
Control structures, sixth lecture

The theory of effects:
from monads to algebraic effects

Xavier Leroy
2024-02-29

Collège de France, chair of software sciences
xavier.leroy@college-de-france.fr



The effects of a program

Whatever goes beyond computing the final value of the program.

Effects on the outside world:

• display things on the screen, write to files, . . .
• communicate over the network;
• read sensors, send commands to actuators;
• terminate or diverge (for some authors).

Effects on the state of the computer:

• assignments to variables, to array elements;
• allocation, modification, deallocation of data structures;
• jumps to alternate program points (exceptions, continuations,

backtracking).

Which theories can account for all these kinds of effects?
2



Monads



Monads

A philosophical concept (metaphysics)
(Platon, Leibniz, . . . )

A structure in category theory
(Godement’s “standard construction”; Mac Lane)

A semantic tool to describe programming languages with effects
(Moggi, 1989)

A way to program with effects in a pure language
(Wadler, 1991; the Haskell community)

A tool to formalize effectful programs and reason about them.

3



A proliferation of denotational semantics

In lecture #4, we saw several forms of denotational semantics:

[[stmt]] : Store→ Store⊥ (mutable state)

[[stmt]] : Env → Store→ Store⊥ (environment + state)

[[stmt]] : Env → Store→ (Store→ Res⊥)→ Res⊥
(environment + state + goto)

The semantics of base constructs such as sequencing changes
every time we add a feature to the language:

[[s1; s2]] σ = [[s2]] ([[s1]] σ)

[[s1; s2]] ρ σ = [[s2]] ρ ([[s1]] ρ σ)

[[s1; s2]] ρ σ k = [[s1]] ρ σ (λσ′. [[s2]] ρ σ′ k)

4



A proliferation of program transformations

In lectures #4 and #5, we saw several transformations over
functional programs:

• C, the CPS (continuation-passing style) transformation, to
make evaluation strategy explicit and to account for callcc.

• C2, the “double-barreled” CPS transformation, to account for
structured exceptions and exception handling;

• E , the ERS (Exception-Returning Style) transformation,
another way to account for exceptions.

5



Commonalities between these transformations

For constants and λ-abstractions:

C(cst) = λk. k cst C(λx.M) = λk. k (λx. C(M))
C2(cst) = λk1k2. k1 cst C2(λx.M) = λk1k2. k1 (λx. C2(M))

E(cst) = V cst E(λx.M) = V (λx. E(M))

In all cases, we return a value (cst or λx . . .)
presenting it as a trivial computation.

6



Commonalities between these transformations

For let bindings:

C(let x = e1 in e2) = λk. C(e1) (λx. C(e2) k)

C2(let x = e1 in e2) = λk1k2. C2(e1) (λx. C2(e2) k1 k2) k2

E(let x = e1 in e2) = match E(e1) with E x→ E x | V x→ E(e2)

In the three transformations, we perform the computation e1,
extract the resulting value, bind it to x, and continue with the
computation of e2.

7



Commonalities between these transformations

For function applications:

C(e1 e2) = λk. C(e1) (λv1. C(e2) (λv2. v1 v2 k))

C2(e1 e2) = λk1. λk2. C2(e1) (λv1. C2(e2) (λv2. v1 v2 k1 k2) k2) k2

E(e1 e2) = match E(e1) with E x1 → E x1 | V v1 →
match E(e2) with E x2 → E x2 | V v2 → v1 v2

In the three transformations, we bind the value of e1 to v1, then
bind the value of e2 to v2, then apply v1 to v2.

8



The computational lambda-calculus

(Eugenio Moggi, Computational lambda-calculus and monads, LICS 1989;

Notions of computations and monads, Inf. Comput. 93(1), 1991.)

To facilitate the writing and evolution of denotational semantics
and program transformations, Moggi designed a “computational
lambda-calculus” and its equivalence principles.

He chose to distinguish clearly between

• values (the final results of computations), and
• computations (producing values).

“Values are; computations do.” (P. B. Levy)

A computation producing a value of type A has type T A
(where T is a type constructor that depends on the effects considered)

9



The computational lambda-calculus

Different choices for T correspond to known denotational
semantics / program transformations for different effects:

Environments: T A = Env → A

Mutable state: T A = S→ A× S (S = type of states)

Exceptions: T A = A+ Exn

Non-determinism: T A = P(A)

Continuations: T A = (A→ R)→ R (R = type of results)

10



Base operations over computations

To give semantics to effectful languages, we need two base
operations over computations:

• ret : A→ T A (injection)

ret v is the trivial computation that produces value v and
has no effects.

• bind : T A→ (A→ T B)→ T B (sequential composition)

bind a (λx.b) executes the computation a, bind its result
value to x, then executes the computation b, and returns the
result value of b.

11



The monad structure

To define ret and bind, Moggi uses a monad from category
theory, that is, a triple (T, η, µ) where

η : A→ T A µ : T (T A)→ T A T(f ) : T A→ T B if f : A→ B

satisfying certain laws.

We can then define the Kleisli triple (T, ret, bind) as:

ret v def
= η(v)

bind a f def= µ(T(f ) a)

(Nowadays, computer scientists prefer to define the Kleisli triple
directly, and call it “a monad” by abuse of terminology.)

12



The laws of monads (Kleisli triples)

bind (ret v) f = f v (left neutral)

bind a ret = a (right neutral)

bind (bind a f ) g = bind a (λx. bind (f x) g) (associativity)

13



Non-determinism as a monad

T A = P(A) (or List(A) )

ret v = {v}

bind a f =
⋃
x∈a

f x

Operations specific to non-determinism:

fail = ∅
choose a b = a ∪ b

14



Exceptions as a monad

T A = V of A | E of Exn (≈ A+ Exn)

ret v = V v

bind (V v) f = f v

bind (E e) f = E e (exception propagation)

Operations specific to exceptions:

raise e = E e

try a with x→ b = match a with V v → V v | E x→ b

15



Mutable state as a monad

T A = S→ A× S (S = type of states)

ret v = λs. (v, s)

bind a f = λs1. let (x, s2) = a s1 in f x s2 (threading the state)

Specific operations: (ℓ = reference identifier)

get ℓ = λs. (s(ℓ), s)

set ℓ v = λs. ((), s{ℓ← v})

16



Continuations as a monad

T A = (A→ R)→ R (R = type of the final result)

ret v = λk. k v

bind a f = λk. a (λx. f x k)

Control operator:

callcc f = λk. f (λv.λk′. k v) k

17



Monads that combine several effects

State + exceptions:

T A = S→ (A+ E)× S

State + continuations:

T A = S→ (A→ S→ R)→ R

Continuations + exceptions:

T A = ((A+ E)→ R)→ R

or T A = (A→ R)→ (E→ R)→ R

Exercise: define ret and bind for these 4 monads.

18



A computational lambda-calculus

“Values are; computations do.”
Values:

v ::= cst | x | λx. M
Computations:

M,N ::= v1 v2 application
| if v then M else N conditional
| val v trivial computation
| do x⇐ M in N sequencing of computations
| . . . monad-specific operations

For a given monad (T, ret, bind), the semantics is obtained by
interpreting val M as ret M and do x⇐ M in N as bind M (λx.N).

19



The laws of the computational lambda-calculus

Function application:

(λx.M) v = M{x← v}

The three monadic laws:

do x⇐ val v in M = M{x← v}
do x⇐ M in val x = M

do x⇐ (do y ⇐ M in N) in P = do y ⇐ M in (do x⇐ N in P)

20



The monadic transformation

Transforms an impure functional language with implicit effects
into the computational lambda-calculus with explicit monadic
effects.

M(cst) = val cst

M(λx. e) = val (λx.M(e))

M(x) = val x

M(let x = e1 in e2) = do x⇐M(e1) inM(e2)

M(e1 e2) = do f ⇐M(e1) in do v ⇐M(e2) in f v

M(if e1 then e2 else e3) = do b⇐M(e1) in

if b thenM(e2) elseM(e3)

By combining this transformation with the appropriate monads,
we recover the CPS / ERS / double-barreled CPS transformations.

21



Programming directly in monadic style

(Notations do in Haskell, let* in OCaml.)

We can write code that can be used in any monad,
e.g. a monadic map iterator:

let (let*) = bind

let rec mmap (f: ’a -> ’b t) (l: ’a list) : ’b list t =

match l with

| [] -> ret []

| h :: t ->

let* h’ = f h in let* l’ = mmap f l in ret (h’ :: l’)

( let* x = a in b expands to bind a (fun x → b) .)

22



Programming directly in monadic style

In the non-determinism monad:
all the ways to insert an element x in a list l.

let rec insert (x: ’a) (l: ’a list) : ’a list t =

choose (ret (x :: l))

(match l with

| [] -> fail

| h :: t -> let* t’ = insert x t in ret (h :: t’))

All the permutations of a list l.

let rec permut (l: ’a list) : ’a list t =

match l with

| [] -> ret []

| h :: t -> let* t’ = permut t in insert h t’

23



Free monads
and interaction trees



Executing a monadic program without performing the effects

Consider mutable state and non-determinism.

Values:
v ::= cst | x | λx. M

Computations:
M ::= v1 v2 | if v then M else N

| val v | do x⇐ M1 in M2

| get ℓ | set ℓ v mutable state
| choose M1 M2 | fail non-determinism

Can we evaluate the do, the function calls, and the conditionals
while leaving the effects uninterpreted?

24



Executing a monadic program without performing the effects

We define a type of intermediate evaluation results, representing
all possible sequences of program effects.

R A = Pure : A→ R A
| Get : Loc→ (Val→ R A)→ R A
| Set : Loc→ Val→ R A→ R A
| Choose : R A→ R A→ R A
| Fail : R A

25



A tree-shaped representation of effects

Program:

choose (do ⇐ set ℓ 0 in do x⇐ get ℓ in val (x + 1))
(choose (val 0) fail)

Intermediate result:
Choose

Choose

Pure 0 Fail

Set ℓ 0

Get ℓ

Pure 1 Pure 2 Pure 3 . . .

0 1 2 . . .

26



The monad of intermediate results

R A = Pure : A→ R A
| Get : Loc→ (Val→ R A)→ R A
| Set : Loc→ Val→ R A→ R A
| Choose : R A→ R A→ R A
| Fail : R A

This type is a monad, wit ret def
= Pure and bind defined as:

bind (Pure v) f = f v

bind (Get ℓ k) f = Get ℓ (λv. bind (k ℓ) f )

bind (Set ℓ v R) f = Set ℓ v (bind R f )

bind (Choose R1 R2) f = Choose (bind R1 f ) (bind R2 f )

bind Fail f = Fail

27



A denotational semantics for monadic programs

Using this monad of results, we can compute the intermediate
result [[M]] of a monadic computation M.

[[v1 v2]] = [[v1]]v [[v2]]v

[[if v then M1 else M2]] = if [[v]]v then [[M1]] else [[M2]]

[[val v]] = Pure [[v]]v
[[do x⇐ M1 in M2]] = bind [[M1]] (λx. [[M2]])

[[get ℓ]] = Get ℓ (λv. Pure v)

[[set ℓ v]] = Set ℓ [[v]]v (Pure ())

[[choose M1 M2]] = Choose [[M1]] [[M2]]

[[fail]] = Fail

Where [[cst]]v = cst, [[x]]v = x, [[λx.M]]v = λx. [[M]].

28



Interpreting effects

Finally, we can interpret effects (function run)
using a fold traversal of the result tree R.

With backtracking of the store at choice points:
run has type R A→ Store→ Set A and we take

run (Pure v) s = {v}
run (Get ℓ k) s = run (k (s ℓ)) s

run (Set ℓ v R) s = run R (s{ℓ← v})
run Fail s = ∅

run (Choose R1 R2) s = run R1 s ∪ run R2 s

29



Interpreting effects

Finally, we can interpret effects (function run)
using a fold traversal of the result tree R.

With a store that persists across choice points:
run has type R A→ Store→ Set A× Store and we take

run (Pure v) s = ({v}, s)
run (Get ℓ k) s = run (k (s ℓ)) s

run (Set ℓ v R) s = run R (s{ℓ← v})
run Fail s = (∅, s)

run (Choose R1 R2) s = (V1 ∪ V2, s2)

with run R1 s = (V1, s1) and run R2 s1 = (V2, s2)

29



The free monad

The type R A is an instance of a more general categorical
construction: the free monad.

R A = Pure : A→ R A

| Op : F (R A)→ R A

where F : Type→ Type is a functor: it comes with an operation

fmap : ∀A,B, (A→ B)→ (F A→ F B)

We recover the previous example by defining F as

F X = Get : Loc→ (Val→ X)→ F X | Set : Loc→ Val→ X → F X
| Choose : X → X → F X | Fail : F X

Exercise: define fmap.

30



The free monad

R A = Pure : A→ R A

| Op : F (R A)→ R A

This “functorial” presentation makes it possible to define ret and
bind in a generic way:

ret v = Pure v

bind (Pure v) f = f v

bind (Op φ) f = Op (fmap (λx. bind x f ) φ)

31



The freer monad

(O. Kiselyov, H. Ishii, Freer Monads, More Extensible Effects, 2015.)

Another generic construction of the type of intermediate
execution results.

R A = Pure : A→ R A

| Op : ∀B, Eff B→ (B→ R A)→ R A

Eff B is the type of effects producing a result of type B. Each
specific effect is a constructor of type Eff .

If φ : Eff B, the subtrees of Op(φ, k) are k b for b : B.
There are as many subtrees as there are elements in B.

32



Declaring and typing effects

For mutable state and non-determinism:

Get : Loc→ Eff Val (one subtree per possible value)
Set : Loc→ Val→ Eff unit (one subtree)
Fail : Eff empty (no subtree)
Flip : Eff bool (two subtrees)

We encode the choose operation using the Flip effect:

choose R1 R2
def
= Op(Flip, λb. if b then R1 else R2)

33



The freer monad

R A = Pure : A→ R A

| Op : ∀B, Eff B→ (B→ R A)→ R A

This presentation “indexed by type B” also makes it possible to
define ret and bind generically:

ret v = Pure v

bind (Pure v) f = f v

bind (Op φ k) f = Op (φ, λx. bind (k x) f )

We no longer need a functor nor a fmap.

34



Interpreting effects in the freer monad

Using a generic fold over the type of results:

run : (A→ B)→ (∀C, Eff C → (C → B)→ B)→ R A→ B

run f g (Pure v) = f v

run f g (Op φ k) = g φ (λx. run f g (k x))

For non-determinism with backtracking of state, we take
f : A→ Store→ Set A

f x s = {x}
g : Eff B→ (B→ Store→ Set A)→ Store→ Set A

g (Get ℓ) k s = k (s ℓ) s g (Set ℓ v) k s = k () s{ℓ← v}
g Flip k s = k false s ∪ k true s g Fail k s = ∅

35



Interpreting effects in the freer monad

Using a generic fold over the type of results:

run : (A→ B)→ (∀C, Eff C → (C → B)→ B)→ R A→ B

run f g (Pure v) = f v

run f g (Op φ k) = g φ (λx. run f g (k x))

Note the control inversion: it’s no longer the program that calls
the get, set, . . . operations of the monad;
it’s the implementation of these operations (the g function)
that evaluates the program “on demand” using the
continuation k.

35



Interaction trees

(Xia, Zakowski, et al, Interaction Trees, POPL 2020).

A coinductive version of the type of intermediate results, able to
account for diverging computations:

R A = Pure : A→ R A

| Op : ∀B, Eff B→ (B→ R A)→ R A

| Tau : R A→ R A

Tau denotes one step of computation without effects.

The infinite tree ⊥ def
= Tau ⊥ = Tau(Tau(Tau(. . .))) represents a

computation that diverges without observable effects.

The infinite tree x def
= Op(Flip, λb. if b then Pure 0 else x)

represents let rec f () = choose 0 (f ()).
36



Reminders on algebraic structures



Algebraic structures

An algebraic structure =

• a set (or a type), called the carrier of the structure;
• operations over this set;
• equations (laws) that these operations satisfy.

Example: a monoid is (T, ε, ·) where

ε : T identityl element
· : T → T → T composition

ε · x = x left identity
x · ε = x right identity

(x · y) · z = x · (y · z) associativity

37



Algebraic structures

An algebraic structure =

• a set (or a type), called the carrier of the structure;
• operations over this set;
• equations (laws) that these operations satisfy.

Example: a group is (T, 0,+,−) where

0 : T identity element
+ : T → T → T composition
− : T → T inverse

0 + x = x + 0 = x identity
(x + y) + z = x + (y + z) associativity
(−x) + x = x + (−x) = 0 inverse

37



Theories and models

A theory:
the signature of operators (names and types)
+ the equations.

A model of the theory: a definition of the support and of the
operations that satisfies the equations.

Examples of models for the theory of monoids
(or just: “examples of monoids”):

(N, 0,+) (R, 1,×) (T → T, id, ◦)

Examples of models for the theory of groups
(or just: “examples of groups”):

(Z, 0,+,−) (R∗, 1,×,−1 )

38



Algebraic abstract types

An algebraic abstract type is the specification of a persistent data
structure as a signature and equations.

(→ 2022–2023 course, lecture #1)

Example: stacks

empty : S push : E→ S→ S top : S→ E pop : S→ S

top(push v s) = v pop(push v s) = s

It becomes a queue (FIFO) if we add one operation:

add : S→ E→ S

add empty v = push v empty add (push w s) v = push w (add s v)

39



The free monoid

Given a set (an “alphabet”) A,
the free monoid over A is (A∗, ε, ·), where

• support: A∗ the set of finite lists of A (“words over A”)
such as a1a2 . . . an ;

• identity element ε: the empty list;
• composition · : list concatenation.

Example: taking A = {1, . . . , 9},

1 · (23 · 456) = (1 · 23) · 456 = 123456

40



The free monoid

The free monoid over A is “the simplest” or “the least
constrained” among all monoids whose support contains A.

Indeed, if (B, 0,+) is a monoid, with A ⊆ B, we can define a
function Φ : A∗ → B as

Φ(a1 . . . an) = 0 + a1 + · · ·+ an

(It’s the “fold” of “+” over the list a1 . . . an.)

This function is a morphism from (A∗, ε, ·) to (B, 0,+),
since it commutes with monoid operations:

Φ(ε) = 0 Φ(ℓ1 · ℓ2) = Φ(ℓ1) + Φ(ℓ2)

41



Free models

Let T be an algebraic theory and X a set.

A free T-model generated by X is a T-model M and a function
f : X → supp(M) such that:

For every other T-model M′ and function f ′ : X → supp(M′),
there exists a unique morphism Φ : M→ M′ such that the
following diagram commutes:

X
f

supp(M)

Φ

supp(M′)

f ′

42



Monads viewed as algebraic structures

A monad can be presented as an algebraic structure whose
operations are ret, bind, and op(F) for each constructor F of
type Eff , with the following signatures:

ret : A→ T A

bind : T A→ (A→ T B)→ T B

op(F) : P→ (B→ T A)→ T A if F : P→ Eff B

The equations are the three monadic laws, plus other laws for the
op(F) operations.

43



Free monads are free!

The free monad and the freer monad are free monads generated
by the constructors of type Eff .

Let’s check this fact for the freer monad.

R A = Pure : A→ R A

| Op : ∀B, Eff B→ (B→ R A)→ R A

The associated monad structure, with the expected signature:

ret x = Pure x

bind (Pure x) f = f x

bind (Op(φ, k)) f = Op(φ, λx. bind (k x) f )

op(F) = λx. Op(F x, λy. Pure y)

44



Free monads are free!

Let M = (T, retM, bindM, opM(F)) another monad with the
expected signature. We define a morphism Φ from the freer
monad to M by

Φ : R A→ T A

Φ(Pure v) = retM v

Φ(Op (F x, k)) = bindM (opM(F) x) (λy. Φ(k y))

This morphism commutes with operations ret and bind.
Φ(bind (Pure v) f) = Φ(f v) = bindM (Φ(Pure v)) (λy. Φ(f y)) (1st law)

Φ(bind (Op(F x, k)) f) = Φ(Op(F x, λy. bind (k y) f))

= bindM (opM(F) x) (λy. Φ(bind (k y) f))

(3rd law) = bindM (bindM (opM(F) x) (λy. Φ(k y))) (λz. Φ(f z))

= bindM (Φ(Op(F x, k))) (λz. Φ(f z))

45



Algebraic effects



An algebraic vision of effects

Moggi’s computational lambda-calculus, and more generally the
monadic approach, specify the propagation and sequencing of
effects in a generic manner.

How to specify the generation of effects by the specific
operations of the monad? (set, get, choose, fail, . . . )

Plotkin and Power (2003) propose to specify these operations by
equations, therefore obtaining an algebraic structure for these
effects.

46



A computational lambda-calculus with effects

Values: v ::= x | cst | λx. M
Computations: M,N ::= v v′ application

| if v then M else N conditional
| val v trivial computation
| do x⇐ M in N sequencing
| F(⃗v; y.M) effectful operation

F(v1 . . . vn; y.M) represents an operation that produces an effect.
The values vi are the arguments of this operation. The operation
produces a result value that is bound to y in continuation M.

Notation: F(⃗v ) def= F(⃗v; y. val(y)) (trivial continuation).

47



The laws of the computational lambda-calculus with effects

Same laws as for the computational lambda-calculus:

(λx.M) v = M{x← v}
do x⇐ val v in M = M{x← x}
do x⇐ M in val x = M

do x⇐ (do y ⇐ M in N) in P = do y ⇐ M in do x⇐ N in P

Plus commutation between do and effectful operations:

do x⇐ F(⃗v; y.M) in N = F(⃗v; y. do x⇐ M in N)

Plus laws specific to some effects.

48



Laws for mutable state

The “good variable” properties (read after write):

set(ℓ, v; . get(ℓ; z.M)) = set(ℓ, v; .M{z← v})
set(ℓ, v; . get(ℓ′; z.M)) = get(ℓ′; z. set(ℓ, v; .M)) if ℓ′ ̸= ℓ

Other commutations between accesses to different locations:

get(ℓ; y. get(ℓ′; z.M)) = get(ℓ′; z. get(ℓ; y.M))

set(ℓ, v; y. set(ℓ′, v′; z.M)) = set(ℓ′, v′; z. set(ℓ, v; y.M)) if ℓ′ ̸= ℓ

Other commutations between accesses to the same location:

get(ℓ; y. get(ℓ; z.M)) = get(ℓ; y.M{z← y}) (double read)

get(ℓ; y. set(ℓ, y; .M)) = M (read then rewrite)

set(ℓ, v1; . set(ℓ, v2; .M)) = set(ℓ, v2; .M) (double write)

49



Laws for non-determinism

For failure:

Fail(; k) = Fail(; k′) = Fail() (propagation)

For choice:

choose M M = M (idempotent)

choose M N = choose N M (commutative)

choose (choose M N) P = choose M (choose N P) (associative)

choose Fail() M = choose M Fail() = M (identity)

Less natural to express with the encoding

choose M N = Flip(;λb. if b then M else N)

50



A semantic for computational lambda-calculus with effects

To every computation we associate an interaction tree / a term of
the freer monad.

[[v1 v2]] = [[v1]]v [[v2]]v or Tau([[v1]]v [[v2]]v)

[[val v]] = Pure [[v]]v
[[do x⇐ M1 in M2]] = bind [[M1]] (λx. [[M2]])

[[F(⃗v; y.M)]] = Op (F v⃗) (λy. [[M]])

We can then interpret effects by the appropriate “fold”:

fold : (A→ B)→ (∀C, Eff C → (C → B)→ B)→ R A→ B

fold f g (Pure v) = f v

fold f g (Op φ k) = g φ (λx. fold f g (k x))

51



Interpreting effects by composing handlers

A “fold” can rebuild an interaction tree instead of producing the
final result of the execution. This enables the fold to handle a
subset of the effects and to re-emit the other effects.

Example: a handler for the Get and Set effects.

state : R A→ Store→ R A = fold fstate gstate
fstate v = λs. Pure v

gstate (Get ℓ) k = λs. k (s ℓ) s

gstate (Set ℓ v) k = λs. k () s{ℓ← v}
gstate φ k = λs. Op(φ, λx. k x s) for all other φ

52



Interpreting effects by composing handlers

Example: a handler for the Flip and Fail effects.

nondet : R A→ R (Set A) = fold fnondet gnondet
fnondet v = Pure {v}

gnondet Fail k = Pure ∅
gnondet Flip k = bind (k true) (λx1.

bind (k false) (λx2.

Pure (x1 ∪ x2)))

gnondet φ k = Op(φ, k) for all other φ

53



Interpreting effects by composing handlers

The composition nondet (state t s0) implements the semantics
where the store is backtracked at choice points.

The composition state (nondet t) s0 implements the semantics
where the store persists across choice points.

If the tree t contains no other effect besides Get, Set, Fail and
Flip, the two compositions produce a trivial tree Pure v where v
is the final value of the program.

54



Implementing equations correctly

The equations related to bind are automatically satisfied by the
semantics based on interaction trees.

The other equations must be satisfied by the handlers that
interpret the effects.

55



Laws for mutable state

After conversion to interaction trees and simplification by the
state handler, the 7 laws for mutable state follow from the
following 5 equalities (the two get-get laws are trivial):

s{ℓ← v} ℓ = v

s{ℓ← v} ℓ′ = s ℓ′ if ℓ′ ̸= ℓ

s{ℓ← v}{ℓ← v′} = s{ℓ← v′}
s{ℓ← v}{ℓ′ ← v′} = s{ℓ′ ← v′}{ℓ← v} if ℓ′ ̸= ℓ

s{ℓ← s ℓ} = s

Exercise: show that nondet satisfies the laws for non-determinism.

56



Programming one’s effect handlers

We extend the computational lambda-calculus with a construct
to define effect handlers within the language.

Values: v ::= x | cst | λx. M
Computations: M,N ::= v v′

| if v then M else N
| val v
| do x⇐ M in N
| F(⃗v; y.M) effectful operation
| with H handle M effect handler

Handlers: H ::= { val(x)→ Mval;

F1(⃗x; k)→ M1;

· · ·
Fn(⃗x; k)→ Mn }

57



Intuitive semantics for effect handlers

with {val(x)→ Mval ; . . . ; Fi(⃗x; k)→ Mi ; . . .} handle M

If M terminates with value v, the Mval case is evaluated with x = v.

If M performs the effect Fi(⃗v; y.N), the Mi case is evaluated
with x⃗ = v⃗ and
k = λy.N or k = λy. with {. . .} handle N .
(shallow handler) (deep handler)

If M performs another effect F(⃗v; y.N), with F /∈ {F1, . . . , Fn},
we perform the effect F(⃗v; y.N) or F(⃗v; y. with {. . .} handle N).

(shallow handler) (deep handler)

58



Denotational semantics of effect handlers

The denotation [[H]] of an effect handler is an interaction tree
transformer, so that

[[with H handle M]] = [[H]] [[M]]

This transformer is a “fold” for a deep handler and a case
analysis for a shallow handler:

[[H]] =

fold [[H]]ret [[H]]eff (deep handler)
case [[H]]ret [[H]]eff (shallow handler)

fold and case are defined as
fold f g (Pure v) = f v case f g (Pure v) = f v

fold f g (Op(φ, k)) = g φ (λx. fold f g (k x)) case f g (Op(φ, k)) = g φ k

59



Denotational semantics of effect handlers

H = {val(x)→ Mval ; F1(⃗x; k)→ M1 ; . . . ; Fn(⃗x; k)→ Mn}

We define the semantics for normal return and for return on an
effect:

[[H]]ret x = [[Mval]]

[[H]]eff (Fi x⃗ ) k = [[Mi]]

[[H]]eff (F x⃗ ) k = Op (F x⃗ ) k if F /∈ {F1, . . . , Fn}

60



Summary



Summary

Two steps towards a general theory of effects in programming
languages.

• Monads:
• “Clean up” denotational semantics and transformation of

functional programs.
• Programming in monadic style generalizes programming in

CPS, and makes it possible to use effects that are not
supported natively by the programming language.

• Algebraic effects:
• Specifying effects by equations.
• Implementing effects by effect handlers,

which are “folds” or “cases” on interaction trees.
• Effect handlers can be defined within the programming

language.

61



References



References

An introduction to monadic programming:

• Philip Wadler: Monads for functional programming. 1995. https:
//homepages.inf.ed.ac.uk/wadler/papers/marktoberdorf/baastad.pdf

An introduction to effects and effect handlers:

• Matija Pretnar: An Introduction to Algebraic Effects and Handlers,
ENTCS 319, 2015. https://doi.org/10.1016/j.entcs.2015.12.003

The freer monad:

• Oleg Kiselyov, Hiromi Ishii: Freer monads, more extensible effects.
Haskell 2015: 94-105. https://doi.org/10.1145/2804302.2804319

The algebraic viewpoint:

• Andrej Bauer: What is algebraic about algebraic effects and handlers?
2018. https://arxiv.org/abs/1807.05923

62

https://homepages.inf.ed.ac.uk/wadler/papers/marktoberdorf/baastad.pdf
https://homepages.inf.ed.ac.uk/wadler/papers/marktoberdorf/baastad.pdf
https://doi.org/10.1016/j.entcs.2015.12.003
https://doi.org/10.1145/2804302.2804319
https://arxiv.org/abs/1807.05923

	Monads
	Free monads   and interaction trees
	Reminders on algebraic structures
	Algebraic effects
	Summary
	References

