphic encryption via bootstrapping.

The LWE and RLWE problems and their uses.

Some techniques from the BGV and TFHE scheme.

For more information:
CKKS → Damien Stehlé’s seminar, 20 nov. 2025
TFHE → Ilaria Chillotti’s seminar, 27 nov. 2025.

13

Lectures 4 and 5:
Secure multi-party computation: computing on private data

Secret sharing: additive, Shamir’s, linear.

Distributed computing on shared secrets.

Resistance to active attacks.

Yao’s garbled circuits.

Oblivious transfer.

For more information: Geoffroy Couteau’s seminar, 4 déc. 2025.

14

Lecture 6: Zero-knowledge proofs

Interactive proofs. “Sigma” protocols.

Examples of ZK proofs for specific problems.

Non-interactive proofs.

A generic construction of SNARK proofs
(succint non-interactive argument of knowledge).

For more information: Michele Orrù’s seminar, 11 dec. 2025.

15

Lecture 7:
Secure computing: new directions and conclusions

Random-access memory: oblivious RAM, homomorphic RAM.

Indistinguishable obfuscation.

Conclusions.

See also: David Pointcheval’s seminar on functional encryption,
18 dec. 2025.

16

Seminar talks

13/11 Pierrick Gaudry (CNRS)
Outils cryptographiques pour le vote électronique.

20/11 Damien Stehlé (CryptoLab)
Chiffrement totalement homomorphe CKKS.

27/11 Ilaria Chillotti (DESILO Inc)
Chiffrement totalement homomorphe : panorama,
applications et nouvelles directions.

04/12 Geoffroy Couteau (CNRS)
Calcul sécurisé et aléa corrélé, de la théorie à la pratique.

11/12 Michele Orrù (CNRS)
Des preuves zero-knowledge à l’anonymat en ligne.

18/12 David Pointcheval (Cosmian)
Le chiffrement fonctionnel : agréger des données sensibles.

17

Case study:
secure multi-party computation
of an average

Computing the average salary

n persons wish to compute the average of their salaries,
and share this average between all participants,
without revealing their salaries.

A solution involving a trusted third party (TTP):

• Each participant sends (confidentially) their salary to the TTP.
• The TTP computes the average and announces it.
• The TTP forgets all the information it received.

Can we obtain the same result with the same security guarantees
without a trusted third party?

18

Multi-party computation of the average of x1, . . . , xn

1

2
3

4

n

y1 = R + x1

Participant 1 draws a random number R ≫ x1, . . . , xn and sends
R + x1 to participant 2. (Blinding x1 by R.)

19

Multi-party computation of the average of x1, . . . , xn

1

2
3

4

n

y1 = R + x1

y2 = y1 + x2

Each participant i = 2, . . . , n receives yi−1, adds xi, and sends this
sum to the next participant i + 1.

19

Multi-party computation of the average of x1, . . . , xn

1

2
3

4

n

y1 = R + x1

y2 = y1 + x2

y3 = y2 + x3

Each participant i = 2, . . . , n receives yi−1, adds xi, and sends this
sum to the next participant i + 1.

19

Multi-party computation of the average of x1, . . . , xn

1

2
3

4

n

y1 = R + x1

y2 = y1 + x2

y3 = y2 + x3

yn−1

yn = yn−1 + xn

Each participant i = 2, . . . , n receives yi−1, adds xi, and sends this
sum to the next participant i + 1.

19

Multi-party computation of the average of x1, . . . , xn

1

2
3

4

n

y1 = R + x1

y2 = y1 + x2

y3 = y2 + x3

yn−1

yn = yn−1 + xn

announces
(yn − R)/n

Participant n receives yn, computes (yn − R)/n, (un-blinding)
and announces this result.

19

Multi-party computation of the average of x1, . . . , xn

y1 = R + x1 R random, R ≫ x1, . . . , xn

yi = yi−1 + xi for i = 2, . . . , n

Correctness:
yi = R + x1 + · · ·+ xi

therefore
yn − R

n
=

x1 + · · ·+ xn

n

20

Multi-party computation of the average of x1, . . . , xn

y1 = R + x1 R random, R ≫ x1, . . . , xn

yi = yi−1 + xi for i = 2, . . . , n

Confidentiality: the number yi received by participant i + 1 has
the shape “big random number + small number” (blinding),
thus reveals nothing on the “small number” x1 + . . .+ xi,
a fortiori nothing on each number x1, . . . , xi.

The number yn received by participant 1 reveals x1 + · · ·+ xn but
nothing more on each xi.

20

Some possible attacks

Passive attacks by listening to messages:

• An attacker who can intercept the messages yi−1 and yi

received / sent by participant i can deduce xi = yi − yi−1.

Counter-measure: use encrypted communication channels.

Active attacks by malicious participants:

• Collusion between participants i and i + 2:
P(i) send 0 to P(i + 1); P(i + 2) receives xi+1.

• Malicious choice of R by participant 1.
E.g. R big enough to trigger overflow and a crash of P(2).

Counter-measure: defensive programming of each participant.

21

Some possible attacks

Passive attacks by listening to messages:

• An attacker who can intercept the messages yi−1 and yi

received / sent by participant i can deduce xi = yi − yi−1.

Counter-measure: use encrypted communication channels.

Active attacks by malicious participants:

• Collusion between participants i and i + 2:
P(i) send 0 to P(i + 1); P(i + 2) receives xi+1.

• Malicious choice of R by participant 1.
E.g. R big enough to trigger overflow and a crash of P(2).

Counter-measure: defensive programming of each participant.

21

Extensions

This algorithm can be used for secure multi-party computation of∑
f (xi) and

∏
f (xi) for any function f . This includes:

• Averages: arithmetic, harmonic, geometric,
of order p, with or without weights. p

√
1
n
∑

xp
i

• Variance and standard deviation.
∑

x2
i − (

∑
xi)

2

• An approximation of the maximum:
order-p average when p is large.

Unable to compute the index i of the largest xi.
(Yao’s “millionaire problem”, see lecture #5)

22

Case study:
counting electronic votes

An example of electronic voting

voter 1
...

voter N
operator authority

Ballots
(encrypted)

Totals
(encrypted)

Result
of the vote

The vote authority has the decryption key but no access to
individual ballots.

The vote operator collects the ballots but does not have the
decryption key

→ the totals are computed using homomorphic encryption.

23

A naive implementation of this protocol

Using the RSA cipher (homomorphic for multiplication).

Voter i encodes their vote vi as

vi = 2 for Alice vi = 3 for Bob vi = 1 for blank

and encrypts their ballot: bi = Epk(vi).

The operator collects the ballots bi and computes the product
T = b1 · · · bn (mod N). (N = modulus of the RSA key)

The authority decrypts T and factorizes:

Dsk(T) = 2A · 3B

A is the number of votes for Alice, B the number of votes for Bob.

24

Many problems in this implementation

A voter can send multiple ballots.
The operator can add ballots. (“Ballot box stuffing”)

Ballots are not secret: RSA is deterministic, hence the operator
recovers vi by comparing bi with Epk(1), Epk(2) and Epk(3).

A voter can “stuff” their ballot, e.g.
vi = 4 (two votes for Alice) or vi = 27 (three votes for Bob).

The counting of votes can easily overflow:

Dsk(T) = v1 · · · vn mod N ̸= v1 · · · vn if v1 · · · vn ≥ N

25

Many problems in this implementation

A voter can send multiple ballots.
The operator can add ballots. (“Ballot box stuffing”)

Ballots are not secret: RSA is deterministic, hence the operator
recovers vi by comparing bi with Epk(1), Epk(2) and Epk(3).

A voter can “stuff” their ballot, e.g.
vi = 4 (two votes for Alice) or vi = 27 (three votes for Bob).

The counting of votes can easily overflow:

Dsk(T) = v1 · · · vn mod N ̸= v1 · · · vn if v1 · · · vn ≥ N

25

Many problems in this implementation

A voter can send multiple ballots.
The operator can add ballots. (“Ballot box stuffing”)

Ballots are not secret: RSA is deterministic, hence the operator
recovers vi by comparing bi with Epk(1), Epk(2) and Epk(3).

A voter can “stuff” their ballot, e.g.
vi = 4 (two votes for Alice) or vi = 27 (three votes for Bob).

The counting of votes can easily overflow:

Dsk(T) = v1 · · · vn mod N ̸= v1 · · · vn if v1 · · · vn ≥ N

25

Many problems in this implementation

A voter can send multiple ballots.
The operator can add ballots. (“Ballot box stuffing”)

Ballots are not secret: RSA is deterministic, hence the operator
recovers vi by comparing bi with Epk(1), Epk(2) and Epk(3).

A voter can “stuff” their ballot, e.g.
vi = 4 (two votes for Alice) or vi = 27 (three votes for Bob).

The counting of votes can easily overflow:

Dsk(T) = v1 · · · vn mod N ̸= v1 · · · vn if v1 · · · vn ≥ N

25

Some solutions

A voter can send multiple ballots.
The operator can add ballots.

Authentify the voters.
Have them sign their ballots cryptographically.
Make the list of voters public.

Ballots are not secret: RSA is deterministic, hence the operator
recovers vi by comparing bi with Epk(1), Epk(2) and Epk(3).

Use a cipher with randomized encryption, so that encrypting the
same plaintext multiple times produces different ciphertexts.

26

Some solutions

A voter can send multiple ballots.
The operator can add ballots.

Authentify the voters.
Have them sign their ballots cryptographically.
Make the list of voters public.

Ballots are not secret: RSA is deterministic, hence the operator
recovers vi by comparing bi with Epk(1), Epk(2) and Epk(3).

Use a cipher with randomized encryption, so that encrypting the
same plaintext multiple times produces different ciphertexts.

26

Quelques solutions

Arithmetic overflow as soon as v1 · · · vn ≥ N.

Use a cipher that is homomorphic for addition (of integers or
tuples of integers) instead of multiplication.

E(m1 + m2) = E(m1)⊞ E(m2) (mod N)

Encode the votes as (1, 0) = Alice, (0, 1) = Bob, (0, 0) = blank.

27

The exponential ElGamal cipher (EEG)

A finite group G of order q generated by g.

Private key: x ∈ {1, . . . , q − 1}. Public key: h def
= gx.

Randomized encryption:

E(m) = (gr, hr · gm) with r ∈ {1, . . . , q − 1} random

Homomorphic for addition:

E(m1) · E(m2) = (gr1 · gr2 , (hr1 · gm1) · (hr2 · gm2))

= (gr, hr · gm1+m2) (with r = r1 + r2 mod q)
= an encryption of m1 + m2

(→ lecture #2)

28

Some solutions

A voter can stuff their ballot by encrypting an “impossible” value,
e.g. 4 (two votes for Alice).

Use zero-knowledge proofs (ZKP).

The voter provides a proof that their ballot is Epk(v) for a value v
that is permitted by the election rules, without revealing the
value v.

29

An example of a zero-knowledge proof

Peggy (the prover) draws a card from a deck and wishes to
convince Victor (the verifier) that it is a red card, without showing
him the card.

7
7

8
8

9
9

10
10

J
J

Q
Q

K
K

A
A

7
7

8
8

9
9

10
10

J
J

Q
Q

K
K

A
A
7

7
8

8
9

9
10

10
J

J
Q

Q
K

K
A

A
7

7
8

8
9

9
10

10
J

J
Q

Q
K

K
A

A

30

An example of a zero-knowledge proof

Peggy (the prover) draws a card from a deck and wishes to
convince Victor (the verifier) that it is a red card, without showing
him the card.

7
7

8
8

9
9

10
10

J
J

Q
Q

K
K

A
A

7
7

8
8

9
9

10
10

J
J

Q
Q

K
K

A
A
7

7
8

8
9

9
10

10
J

J
Q

Q
K

K
A

A
7

7
8

8
9

9
10

10
J

J
Q

Q
K

K
A

A

1. Peggy and Victor check the deck of cards:
16 red cards, 16 black cards.

30

An example of a zero-knowledge proof

Peggy (the prover) draws a card from a deck and wishes to
convince Victor (the verifier) that it is a red card, without showing
him the card.

7
7

8
8

9
9

10
10

J
J

Q
Q

K
K

A
A

7
7

8
8

9
9

10
10

J
J

Q
Q

K
K

A
A

2. Peggy takes the cards, keeps one, puts the remaining cards
face down, and turns 16 black cards over.

30

An example of a zero-knowledge proof

Peggy (the prover) draws a card from a deck and wishes to
convince Victor (the verifier) that it is a red card, without showing
him the card.

7
7

8
8

9
9

10
10

J
J

Q
Q

K
K

A
A

7
7

8
8

9
9

10
10

J
J

Q
Q

K
K

A
A

3. Victor is convinced that the card kept by Peggy is red, but
knowns nothing else about this card.

30

Zero-knowledge proofs for EEG

Proof that (A,B) is an encryption of 0: (Chaum-Pedersen)

i.e. that there exists r such that (A,B) = (gr, hr),
without revealing r.

Commitment: Peggy publishes another encryption of 0
(A′,B′) = (gu, hu), while keeping u secret.

Challenge: Victor sends a random integer c.

Response: Peggy sends t = u + cr (mod q).

Verification: Victor checks that gt = A′ · Ac and ht = B′ · Bc.

31

Zero-knowledge proofs for EEG

Proof that (A,B) is an encryption of 0: (Chaum-Pedersen)

i.e. that there exists r such that (A,B) = (gr, hr),
without revealing r.

Proof that (A,B) is an encryption of 1:

i.e. that there exists r such that (A,B) = (gr, hr · g),
without revealing r.

Use Chaum-Pedersen for (A,B/g).

31

Zero-knowledge proofs for EEG

Proof that (A,B) is an encryption of 0: (Chaum-Pedersen)

i.e. that there exists r such that (A,B) = (gr, hr),
without revealing r.

Proof that (A,B) is an encryption of 1:

i.e. that there exists r such that (A,B) = (gr, hr · g),
without revealing r.

Proof that (A,B) is an encryption of 0 or 1:

A generic construction: given two “Sigma” protocols, one for P
and one for Q, we obtain a “Sigma” protocol for P ∨ Q.

(→ lecture #6)
31

Case study:
private set intersection

The private set intersection problem (PSI)

The client has a set of names C.
The server has a set of names S.

The client wants to compute C ∩ S
i.e. to learn which of its names are known to the server.

The server must learn nothing about C:

• neither the new names (C \ S)
• nor the shared names (C ∩ S).

The client must learn nothing about S \ C.

32

Applications of PSI

Contact discovery on social networks:

The client sends its contact list (phone numbers or emails).

The server responds with the list of contacts who are already
members of the social network (and who accepted to be
discoverable).

33

Applications of PSI

Contact discovery on social networks:

Detecting pirated accounts and passwords:

The client sends its identifiers and passwords (hashed).

The server computes the intersection with lists of pirated
accounts found on the Web.

33

Applications of PSI

Contact discovery on social networks:

Detecting pirated accounts and passwords:

Detecting illegal images:

The client sends hashes of new photos and images.

The server finds those that appear in police databases of illegal
images.

The client blocks illegal images.

33

Unsatisfactory solutions

The client sends C in the clear.

• The server learns C.

The client sends C after hashing.

• I.e. the client sends {H(c) | c ∈ C} and the server computes the
intersection with {H(s) | s ∈ S}.

• The server learns C ∩ S.
• If the name space is small (e.g. phone numbers),

the server can precompute H(x) for all x, and learn all of C.

The serveur sends a Bloom filter for S.

• Reveals too much information on S to the client.
• Encrypted Bloom filters exist, but are costly.

34

Unsatisfactory solutions

The client sends C in the clear.

• The server learns C.

The client sends C after hashing.

• I.e. the client sends {H(c) | c ∈ C} and the server computes the
intersection with {H(s) | s ∈ S}.

• The server learns C ∩ S.
• If the name space is small (e.g. phone numbers),

the server can precompute H(x) for all x, and learn all of C.

The serveur sends a Bloom filter for S.

• Reveals too much information on S to the client.
• Encrypted Bloom filters exist, but are costly.

34

Unsatisfactory solutions

The client sends C in the clear.

• The server learns C.

The client sends C after hashing.

• I.e. the client sends {H(c) | c ∈ C} and the server computes the
intersection with {H(s) | s ∈ S}.

• The server learns C ∩ S.
• If the name space is small (e.g. phone numbers),

the server can precompute H(x) for all x, and learn all of C.

The serveur sends a Bloom filter for S.

• Reveals too much information on S to the client.
• Encrypted Bloom filters exist, but are costly.

34

Homomorphic evaluation of a polynomial

The client constructs a polynomial P whose roots are the
elements ci of its set C:

P = (X − c1)(X − c2) · · · (X − cn) =
n∑

i=0
ai Xi

Consider a cipher that is homomorphic for addition and
multiplication by a constant (such as EEG or Paillier’s cipher):

E(x + x′) = E(x)⊞ E(x′) E(n · x) = n ⊡ E(x)

We can, then, evaluate the polynomial P homomorphically:

xn ⊡ E(an)⊞ · · ·⊞ x ⊡ E(a1)⊞ E(a0)

= E(xn · an + · · ·+ x · a1 + a0) = E(P(x))

35

The protocol of Freedman, Nissim, and Pinkas (2004)

(Efficient Private Matching and Set Intersection, Eurocrypt 2004, LNCS 3027.)

1. The client draws a key pair (pk, sk),
constructs the polynomial P = (X − c1) · · · (X − cn) =

∑
aiXi,

and sends pk and the encrypted coefficients E(ai) to the
server.

2. For each si ∈ S, the server evaluates homomorphically

yi = E(ri · P(si) + si) with ri a large random integer

and sends all these ciphertexts yi to the client.

3. The client decrypts the yi and keeps those that belong to C:

C ∩ S = {D(yi) | D(yi) ∈ C}

36

The protocol of Freedman, Nissim, and Pinkas (2004)

(Efficient Private Matching and Set Intersection, Eurocrypt 2004, LNCS 3027.)

1. The client draws a key pair (pk, sk),
constructs the polynomial P = (X − c1) · · · (X − cn) =

∑
aiXi,

and sends pk and the encrypted coefficients E(ai) to the
server.

2. For each si ∈ S, the server evaluates homomorphically

yi = E(ri · P(si) + si) with ri a large random integer

and sends all these ciphertexts yi to the client.

3. The client decrypts the yi and keeps those that belong to C:

C ∩ S = {D(yi) | D(yi) ∈ C}

36

The protocol of Freedman, Nissim, and Pinkas (2004)

(Efficient Private Matching and Set Intersection, Eurocrypt 2004, LNCS 3027.)

1. The client draws a key pair (pk, sk),
constructs the polynomial P = (X − c1) · · · (X − cn) =

∑
aiXi,

and sends pk and the encrypted coefficients E(ai) to the
server.

2. For each si ∈ S, the server evaluates homomorphically

yi = E(ri · P(si) + si) with ri a large random integer

and sends all these ciphertexts yi to the client.

3. The client decrypts the yi and keeps those that belong to C:

C ∩ S = {D(yi) | D(yi) ∈ C}

36

The protocol of Freedman, Nissim, Pinkas (2004)

Correctness. The decryption xi = D(yi) has the form

xi = ri ·P(si)+si with si ∈ S (unknown) and ri random (unknown)

If si ∈ C, we have P(si) = 0, therefore xi = si and the test xi ∈ C
succeeds.

If si /∈ C, we have P(si) ̸= 0, therefore xi is random and the test
xi ∈ C fails with very high probability.

Confidentiality. The server learns nothing about the ci, since the
coefficients of the polynomial P are encrypted.

The client learns nothing on the si /∈ C, since the corresponding
messages yi decrypt to noise.

37

The protocol of Freedman, Nissim, Pinkas (2004)

Correctness. The decryption xi = D(yi) has the form

xi = ri ·P(si)+si with si ∈ S (unknown) and ri random (unknown)

If si ∈ C, we have P(si) = 0, therefore xi = si and the test xi ∈ C
succeeds.

If si /∈ C, we have P(si) ̸= 0, therefore xi is random and the test
xi ∈ C fails with very high probability.

Confidentiality. The server learns nothing about the ci, since the
coefficients of the polynomial P are encrypted.

The client learns nothing on the si /∈ C, since the corresponding
messages yi decrypt to noise.

37

Reducing the protocol complexity

The polynomial P has degree |C|, hence its evaluation takes time
O(|C|), and phase 2 of the protocol takes time O(|C| · |S|).

The client can partition C in B buckets of size ≈ |C|/B using a
(non-cryptographic) hash function of its choice.

The server receives the hash function and B polynomials of
degree |C|/B, hence phase 2 runs in time O(|C|·|S|B).

Freedman et al. outline a hashing schema that remains secure
with B = |C|/ ln ln |C|, resulting in O(|S| ln ln |C|) complexity.

38

References

References

General background on cryptography:

• Serious cryptography: A practical introduction to modern
encryption, Jean-Philippe Aumasson, No Starch Press, 2nd ed, 2024.

• Cryptography made simple, Nigel P. Smart, Springer, 2016.

On electronic voting:

• Le vote électronique: les défis du secret et de la transparence,
Véronique Cortier et Pierrick Gaudry, Odile Jacob, 2022.

The PSI protocol described in this lecture:

• Michael J. Freedman, Kobbi Nissim and Benny Pinkas, “Efficient
Private Matching and Set Intersection”, Advances in cryptology –
Eurocrypt 2004, LNCS 3027, Springer, 2004.
https://doi.org/10.1007/978-3-540-24676-3_1

39

https://doi.org/10.1007/978-3-540-24676-3_1

	Introduction
	Course outline
	MPC of an average
	Counting electronic votes
	Private set intersection
	References

