Persistent data structures, sixieme cours

From formal derivatives to navigation in a
structure: contexts, zippers, fingers

Xavier Leroy
2023-04-13

College de France, chair of Software sciences
xavier.leroy@college-de-france.fr

Prologue:
structures annotated with a monoid

Binary search trees annotated by their sizes

The 2nd lecture mentioned the possibility of annotating the
nodes of a BST by the sizes of the corresponding subtrees. This
can be used

« to balance the trees (weight balancing);

- to determine quickly the size of a tree
(time O(1) instead of O(n));

« to access tree elements by rank.

Determining the rank of an element

If the BST has size n and elements xg < - -+ < Xp_1, the rank of
element x; is the integer i.

type ’a tree = Leaf | Node of int * ’a tree * ’a * ’a tree

let size = function Leaf -> 0 | Node(s, _, _, _) -> s

let node 1 x r = Node(size 1 + 1 + size r, 1, x, r)

let rec rank x t =
match t with
| Leaf -> raise Not_found
| Node(l, y, r) —->
if x < y then rank x 1
else if x = y then size 1

else size 1 + 1 + rank x r

Finding an element by its rank

The converse operation: given a rank i, find the element x;.

let rec get i t =

match t with
| Leaf -> raise Out_of_bounds

| Node(l, x,) —>
if i = size 1 then x

else if i < size 1 then get i 1
else get (i - size 1 - 1) r

Generalization to other annotations

An annotation of a binary tree = a measure of its elements
ranging over a monoid.

A monoid = a type p equipped with a neutral element 0 : 1z and
an associative operation & : yu — pu — pu.

XE0=0Hx=x xey)®z=xd(yD2)

A measure: a function ||-|| : @« — p that we extend into a function
Il : « tree — p by defining

|Leaf| =0
INode(£,x,) = 1]} & [l & ||

Examples of monoids and measures

Measuring the size:

p = int 0=0 Xxdy=x+y ||| =1

Measuring the sum of elements (for a tree of numbers):

i = int 0=0 Xxby=x+y IIX]| = x

Measuring the variation interval of elements:

p=(ax) option 0 = None ||x|| = Some(x, x)
None & m = m © None = m

Some(/1, h1) & Some (¢, hy) = Some(min(¥4, £2), max(hy, hy))

Scanning and splitting (Hinze et Paterson, 2006)

Scanning a sequence t = X, . . ., Xp_1 from mq:

compute the measures my = mo & || Xo/l, ..., M1 = m; & ||x;]|
until we reach an element x; that brings a predicate p : ;1 — bool
from false to true.

Mo m m; Mjqq Mmp

ol [[[x[| [[b
P ? ? ? “P p ? 2?2 ? 2 P

Such an x; always exists if p(mg) = false and
p(mo @ ||t||) = true. It is not unique in general.

Splitting a sequence: scan, then return (¢, x;, r)
where / is the sequence of elements preceding x;
and r the sequence of elements following x;.

An OCaml implementation using functors

module type MONOID = sig
type t
val zero: t
val add: t >t > t
end

module type ORDERED_MEASURED = sig
type t
val compare: t -> t -> int
module M: MONOID
val measure: t -> M.t

end

module BST(X: ORDERED_MEASURED)
ORDERED_MEASURED with module M = X.M
= struct module M = X.M ... end

An OCaml implementation using functors

module M = X.M
type t = Leaf | Node of M.t * t * X.t * t
let measure t = match t with Leaf -> M.zero | Node(m, _, _, _) ->m
let node 1 x r =
Node(M.add (measure 1) (M.add (X.measure x) (measure r)), 1, x, r)
let rec split pm t =
match t with
| Leaf -> raise Not_found
| Node(_, 1, x, r) ->
let m1 = M.add m (measure 1) in
let m2 = M.add m1 (X.measure x) in
if p ml then
let (1’, x’, r’) = split pm 1 in
(1’, x’, node r’ x r)
else if p m2 then (1, x, r)
else
let (1’, x’, r’) = split pm2 r in
(node 1 x 1°, x’, r’) 9

Application to finger trees: random access

Hinze and Paterson (2006) show how to annotate finger trees with
measures and to implement a split operation that runs in time
O(logn).

Using the monoid of sizes, we get random access
to the i-th element of the sequence, in time O(log n).

let get i s =
let (_, x, _) = split (fun sz -> sz > i) 0 t in x
let set i v s =
let (1, _, r) = split (fun sz -> sz > i) 0 t in
(concat 1 (cons v 1))
let delete i s =
let (1, _, r) = split (fun sz -> sz > i) 0 t in
concat 1 r

10

Application to finger trees: priority queues

Using the monoid of intervals, we get a min-max priority queue:

« access to the smallest / largest element in time O(log n);

« insertion in time O(1) amortized.

let extract_min s =
match measure s with
| None -> raise Empty
| Some(min, max) ->

let (1, _, r) =

split (function None -> false | Some(m, _) -> m = min)

None t
in (min, concat 1 r)

1

Application to finger trees: ordered sequence

We can also used the last value monoid:

=« option 0 = None |IX|| = Some(x)
None ® m = m @ None = m
Some(Vvq) @& Some(v,) = Some(vs)
If we keep the sequence sorted in increasing order, these “last
value” annotations support binary search like in a BST.
split supports implementing insertion, deletion, and search in
time O(logn).

head, tail, last, take give us access to the smallest / largest
element in time O(1) amortized.

12

Navigation in a structure

A data structure used by text editors (e.g. Emacs).

o[r[e[m[.[i]p] [s[ulm[.|d]o[t]o]r]
- ———————— ————————————— - ————————— -
text “gap” (cursor) text

An array of characters, larger than the text being edited.

The text is stored in two contiguous fragments, one at the
beginning of the array, the other at the end.

The gap (the free space in between) is the editing cursor.

13

Text editing operations

Loading the text la]b]c|d]e| | abcde|

Text editing operations

Loading the text la]b]c|d]e| | abcde|

Move back 3 characters |a|b] [c|d]e] ab|cde

Text editing operations

Loading the text la]b]c|d]e| | abcde|

Move back 3 characters |a|b] [c|d]e] ab|cde

Delete before cursor a| [c[d]e] alcde

Text editing operations

Loading the text la]b]c|d]e| | abcde|
Move back 3 characters |a|b] [c|d]e] ab|cde
Delete before cursor a| [c[d]e] alcde

. n . n

Insert “x”, then “y lax]y| [c|d]e] axy|cde

Text editing operations

Loading the text la]b]c|d]e| | abcde|
Move back 3 characters |a|b] [c|d]e] ab|cde
Delete before cursor a| [c[d]e] alcde

. n . n

Insert “x”, then “y lax]y| [c|d]e] axy|cde

Delete after cursor]a|X|y| |d|e\ axy|de

Text editing operations

Loading the text la]b]c|d]e| | abcde|
Move back 3 characters |a|b] [c|d]e] ab|cde
Delete before cursor a| [c[d]e] alcde

. n . n

Insert “x”, then “y lax]y| [c|d]e] axy|cde

Delete after cursor]a|X|y| |d|e\ axy|de

Saut au début du texte | la|x|y|d]e| laxyde

14

Cost of editing operations

The cost of an operation is proportional to the distance between
the cursor and the point where the operation takes place.

Insertion, deletion o)
Moving forward / backward d characters O(d)
Jump to beginning / end of text O(n)

(Plus: resizing the array when needed, which takes constant
amortized time.)

15

A singly-linked list with a gap

A “front” list and a “rear” list. The cursor sits between the two.

16

Navigation in a gap list

type ’a hlist = ’a list * ’a list
let insert x (r, f) = (x :: r, f)

let delete_after (r, f) =
match f with [] -> raise Error | _ :: £2 -> (r, £7)
let delete_before (r, f) =

match r with [] -> raise Error | e => (2,)

let move_forward (r, f) =

match f with [J] > (r, £f) | x :: £2 => (r :: x, f?)
let move_backward (r, f) =

match r with [J] > (r, £) | x :: > -> (r’, x :: £)

let move_to_beginning (r, f) = ([], List.rev_append r f)

let move_to_end (r, f) = (List.rev_append f r, [])
17

Navigation in a tree

up d‘

N

E

ii down_left down_right
A ¢!

| I~
| |
L L

We'd like to move not just from leaf to leaf, but more generally
from subtree to subtree.

Hence a representation as a pair of

a subtree (the cursor)
+ a tree with a “hole” (the remainder of the tree).

18

A tree with a hole = a context?

In operational semantics and other areas that use term algebras,
we use contexts C as “a term with a hole” (written []).

For example, in the case of binary trees

type ’a tree = Leaf | Node of ’a tree * ’a * ’a tree

here is the type of contexts (= trees with a hole):

type ’a context =
| Hole
| Node_left of ’a context * ’a * ’a tree

| Node_right of ’a tree * ’a * ’a context

Operations over contexts

The main operation, written C[t], rebuilds a term by filling the

hole [] in C with the term t.

let rec fill_hole c t =
match c¢ with

| Hole —> t
| Node_left(c’, x, r) -> Node(fill_hole c’ t, x, T)

| Node_right(l, x, c’) -> Node(l, x, fill_hole c’ t)

20

Navigation using contexts

Navigating with pairs (context, subtree) is possible, but moves
take non-constant time!

let rec down_left (c, t) =
match (c, t) with
| (Hole, Node(l, x, r)) -> (Node_left(Hole, x, r), 1)
| (Hole, Leaf) -> raise Error
| (Node_left(c, x,), t) —>
let (c’, t’) = down_left (c, t) in
(Node_left(c’, x, r), t?)
| (Node_right(1, x, c), t) —>
let (c’, t7) down_left (c, t) in
(Node_right(1, x, c’), t’)

21

Navigation using contexts

We would have hit the same inefficiency in the example of gap
lists if we represented the rear list “in the wrong direction”:

v [Utof«irieefim] [.}if={p[={s|={uf={m]
X [U{of={r[={ef=m] [.}=i}~[p]={s|~{uf~{m]

Wanted: a “reversed” tree context, with the hole at the top...

22

Zippers (G. Huet, 1997)

A reversed representation of contexts, where the first constructor
of the zipper is next to the hole, and the last constructor (Top)
denotes the root of the tree.

For binary trees:

type ’a zipper =
| Top
| Left_of of ’a * ’a tree * ’a zipper

| Right_of of ’a tree * ’a * ’a zipper

V4 z

Left_of(x,r,z): /é\ Right_of(l,x,Zz):)@\

r [

23

Zipper vs. context

In a context, constructors go from top to bottom.
In a zipper, constructors go from bottom to top.

Context: Zipper:

Context:
Node_left(Node_left(Node_right(A, b,Hole),d,E),f,G)
Zipper:
Right_of(A,b,Left_of(d, E,Left_of(f, G, Top))) 2%

Operations over zippers

The main operation, app z t, rebuilds a term by wrapping the
zipper z around the term t.

let rec app z t =
match z with
| Top > t
| Left_of(x, r, z’) -> app z’ (Node(t, x, r))
| Right_of(1, x, z’) -> app z’ (Node(l, x, t))

(Note: tail recursive!)

23]

Navigation with zippers

All three basic moves take constant time!

let down_left (t, z) =
match t with
| Leaf -> raise Error
| Node(l, x, r) —> (1, Left_of(x, r, z))

let down_right (t, z) =
match t with
| Leaf -> raise Error
| Node(l, x, r) -> (r, Right_of(l, x, z))

let up (t, z) =
match z with
| Top -> raise Error
| Left_of(x, r, z’) -> (Node(t, x, 1), z’)
| Right_of(1, x, z’) -> (Node(1l, x, t), z’) 26

Binary search with zippers

We can view binary search in a BST as returning the place where

the desired value x is or should be.

let rec search x (t, z)
match t with
| Leaf -> (t, z)

| Node(l, y, r) —>
if y = x then (t, z) else
if y < x then search x (1, Left_of(y, r, z))
else search x (r, Right_of(1, y, z))

This way, we can move from any point to point x :

let move_to x (t,z) = search x (app z t, Top)

Time: O(log n). (Can be improved, see later.)

27

Application: a functional presentation of splay trees

Splay trees (Sleator and Tarjan 1985):
- Binary search trees without explicit balancing.

« At each operation (search, insertion, deletion), the x element
involved is moved to the top of the tree using well-chosen
rotations.

- These rotations progressively reduce tree imbalance, leading
to operations that run in time O(log n) amortized and O(n)
worst-case.

28

Example of search in a splay tree

We search for b in the heavily left-leaning tree abcde.

We move b to the top by two rotations, zig-zig then zig.

zig-zig zig
—_— e —_— b
/ / / \
d b a e
/ / \ /
c a ¢ c
/ \ \
b d d

29

Rotations for splay trees

To “hoist” node x above its parent p and its grandparent g.
(Omitted: 3 symmetrical rotations.)

zig-zig zig
_ X P — x
/A /\ , \ (attheroot) , \
P D A P X C A P
/ A\ /N /\ / A\
X C B 8 A B B C
/N /N
A B cC D
zig-zag
/ A\ VAN
P D P g
/ N\ /\ /N
A X A B C D
/N

B C 30

Splaying using a zipper

splay 1 x r zreturnsa BST equivalent to
app z (Node(1, x, r)) buthaving x at the top.

let rec splay 1 x r z =
match z with
| Top -> Node(l, x, r)
Left_of(p, c, Top) —-> (*final zig *)
Node(l, x, Node(r, p, c))
Right_of(c, p, Top) —-> (*finalzig *)
Node (Node(c, p, 1), x,)
| Left_of(p, c, Left_of(q, d, z)) —-> (*zig-zig*)
splay 1 x (Node(r, p, Node(c, q, d))) =z
| Right_of(c, p, Right_of(d, q, z)) -> (*zig-zig*)
splay (Node(Node(d, g, ¢), p, 1)) xr z
| Right_of(a, p, (Left_of(q, d, z))) -> (*zig-zag*)
splay (Node(p, a, 1)) x (Node(r, q, d)) z
| Left_of(p, a, Right_of(d, q, z)) —-> (*zig-zag*)
splay (Node(d, g, 1)) x (Node(p, r, a)) z 31

Insertion in a splay tree

Insertion = search
+ creating a new node (if needed)

+ splaying.

let add x t =
match search x (t, Top) with
| (Leaf, z’) -> splay Leaf x Leaf z’ (* not found *)
| (Node(1, _, r), z’) -> splay 1 x r z’ (*found*)

(For a purely-functional presentation of splay trees without zippers, see Nipkow
et al, FAV!, chap. 21.)

32

Connections with formal derivatives

Contexts ~ zippers ~ lists of deltas

For a regular algebraic type, the type of zippers and the type of
contexts are isomorphic to a list of deltas:
type ’a delta =

| Left of ’a * ’a tree | Right of ’a tree * ’a

type ’a context =
| Hole =10
| Node_left of ’a context * ’a * ’a tree (* = Left(x,r) = c *)
| Node_right of ’a tree * ’a * ’a context (* = Right(L,x) = ¢ *)

type ’a zipper =

| Top (*=1 7%
| Left_of of ’a * ’a tree * ’a zipper (* = Left(x,r) = z *)
| Right_of of ’a tree * ’a * ’a zipper (* = Right(l,x) = z %)

38)

Applying deltas in the right order

let app d t =
match d with Left(1l, x) -> Node(l, x, t)
| Right(x, r) -> Node(t, x, r)

let rec fill_hole c t =

match ¢ with [J -> t | d :: ¢ -> app d (fill_hole c t)
let rec app_zipper z t =

match z with [J -> t | d :: z -> app_zipper z (app d t)

For a context:
first delta = top of the tree; empty list = the hole
filling a context C[t] = a right fold of app.

For a zipper:
first delta = neighbor of the hole; empty list = the top

applying a zipper = a left fold of app.
34

Constructing the type of deltas from the data type

type ’a tree = type ’a delta =
| Leaf
| Node of | Left of ’a * ’a tree
’a tree * ’a * ’a tree | Right of ’a tree * ’a

A constructor without any recursive occurrence of the type
disappears.

A constructor with n arguments including k recursive arguments
becomes k constructors with n — 1 arguments, obtained by
removing one of the k recursive occurrences.

’a tree *x ’a x ’a tree = Zta—tree—* ’a * ’a tree

’a tree *x ’a *—ra—tree

85

An algebra of types

Types: 7:=0]1]|2 empty, unit, bool
[t|a| B type variables
| M+ 7 | m x » sumand product

Isomorphisms: + and x are commutative and associative;
moreover,

O+7=171 Ox7T=0 I1X1T=7 2XT=74+T

36

Fixed points of types

Types: 7:=0]1]|2
[tlalp

empty, unit, bool
type variables

| M+ 7 | m x » sumand product

A regular algebraic datatype type t = 7 is a fixed point ut.7.

Examples:

ut. 14+t

pt. 1+ a xt

pt.a +txt
pt.1+txaxt
pt.ao+txt+txtxt

Peano numbers (Zero/Succ)
lists of o (Ni1/Cons)

binary trees with « at leaves
binary trees with « at nodes

2-3 trees with « at leaves

37

The type of deltas

(C. McBride, The derivative of a regular type is its type of one-hole contexts 2001)

The type of deltas for the regular algebraic datatype put.7 is
(0r 7) [t pt.7]

that is, the formal derivative of 7 with respect to the variable t
taken at point ut.7 .
0t0=0:1=0:2=0
ort=1
Oa=0 ifa#t
Ot(m+m)=0n+0n

8t(7'1 ><7'2) =k XT+T X0t

38

Examples of type derivatives

O(1+t)=0+1=1
The type of deltas for Peano numbers is unit.
d(1+axt)=04+0xt+ax1=«
The type of deltas for lists of « is a.
O(a+txt)=0+1xt+tx1=t+t=2xt

The type of deltas for binary trees with « at leaves is “a tree or a
tree”, or, equivalently, “a Boolean and a tree”.

dh(1+txaxt)=axt+txa=2xaxt

The type of deltas for binary trees with « at nodes is “an oz and a
tree, or a tree and an «”.

39

Extension to non-regular data types and to GADTs:

« C. McBride. The derivative of a reqular type is its type of
one-hole contexts. 2001.

A formalization of the connection between formal derivatives and
contexts:

« M. Abbot, T. Altenkirch, N. Ghani et C. McBride.
0 for data: differentiating data structures.
Fundamenta Informaticae, 2005.

40

Fingers

Fingers (Guibas, McCreight, Plass, Roberts, 1977)

A finger = a “pointer” to an element x of a data structure
that supports faster operations over elements near x.

Typically, if a regular operation takes time O(f(n)),
where n is the size of the structure,

the finger-based operation takes time O(f(d)),
where d is the distance from the finger.

A

Example: a finger in a sorted array

X
| 1]3]5]7]10]14]15]17]20]21|23]|25]27]30]|34|38]39]40]44|45]
w

i j
A finger on élément x; = its position i.
Searching for an element x > x; near x;:

s Tryj=i+1i+2,i+4,i+8,... untilx <x.

- Do a binary search between i and j.
Time: O(log(j — i)), thatis, O(logd) sincej — i < 2d.

42

Example: a finger in a doubly-linked list

From a pointer to element x;, we can

« delete or insert before or after this element in O(1) time;

« search for element x; in time O(d) whered = |j — i|.

We can reduce search time to O(log d) by replacing the list with a
skip list or by a balanced tree (a B-tree in Guibas et al 1977).

43

Zippers as purely-functional fingers

If we have only one finger per data structure, it can often be
represented as a (zipper, subtree) pair.

Example: a finger in a sorted list = a gap list (r, f)
with r sorted in increasing order and f in decreasing order.

finger

To search for an element x near the finger, we search
inf if f # [] and x > hd(f), orin r if r # [] and x < hd(r).
Time O(d).

44

A finger in a binary search tree

A finger to a subtree of a BST can also be represented as a pair
(t,z) where t is a subtree and z a tree zipper.

To search x near the finger, we need a fast (constant-time) test to
determine whether we should search in t or “move up” z to widen
the search.

Solution: annotate each subtree with the variation interval of
values it contains, as seen at the beginning of the lecture.

If x is in the interval of t, we must search in t (and nowhere else).
Otherwise, we must widen the search.

45

Searching from a finger in a BST

let rec finger_search x (t, z) =

if in_interval x (measure t)

then search x (t, z)

else
match z with
| Top -> search x (t, z) (*or: raise Notfound *)
| Left_of(y, r, z) -> finger_search x (node t y r, z)
| Right_of(1l, y, z) -> finger_search x (node 1 y t, z)

Generally more efficient than search x (app z t, Top)
but not in O(log d) worst-case time...

46

Searching from a finger in a BST

max

X1 Xd Xm—1 Xm+1 Xn

Best case: if (t, z) points to the smallest element x; (or the
largest). Assuming the tree is balanced, the subtree containing
both x; and x4 contains O(d) elements and has height O(log d).

Worst case: the finger points to x,,_q (the largest element of the
left subtree) and we search for x,, 1. The distance d is 2, but we
must move up all the way to the root, in time O(log n).

47

Two fingers in a structure

In general, zippers do not support multiple fingers in a structure.

An exception: two fingers in a BST, one to the smallest element,
the other to the largest element.

We represent the leftmost branch and the rightmost branch by
zippers, going from bottom to top.

e
/N
c g
7\ /N
a D F []

7\
[1 B

48

Min finger and max finger in a BST

type ’a left_zipper = (a * ’a tree) list
type ’a right_zipper = (’a tree * ’a) list

type ’a min_max =
| Empty
| Topnode of ’a left_zipper * ’a * ’a right_zipper

let rebuild (mm: ’a min_max) : ’a tree =
match mm with
| Empty -> Leaf
| Topnode(lz, x, rz) ->
Node(List.fold_left (fun 1 (x, r) -> Node(l, x, r)) Leaf 1z,
X,
List.fold_left (fun r (1, x) -> Node(l, x, r)) Leaf rz)

49

a min finger or a max finger

Searching is easier than from an arbitrary finger: no need for
variation intervals, and worst-case time O(log d) where d is the
distance to the min or to the max, whichever is smaller.

let rec mem_left v = function

| [1 -> false
| [(x,)] > v=x || mem x r
| (x1, r1) :: ((x2, _) :: _) as 1z ->

if v < x1 then false else
if v = x1 then true else
if v < x2 then mem v rl else mem_left v 1z

let rec mem_right v = function ...

function

let mem_min_max v
| Leaf -> false
| Topnode(lz, x, rz) ->

v =x || (if x < v then mem_left v 1z else mem_right v rz)

50

Rebalancing a BST with min and max fingers

Local rebalancing in the left zipper or the right zipper is relatively
simple. Each rotation takes constant time.

Rotations that involve the top of the tree are more expensive
(time log n) because we need access to the last elements of the

zippers.

Example: rebalancing when the left zipper is empty.

e - g
VAN / \.
e 1
/N 7\ / N
F i [1 F H][]

51

Min and max fingers on a perfect tree

If the binary tree is perfect, all branches have the same lengths,
including the left zipper and the right zipper.

We can, therefore, fuse the two zippers in one!

e Unit(e)
/N T
c g More(c,D, F, 8)
/N /N T
a D F i More(a, B, H, i)
7\ /N T
[l B H o] (][]

type ’a minmax =
| Empty | Unit of ’a
| More of ’a * ’a tree * ’a minmax * ’a tree * ’a
52

Finger trees: min and max fingers on a 2-3 tree

A 2-3 tree with values at leaves: (Hinze and Paterson, 2006)

53]

Finger trees: min and max fingers on a 2-3 tree

A non-regular type of 2-3 trees with values at leaves:

type ’a node = Pair of ’a * ’a | Triple of ’a * ’a * ’a
type ’a tree23 = Leaf of ’a | Node of ’a node tree23

Adding min and max fingers represented as a shared zipper:
type ’a digit =

| One of ’a | Two of ’a * ’a | Three of ’a * ’a * ’a
type ’a seq =

| Nil

| Unit of ’a

| More of ’a digit * ’a node seq * ’a digit

54

Summary

With the help of a bit of algebra, we can add new features to our
data structures:

- Annotation by measures ranging over monoids
— access by rank, by min or max value, ...

« Formal derivatives to define zippers
— navigation, fingers, ...

55)

References

References

The original article on zippers:

+ Gérard P. Huet, The Zipper,). Funct. Program. 7(5), 1997.

The original article on finger trees, which also introduces
annotations using monoids:

+ Ralf Hinze et Ross Paterson, Finger trees: a simple
general-purpose data structure,). Funct. Program. 16(2),
2006.

56

	Prologue: structures annotated with a monoid
	Navigation in a structure
	Connections with formal derivatives
	Fingers
	Summary
	References

