Control structures, first lecture

The birth of control structures:
from “goto” to structured programming

Xavier Leroy
2024-01-25

College de France, chair of software sciences
xavier.leroy@college-de-france.fr

Early computers, early languages

The programmable computer with stored program

An architecture described in 1945 by John von Neumann and
semi-independently by Alan Turing.

Used by most computers designed since then.
EXECUTIVE COMMITTER

Proposals for Development in the Mathematics Division
of an Automatic Computing Engine

(acE)

Report

by Dr. A. ¥, Turing

Program counter and jumps

A “PC” register, the program counter, contains the address of the
memory word containing the the next instruction.

Regular instructions increment the PC
— sequential execution.

Branch instructions set the value of the PC
— jump to any program point.

Example: output the numbers 1!, 2!, ..., nl, ...
0: set r1, 1 (r1 = the value of n!)
4: set r2, 1 (r2 = the value of n)

8: output ril

12: add r2, r2, 1
16: mul r1, r1, r2
20: branch 8

Conditional branches

Modern processors provide conditional branch instructions that

+ set the PCif a condition is true
(e.g. if a register contains a non-zero value);

- continue in sequence if the condition is false.

Example: a counted loop that computes n!

(r1 = the value of n)
0: set r2, 1
4: mul r2, r2, rl
8: sub r1, r1, 1
12: brnz ri1, 4

(r2 the value of n!)

Historical alternative: self-modifying code

Neither von Neumann nor Turing consider conditional branches.
Instead, they rely on the code being stored in memory and
modifiable during the execution of the program!

Example: branchto 0 ifr1 = 0and to 4 ifr1 = 1.
We assume that the branch n instruction is encoded as
0x76000000 + n.

184:
188:
192:
196:
200:

set r2, 0x76000000

mul r3, rl, 4

add r2, r2, r3

store r2, 200

nop (dynamically-modified instruction)

Machine language

An encoding of instructions and their operands as binary

numbers (often 32-bit wide).

Example: conditional branch in the Power architecture.

be be

Branch Conditional [and Link] [Absolute]

be BO,BI,BD (AA=0, LK=0)
bca BO,BI,BD (AA=1, LK=0)
bel BO,BI,BD (AA=0, LK=1)
bcla BO,BI,BD (AA=1, LK=1)
0 5 6 10 11 15 16 29 30 31
010000 BO BI BD |AA‘LK|

if —BO, then CTR « CTR - 1
ctr_ok ¢ BO; | ((CTRy.e3 # 0) @ BO3)
cond_ok ¢ BO, | (CRgy,3, = BO;)
if ctr_ok & cond_ok then
if AA=1 then a « °0 else a « CIA
NIA « ™0 Il (a + EXTS(BDII0b00)) .63
else NIA ¢ "0 Il (CIA + 4)p.63
if LK=1 then LR « CIA + 4

For us humans: very hard to write...

and impossible to read!

Program flowcharts

A graphical, often informal representation of programs.

(Giacomo Alessandroni, CC BY-SA 4.0)

To produce machine language from a flowchart:
place instructions in memory; add branches; encode instructions.

Assembly language (1947)

A textual representation of machine language:

+ mnemonics to name processor instructions;
+ labels to name program points;
« comments to document the code.

Example: a counted loop that computes n!

; Compute factorial of n.
; N is passed in rl.
; n! is left in r2.

; rl is clobbered.

set r2, 1 ; initialize result to 1
again: mul r2, r2, ril ; multiply result by n

sub r1, r1, 1 ; decrement n

brnz rl, again ; repeat until n = 0

; here, result is n!

Macro-assemblers and “autocoders” (IBM, 1955)

Pseudo-instructions that represent often-used instruction
sequences. Expanded by the assembler.

Example: a counted loop.

Source code Code after expansion
set r1, O

BEGIN_LOOP(1bl, ri1, 0) 1bl:

END_LOOP(1bl, r1, 100) add r1, r1, 1
cmp rl, 100

brlt 1bl

The first control structures

The FORTRAN language (1957)

Complex expressions, using familiar algebraic notations,
automatically translated to machine instructions

(FORmula TRANSslator).

FORTRAN source: Assembly code:
D = SQRT(B*B - 4xA*C) mul t1, b, b
X1 = (-B + D) / (2%A) mul t2, a, c
X2 = (-B - D) / (2xA) mul t2, t2, 4
sub t1, t1, t2
sqrt 4, ti
mul t3, a, 2

But also: the first control structure!

sub
div
neg
sub

div

x1, d, b
x1, x1, t3
x2, b

x2, x2, d
x2, x2, t3

10

Control in FORTRAN |

Counted loops:

DO 100 I =1, N

100:

Repeatedly executes the lines between D0 and 100 (excluded)
with I taking successive values1,2,...,N.

Efficient compilation: test at end of loop, loop unrolling, etc.

1

Control in FORTRAN |

Labels and GO TO.
Three-way conditional branch IF X L1, L2, L3
(branch whether X < 0orX =0 orX > 0).
IF X 701, 702, 702
701: X = -X
702:
Branching to a computed label.
ASSIGN 100 TO DEST

GO TO DEST

Fortran IV (1961): Boolean conditional branch.
IF X .LT. Y GOTO 100

12

Structured commands in Algol (1960)

Expressions are formed from constants and variables. Likewise,
Algol promotes the view that commands (statements, s) are
constructed from elementary commands

« assignment: x := expr

« procedure call: proc(argl, arg2)
combined using control structures

« sequence (“blocks”): begin s1; Sp; ... end
+ conditional: if be then s; else s;
« counted loop: for i := ey step e, until e3 do S

» general loop: while be do s

13

A change of perspective on programs

At the syntax level: formal grammars such as “Backus-Naur form”
(BNF); recursive algorithms for parsing.

Commands: s:=x := e
| proc(eq, ..., en)
| begin Sy;...;Sp end

| if be then s [else)]
| while be do s
| for X := e; step e, until e; do s

At the semantic level: (intuitive, then formal later on)
a realization that the meaning of a command is entirely

determined by that of its sub-commands.

14

Unstructured control in Algol

Algol also supports unstructured control, with jumps to labels
that designate commands:

8 %= 000
|L:s

| go to L|goto L|go L jump to labellL

command labeled L

A label has a scope, which is the block enclosing the definition of
the label. We cannot jump into a block from outside the block.

Jump within ¢

begin
integer i;
1536 0o
goto L
end

Jump out v/

begin

integer ij;

. goto L ...

end;
8 oo

Jump into X

goto L;
begin

integer i;
b8 ooo

end
15

Control structures + “goto”

This “Algol style” with structured control and goto
quickly became the standard to describe and publish algorithms
(since 1960 in Comm. ACM), instead of flowcharts.

ALGORITHM 95 begin integer a.i,j;

GENERATION OF PARTITIONS IN PART-COUNT if 7 G then go to first;
FORM & i s

FRANK STOCKMAL) test: ifa < j then go to B;

System Development Corp., Santa Monica, Calif. eli] := 1 + eli];

procedure partgen(c,N,K,G); integer NK; integer array ¢; zero: ;:'([:r] ;i 32_sl;le;p Tuntilj — 1

Boolean G;

comment This procedure operates on a given partition of the do cfi] := 0;
positive integer N into parts £ K, to produce a consequent .go‘to EXIT;
partition if one exists. Each partition is represented by the B: ifj = K t}1en go to last;
integers c[1] thru ¢{K], where c[s] is the number of parts of the a a+j Xeljl;
partition equal to the integer j. If entry is made with G = false, ji=i+1
procedure ignores the input array c, sets G = true, and pro- go to test;

duces the first partition of N ones. Upon each successive entry first:
with G = true, a consequent partition is stored in ¢[1] thru ¢[K].
For N = KX, the final partition is ¢|K] = X. For N = KX+,

1 £ r £ K—1, final partition is ¢[K] = X, ¢[r] = 1. When entry go to zero;
is made with array ¢ = final partition, ¢ is left unchanged and ¢ last: G := false;
is reset to false; EXIT: end partgen

16

Control structures + “goto”

We find this combination of “goto” and control structures in many
imperative and object-oriented languages:
Algol 68, Algol W, Pascal, Ada, Simula, PL/I, C, C++, CH, Perl, Go, ...

Languages with “goto” and counted loops, such as FORTRAN and
BASIC, evolved by adopting Algol-style control structures
(if...else... in FORTRAN 77, do while in FORTRAN 90).

Some imperative/object oriented languages without “goto”:
Modula-2 (1980), Eiffel (1986), Python (1991), Java (1995).

17

Other flavors of conditionals

Cascading Boolean tests:

if beq; then s1 elsif be, then S, elsif ... else Sp

also written (cond (bey s1) (bey s;) ... (t sp)) in Lisp.

Case analysis on a value of integer type or enumerated type:

case (grade) of
Y
’C:
1S3
YA

JA)
JB)’
)D7
)F}
end

S2

switch (grade) {
case ’'A’: Sq; break;
case ’'B’:
case 'C’: Sy; break;
case ’'D’: S3; break;

case ’'F’: S,; break;

18

Other flavors of loops

General loops:

- test at beginning: while be do s
« testatend: do s while be or repeat s until be
+ testin the middle: loop ...exit if be...end

Counted loops with early exit conditions: (PL/I, Algol 68)

[FOR index] [FROM first] [BY increment][TO last] [WHILE condition]
DO statements 0D

Loops that iterate over a collection of values:

for item in collection: s (Python)
for (Type item : collection) { s } (Java)

Early exits from loops

Exit from the enclosing loop:
break (C, C++, Java) |/ exit (Ada) / last (Perl)

Abort the current iteration and start the next one:
continue (C, C++, Java) |/ next (Perl)

Multi-level exit for nested loops:
« exit from the N-th enclosing loop

- exit from the loop labeled L

break N (Shell)
break L (Java)

xloop: for (int x = 0; x < dimx; x++)

yloop: for (int y = 0; y < dimy; y++) {
. break xloop ... break yloop ...

20

Structured programming,
structured control

The movement for structured programming (1965-1975)

A radical change of perspective on software.
Abandon the view of programs as

flowcharts and machine code
and start viewing programs as

a constructed, structured source text,
directly readable (without a flowchart on the side),
which we can reason about
(informally, then mathematically).

The manifesto for this movement: the book Structured
Programming by Dahl, Dijkstra, and Hoare (1972).

21

The structured control controversy (1965-1975)

A dispute between two programming styles:

« Programs using many “goto”,
obtained by naive transcription of a flowchart.

+ Programs using mainly control structures (conditionals,
loops), written directly, without a flowchart.

The slogan for this dispute:

Go to statement considered harmful

(Title of a short communication by Dijkstra in CACM 1968. The title was chosen
not by the author but by the CACM editors.)

22

Since the summer of 1960, | have been writing programs
in outline form, using conventions of indentation to indi-
cate the flow of control. | have never found it necessary
to take exception to these conventions by using go state-
ments.

| used the keep these outlines as original documentation
of a program, instead of using flow charts...Then | would
code the program in assembly language from the out-
lines. Everyone liked these outlines better than the flow
charts.

(Dewey Val Schorre, 1966)

23

If you look carefully you will find that surprisingly often
a go to statement which looks back really is a concealed
for statement. And you will be pleased to find how the
clarity of the algorithm improves when you insert the for
clause where it belongs.

If the purpose [of a programming course] is to teach Algol
programming, the use of flow diagrams will do more
harm than good, in my opinion.

(Peter Naur, BIT, 1963).

24

Sparking the controversy

Go To Statement Considered Harmful

Key Words and Phrases: go to statement, jump instruction,
branch instruction, conditional clause, alternative clause, repet-
itive clause, program intelligibility, program sequencing

CR Categories: 4.22, 5.23, 5.24

EpiTOR:

For a number of years I have been familiar with the observation
that the quality of programmers is a decreasing function of the
density of go to statements in the programs they produce. More
recently I discovered why the use of the go to statement has such
disastrous effects, and I became convinced that the go to state-
ment should be abolished from all “‘higher level” programming
languages (i.e. everything except, perhaps, plain machine code).
At’that time I did not attach too much importance to this dis-
covery; I now submit my considerations for publication because
in very recent discussions in which the subject turned up, I have
been urged to do so.

(E. W. Dijkstra, Communications of the ACM 11(3), 1968.)

A reflection on the difficulty to know “where we are” in a program
execution, and which path was taken from the beginning.

23]

Which “coordinates” to designate a point in the execution?

if (x == 0) {
} else if (y == 0) {

500 < YOU ARE HERE
} else {

Sequence and conditionals:
current program point + Boolean values of previous conditionals.

26

Which “coordinates” to designate a point in the execution?

while (x < y) { < 2nd iteration
while (alx] !'= 0) { <« 5thiteration
if (x == 0) {

} else if (y == 0) {
500 < YOU ARE HERE
} else {

}

Sequence, conditionals, and loops:
program point + Boolean values + iteration counts for all loops.

26

Which “coordinates” to designate a point in the execution?

while (x < y) { < 2nd iteration
while (alx] !'= 0) { <« 5thiteration
if (x == 0) {
153 6 0o
} else if (y == 0) {
< YOU ARE HERE
} else {
..; if (y < 10) goto L;

}

With unrestricted goto: it becomes terribly hard to find a
meaningful set of coordinates in which to describe the process

progress (Dijkstra).
26

Food for thought!

The tide of opinions first hit me personally in 1969, when
| was teaching an introductory programming course for
the first time. | remember feeling frustrated at not seeing
how to write programs in the new style; | would run to
Bob Floyd'’s office asking for help, and he usually showed
me what to do.

(D. E. Knuth, 1974)

After Dijkstra’s paper, a great many studies

+ to see whether goto-free programming is really the best way
to express program structure;

+ to find out how to eliminate goto, on a case-by-case basis or
systematically by program transformation.

27

Knuth’s survey

D. E. Knuth, Structured Programming with go to Statements,
Computing Surveys 6(4), 1974.

After a historical account of the controversy, Knuth studies,
on well-chosen examples,

« the impact of goto elimination on code clarity
(especially if Boolean flags must be added);

+ the impact of goto elimination on performance;

+ what control structures (beyond those of Algol) might help
express program structure better.

28

Example: a hash table

Two arrays: A[N] containing the keys, B[N] containing the values.

void add(key k, data d)

{
int i = hash(k);
while (1) {
if (A[i] == 0) goto notfound;
if (A[i] == k) goto found;
i=1i+1; if (4 >= N) i = 0;
}
notfound: A[i] = k;
found: B[i] = d;
}

Very concise code! But there are two goto...
29

Example: a hash table

Using a while loop:

void add(key k, data d)

{
int i = hash(k);
while (! (A[i] == 0 || A[i] == k)) {
i=1+1; if (i >=N) i = 0;
+
if (A[i] == 0) A[i] = k;
B[i] = 4d;
}

The test A[i] == 0 is duplicated.

30

Example: a hash table

Using a loop with early exits (break):

void add(key k, data d)

{
int i = hash(k);
while (1) {
if (A[i] == 0) { A[i] = k; B[i] = d4; break; }
if (A[i] == k) { B[i] = d; break; }
i=1i+1; if (i > N) i =0;
+
}

Minor duplication of the code B[i]
performance.

d, but no impact on

31

Example: error handling with resource freeing

A system programming idiom in C.

int retcode = -1; [/ error
int fd = open(filename, O_RDONLY);
if (£d == -1) goto errl;

char * buf = malloc(bufsiz);
if (buf == NULL) goto err2;

if (something goes wrong) goto err3;

retcode = 0; [/ success
err3: free(buf);
err2: close(fd);
errl: return retcode;

Avoids any duplication of the code that frees resources.

32

Example: error handling with resource freeing

A version without goto that suffers from code duplication:

int fd = open(filename, O_RDONLY);

if (fd == -1) return -1;

char * buf = malloc(bufsiz);

if (buf == NULL) { close(fd); return -1; }

if (something goes wrong) {

free(buf); close(fd); return -1;
}

free(buf); close(fd); return O;

38)

Example: error handling with resource freeing

A version based on blocks do ... while(0) and on break.
Would be more robust with a multi-level break.

int retcode = -1; /| error
do { int fd = open(filename, O_RDONLY);
if (fd == -1) break;

do { char * buf = malloc(bufsiz);
if (buf == NULL) break;
do { ...
if (something goes wrong) break;

retcode = 0; [/ success
} while (0); free(buf);
} while (0); close(fd);

} while(0); return retcode;

34

Expressiveness of structured control

The “goto” elimination problem

A technical question that plays a central role in the structured
control controversy:

Is it always possible to transform an unstructured program (using
goto and if...goto) into an equivalent structured program?

With or without code duplication?

With or without introducing additional variables?

85

A well-known result

Theorem

Any unstructured program (or, equivalently, any flowchart) is
equivalent to a structured program comprising a single while
loop and one extra integer variable.

36

A simple proof of the well-known result

1: Sq;

if (b)) goto 3;
2: Sy;

goto 4;
3: S3;

4: S,
if (b,) goto 1;

37

A simple proof of the well-known result

1: Sq;
if (b)) goto 3; else goto 2;
2: Sy;
goto 4;
3: S3;
goto 4;
4: S,
if (b,) goto 1; else goto 0;

Reformat the program as basic blocks: sequences of assignments
terminated by branches, either goto L or

if be then goto L; else goto L,.
37

A simple proof of the well-known result

1: Sq;
if (b)) goto 3; else goto 2;
2: Sy;
goto 4;
3: S3;
goto 4;
4: S,
if (b,) goto 1; else goto 0;

Replace labels by numbers 0, 1, 2, ..., with 0 being the label for
the end of the program.

37

A simple proof of the well-known result

1: Sq;
if (by) pc := 3; else pc := 2;
2: Sy;
pc := 4;
3: S3;
pc := 4;
4: S,
if (b,) pc := 1; else pc := 0;

Replace each goto L by an assignment pc := L
where pc is a new integer variable.

37

A simple proof of the well-known result

switch (pc) {

case 1: Sq;

if (by) pc := 3; else pc := 2; break;
case 2: Sy;

pc := 4; break;
case 3: S3;

pc := 4; break;
case 4: S;;

if (b,) pc := 1; else pc := 0; break;

Turn each basic block into one case of a switch
over the value of pc.

37

A simple proof of the well-known result

int pc = 1; while (pc !'= 0) {
switch (pc) {

case 1: Sq;

if (by) pc := 3; else pc := 2; break;
case 2: Sy;

pc := 4; break;
case 3: S3;

pc := 4; break;
case 4: S;;

if (b,) pc := 1; else pc := 0; break;

}

Add a while loop to iterate the switch until pcis 0.

37

Iterating a transition function

If we view the original flowchart / unstructured program as a
finite automaton, the previous proof amounts to constructing its
transition function

current state (in pc) — next state (in pc)
as a case analysis on the value of pc
switch (pc) { ... }
then to iterating this function until the final state is reached

while (pc '=0) { ...}

Variants:
one integer variable pc — several Boolean variables

one switch — acascade of if...then...else.
38

The folk lore around this result

(David Harel, On Folk Theorems, CACM 23(7), 1980)

The result is often attributed to Bohm and Jacopini, Flow
diagrams, Turing machines, and languages with only two
formation rules, CACM 1966.

However, this paper shows a different result (resulting in several
while loops) with more subtle techniques (local graph rewriting).

Fra. 13. Structure of a type I diagram Fyg. 14. Structure of a type 1T diagram Fic. 15. Structure of a type I diagram

39

The folk lore around this result

The simple proof of the well-known result appears in 1967 in a
letter by D. C. Cooper to the CACM editors.

It is mentioned later in tens of papers and books, often
attributed to Bohm and Jacopini, or without attribution...

Harel traces the result back to Kleene (1936) !
(Every partial recursive function is the “minimization” of a
primitive recursive function.)

40

Reductions between control structures

(S. Rao Kosaraju, Analysis of Structured Programs,)CSS 9, 1974.)

Let L, and L, be two languages that have the same base
commands (assignments, function calls, ...) but differ on their
control structures.

L, is reducible to L, if for each L, program, there exists an L,
program that

+ has the same base commands (no code duplication);

» uses no additional variables.

A

Example of reduction: do-while loop

The do-while loop (with test at end of iteration) is not reducible
to the while-do loop (with test at beginning). Indeed, to translate

do s while be

we must either duplicate s

begin S; while be do S end

or introduce a Boolean variable

loop := true; while loop do begin s; loop := be end

In contrast, do-while is reducible to while-do + break:

while true do begin S; if not be then break end

42

Example of reduction: acyclic flowcharts

Cycle-free flowcharts are not reducible to if-then-else.

RN
ST
? ?

T F T F

Either we duplicate s;:

if ...
then if ... then Sq else S,

else if ... then S, else s;3

43

Example of reduction: acyclic flowcharts

Cycle-free flowcharts are not reducible to if-then-else.

A
T)?\FT FT)?\F

Or we add a Boolean variable:

do_s2 := false

if ...
then if ... then S, else do_s2 := true
else if ... then do_s2 := true else S3;

if do_s2 then s,

43

Example of reduction: acyclic flowcharts

Cycle-free flowcharts are not reducible to if-then-else.

A
T)?\FT FT)?\F

But we can reduce if we have loops with early exits (break):

loop
if ...
then if ... then begin S;; break end
else if not ... then begin S;3; break end;
S;; break

endloop
43

Reducible control-flow graphs and structured control

(W. W. Peterson, T. Kasami, N. Tokura. On the capabilities of while,
repeat, and exit statements. CACM, 16(8), 1973.)

The language of reducible control-flow graphs
is Kosaraju-reducible

to a structured language with conditionals, infinite loops,
and multi-level exits (break N, continue N).

44

Control-flow graphs (CFG)

A formalization of program flowcharts.

An intermediate representation used in many compilers.

A CFG = a directed graph, with
+ nodes = basic blocks
- edges = jumps
(1 outgoing edge: goto;
2 edges: if-then-else;
N edges: switch)

printf ("*")
SRR e |

45

Dominance

A node A dominates a node B if A is necessarily executed
before B: any path from the root to B goes through A.

.| every node dominates itself
@9@ A dominates B, C, D, E

Q D dominates E

®

This leads to a classification of edges A — B:

- it's a back edge if B dominates A;

« it's a forward edge otherwise.

46

Reducible control-flow graphs

A CFG is reducible if its forward edges form an acyclic graph.

Irreducible Reducible

47

Reducible control-flow graphs

Many equivalent definitions, in particular:
a CFG is reducible if it can reduce to a single node by repeatedly
applying transformations T1 and T2.

o
e

48

Loops in reducible CFGs

In a reducible CFG, each loop X (= strongly-connected set of
nodes) is a natural loop:

« It has a single entry point T € X, the loop head.
« T dominates every node in X.

- Every node in X has a path to T that stays within X.

Natural loop (head is A) Non-natural loop

49

Control structures and reducibility

All the control structures viewed so far:

« conditionals: if-then-else, switch
+ loops with test at beginning, at end, in the middle

- early exits: return, break, continue

produce reducible CFGs.

50

Control structures and reducibility

All the control structures viewed so far:

« conditionals: if-then-else, switch
+ loops with test at beginning, at end, in the middle

- early exits: return, break, continue
produce reducible CFGs.
Conversely: every reducible graph is the CFG of a program

without goto, using only conditionals, infinite loops, and
multi-level break/continue exits.

50

Constructing the structured program

The historical algorithm by Peterson, Kasami, and Tokura (1973):
three passes; outlined in a proof.

A more recent algorithm: N. Ramsey, Beyond Relooper: Recursive
Translation of Unstructured Control Flow to Structured Control
Flow, ICFP 2022.

Recursion on the dominator tree for the graph.

51

Ramsey'’s algorithm

l entry
(4)

(a) Unusual control-flow graph (b) Dominator tree (c) Imposed nesting structure
(node E reachable two ways)

Each loop head produces an infinite while true loop.

The children in the domination tree that are also successors
produce if-then-else conditionals. (A, B, C, D)

52

Ramsey'’s algorithm

l entry
(4)

(a) Unusual control-flow graph (b) Dominator tree (c) Imposed nesting structure
(node E reachable two ways)

The other children (E, F) are placed in blocks, nested according to
reverse postorder.

Nontrivial edges become break N or continue N.

52

Ramsey'’s algorithm

l entry
(4)

(a) Unusual control-flow graph (b) Dominator tree (c) Imposed nesting structure
(node E reachable two ways)

block { /I blue area
block { // red area
if (A) { if (B) { C; break 2; } else { break 1; }
else { if (D) { break 1; } else { break 2; }
} E;

} F;
52

Summary

From goto to structured programming

From 1945 to 1975, programming practices and programming
languages shifted

+ from a “machine” view of control (jumps and labels),
using program flowcharts to aid comprehension,
+ to a structured view of control (conditionals, loops, etc.),

making the source code the main representation of the
program.

Next lecture: how to structure programs at a larger scale:
subroutines, procedures, functions, generators, coroutines, ...

53]

References

References

A short, journalistic story of Algol:

« ALGOL 60 at 60: The greatest computer language you’ve never used
and granddaddy of the programming family tree, The Register,
15/05/2020. https://www.theregister.com/2020/05/15/algol_60_at_60/

On structured programming:

« D. E. Knuth, Structured Programming with go to Statements,
Computing Surveys 6(4), 1974.

On translating CFGs to structured programs:

+ N. Ramsey, Beyond Relooper: Recursive Translation of
Unstructured Control Flow to Structured Control Flow (Functional
Pearl), PACMPL 6, ICFP, 2022.

54

https://www.theregister.com/2020/05/15/algol_60_at_60/

	Early computers, early languages
	The first control structures
	Structured programming, structured control
	Expressiveness of structured control
	Summary
	References

