
Control structures, seventh lecture

Static typing of effects

Xavier Leroy
2024-03-07

Collège de France, chair of software sciences
xavier.leroy@college-de-france.fr

Static typing

A widely-used way to guarantee useful properties of programs,
by static analysis before execution.

• Data integrity.
(Absence of errors caused by wrong use of data, such as “returning
a pair when a triple is expected”, or “uninitialized field in a
record”.)

• Exhaustiveness of control.
(Does a pattern matching covers all possible cases? Are all raised
exceptions caught? Are all algebraic effects handled?)

• Termination of programs.
(Crucial for logical formalisms such as Coq, Lean, Agda.
Irrelevant for Turing-complete languages.)

2

Static typing

A widely-used way to describe the interface of software
components (functions, classes, modules, libraries, . . .).

Must not reveal too many details of the implementation, so that
it can evolve later.

→ Types as an abstraction barrier.

3

Two questions in this lecture

When we have advanced control structures such as exceptions,
control operators, algebraic effects and effect handlers:

Q1: Does “classic” static typing still guarantee data integrity?
Which types can we give to these control structures?

Q2: Can static typing be extended to guarantee exhaustiveness of
control?

4

Typing values in the presence of
advanced control structures

A type system for a language with exceptions

A type exn of exception values.

Γ ⊢ e : exn

Γ ⊢ raise e : τ

Γ ⊢ e1 : τ Γ, x : exn ⊢ e2 : τ

Γ ⊢ try e1 with x → e2 : τ

raise e never returns, therefore it has all possible types τ .
(Alternative: a function raise : ∀α, exn → α .)

Declaring an exception, functional view =
adding a constructor to the type exn.

Declaring an exception, object-oriented view =
define a sub-class of type exn (which is called Throwable in Java).

5

Type safety

Either by a direct proof of safety, using the reduction semantics
under contexts of lecture #5.

Or by noticing that the ERS (Exception-Returning Style)
transformation from lecture #5 preserves typing:

if Γ ⊢ e : τ then Γ∗ ⊢ E(e) : τ∗ + exn

Translating the types of values:

ι∗ = ι for all base types ι
(σ → τ)∗ = σ∗ → τ∗ + exn

6

A type system for a language with effect handlers (a la OCaml 5)

A type α eff of effects returning a value of type α.
Declaring an effect = adding a constructor.

Γ ⊢ e : τ eff

Γ ⊢ perform e : τ

Γ ⊢ e : σ Γ ⊢ eret : σ → τ Γ ⊢ eeff : ∀α, α eff → (α→ τ) → τ

Γ ⊢ handle e with eret, eeff : τ

The eeff part of the handler receives as arguments an arbitrary
effect (type α eff) and a delimited continuation that expects a
value of type α.

7

Typing of callcc

callcc (λk. e) binds k to the continuation of callcc, then
evaluates e.
If e terminates normally, its value is that of the callcc.
If e applies k to v, the callcc terminates with value v.

Hence the following type for the callcc operator:

callcc : ∀α, (α cont → α) → α

↑ ↖ ↗
type of k type of e

8

Typing of callcc

callcc : ∀α, (α cont → α) → α

The type α cont is the type of continuations that expect a value
of type α.

Traditionally, it’s a type for a function that never returns, such as

α cont
def
= α→ empty or α cont

def
= α→ (∀β. β)

In SML/NJ, cont is an abstract type, and a throw operator is
provided to invoke a continuation:

throw : ∀αβ, α cont → α→ β

9

Safety of this simple typing

Either by a direct proof using the reduction semantics under
contexts from lecture #4.

Or by observing that the CPS (Continuation-Passing Style)
transformation from lecture #4 preserves simple types
(no polymorphism):

if Γ ⊢ e : τ then Γ∗ ⊢ C(e) : (τ∗ → R) → R

R is the “result type”, i.e. the type of the whole program.

Translation of value types:

ι∗ = ι for all base types ι
(σ → τ)∗ = σ∗ → (τ∗ → R) → R

10

An issue with parametric polymorphism

In the languages of the ML/Haskell family, a value bound by let
receives a type schema and can be used with several different
instances of this type schema.

let x = [] in (* x : ∀α, α list *)

... 12 :: x ... (* x used as an int list *)

... "hello" :: x ... (* x used as a string list *)

11

The issue with polymorphic references

This form of polymorphism is unsafe for polymorphic references:

let f = ref (fun x -> x) in

f := (fun x -> x + 1); !f "hello"

If we give f the type ∀α, (α→ α) ref, this code is well typed, but
crashes on evaluating "hello" + 1.

Hence the restriction of generalization to values:
then, ref (fun x -> x) is not a value,
therefore f has monomorphic type (α→ α) ref for some type α,
and one of the two uses of f fails to typecheck.

12

A similar issue with callcc

type ’a attempt = { current: ’a; retry: ’a -> unit }

let r =

callcc (fun k ->

let rec retry f =

throw k { curr = f; retry = retry } in

{ curr = (fun x -> x); retry = retry })

in

r.current "hello";

r.retry (fun x -> x + 1)

It was long believed that this problem with polymorphism was
specific to mutable state, until Harper and Lillibridge (1991)
showed a counter-example involving only callcc.

13

A similar issue with callcc

type ’a attempt = { current: ’a; retry: ’a -> unit }

let r =

callcc (fun k ->

let rec retry f =

throw k { curr = f; retry = retry } in

{ curr = (fun x -> x); retry = retry })

in

r.current "hello";

r.retry (fun x -> x + 1)

If r is given the polymorphic type ∀α, (α→ α) attempt,
r.current "hello" is executed twice,
once with r.current = fun x -> x,
once with r.current = fun x -> x + 1.

13

A similar issue with callcc

type ’a attempt = { current: ’a; retry: ’a -> unit }

let r =

callcc (fun k ->

let rec retry f =

throw k { curr = f; retry = retry } in

{ curr = (fun x -> x); retry = retry })

in

r.current "hello";

r.retry (fun x -> x + 1)

The value restriction avoids this issue:
since callcc (fun k -> ...) is not a value, its type is not
generalized, and the uses of r are rejected by typechecking.

13

A similar issue with exceptions

Even exceptions would be unsafe without the value restriction!

type ’a box =

{ hide: ’a -> (unit -> unit);

expose: (unit -> unit) -> ’a option }

let makebox (type a) : a box =

let exception E of a in

{ hide = (fun v -> fun () -> raise (E v));

expose = (fun f -> try f (); None with E v -> Some v) }

let (x: string option) = makebox.expose (makebox.hide 12)

x is Some 12, but without the value restriction it would have type
τ option for all τ .

14

Typing delimited continuations

The “cupto” approach by Gunter, Rémy, Riecke (1995):

• an extensible type α prompt of “prompts” of type α
(prompts ≈ program points ≈ labels);

• two primitive functions

set : ∀α, α prompt → (unit → α) → α

cupto : ∀αβ, α prompt → ((β → α) → α) → β

Intuition: cupto p (λk. e) captures the continuation that goes “up
to” the nearest delimiter set p (nearest in the call stack), bind it
to k, returns to delimiter set p, then evaluates e.

15

Tracking exceptions via types

The issue with uncaught exceptions

Many programming languages featuring exceptions and
exception handlers do not statically guarantee that a raised
exception is always handled.

(Lisp family, ML family, Ada, Python, C#, . . .)

Therefore, a program can terminate abruptly on an uncaught
exception (an exception that is raised but not handled).

Our experience with large ML applications is that uncaught
exceptions are the most frequent mode of failure.

(Pessaux & Leroy, 1998)

16

Declaring and verifying exceptions

An approach known as checked exceptions:

• have programmers annotate each function, procedure,
method with a set of exceptions;

• verify (statically or dynamically) that all the exceptions a
function can raise (itself or via one of the function it calls)
and doesn’t handle itself are in this set.

Corollary: a function annotated with the empty set of exceptions
never raises an exception.

General idea: the exceptions that a function can raise are part of
its interface, just like the types of its arguments and results.

17

The CLU language (B. Liskov et al, MIT, circa 1975)

While it is appropriate for the caller to know about the excep-
tions signaled by the procedure (and these are part of the ab-
straction implemented by that procedure), the callee should
know nothing about the exceptions signaled by procedures
used in the implementation of the invoked procedure.

(Liskov & Snyder, Exception Handling in CLU, 1979)

CLU imposes a strict discipline on the use of exceptions:

• Any exception that escapes from a function must be
declared in the type of the function.

• Such an exception must be handled by the caller function.
(The caller can elect to re-throw the exception, but there is
no automatic propagation of exceptions.)

18

An example of an exception declaration in CLU

(Liskov & Snyder, Exception Handling in CLU, 1979)

sign = proc (x: int) returns(int) signals(zero, neg(int))

if x < 0 then signal neg(x)

elseif x = 0 then signal zero

else return(x)

end

end sign

Preferred implementation: using multiple return points, as in
Fortran 77. For each declared exception, the caller passes (as
extra argument) the code label for the handler of this exception.

19

Run-time checking of exceptions

If a function raises an exception that is not declared in its
signals clause, this exception is turned into a fatal error (or, in
later CLU versions, in a special failure exception that
propagates without being checked).

Idea: allow programmers to not declare nor handle exceptions
that are “impossible by design”, such as the “empty stack”
exception in the following example.

if ~ stack$empty(s) then

...

x := stack$pop(s)

...

end

20

Exceptions in C++

Structured exceptions were added to C++ circa 1990, using the
familiar model where exceptions automatically propagate
towards callers.

Functions and methods can optionally declare a set of exceptions
that they (or their callees) can raise:

int f(int x) throw(my_exception, some_other_exception)

{

...

if (x < 0) throw myex;

...

}

No throw clauses ⇒ can raise any exception.

21

Run-time checking of exceptions

Like in CLU: no static verification of throw clauses; an exception
that escapes and is not declared in the throw clause is turned
into a fatal error (a call to std::unexpected).

int f(int x) throw(myexception)

{

if (x < 0) throw myex; else return -x;

}

int g(int x) throw()

{

return f(x);

}

No compile-time warning, but g(-1) triggers a call to
std::unexpected.

22

Abandoning checked exceptions in C++

In the 2000’s, a consensus emerged: these throw clauses are
barely usable.

The biggest problem with exception-specifications is that pro-
grammers use them as though they have the effect the pro-
grammer would like, instead of the effect they actually have.

(Boost library requirements and guidelines)

C++ 2011 deprecates throw clauses and introduces a simplified
declaration noexcept.

C++ 2017 removes throw clauses.

23

Checked exceptions in Java

throws clauses on method definitions and declarations.

public void writeList() throws IOException {

PrintWriter out = new PrintWriter(new FileWriter(...));

...

out.close();

}

No throws clause ⇒ no checked exception can escape.

Special case: exceptions of RuntimeException and Error

classes are unchecked: they do not need to be declared, and they
propagate freely.

24

Checked exceptions in Java

The compiler checks that all exceptions raised by a method M or
mentioned in the throws clauses of called methods are either
handled or declared by M.

✔ void f() throws Exception {

... writeList() ...

}

✔ void f() {

try { ... writeList() ... }

catch (IOException e) { }

}

✘ void f() {

... writeList() ...

} 25

Practical difficulties with exception specifications

More difficult to evolve a library without changing its API:
newly-introduced exception cannot escape, they must be
handled locally or converted into pre-existing exceptions. . .

Poor scaling: throws clauses get very long when we combine
several large libraries.

Knee-jerk reactions from programmers: throws Exception

everywhere; over-use of RuntimeException or Error unchecked
exceptions.

As a consequence, several “post-Java” languages abandon
exception specifications: C#, Scala (initially), Kotlin, . . .

26

The capability-based approach

(M. Odersky et al, in Scala 3; J. Brachthäuser et al, in Effekt.)

A shift of perspective: to avoid uncaught exceptions, let’s prohibit
raising an exception if we’re not in the scope of a handler for that
exception.

• To raise exception E, we must possess the capability
to do so: a special value of type CanThrow[E].

• The try e1 catch case E construct produces a CanThrow[E]
capability and makes it available to e1.

• This capability propagates to the places where we raise
exception E using implicit function arguments.

27

Revisiting exception declarations

def m(x: T) : U throws E

Don’t read this declaration as “m can raise exception E”.
Do read it as “m needs capability CanThrow[E] to possibly raise
exception E”.

This declaration expands to

def m(x: T) (using CanThrow[E]): U

It says that m has an implicit argument of type CanThrow[E]: m
can be called only from a context containing a value of this type.

28

Generating, propagating, using the capabilities

def m(x: T) : U throws E = // receives a value CanThrow[E]
... throw E ... // uses it to raise E

def p(x: T) : V throws E = // receives a value CanThrow[E]
... m(x) ... // passes it to m

def q(x: T) : V =

try // a value CanThrow[E] appears here
p(x) // and is passed to p

catch

case e : E => 0

29

Capabilities and higher-order functions

With Java-style exception declarations, a higher-order function
such as List.map must account for the exceptions raised by its
argument function f:

class List[A]

def map[B,E](f: A => B throws E): List[B] throws E

In the capability model, map needs no CanThrow permissions,
since it raises no exceptions itself!

class List[A]

def map[B](f: A => B): List[B] // no ‘‘throws’’ clause

We can evaluate xs.map(f) where f is a function that can raise E.
It suffices to have a CanThrow[E] capability in the context.

30

A delicate issue with the capability approach

A capability CanThrow[E] must not escape the scope of the
try. . .catch that created it:

• the capability must not be returned as a result,
• nor stored in a global variable.

⇒ Requires some support for second-class values, whose only
possible use is to be passed as implicit arguments.

31

From exceptions to algebraic effects

An uncaught exception is a problem;
an effect without a handler is probably a bigger problem.

OCaml 5 (until now)
No declarations and no static checks for effects,
no more than for exceptions. . .

Eff (Pretnar & Bauer), Koka (Leijen)
Use a type and effect system (see next section).

Effekt (Brachthäuser et al)
Uses capabilities.

32

Type and effect systems

Type and effect systems

Use static typing techniques to describe the effects produced by
the evaluation of an expression.

Polymorphic Effect Systems

John M. Lucassen * and David K. Gifford
MIT Laboratory for Computer Science

545 Technology Square
Cambridge, Massachusetts 02139

We present a new approach to programming lan-
guages for parallel computers that uses an effect sys-
tem to discover expression scheduling constraints.
This effect system is part of a ‘kinded’ type system
with three base kinds: types, which describe the value
that an expression may return; effects, which describe
the side-effects that an expression may have; and re-
gions, which describe the area of the store in which
side-effects may occur. Types, effects and regions are
collectively called descriptions.

Expressions can be abstracted over any kind of
description variable - this permits type, effect and
region polymorphism. Unobservable side-effects can
be masked by the effect system; an effect soundness
property guarantees that the effects computed stati-
cally by the effect system are a conservative approxi-
mation of the actual side-effects that a given expres-
sion may have.

The effect system we describe performs certain
kinds of side-effect. analysis that were not previously
feasible. Experimental data from the programming
language FX indicate that an effect system can be
used effectively to compile programs for parallel com-
puters.

This work was supported in part by DARPA/ONR
contract number N00014-83-K-0125

* Currently at IBM Tokyo Research Laboratory, 5-
19 Sanbancho, Chiyoda-ku, Tokyo 102, Japan

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

1. Introduction
We present a new approach to programming that

is intended to combine the advantages of functional
and imperative programming. Our approach uses an
effect system in conjunction with a conventional type
system to compute both the type and the effect of
each expression statically. The effect of an expression
is a concise summary of the observable side-effects
that the expression may have when it is evaluated. If
two expressions do not have interfering effects, then a
compiler may schedule them to run in parallel subject
to dataflow constraints. The effect system described
in this paper is an integral part of the programming
language FX [Gif87].

The effect system we present is capable of certain
kinds of side-effect analysis that were not previously
feasible. In particular, the effect system permits con-
currency analysis in the presence of first-class func-
tion values, and it permits the masking of side-effects
on local data values even in the presence of first-class,
heap-allocated values of user-defined types. (A value
is first-class if it can be stored, passed as an argu-
ment, and returned as a result.) In particular, the
effect system is able to mask effects on first-class,
user-defined, heap-allocated data structures, which
no previously published static method can do. An
effect soundness property guarantees that the effects
computed statically by the effect system are a conser-
vative approximation of the actual side-effects that a
given expression may have.

We distinguish three sorts of effects: READ, WRITE,
and ALLOC effects, where allocation includes initial-
ization. Each effect is subscripted by the region where
the effect may occur. Compound effects can be con-
structed as unions of simple effects, and thus effects
form a lattice. The bottom of the effect lattice is the
effect PURE, which is used to describe expressions that
have no side-effects.

Proceedings of the Fifteenth Annual ACM
SIGACT-SIGPLAN Symposium on Princi-

@ 1988 ACM-O-89791-252-7/88/0001/0047 $1.50 47
ples of Programming Languages, San Diego,
California (January 1988)

(J. Lucassen & D. Gifford, POPL 1988)

33

Example: typing a language with exceptions

A functional language with raise and try. . .with.

Value types:
τ, σ ::= int | bool base types

| exn the type of exceptions
| σ φ→ τ function type (φ = latent effect)

Effect types:
φ ::= 0 pure computation (no exceptions)

| 1 computation that can raise an exception

Typing judgment:
Γ ⊢ e : τ ! φ

Read: in an environment of type Γ, expression e produces a value
of type τ and effects of type φ.

34

Selected typing rules

n ∈ {0, 1, 2, 3, . . .}

Γ ⊢ n : int ! φ

b ∈ {true, false}

Γ ⊢ b : bool ! φ

Constants are pure (effect φ = 0), but can also be viewed as
impure (effect φ = 1) if the context demands it.

Γ, x : σ ⊢ e : τ ! φ

Γ ⊢ λx. e : σ
φ→ τ ! φ′

A function abstracition is pure. The effect of the function body
becomes the latent effect in the type of the function.

35

Selected typing rules

Γ ⊢ e1 : bool ! φ Γ ⊢ e2 : τ ! φ Γ ⊢ e3 : τ ! φ

Γ ⊢ if e1 then e2 else e3 : τ ! φ

A conditional is pure only if e1, e2, e3 are pure.
The rule forces the 3 expressions to have the same effect type φ.

Γ ⊢ e1 : σ
φ→ τ ! φ Γ ⊢ e2 : σ ! φ

Γ ⊢ e1 e2 : τ ! φ

The application e1 e2 combines three effects: the effect of
evaluating e1, the effect of evaluating e2, and the latent effect of
the function.

36

Typing exception raising and exception handling

Γ ⊢ e : exn ! φ

Γ ⊢ raise e : τ ! 1

The raise e expression has all value types, but only effect 1.

Γ ⊢ e1 : τ ! φ1 Γ, x : exn ⊢ e2 : τ ! φ2

Γ ⊢ try e1 with x → e2 : τ ! φ2

Exceptions raised by e1 are caught. Only the exceptions raised by
e2 (effect φ2) escape the try. . .with.

37

Other algebras of effect types

Effect types are often sets of base effects F:

φ ::= {F1, . . . , Fn}

with the empty set meaning purity (no effects at all).
Base effects can be:

• Broad groups of effects: F ::= div | state | exn | ctrl
(divergence, state, exceptions, control operators, . . .).

• Individual effects such as exception names E or algebraic
effect names F.

• Names with types, such as E(τ) or F(σ ↠ τ).
• For mutable state effects, names + types + state regions ρ :
alloc(τ, ρ) | read(τ, ρ) | write(τ, ρ) .

38

Too simple types?

let use_pure (f: int
0→ int) =

... f 0 ... f 1 ...

let use_impure (f: int
1→ int) =

if ... then f 0 else raise E

let f (x: int) = x + 1 in

use_pure f + use_impure f

There is no way to use the pure function f in two contexts, one
that expects a pure function and the other that expects an
impure function.

We need polymorphism over effect types:
either subtyping polymorphism or parametric polymorphism.

39

Subtyping polymorphism

A computation / a function can be viewed as having more effects
than it really has. Hence the rule of subsumption:

Γ ⊢ e : τ ! φ τ <: τ ′ φ ⊆ φ′

Γ ⊢ e : τ ′ ! φ′

The subtyping relation τ <: τ ′ is defined as

τ <: τ

σ′ <: σ τ <: τ ′ φ ⊆ φ′

σ
φ→ τ <: σ′

φ′
→ τ ′

Note the contravariance in the argument types:
int

0→ int can be viewed with type int
1→ int, but

(int
1→ int)

0→ bool can be viewed with type (int
0→ int)

0→ bool.

40

The problem with higher-order functions

For a higher-order function such as List.map in OCaml, we
should be able to use it with the two types

(σ
∅→ τ)

∅→ (σ list
∅→ τ list)

(σ
φ→ τ)

∅→ (σ list
φ→ τ list) avec φ ̸= ∅

In the first case, we “map” a pure function, this produces no
effects.

In the second case, we “map” an impure function, this produces
the same effects φ as the function.

Neither type is subtype of the other!
→ need for parametric polymorphism.

41

Parametric polymorphism and rows of effects

(M. Wand, 1989; D. Rémy, 1989.)

A common representation for two kinds of sets:

• closed sets of effects {F1, . . . , Fn}
• extensible sets of effects {F1, . . . , Fn} ∪ ρ

where ρ is a row variable.

This makes it possible to take the union of two extensible sets by
instantiating their row variables and unifying them:

∀ρ1, {F; F1} ∪ ρ1

∀ρ2, {F; F2} ∪ ρ2

{F; F1; F2} ∪ ρ

inst ρ1 7→ {F2} ∪ ρ

inst ρ2 7→ {F1} ∪ ρ

gen
∀ρ, {F; F1; F2} ∪ ρ

This gives a form of subsumption that is covariant!

42

An algebra of rows

(D. Rémy, 1989, 1990, 1993.)

To type-check some operations, and to define unification
precisely, it is useful to represent the absence of an element, not
just its presence.

Rows: φ ::= ρ row variable
| ∅ empty raw
| F : π;φ φ plus element F with presence π

Presence: π ::= θ presence variable
| Abs absent
| Pre(τ) present with type τ

Rows are treated modulo permutation and absorption:

F1 : π1; F2 : π2;φ = F2 : π2; F1 : π1;φ F : Abs; ∅ = ∅
43

Typing algebraic effects and effect handlers

(D. Hillerström, S. Lindley, 2016, 2018.)

Value types:
τ, σ ::= α variable

| int | bool base types
| σ φ→ τ function types
| ∀α, τ | ∀ρ, τ | ∀θ, τ polymorphism

Effect types:
φ ::= ρ | ∅ | F : π;φ rows of effects F

Presence types:
π ::= θ | Abs | Pre(σ ↠ τ)

The notation Pre(σ ↠ τ) denotes the presence of an effect
carrying an argument of type σ and producing a result of type τ .

44

Typing rules for raising and handling effects

Γ ⊢ e : σ ! φ φ = F : Pre(σ ↠ τ);φ′

Γ ⊢ perform F e : τ ! φ

A given effect F can be performed with an argument e of any type
σ and an expected result of any type τ .
Instead of constraining σ and τ by a prior declaration of F, we
record them in the effect type φ.

Γ ⊢ e : σ ! ψ Γ ⊢ H : σ ! ψ ⇒ τ ! φ

Γ ⊢ handle e with H : τ ! φ

The handler H transforms the value type and the effect type of
computation e.

45

Typing rules for effect handlers

Consider a handler H for effects F1, . . . , Fn:

H = {val(x) → Mval; F1(x, k) → M1; . . . ; Fn(x, k) → Mn}

It transforms value and effect types as follows:

ψ = F1 : Pre(σ1 ↠ τ1); . . . ; Fn : Pre(σn ↠ τn);ω

φ = F1 : π1; . . . ; Fn : πn;ω

Γ, x : σ ⊢ Mval : τ ! φ

Γ, x : σi, k : τi
φ→ τ ⊢ Mi : τ ! φ for i = 1, . . . , n

Γ ⊢ H : σ ! ψ ⇒ τ ! φ

F1, . . . , Fn must be present in the initial effect type ψ
but can be absent in the transformed effect type φ.
The other effects are described by the row ω, which is preserved.

46

Strengths and weaknesses of row polymorphism

+ A good match for generic higher-order functions such as
List.map.

+ Lends itself to ML-style type inference
(by unification and generalization; Damas & Milner 1982).

– Does not account for the “direction of propagation” of
effects, which can lead to imprecise types. f

– Types are hard to read (in typing error messages)
and even harder to write (in module interfaces).

47

Example of an imprecise typing

λf: int
φ→ int. λb: bool.

handle (if b then f 0 else perform E ())

with { val(x) -> x;

E(_, _) -> f 1 }

By “leakage” from perform E, the row φ must mention E as being
present.

Then, the second call f 1 is seen as possibly raising E.

48

How to present rows to users?

Heuristics for printing: omit ρ, θ variables that do not change the
meaning of the type.

Heuristics for writing declarations: by default, all arrows share
the same row. For example the declaration

val f : (’a -> bool) -> (’a -> ’b) -> ’a list -> ’b list

is parsed as

f : ∀αβ ρ, (α ρ→ bool)
ρ→ (α

ρ→ β)
ρ→ α list

ρ→ β list

49

Simplifying function effects

(D. Leijen, Type Directed Compilation of Row-Typed Algebraic Effects, 2017.)

Instantiation and generalization rules make it possible to close a
row terminated by a variable ρ.

Γ ⊢ e : ∀α⃗ ρ, σ F1:π1;...;Fn:πn;ρ−−−−−−−−−→ τ ! φ ρ /∈ FV(σ, τ, π1, . . . , πn)

Γ ⊢ e : ∀α⃗, σ F1:π1;...;Fn:πn;∅−−−−−−−−−→ τ ! φ

We can add a typing rule enabling us to re-open a closed row,
thus recovering the flexibility of the ∀ρ.

Γ ⊢ e : σ
F1:π1;...;Fn:πn;∅−−−−−−−−−→ τ ! φ

Γ ⊢ e : σ
F1:π1;...;Fn:πn;φ′
−−−−−−−−−→ τ ! φ

50

Summary

Typing values in the presence of effects

Classic type systems (Hindley-Milner, system F, etc.)
easily extend to new control structures
(exceptions, algebraic effects, call/cc, delimited continuations)
provided that

• we restrict the generalization of type variables to
expressions that are values (the “value restriction” and its
variants);

• we declare the types of exceptions, effects, and “prompts”
before they are used.

There exists type systems that lift these restrictions, but they are
as complex as type and effect systems.

51

Reflecting effects in types

A wide spectrum of mechanisms ranging from checked exceptions
(as in Java) to type and effect systems with row polymorphism.

Issues with practical usability: complicated types, hard to read,
hard to write in interfaces.

Issues with software engineering: a risk of “over-constraining”
the implementations, restricting their future evolution.

A new perspective based on capabilities that could result in
simpler types, but requires language support for “second-class
values”.

An alternative: static analysis of control flows, without any type
declarations. But this requires the full program to be available
(and a lot of RAM).

52

References

References

Type and effect systems + row types:

• B. C. Pierce, ed: Advanced Topics in Types and Programming
Languages, MIT Press, 2005. Sections 3.1–3.3 (effects), 10.8 (rows).

A static analysis perspective on type and effect systems:

• F. Nielson, H. R. Nielson, C. Hankin: Principles of Program Analysis,
chap. 5, Type and Effect Systems. Springer, 2005.

The capability-based approach to exceptions in Scala 3:

• M. Odersky, A. Boruch-Gruszecki, J. Brachthäuser, E. Lee, O. Lhoták:
Safer exceptions for Scala, proceedings Scala 2021.
https://doi.org/10.1145/3486610.3486893

53

https://doi.org/10.1145/3486610.3486893

	Typing values in the presence of advanced control structures
	Tracking exceptions via types
	Type and effect systems
	Summary
	References

