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Early computers, early languages



The programmable computer with stored program

An architecture described in 1945 by John von Neumann and
semi-independently by Alan Turing.

Used by most computers designed since then.
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Program counter and jumps

A “PC” register, the program counter, contains the address of the
memory word containing the the next instruction.

Regular instructions increment the PC
→ sequential execution.

Branch instructions set the value of the PC
→ jump to any program point.

Example: output the numbers 1!, 2!, . . . , n!, . . .

0: set r1, 1 (r1 = the value of n!)

4: set r2, 1 (r2 = the value of n)

8: output r1

12: add r2, r2, 1

16: mul r1, r1, r2

20: branch 8
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Conditional branches

Modern processors provide conditional branch instructions that

• set the PC if a condition is true
(e.g. if a register contains a non-zero value);

• continue in sequence if the condition is false.

Example: a counted loop that computes n!

(r1 = the value of n)

0: set r2, 1

4: mul r2, r2, r1

8: sub r1, r1, 1

12: brnz r1, 4

(r2 = the value of n!)
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Historical alternative: self-modifying code

Neither von Neumann nor Turing consider conditional branches.
Instead, they rely on the code being stored in memory and
modifiable during the execution of the program!

Example: branch to 0 if r1 = 0 and to 4 if r1 = 1.
We assume that the branch n instruction is encoded as
0x76000000+ n.

184: set r2, 0x76000000

188: mul r3, r1, 4

192: add r2, r2, r3

196: store r2, 200

200: nop (dynamically-modified instruction)
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Machine language

An encoding of instructions and their operands as binary
numbers (often 32-bit wide).

Example: conditional branch in the Power architecture.
Instruction Set

EREF: A Programmer’s Reference Manual for Freescale Power Architecture Processors, Rev. 1 (EIS 2.1)

Freescale Semiconductor 6-37
 

bc bc
Branch Conditional [and Link] [Absolute]

bc BO,BI,BD (AA=0, LK=0)
bca BO,BI,BD (AA=1, LK=0)
bcl BO,BI,BD (AA=0, LK=1)
bcla BO,BI,BD (AA=1, LK=1)

if ¬BO2 then CTR ← CTR - 1
ctr_ok  ← BO2 | ((CTRm:63 ≠ 0) ⊕ BO3)
cond_ok ← BO0 | (CRBI+32 ≡ BO1)
if ctr_ok & cond_ok then

if AA=1 then a ← 640 else a ← CIA
NIA ← m0 || (a + EXTS(BD||0b00))m:63

else           NIA ← m0 || (CIA + 4)m:63
if LK=1 then LR ← CIA + 4

The branch target address is the address of the next instruction to be executed if the branch is to be taken.

BI+32 specifies the CR bit to be tested. The BO instruction field specifies any conditions that must be met 
for the branch to be taken, as defined in Section 5.6.1.9, “Conditional Branch Control.” Depending on 
mode, all 64 bits or the lower 32 bits of CTR are used to determine whether the CTR is non-zero.

If AA=0 and the branch is to be taken then the branch target address is the sum of BD || 0b00 sign extended 
and the address of this instruction. If AA=1 and the branch is to be taken then the branch target address is 
BD || 0b00 sign extended.

In 32-bit mode, bits 0:31 of NIA are set to zero if the branch is taken.

If the branch is not taken, the next sequential instruction is the address of the next instruction to be 
executed.

If LK=1, the sum CIA+4 is placed into the LR.

The BI field specifies the CR bit used as the condition of the branch, as shown in Table 6-5.

0 5 6 10 11 15 16 29 30 31

0 1 0 0 0 0 BO BI BD AA LK

Table 6-5. BI Operand Settings for CR Fields

 CRn Bits  CR Bits BI Description

CR0[0] 32 00000 Negative (LT)—Set when the result is negative.

CR0[1] 33 00001 Positive (GT)—Set when the result is positive (and not zero).

CR0[2] 34 00010 Zero (EQ)—Set when the result is zero.

CR0[3] 35 00011 Summary overflow (SO). Copy of XER[SO] at the instruction’s completion.

CR1[0] 36 00100 Copy of FPSCR[FX] at the instruction’s completion.

CR1[1] 37 00101 Copy of FPSCR[FEX] at the instruction’s completion.

Base User

For us humans: very hard to write. . . and impossible to read! 6



Program flowcharts

A graphical, often informal representation of programs.

(Giacomo Alessandroni, CC BY-SA 4.0)

To produce machine language from a flowchart:
place instructions in memory; add branches; encode instructions.
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Assembly language (1947)

A textual representation of machine language:

• mnemonics to name processor instructions;
• labels to name program points;
• comments to document the code.

Example: a counted loop that computes n!

; Compute factorial of n.

; n is passed in r1.

; n! is left in r2.

; r1 is clobbered.

set r2, 1 ; initialize result to 1

again: mul r2, r2, r1 ; multiply result by n

sub r1, r1, 1 ; decrement n

brnz r1, again ; repeat until n = 0

; here, result is n! 8



Macro-assemblers and “autocoders” (IBM, 1955)

Pseudo-instructions that represent often-used instruction
sequences. Expanded by the assembler.

Example: a counted loop.

Source code Code after expansion

set r1, 0

BEGIN_LOOP(lbl, r1, 0) lbl:

... ...

... ...

END_LOOP(lbl, r1, 100) add r1, r1, 1

cmp r1, 100

brlt lbl
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The first control structures



The FORTRAN language (1957)

Complex expressions, using familiar algebraic notations,
automatically translated to machine instructions
(FORmula TRANslator).

FORTRAN source: Assembly code:

D = SQRT(B*B - 4*A*C) mul t1, b, b sub x1, d, b

X1 = (-B + D) / (2*A) mul t2, a, c div x1, x1, t3

X2 = (-B - D) / (2*A) mul t2, t2, 4 neg x2, b

sub t1, t1, t2 sub x2, x2, d

sqrt d, t1 div x2, x2, t3

mul t3, a, 2

But also: the first control structure!
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Control in FORTRAN I

Counted loops:

DO 100 I = 1, N

...

...

100: ...

Repeatedly executes the lines between DO and 100 (excluded)
with I taking successive values 1, 2, . . . , N.

Efficient compilation: test at end of loop, loop unrolling, etc.
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Control in FORTRAN I

Labels and GO TO.

Three-way conditional branch IF X L1, L2, L3

(branch whether X < 0 or X = 0 or X > 0).
IF X 701, 702, 702

701: X = -X

702: ...

Branching to a computed label.
ASSIGN 100 TO DEST

...

GO TO DEST

Fortran IV (1961): Boolean conditional branch.
IF X .LT. Y GOTO 100
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Structured commands in Algol (1960)

Expressions are formed from constants and variables. Likewise,
Algol promotes the view that commands (statements, s) are
constructed from elementary commands

• assignment: x := expr

• procedure call: proc(arg1, arg2)

combined using control structures

• sequence (“blocks”): begin s1; s2; . . . end

• conditional: if be then s1 else s2

• counted loop: for i := e1 step e2 until e3 do s

• general loop: while be do s
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A change of perspective on programs

At the syntax level: formal grammars such as “Backus-Naur form”
(BNF); recursive algorithms for parsing.

Commands: s ::= x := e
| proc(e1, . . . , en)

| begin s1; . . . ; sn end

| if be then s1 [else s2]

| while be do s
| for x := e1 step e2 until e3 do s

At the semantic level: (intuitive, then formal later on)
a realization that the meaning of a command is entirely
determined by that of its sub-commands.
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Unstructured control in Algol

Algol also supports unstructured control, with jumps to labels
that designate commands:

s ::= . . .

| L : s command labeled L
| go to L | goto L | go L jump to label L

A label has a scope, which is the block enclosing the definition of
the label. We cannot jump into a block from outside the block.

Jump within ✔

begin

integer i;

L:...

goto L

end

Jump out ✔

begin

integer i;

... goto L ...

end;

L: ...

Jump into ✘

goto L;

begin

integer i;

L:...

end
15



Control structures + “goto”

This “Algol style” with structured control and goto

quickly became the standard to describe and publish algorithms
(since 1960 in Comm. ACM), instead of flowcharts.

H. J. W E G S T E  N ,  E d i t o r  

A L G O R I T I t M  93 
G E N E R A L  O R D E R  A R I T H M E T I C  
MILLARD H.  PERSTEIN 
C o n t r o l  D a t a  Co rp . ,  P a l o  A l to ,  Calif .  

procedure  ari thmetic (a, b, c, op); 
in t eger  a, b, c, op; 
¢ o n l m e n t  This procedure will perform different order ar i thmetic  

operations with b and c, put t ing  the result in a. The order of the 
operation is given by op. For op = 1 addit ion is performed. For 
op = 2 multiplicaLion, repeated addition, is done. Beyond these 
the operations are non-commutat ive.  For op = 3 exponentiat ion,  
repeated multiplication, is done, raising b to the power c. Beyond 
these the question of grouping is important .  The innermost  
implied parentheses are at the right. The hyper-exponent  is 
always c. For op = 4 te t ra t ion,  repeated exponentiat ion,  is 
done. For  op = 5, 6, 7, etc., the procedure performs pentat ion,  
hexation,  heptat ion,  etc.,  respectively. 

The routine was originally programmed in FORTRAN for the 
Control Data  160 desk-size computer.  The original program 
was limited to te t ra t ion  because subroutine recursiveness in 
Control Data  160 FORTRAN has been held down to four levels in 
the interests  of economy. 

The input  parameter ,  b, c, and op, must  be positive integers,  
not zero; 

b e g i n  own  i n t e g e r  d, e, f, drop; 
i f o p  = 1 t h e n  
b e g i n a  := h-4- c; go t o l  
e n d  i f o p  = 2 t h e n d  := 0; 
else d := 1; e := c; drop := op - 1; 
for f := I s t e p  1 u n t i l e  do 
b e g i n  ari thmetic (a, b, d, drop);  

d : ~  a 
e n d  ; 

1 : e n d  ari thmetic 

A L G O R I T H M  94 
C O M B I N A T I O N  
JEROME KURTZBERG 
B u r r o u g h s  Corp . ,  B u r r o u g h s  L a b o r a t o r i e s ,  Pao l i ,  P a .  

procedure  COMBINATION (J, N, :K); va lue  N, K;  i n t e g e r  
a r r a y  J; i n t e g e r N ,  K; 

c o l n m e n t  This procedure generates the next combination of N 
integers taken K at a time upon being given N ,  K and the pre- 
vious combination. The K integers in the vector  J(1) . . .  J ( K )  
range in value from 0 to N -- 1, and are always monotonically 
str ict ly increasing with respect to themselves in input  and 
output  format.  If the vector  J is set equal to zero, the first 
combination produced is N - - K ,  . .  • ,  N - 1 .  That  initial combina- 
tion is also produced after 0, 1, • - • , N - l ,  the last value in tha t  
cycle; 

b e g i n  in t eger  B: L; 
B : = I ;  

mainb0dy: i f J (B)>=B t h e n  b e g i n  A := J(B) -- B - l ;  
for L := 1 s t e p  1 u n t i l  B do J(L) := L-4- A; 
go to  exit e n d ;  

i f B  = K t h e n  go to  ini t ia te;  
B := B + 1; go to  mainb0dy;  

init iate:  f o r B  := 1 s t e p  1 u n t i l  K d o  J(B) := N - K - 1 + B  
exit: e n d  COMBINATION 

A L G O R I T H M  95 
G E N E R A T I O N  O F  P A R T I T I O N S  I N  P A R T - C O U N T  

F O R M  
FRANK STOCKMAL 
S y s t e m  D e v e l o p m e n t  Corp . ,  S a n t a  M o n i c a ,  Cal i f .  

procedure  partgen(c,N ,K,G);  i n t e g e r  N,]:(; in t eger  a r r a y  c; 
Bo o l e a n  G ; 

c o m m e n t  This procedure  operates on a given par t i t ion of the 
positive integer N into parts  ~ K ,  to produce a consequent 
par t i t ion if mm exists. Each par t i t ion is represented by the 
integers c[1] thru c[K], where c[j] is the number of parts  of the 
par t i t ion equal to the integer j. If entry  is made with G = false ,  
procedure  ignores the input  array c, sets G = t r u e ,  and pro- 
duces the first par t i t ion of N ones. Upon each successive ent ry  
with G = t r u e ,  a consequent par t i t ion is stored in c[1] thru  c[K]. 
For N = K X ,  the final par t i t ion is c[K] = X .  For N = K X + r ,  
1 -< r -< K - - l ,  final par t i t ion  is c[K] = X ,  c[r] = 1. When ent ry  
is made with a r r a y  c = final par t i t ion,  c is left unchanged and G 
is reset to fa l se ;  

beg in  i n t e g e r  a,i,j ; 
i f  -~ G t h e n  go to  first; 
j : = 2 ;  
a := C[1]; 

tes t :  i f  a < j t h e n  go to  B; 
c[j] := 1 "4- c[j]; 
c[1] := a - j ;  

zero: f o r i  := 2 s t e p l  u n t i l j  - 1 
do c[i] := 0; 
go to  E X I T ;  

B: i f j  = K t h e n  go to  last;  
a : =  a + j×  c[jJ; 
j : = j + l ;  
go to  tes t ;  

fiist : G : = t r u e ;  
c[1] := N;  
j := : K +  1; 
go to  zero; 

last:  G := fa lse ;  
E X I T :  e n d  partgen 

A L G O R I T H M  96 
A N C E S T O R  
ROBERT W.  FLOYD 
A r m o u r  R e s e a r c h  F o u n d a t i o n ,  C h i c a g o ,  I l l  

procedure  ancestor  (in, n);  va lue  n; i n t e g e r  n; Bo o lean  
a r r a y  m;  
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Control structures + “goto”

We find this combination of “goto” and control structures in many
imperative and object-oriented languages:
Algol 68, Algol W, Pascal, Ada, Simula, PL/I, C, C++, C#, Perl, Go, . . .

Languages with “goto” and counted loops, such as FORTRAN and
BASIC, evolved by adopting Algol-style control structures
(if...else... in FORTRAN 77, do while in FORTRAN 90).

Some imperative/object oriented languages without “goto”:
Modula-2 (1980), Eiffel (1986), Python (1991), Java (1995).
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Other flavors of conditionals

Cascading Boolean tests:

if be1 then s1 elsif be2 then s2 elsif . . . else sn

also written (cond (be1 s1) (be2 s2) . . . (t sn)) in Lisp.

Case analysis on a value of integer type or enumerated type:

case (grade) of

’A’ : s1

’B’, ’C’: s2

’D’ : s3

’F’ : s4

end

switch (grade) {

case ’A’: s1; break;

case ’B’:

case ’C’: s2; break;

case ’D’: s3; break;

case ’F’: s4; break;

}
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Other flavors of loops

General loops:

• test at beginning: while be do s
• test at end: do s while be or repeat s until be
• test in the middle: loop . . . exit if be . . . end

Counted loops with early exit conditions: (PL/I, Algol 68)

[FOR index] [FROM first] [BY increment] [TO last] [WHILE condition]
DO statements OD

Loops that iterate over a collection of values:

for item in collection: s (Python)
for (Type item : collection) { s } (Java)
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Early exits from loops

Exit from the enclosing loop:
break (C, C++, Java) / exit (Ada) / last (Perl)

Abort the current iteration and start the next one:
continue (C, C++, Java) / next (Perl)

Multi-level exit for nested loops:
• exit from the N-th enclosing loop break N (Shell)
• exit from the loop labeled L break L (Java)

xloop: for (int x = 0; x < dimx; x++)

yloop: for (int y = 0; y < dimy; y++) {

... break xloop ... break yloop ...

}

20



Structured programming,
structured control



The movement for structured programming (1965–1975)

A radical change of perspective on software.

Abandon the view of programs as

flowcharts and machine code

and start viewing programs as

a constructed, structured source text,
directly readable (without a flowchart on the side),

which we can reason about
(informally, then mathematically).

The manifesto for this movement: the book Structured
Programming by Dahl, Dijkstra, and Hoare (1972).
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The structured control controversy (1965–1975)

A dispute between two programming styles:

• Programs using many “goto”,
obtained by naive transcription of a flowchart.

• Programs using mainly control structures (conditionals,
loops), written directly, without a flowchart.

The slogan for this dispute:

Go to statement considered harmful

(Title of a short communication by Dijkstra in CACM 1968. The title was chosen
not by the author but by the CACM editors.)
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Early signs

Since the summer of 1960, I have been writing programs
in outline form, using conventions of indentation to indi-
cate the flow of control. I have never found it necessary
to take exception to these conventions by using go state-
ments.

I used the keep these outlines as original documentation
of a program, instead of using flow charts . . . Then I would
code the program in assembly language from the out-
lines. Everyone liked these outlines better than the flow
charts.

(Dewey Val Schorre, 1966)
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Early signs

If you look carefully you will find that surprisingly often
a go to statement which looks back really is a concealed
for statement. And you will be pleased to find how the
clarity of the algorithm improves when you insert the for
clause where it belongs.

If the purpose [of a programming course] is to teach Algol
programming, the use of flow diagrams will do more
harm than good, in my opinion.

(Peter Naur, BIT, 1963).
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Sparking the controversy

Go T o  S t a t e m e n t  C o n s i d e r e d  H a r m f u l  
Key Words and Phrases: go to statement, jump instruction, 

branch instruction, conditional clause, alternative clause, repet- 
itive clause, program intelligibility, program sequencing 

CR Categories: 4.22, 5.23, 5.24 

EDITOR : 
For a number of years I have been familiar with the observation 

that the quality of programmers is a decreasing function of the 
density of go to statements in the programs they produce. More 
recently I discovered why the use of the go to statement has such 
disastrous effects, and I became convinced that the go to state- 
ment should be abolished from all "higher level" programming 
languages (i.e. everything except, perhaps, plain machine Code). 
At'that time I did not attach too much importance to this dis- 
covery; I now submit my considerations for publication because 
in very recent discussions in which the subject turned up, I have 
been urged to do so. 

My first remark is that, although the programmer's activity 
ends when he has constructed a correct program, the process 
taking place under control of his program is the true subject 
matter of his activity, for it is this process that has to accomplish 
the desired effect; it is this process that in its dynamic behavior 
has to satisfy the desired specifications. Yet, once the program has 
been made, the "making" of the corresponding process is dele- 
gated to the machine. 

My second remark is that our intellectual powers are rather 
geared to master static relations and that our powers to visualize 
processes evolving in time are relatively poorly developed. For 
that reason we should do (as wise programmers aware of our 
limitations) our utmost to shorten the conceptual gap between 
the static program and the dynamic process, to make the cor- 
respondence between the program (spread out in text space) and 
the process (spread out in time) as trivial as possible. 

Let us now consider how we can characterize the progress of a 
process. (You may think about this question in a very concrete 
manner: suppose that a process, considered as a time succession 
of actions, is stopped after an arbitrary action, what data do we 
have to fix in order that we can redo the process until the very 
same point?) If the program text is a pure concatenation of, say, 
assignment statements (for the purpose of this discussion regarded 
as the descriptions of single actions) it is sufficient to point in the 
program text to a point between two successive action descrip- 
tions. (In the absence of go to statements I can permit myself the 
syntactic ambiguity in the last three words of the previous sen- 
tence: if we parse them as "successive (action descriptions)" we 
mean successive in text space; if we parse as "(successive action) 
descriptions" we mean successive in time.) Let us call such a 
pointer to a suitable place in the text a "textual index." 

When we include conditional clauses (if B then A), alternative 
clauses (if B then AZ else A2), choice clauses as introduced by 
C. A. R. Hoare (case[i] of(At, A2, ... , An)), or conditional expres- 
sions as introduced by J. McCarthy (Bi -~ El, B2 --~ E2, ... , 
Bn ---~ En), the fact remains that the progress of the process re- 
mains characterized by a single textual index. 

As soon as we include in our language procedures we must admit 
that a single textual index is no longer sufficient. In the case that 
a textual index points to the interior of a procedure body the 

dynamic progress is only characterized when we also give to which 
call of the procedure we refer. With the inclusion of procedures 
we can characterize the progress of the process via a sequence of 
textual indices, the length of this sequence being equal to the 
dynamic depth of procedure calling. 

Let us now consider repetition clauses (like, while B repeat A 
or repeat A until B). Logically speaking, such clauses are now 
superfluous, because we can express repetition with the aid of 
recursive procedures. For reasons of realism I don't wish to ex- 
clude them: on the one hand, repetition clauses can be imple- 
mented quite comfortably with present day finite equipment; on 
the other hand, the reasoning pattern known as "induction" 
makes us well equipped to retain our intellectual grasp on the 
processes generated by repetition clauses. With the inclusion of 
the repetition clauses textual indices are no longer sufficient to 
describe the dynamic progress of the process. With each entry into 
a repetition clause, however , we can associate a so-called "dy- 
namic index," inexorably counting the ordinal number of the 
corresponding current repetition. As repetition clauses (just as 
procedure calls) may be applied nestedly, we find that now the 
progress of the process Can always be uniquely characterized by a 
(mixed) sequence of textual and/or dynamic indices. 

The main point is that the values of these indices are outside 
programmer's control; they are generated (either by the write-up 
of his program or by the dynamic evolution of the process) whether 
he wishes or not. They provide independent coordinates in which 
to describe the progress of the process. 

Why do we need such independent coordinates? The reason 
is--and this seems to be inherent to sequentiM processes--that 
we can interpret the value of a variable only with respect to the 
progress of the process. If we wish to count the number, n say, of 
people in an initially empty room, we can achieve this by increas- 
ing n by one whenever we see Someone entering the room. In the 
in-between moment that  we have observed someone entering the 
room but have not yet performed the subsequent increase of n, 
its value equals the number of people in the room minus one! 

The unbridled use of the go to statement has an immediate 
consequence that it becomes terribly hard to find a meaningful set 
of coordinates in which to describe the process progress. Usually, 
people take into account as well the values of some well chosen 
variables, but this is out of the question because it is relative to 
the progress that the meaning of these values is to be understood l 
With the go to statement one can, of course, still describe the 
progress uniquely by a counter counting the number of actions 
performed since program start (viz. a kind of normalized clock). 
The difficulty is that such a coordinate, although unique, is utterly 
unhelpful. In such a coordinate system it becomes an extremely 
complicated affair to define all those points of progress where, 
say, n equals the number of persons in the room minus onet 

The go to statement as it stands is just too primitive; i t  is too 
much an invitation to make a mess of one's program. One can 
regard and appreciate the clauses considered as bridling its use. I 
do not claim that the clauses mentioned are exhaustive in the sense 
tha t /hey  will satisfy all needs, but whatever clauses are suggested 
(e.g. abortion clauses) they should satisfy the requirement that a 
programmer independent coordinate system can be maintained to 
describe the process in a helpful and manageable way. 

I t  is hard to end this with a fair acknowledgment. Am I to 
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(E. W. Dijkstra, Communications of the ACM 11(3), 1968.)

A reflection on the difficulty to know “where we are” in a program
execution, and which path was taken from the beginning.
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Which “coordinates” to designate a point in the execution?

if (x == 0) {
...

} else if (y == 0) {
... ⇐ YOU ARE HERE

} else {
...

...

}

Sequence and conditionals:
current program point + Boolean values of previous conditionals.
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Which “coordinates” to designate a point in the execution?

while (x < y) { ⇐ 2nd iteration
while (a[x] != 0) { ⇐ 5th iteration

if (x == 0) {
...

} else if (y == 0) {
... ⇐ YOU ARE HERE

} else {
...

...

}
}

}

Sequence, conditionals, and loops:
program point + Boolean values + iteration counts for all loops.
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Which “coordinates” to designate a point in the execution?

while (x < y) { ⇐ 2nd iteration
while (a[x] != 0) { ⇐ 5th iteration

if (x == 0) {
L:...

} else if (y == 0) {
... ⇐ YOU ARE HERE

} else {
...; if (y < 10) goto L;

...

}
}

}

With unrestricted goto: it becomes terribly hard to find a
meaningful set of coordinates in which to describe the process
progress (Dijkstra).
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Food for thought!

The tide of opinions first hit me personally in 1969, when
I was teaching an introductory programming course for
the first time. I remember feeling frustrated at not seeing
how to write programs in the new style; I would run to
Bob Floyd’s office asking for help, and he usually showed
me what to do.

(D. E. Knuth, 1974)

After Dijkstra’s paper, a great many studies

• to see whether goto-free programming is really the best way
to express program structure;

• to find out how to eliminate goto, on a case-by-case basis or
systematically by program transformation.
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Knuth’s survey

D. E. Knuth, Structured Programming with go to Statements,
Computing Surveys 6(4), 1974.

After a historical account of the controversy, Knuth studies,
on well-chosen examples,

• the impact of goto elimination on code clarity
(especially if Boolean flags must be added);

• the impact of goto elimination on performance;
• what control structures (beyond those of Algol) might help

express program structure better.
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Example: a hash table

Two arrays: A[N] containing the keys, B[N] containing the values.

void add(key k, data d)

{

int i = hash(k);

while (1) {

if (A[i] == 0) goto notfound;

if (A[i] == k) goto found;

i = i + 1; if (i >= N) i = 0;

}

notfound: A[i] = k;

found: B[i] = d;

}

Very concise code! But there are two goto. . .
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Example: a hash table

Using a while loop:

void add(key k, data d)

{

int i = hash(k);

while (! (A[i] == 0 || A[i] == k)) {

i = i + 1; if (i >= N) i = 0;

}

if (A[i] == 0) A[i] = k;

B[i] = d;

}

The test A[i] == 0 is duplicated.
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Example: a hash table

Using a loop with early exits (break):

void add(key k, data d)

{

int i = hash(k);

while (1) {

if (A[i] == 0) { A[i] = k; B[i] = d; break; }

if (A[i] == k) { B[i] = d; break; }

i = i + 1; if (i >= N) i = 0;

}

}

Minor duplication of the code B[i] = d, but no impact on
performance.
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Example: error handling with resource freeing

A system programming idiom in C.
int retcode = -1; // error
int fd = open(filename, O_RDONLY);

if (fd == -1) goto err1;

char * buf = malloc(bufsiz);

if (buf == NULL) goto err2;

...

if (something goes wrong) goto err3;

...

retcode = 0; // success
err3: free(buf);

err2: close(fd);

err1: return retcode;

Avoids any duplication of the code that frees resources.
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Example: error handling with resource freeing

A version without goto that suffers from code duplication:

int fd = open(filename, O_RDONLY);

if (fd == -1) return -1;

char * buf = malloc(bufsiz);

if (buf == NULL) { close(fd); return -1; }

...

if (something goes wrong) {

free(buf); close(fd); return -1;

}

...

free(buf); close(fd); return 0;
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Example: error handling with resource freeing

A version based on blocks do . . . while(0) and on break.
Would be more robust with a multi-level break.

int retcode = -1; // error
do { int fd = open(filename, O_RDONLY);

if (fd == -1) break;

do { char * buf = malloc(bufsiz);

if (buf == NULL) break;

do { ...

if (something goes wrong) break;

...

retcode = 0; // success
} while (0); free(buf);

} while (0); close(fd);

} while(0); return retcode;
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Expressiveness of structured control



The “goto” elimination problem

A technical question that plays a central role in the structured
control controversy:

Is it always possible to transform an unstructured program (using
goto and if. . .goto) into an equivalent structured program?

With or without code duplication?

With or without introducing additional variables?
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A well-known result

Theorem
Any unstructured program (or, equivalently, any flowchart) is
equivalent to a structured program comprising a single while
loop and one extra integer variable.
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A simple proof of the well-known result

1: s1;

if (b1) goto 3;

2: s2;

goto 4;

3: s3;

4: s4;

if (b4) goto 1;
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A simple proof of the well-known result

1: s1;

if (b1) goto 3; else goto 2;

2: s2;

goto 4;

3: s3;

goto 4;

4: s4;

if (b4) goto 1; else goto 0;

Reformat the program as basic blocks: sequences of assignments
terminated by branches, either goto L or
if be then goto L1 else goto L2.
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A simple proof of the well-known result

1: s1;

if (b1) goto 3; else goto 2;

2: s2;

goto 4;

3: s3;

goto 4;

4: s4;

if (b4) goto 1; else goto 0;

Replace labels by numbers 0, 1, 2, . . . , with 0 being the label for
the end of the program.
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A simple proof of the well-known result

1: s1;

if (b1) pc := 3; else pc := 2;

2: s2;

pc := 4;

3: s3;

pc := 4;

4: s4;

if (b4) pc := 1; else pc := 0;

Replace each goto L by an assignment pc := L
where pc is a new integer variable.
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A simple proof of the well-known result

switch (pc) {
case 1: s1;

if (b1) pc := 3; else pc := 2; break;

case 2: s2;

pc := 4; break;

case 3: s3;

pc := 4; break;

case 4: s4;

if (b4) pc := 1; else pc := 0; break;

}

Turn each basic block into one case of a switch

over the value of pc.
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A simple proof of the well-known result

int pc = 1; while (pc != 0) {
switch (pc) {

case 1: s1;

if (b1) pc := 3; else pc := 2; break;

case 2: s2;

pc := 4; break;

case 3: s3;

pc := 4; break;

case 4: s4;

if (b4) pc := 1; else pc := 0; break;

}
}

Add a while loop to iterate the switch until pc is 0.
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Iterating a transition function

If we view the original flowchart / unstructured program as a
finite automaton, the previous proof amounts to constructing its
transition function

current state (in pc) −→ next state (in pc)

as a case analysis on the value of pc

switch (pc) { . . . }

then to iterating this function until the final state is reached

while (pc != 0) { . . . }

Variants:
one integer variable pc → several Boolean variables
one switch → a cascade of if . . . then . . . else.
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The folk lore around this result

(David Harel, On Folk Theorems, CACM 23(7), 1980)

The result is often attributed to Böhm and Jacopini, Flow
diagrams, Turing machines, and languages with only two
formation rules, CACM 1966.

However, this paper shows a different result (resulting in several
while loops) with more subtle techniques (local graph rewriting).

a, ~, ~, . . .  , a, b, c, . . .  operating on x are not defined on 
a pair. The following s ta tement  holds: 

I f  a mapping x --~ x' is representable by any flow dia- 
gram containing a, b, c, . . .  , a, [~, % . . .  , it is also repre- 
senlable by a flow diagram decomposable into H, • and A 
and containing the same boxes which occurred in the initial 
diagrams, plus the boxes K,  T, F and o~. 

Tha t  is to say, it is describable by a formula in II, q%A, 
a ,  b, c, - . .  , T ,  F ,  K ,  o~, ~ ,  % . . .  , ~. 

NOTE. A binary switch is the most natural  in terpretat ion of 
the added bit v. I t  is to be observed, however, tha t  in certain 
cases if the object x can be given the property of a list, any exten- 
sion of the set X becomes superfluous. For example, suppose the 
object of the computation is any integer x. Operations T, F, K 
may be defined in a purely ari thmetic way: 

x ) 2 x  + 1, x ) 2x, x ) 

and the oddity predicate may be chosen for ~. The added or can- 
celed bit  v emerges only if x is thought of as wri t ten in the binary 
notation system and if the actions of T, F, K, respectively, are 
interpreted as appending a one or a zero to the far right or to erase 
the r ightmost  digit. 

To prove this statement,  observe that  any flow diagram 
may be included in one of the three types: I (Figure 13), 
I I  (Figure 14), I I I  (Figure 15), where, inside the section 
lines, one must  imagine a par t  of the diagram, in whatever  
way built, tha t  is called a or (B (not a subdiagram).  The 
branches marked 1 and 2 may  not always both be pres- 
ent; nevertheless, f rom every section line at  least one 
branch nmst  start.  

As for the diagrams of types I and II ,  if the diagrams 
in Figures 16-17, are called A and B, 2 respectively, I 
turns into Figure 20 and may  be writ ten 

I I ( I I ( T ,  ~(o~, H ( I I ( K ,  a),  A ) ) ) ,  K )  

and I I  turns into Figure 21, which may  be writ ten 

I I ( I I ( T ,  ¢(o0, H(K,  A(a, A, B ) ) ) ) ,  K) .  

The case of the diagram of type  I I I  (Figure 15) may  be 
dealt with as case I I  by substituting Figure 22, where B' 
indicates tha t  subpart  of C accessible from the upper  
entrance, and C" tha t  par t  accessible from the lower 
entrance. 

If  it is assumed tha t  A and B are, by inductive hypoth-  
esis, 3 representable in H, ¢ and A, then the s ta tement  is 
demonstrated.  

I t  is thus proved possible to completely describe a pro- 
gram by means of a formula containing the names of 
diagrams ,-I,, II  and A. I t  can also be observed tha t  [t, II  
and A could be chosen, since the reader has seen (see 

If one of the branches 1 or 2 is missing, A will be simply Figure 
18a or 18b, and similarly for B. If the diagram is of the type of 
Figure 19 where V {E} (T, F),  it will be simply t ranslated into 
II(V, A*) where A* is the whole subdiagram represented by (~. 

3 The induction really operates on the number 3N + M, where 
M is the number of boxes T and F in the diagram and N is the num- 
ber of all boxes of a,ay other kind (predicates included). 

Fm.  13. 
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notation system and if the actions of T, F, K, respectively, are 
interpreted as appending a one or a zero to the far right or to erase 
the r ightmost  digit. 

To prove this statement,  observe that  any flow diagram 
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The folk lore around this result

The simple proof of the well-known result appears in 1967 in a
letter by D. C. Cooper to the CACM editors.

It is mentioned later in tens of papers and books, often
attributed to Böhm and Jacopini, or without attribution. . .

Harel traces the result back to Kleene (1936) !
(Every partial recursive function is the “minimization” of a
primitive recursive function.)
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Reductions between control structures

(S. Rao Kosaraju, Analysis of Structured Programs, JCSS 9, 1974.)

Let L1 and L2 be two languages that have the same base
commands (assignments, function calls, . . . ) but differ on their
control structures.

L1 is reducible to L2 if for each L1 program, there exists an L2

program that

• has the same base commands (no code duplication);
• uses no additional variables.
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Example of reduction: do-while loop

The do-while loop (with test at end of iteration) is not reducible
to the while-do loop (with test at beginning). Indeed, to translate

do s while be

we must either duplicate s

begin s; while be do s end

or introduce a Boolean variable

loop := true; while loop do begin s; loop := be end

In contrast, do-while is reducible to while-do + break:

while true do begin s; if not be then break end
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Example of reduction: acyclic flowcharts

Cycle-free flowcharts are not reducible to if-then-else.

?

? ?

s1 s2 s3

T F

T F T F

Either we duplicate s2:

if . . .

then if . . . then s1 else s2

else if . . . then s2 else s3
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Example of reduction: acyclic flowcharts

Cycle-free flowcharts are not reducible to if-then-else.

?

? ?

s1 s2 s3

T F

T F T F

Or we add a Boolean variable:

do_s2 := false

if . . .

then if . . . then s1 else do_s2 := true

else if . . . then do_s2 := true else s3;

if do_s2 then s2
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Example of reduction: acyclic flowcharts

Cycle-free flowcharts are not reducible to if-then-else.

?

? ?

s1 s2 s3

T F

T F T F

But we can reduce if we have loops with early exits (break):

loop

if . . .

then if . . . then begin s1; break end

else if not . . . then begin s3; break end;

s2; break

endloop
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Reducible control-flow graphs and structured control

(W. W. Peterson, T. Kasami, N. Tokura. On the capabilities of while,
repeat, and exit statements. CACM, 16(8), 1973.)

The language of reducible control-flow graphs

is Kosaraju-reducible

to a structured language with conditionals, infinite loops,
and multi-level exits (break N, continue N).

44



Control-flow graphs (CFG)

A formalization of program flowcharts.

An intermediate representation used in many compilers.

i := 0

i < 5 ?

printf("*")

i := i + 1

A CFG = a directed graph, with
• nodes = basic blocks
• edges = jumps

(1 outgoing edge: goto;
2 edges: if-then-else;
N edges: switch)
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Dominance

A node A dominates a node B if A is necessarily executed
before B: any path from the root to B goes through A.

A

B C

D

E

A dominates B, C,D, E
D dominates E

every node dominates itself

This leads to a classification of edges A → B:

• it’s a back edge if B dominates A;
• it’s a forward edge otherwise.
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Reducible control-flow graphs

A CFG is reducible if its forward edges form an acyclic graph.

A

B C

D

E

A

B C

D

E

Irreducible Reducible
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Reducible control-flow graphs

Many equivalent definitions, in particular:
a CFG is reducible if it can reduce to a single node by repeatedly
applying transformations T1 and T2.

A A
T1

A

B
AB

T2
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Loops in reducible CFGs

In a reducible CFG, each loop X (= strongly-connected set of
nodes) is a natural loop:

• It has a single entry point T ∈ X, the loop head.
• T dominates every node in X.
• Every node in X has a path to T that stays within X.

A

B C

Natural loop (head is A)

A

B C

Non-natural loop

49



Control structures and reducibility

All the control structures viewed so far:

• conditionals: if-then-else, switch
• loops with test at beginning, at end, in the middle
• early exits: return, break, continue

produce reducible CFGs.

Conversely: every reducible graph is the CFG of a program
without goto, using only conditionals, infinite loops, and
multi-level break/continue exits.
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Constructing the structured program

The historical algorithm by Peterson, Kasami, and Tokura (1973):
three passes; outlined in a proof.

A more recent algorithm: N. Ramsey, Beyond Relooper: Recursive
Translation of Unstructured Control Flow to Structured Control
Flow, ICFP 2022.

Recursion on the dominator tree for the graph.
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Ramsey’s algorithmBeyond Relooper: Recursive Translation of Unstructured Control Flow to Structured Control Flow 90:7

𝐴

𝐵

𝐶

𝐷

𝐸

𝐹

(a) Unusual control-flow graph
(node 𝐸 reachable two ways)

𝐴

𝐷 𝐸𝐵 𝐹

𝐶

entry

(b) Dominator tree

𝐴

𝐵

𝐶

𝐷

𝐸

𝐹

(c) Imposed nesting structure

Fig. 4. Imposing nesting structure for merge nodes

and the translations of nodes 𝐵 and 𝐷 are placed in the true and false branches, respectively. Nodes
𝐸 and 𝐹 are merge nodes, so their translations are placed after the translation of node 𝐴. These
translations must be placed in such a way as to be reachable by br instructions from the translations
of nodes 𝐵, 𝐶 , and 𝐷 . To get an idea how that works, let’s look at the recursive translation of the
subtree rooted at 𝐵, which must be able to transfer control to 𝐸.

block ; blue block
block ; red block

Translations of
𝐴, 𝐵, 𝐶 , and 𝐷
(with brs)

end
Translation of 𝐸

end
Translation of 𝐹

Fig. 5. Schematic translation of
Figure 4a

When doTree 𝐴 calls doTree 𝐵 recursively, node 𝐵 is also a condi-
tional and is translated into an if—and the translation of 𝐵’s child 𝐶
can be placed into the true branch of 𝐵’s if form. What about 𝐸?
Looking at the control-flow edges leaving 𝐵, it appears as if the
translation of 𝐸 should go in the false branch of 𝐵’s if form. But
doTree doesn’t look at control-flow edges; it looks at the dominator
tree. Since node 𝐸 isn’t a child of node 𝐵, doTree 𝐵 isn’t responsible
for 𝐸’s translation. Instead, doTree 𝐵 fills the false branch with a br
instruction. The br instruction exits a block · · · end form, so when
doTree 𝐴 places 𝐸’s translation, it must ensure that 𝐸’s translation
follows a block · · · end form.

Calling doTree 𝐴 places the translations of 𝐸 and 𝐹 as shown
in Figure 5 (on the right). The translation of 𝐸 is preceded by the
translations of nodes𝐴, 𝐵,𝐶 , and𝐷 , which are wrapped in block · · · end. The translations of𝐶 and𝐷
include the br instructions that are needed to reach node 𝐹 . The translation of 𝐹 is preceded by the
translations of nodes 𝐴 through 𝐸, which are wrapped in another block · · · end. The blocks nest as
visualized in Figure 4c, in which each block is represented by a colored region. Given this nesting
structure, any preceding translation can reach 𝐸 or 𝐹 using a br instruction.

How does doTree 𝐴 determine that the translation of 𝐸 goes on the inside? Nodes 𝐸 and 𝐹 are
both immediately dominated by 𝐴, and both are merge nodes. But these properties don’t suffice to
determine which translation goes inside the other. And order matters! In the control-flow graph
(Figure 4a), 𝐸 branches to 𝐹 , so 𝐸’s translation has to go on the inside. But what if neither node
branches directly to the other? How does doTree place their translations?

Peterson, Kasami, and Tokura [1973] place translations by using a complicated predicate involv-
ing the existence of paths in a mutated control-flow graph. But there is a simpler way to do it.
Translations can be placed using a purely local test on the original, unmutated control-flow graph:
compare the reverse postorder numbers of the nodes being translated.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 90. Publication date: August 2022.

Each loop head produces an infinite while true loop.

The children in the domination tree that are also successors
produce if-then-else conditionals. (A, B, C, D)
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tional and is translated into an if—and the translation of 𝐵’s child 𝐶
can be placed into the true branch of 𝐵’s if form. What about 𝐸?
Looking at the control-flow edges leaving 𝐵, it appears as if the
translation of 𝐸 should go in the false branch of 𝐵’s if form. But
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translations of nodes 𝐴 through 𝐸, which are wrapped in another block · · · end. The blocks nest as
visualized in Figure 4c, in which each block is represented by a colored region. Given this nesting
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How does doTree 𝐴 determine that the translation of 𝐸 goes on the inside? Nodes 𝐸 and 𝐹 are
both immediately dominated by 𝐴, and both are merge nodes. But these properties don’t suffice to
determine which translation goes inside the other. And order matters! In the control-flow graph
(Figure 4a), 𝐸 branches to 𝐹 , so 𝐸’s translation has to go on the inside. But what if neither node
branches directly to the other? How does doTree place their translations?

Peterson, Kasami, and Tokura [1973] place translations by using a complicated predicate involv-
ing the existence of paths in a mutated control-flow graph. But there is a simpler way to do it.
Translations can be placed using a purely local test on the original, unmutated control-flow graph:
compare the reverse postorder numbers of the nodes being translated.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 90. Publication date: August 2022.

The other children (E, F) are placed in blocks, nested according to
reverse postorder.

Nontrivial edges become break N or continue N.
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Looking at the control-flow edges leaving 𝐵, it appears as if the
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doTree doesn’t look at control-flow edges; it looks at the dominator
tree. Since node 𝐸 isn’t a child of node 𝐵, doTree 𝐵 isn’t responsible
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doTree 𝐴 places 𝐸’s translation, it must ensure that 𝐸’s translation
follows a block · · · end form.
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How does doTree 𝐴 determine that the translation of 𝐸 goes on the inside? Nodes 𝐸 and 𝐹 are
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determine which translation goes inside the other. And order matters! In the control-flow graph
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ing the existence of paths in a mutated control-flow graph. But there is a simpler way to do it.
Translations can be placed using a purely local test on the original, unmutated control-flow graph:
compare the reverse postorder numbers of the nodes being translated.
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block { // blue area
block { // red area
if (A) { if (B) { C; break 2; } else { break 1; }

else { if (D) { break 1; } else { break 2; }

} E;

} F;
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Summary



From goto to structured programming

From 1945 to 1975, programming practices and programming
languages shifted

• from a “machine” view of control (jumps and labels),
using program flowcharts to aid comprehension,

• to a structured view of control (conditionals, loops, etc.),
making the source code the main representation of the
program.

Next lecture: how to structure programs at a larger scale:
subroutines, procedures, functions, generators, coroutines, . . .

53



References



References

A short, journalistic story of Algol:

• ALGOL 60 at 60: The greatest computer language you’ve never used
and granddaddy of the programming family tree, The Register,
15/05/2020. https://www.theregister.com/2020/05/15/algol_60_at_60/

On structured programming:

• D. E. Knuth, Structured Programming with go to Statements,
Computing Surveys 6(4), 1974.

On translating CFGs to structured programs:

• N. Ramsey, Beyond Relooper: Recursive Translation of
Unstructured Control Flow to Structured Control Flow (Functional
Pearl), PACMPL 6, ICFP, 2022.

54

https://www.theregister.com/2020/05/15/algol_60_at_60/

	Early computers, early languages
	The first control structures
	Structured programming,   structured control
	Expressiveness of structured control
	Summary
	References

