
Persistent data structures, sixième cours

From formal derivatives to navigation in a
structure: contexts, zippers, fingers

Xavier Leroy
2023-04-13

Collège de France, chair of Software sciences
xavier.leroy@college-de-france.fr

Prologue:
structures annotated with a monoid

Binary search trees annotated by their sizes

The 2nd lecture mentioned the possibility of annotating the
nodes of a BST by the sizes of the corresponding subtrees. This
can be used

• to balance the trees (weight balancing);
• to determine quickly the size of a tree

(time O(1) instead of O(n));
• to access tree elements by rank.

2

Determining the rank of an element

If the BST has size n and elements x0 < · · · < xn−1, the rank of
element xi is the integer i.

type ’a tree = Leaf | Node of int * ’a tree * ’a * ’a tree

let size = function Leaf -> 0 | Node(s, _, _, _) -> s

let node l x r = Node(size l + 1 + size r, l, x, r)

let rec rank x t =

match t with

| Leaf -> raise Not_found

| Node(l, y, r) ->

if x < y then rank x l

else if x = y then size l

else size l + 1 + rank x r

3

Finding an element by its rank

The converse operation: given a rank i, find the element xi.

let rec get i t =

match t with

| Leaf -> raise Out_of_bounds

| Node(l, x, r) ->

if i = size l then x

else if i < size l then get i l

else get (i - size l - 1) r

4

Generalization to other annotations

An annotation of a binary tree = a measure of its elements
ranging over a monoid.

A monoid = a type µ equipped with a neutral element 0 : µ and
an associative operation ⊕ : µ→ µ→ µ.

x ⊕ 0 = 0⊕ x = x (x ⊕ y)⊕ z = x ⊕ (y ⊕ z)

A measure: a function ∥·∥ : α→ µ that we extend into a function
∥·∥ : α tree→ µ by defining

∥Leaf∥ = 0

∥Node(ℓ, x, r)∥ = ∥ℓ∥ ⊕ ∥x∥ ⊕ ∥r∥

5

Examples of monoids and measures

Measuring the size:

µ = int 0 = 0 x ⊕ y = x + y ∥x∥ = 1

Measuring the sum of elements (for a tree of numbers):

µ = int 0 = 0 x ⊕ y = x + y ∥x∥ = x

Measuring the variation interval of elements:

µ = (α× α) option 0 = None ∥x∥ = Some(x, x)

None⊕m = m⊕ None = m

Some(ℓ1, h1)⊕ Some(ℓ2, h2) = Some(min(ℓ1, ℓ2),max(h1, h2))

6

Scanning and splitting (Hinze et Paterson, 2006)

Scanning a sequence t = x0, . . . , xn−1 from m0:
compute the measures m1 = m0 ⊕ ∥x0∥, . . . , mi+1 = mi ⊕ ∥xi∥
until we reach an element xi that brings a predicate p : µ→ bool

from false to true.

x0 xi xn−1

m0 m1 mi mi+1 mn

¬p ¬p p p? ? ? ? ? ? ?

Such an xi always exists if p(m0) = false and
p(m0 ⊕ ∥t∥) = true. It is not unique in general.

Splitting a sequence: scan, then return (ℓ, xi, r)
where ℓ is the sequence of elements preceding xi
and r the sequence of elements following xi.

7

An OCaml implementation using functors

module type MONOID = sig

type t

val zero: t

val add: t -> t -> t

end

module type ORDERED_MEASURED = sig

type t

val compare: t -> t -> int

module M: MONOID

val measure: t -> M.t

end

module BST(X: ORDERED_MEASURED) :

ORDERED_MEASURED with module M = X.M

= struct module M = X.M ... end
8

An OCaml implementation using functors

module M = X.M

type t = Leaf | Node of M.t * t * X.t * t

let measure t = match t with Leaf -> M.zero | Node(m, _, _, _) -> m

let node l x r =

Node(M.add (measure l) (M.add (X.measure x) (measure r)), l, x, r)

let rec split p m t =

match t with

| Leaf -> raise Not_found

| Node(_, l, x, r) ->

let m1 = M.add m (measure l) in

let m2 = M.add m1 (X.measure x) in

if p m1 then

let (l’, x’, r’) = split p m l in

(l’, x’, node r’ x r)

else if p m2 then (l, x, r)

else

let (l’, x’, r’) = split p m2 r in

(node l x l’, x’, r’) 9

Application to finger trees: random access

Hinze and Paterson (2006) show how to annotate finger trees with
measures and to implement a split operation that runs in time
O(log n).

Using the monoid of sizes, we get random access
to the i-th element of the sequence, in time O(log n).
let get i s =

let (_, x, _) = split (fun sz -> sz > i) 0 t in x

let set i v s =

let (l, _, r) = split (fun sz -> sz > i) 0 t in

(concat l (cons v r))

let delete i s =

let (l, _, r) = split (fun sz -> sz > i) 0 t in

concat l r

10

Application to finger trees: priority queues

Using the monoid of intervals, we get a min-max priority queue:

• access to the smallest / largest element in time O(log n);
• insertion in time O(1) amortized.

let extract_min s =

match measure s with

| None -> raise Empty

| Some(min, max) ->

let (l, _, r) =

split (function None -> false | Some(m, _) -> m = min)

None t

in (min, concat l r)

11

Application to finger trees: ordered sequence

We can also used the last value monoid:

µ = α option 0 = None ∥x∥ = Some(x)

None⊕m = m⊕ None = m

Some(v1)⊕ Some(v2) = Some(v2)

If we keep the sequence sorted in increasing order, these “last
value” annotations support binary search like in a BST.

split supports implementing insertion, deletion, and search in
time O(log n).
head, tail, last, take give us access to the smallest / largest
element in time O(1) amortized.

12

Navigation in a structure

Gap buffer

A data structure used by text editors (e.g. Emacs).

l o r e m i p s u m d o l o r

text “gap” (cursor) text

An array of characters, larger than the text being edited.

The text is stored in two contiguous fragments, one at the
beginning of the array, the other at the end.

The gap (the free space in between) is the editing cursor.

13

Text editing operations

a b c d e abcde|Loading the text

a b c d e ab|cdeMove back 3 characters

a c d e a|cdeDelete before cursor

a x y c d e axy|cdeInsert “x”, then “y”

a x y d e axy|deDelete after cursor

a x y d e |axydeSaut au début du texte

14

Text editing operations

a b c d e abcde|Loading the text

a b c d e ab|cdeMove back 3 characters

a c d e a|cdeDelete before cursor

a x y c d e axy|cdeInsert “x”, then “y”

a x y d e axy|deDelete after cursor

a x y d e |axydeSaut au début du texte

14

Text editing operations

a b c d e abcde|Loading the text

a b c d e ab|cdeMove back 3 characters

a c d e a|cdeDelete before cursor

a x y c d e axy|cdeInsert “x”, then “y”

a x y d e axy|deDelete after cursor

a x y d e |axydeSaut au début du texte

14

Text editing operations

a b c d e abcde|Loading the text

a b c d e ab|cdeMove back 3 characters

a c d e a|cdeDelete before cursor

a x y c d e axy|cdeInsert “x”, then “y”

a x y d e axy|deDelete after cursor

a x y d e |axydeSaut au début du texte

14

Text editing operations

a b c d e abcde|Loading the text

a b c d e ab|cdeMove back 3 characters

a c d e a|cdeDelete before cursor

a x y c d e axy|cdeInsert “x”, then “y”

a x y d e axy|deDelete after cursor

a x y d e |axydeSaut au début du texte

14

Text editing operations

a b c d e abcde|Loading the text

a b c d e ab|cdeMove back 3 characters

a c d e a|cdeDelete before cursor

a x y c d e axy|cdeInsert “x”, then “y”

a x y d e axy|deDelete after cursor

a x y d e |axydeSaut au début du texte

14

Cost of editing operations

The cost of an operation is proportional to the distance between
the cursor and the point where the operation takes place.

Insertion, deletion O(1)
Moving forward / backward d characters O(d)
Jump to beginning / end of text O(n)

(Plus: resizing the array when needed, which takes constant
amortized time.)

15

A singly-linked list with a gap

A “front” list and a “rear” list. The cursor sits between the two.

i p s u mmerol

front listrear list “gap”

16

Navigation in a gap list

type ’a hlist = ’a list * ’a list

let insert x (r, f) = (x :: r, f)

let delete_after (r, f) =

match f with [] -> raise Error | _ :: f’ -> (r, f’)

let delete_before (r, f) =

match r with [] -> raise Error | _ :: r’ -> (r’, f)

let move_forward (r, f) =

match f with [] -> (r, f) | x :: f’ -> (r :: x, f’)

let move_backward (r, f) =

match r with [] -> (r, f) | x :: r’ -> (r’, x :: f)

let move_to_beginning (r, f) = ([], List.rev_append r f)

let move_to_end (r, f) = (List.rev_append f r, [])
17

Navigation in a tree

d

b

A C

E

up

down left down right

We’d like to move not just from leaf to leaf, but more generally
from subtree to subtree.

Hence a representation as a pair of

a subtree (the cursor)
+ a tree with a “hole” (the remainder of the tree).

18

A tree with a hole = a context?

In operational semantics and other areas that use term algebras,
we use contexts C as “a term with a hole” (written []).

For example, in the case of binary trees

type ’a tree = Leaf | Node of ’a tree * ’a * ’a tree

here is the type of contexts (= trees with a hole):

type ’a context =

| Hole

| Node_left of ’a context * ’a * ’a tree

| Node_right of ’a tree * ’a * ’a context

19

Operations over contexts

The main operation, written C[t], rebuilds a term by filling the
hole [] in C with the term t.

let rec fill_hole c t =

match c with

| Hole -> t

| Node_left(c’, x, r) -> Node(fill_hole c’ t, x, r)

| Node_right(l, x, c’) -> Node(l, x, fill_hole c’ t)

20

Navigation using contexts

Navigating with pairs (context, subtree) is possible, but moves
take non-constant time!

let rec down_left (c, t) =

match (c, t) with

| (Hole, Node(l, x, r)) -> (Node_left(Hole, x, r), l)

| (Hole, Leaf) -> raise Error

| (Node_left(c, x, r), t) ->

let (c’, t’) = down_left (c, t) in

(Node_left(c’, x, r), t’)

| (Node_right(l, x, c), t) ->

let (c’, t’) = down_left (c, t) in

(Node_right(l, x, c’), t’)

21

Navigation using contexts

We would have hit the same inefficiency in the example of gap
lists if we represented the rear list “in the wrong direction”:

i p s u mmerol

i p s u mmerol

✔

✘

Wanted: a “reversed” tree context, with the hole at the top. . .

22

Zippers (G. Huet, 1997)

A reversed representation of contexts, where the first constructor
of the zipper is next to the hole, and the last constructor (Top)
denotes the root of the tree.

For binary trees:

type ’a zipper =

| Top

| Left_of of ’a * ’a tree * ’a zipper

| Right_of of ’a tree * ’a * ’a zipper

x

z

r

Left of(x, r, z): x

z

l

Right of(l, x, z):

23

Zipper vs. context

In a context, constructors go from top to bottom.
In a zipper, constructors go from bottom to top.

Context: Zipper:

f

d

b

A []

E

G

f

d

b

A []

E

G

Context:
Node_left(Node_left(Node_right(A,b, Hole),d, E), f,G)

Zipper:
Right_of(A,b, Left_of(d, E, Left_of(f,G, Top))) 24

Operations over zippers

The main operation, app z t, rebuilds a term by wrapping the
zipper z around the term t.

let rec app z t =

match z with

| Top -> t

| Left_of(x, r, z’) -> app z’ (Node(t, x, r))

| Right_of(l, x, z’) -> app z’ (Node(l, x, t))

(Note: tail recursive!)

25

Navigation with zippers

All three basic moves take constant time!
let down_left (t, z) =

match t with

| Leaf -> raise Error

| Node(l, x, r) -> (l, Left_of(x, r, z))

let down_right (t, z) =

match t with

| Leaf -> raise Error

| Node(l, x, r) -> (r, Right_of(l, x, z))

let up (t, z) =

match z with

| Top -> raise Error

| Left_of(x, r, z’) -> (Node(t, x, r), z’)

| Right_of(l, x, z’) -> (Node(l, x, t), z’) 26

Binary search with zippers

We can view binary search in a BST as returning the place where
the desired value x is or should be.

let rec search x (t, z) =

match t with

| Leaf -> (t, z)

| Node(l, y, r) ->

if y = x then (t, z) else

if y < x then search x (l, Left_of(y, r, z))

else search x (r, Right_of(l, y, z))

This way, we can move from any point to point x :

let move_to x (t,z) = search x (app z t, Top)

Time: O(log n). (Can be improved, see later.)

27

Application: a functional presentation of splay trees

Splay trees (Sleator and Tarjan 1985):

• Binary search trees without explicit balancing.

• At each operation (search, insertion, deletion), the x element
involved is moved to the top of the tree using well-chosen
rotations.

• These rotations progressively reduce tree imbalance, leading
to operations that run in time O(log n) amortized and O(n)
worst-case.

28

Example of search in a splay tree

We search for b in the heavily left-leaning tree abcde.

We move b to the top by two rotations, zig-zig then zig.

e

d

c

b

a

e

b

a c

d

b

a e

c

d

zig-zig zig

29

Rotations for splay trees

To “hoist” node x above its parent p and its grandparent g.
(Omitted: 3 symmetrical rotations.)

g

p

x

A B

C

D

x

A p

B g

C D

zig-zig
p

x

A B

C

x

A p

B C

zig
(at the root)

g

p

A x

B C

D

x

p

A B

g

C D

zig-zag

30

Splaying using a zipper

splay l x r z returns a BST equivalent to
app z (Node(l, x, r)) but having x at the top.

let rec splay l x r z =

match z with

| Top -> Node(l, x, r)

| Left_of(p, c, Top) -> (* final zig *)
Node(l, x, Node(r, p, c))

| Right_of(c, p, Top) -> (* final zig *)
Node(Node(c, p, l), x, r)

| Left_of(p, c, Left_of(q, d, z)) -> (* zig−zig *)
splay l x (Node(r, p, Node(c, q, d))) z

| Right_of(c, p, Right_of(d, q, z)) -> (* zig−zig *)
splay (Node(Node(d, q, c), p, l)) x r z

| Right_of(a, p, (Left_of(q, d, z))) -> (* zig−zag *)
splay (Node(p, a, l)) x (Node(r, q, d)) z

| Left_of(p, a, Right_of(d, q, z)) -> (* zig−zag *)
splay (Node(d, q, l)) x (Node(p, r, a)) z 31

Insertion in a splay tree

Insertion = search
+ creating a new node (if needed)
+ splaying.

let add x t =

match search x (t, Top) with

| (Leaf, z’) -> splay Leaf x Leaf z’ (* not found *)
| (Node(l, _, r), z’) -> splay l x r z’ (* found *)

(For a purely-functional presentation of splay trees without zippers, see Nipkow
et al, FAV!, chap. 21.)

32

Connections with formal derivatives

Contexts≈ zippers≈ lists of deltas

For a regular algebraic type, the type of zippers and the type of
contexts are isomorphic to a list of deltas:
type ’a delta =

| Left of ’a * ’a tree | Right of ’a tree * ’a

type ’a context =

| Hole (* = [] *)
| Node_left of ’a context * ’a * ’a tree (* = Left (x , r) :: c *)
| Node_right of ’a tree * ’a * ’a context (* = Right(l,x) :: c *)

type ’a zipper =

| Top (* = [] *)
| Left_of of ’a * ’a tree * ’a zipper (* = Left (x , r) :: z *)
| Right_of of ’a tree * ’a * ’a zipper (* = Right (l , x) :: z *)

33

Applying deltas in the right order

let app d t =

match d with Left(l, x) -> Node(l, x, t)

| Right(x, r) -> Node(t, x, r)

let rec fill_hole c t =

match c with [] -> t | d :: c -> app d (fill_hole c t)

let rec app_zipper z t =

match z with [] -> t | d :: z -> app_zipper z (app d t)

For a context:
first delta = top of the tree; empty list = the hole
filling a context C[t] = a right fold of app.

For a zipper:
first delta = neighbor of the hole; empty list = the top
applying a zipper = a left fold of app.

34

Constructing the type of deltas from the data type

type ’a tree =

| Leaf

| Node of

’a tree * ’a * ’a tree

type ’a delta =

| Left of ’a * ’a tree

| Right of ’a tree * ’a

A constructor without any recursive occurrence of the type
disappears.

A constructor with n arguments including k recursive arguments
becomes k constructors with n− 1 arguments, obtained by
removing one of the k recursive occurrences.

’a tree * ’a * ’a tree ⇒ ’a tree * ’a * ’a tree

’a tree * ’a * ’a tree

35

An algebra of types

Types: τ ::= 0 | 1 | 2 empty, unit, bool
| t | α | β type variables
| τ1 + τ2 | τ1 × τ2 sum and product

Isomorphisms: + and × are commutative and associative;
moreover,

0 + τ ≡ τ 0× τ ≡ 0 1× τ ≡ τ 2× τ ≡ τ + τ

36

Fixed points of types

Types: τ ::= 0 | 1 | 2 empty, unit, bool
| t | α | β type variables
| τ1 + τ2 | τ1 × τ2 sum and product

A regular algebraic datatype type t = τ is a fixed point µt.τ .

Examples:

µt. 1 + t Peano numbers (Zero/Succ)
µt. 1 + α× t lists of α (Nil/Cons)
µt. α+ t× t binary trees with α at leaves
µt. 1 + t× α× t binary trees with α at nodes
µt. α+ t× t+ t× t× t 2-3 trees with α at leaves

37

The type of deltas

(C. McBride, The derivative of a regular type is its type of one-hole contexts 2001)

The type of deltas for the regular algebraic datatype µt.τ is

(∂t τ) [t← µt.τ]

that is, the formal derivative of τ with respect to the variable t
taken at point µt.τ .

∂t 0 = ∂t 1 = ∂t 2 = 0

∂t t = 1

∂t α = 0 if α ̸= t

∂t (τ1 + τ2) = ∂t τ1 + ∂t τ2

∂t (τ1 × τ2) = ∂t τ1 × τ2 + τ1 × ∂t τ2

38

Examples of type derivatives

∂t (1 + t) = 0 + 1 ≡ 1

The type of deltas for Peano numbers is unit.

∂t (1 + α× t) = 0 + 0× t+ α× 1 ≡ α

The type of deltas for lists of α is α.

∂t (α+ t× t) = 0 + 1× t+ t× 1 ≡ t+ t ≡ 2× t
The type of deltas for binary trees with α at leaves is “a tree or a
tree”, or, equivalently, “a Boolean and a tree”.

∂t (1 + t× α× t) ≡ α× t+ t× α ≡ 2× α× t
The type of deltas for binary trees with α at nodes is “an α and a
tree, or a tree and an α”.

39

Further reading

Extension to non-regular data types and to GADTs:

• C. McBride. The derivative of a regular type is its type of
one-hole contexts. 2001.

A formalization of the connection between formal derivatives and
contexts:

• M. Abbot, T. Altenkirch, N. Ghani et C. McBride.
∂ for data: differentiating data structures.
Fundamenta Informaticae, 2005.

40

Fingers

Fingers (Guibas, McCreight, Plass, Roberts, 1977)

A finger = a “pointer” to an element x of a data structure
that supports faster operations over elements near x.

Typically, if a regular operation takes time O(f (n)),
where n is the size of the structure,
the finger-based operation takes time O(f (d)),
where d is the distance from the finger.

41

Example: a finger in a sorted array

1 3 5 7 10 14 15 17 20 21 23 25 27 30 34 38 39 40 44 45

i j

x

A finger on élément xi = its position i.

Searching for an element x > xi near xi:

• Try j = i+ 1, i+ 2, i+ 4, i+ 8, . . . until x ≤ xj.
• Do a binary search between i and j.

Time: O(log(j− i)), that is, O(log d) since j− i ≤ 2d.

42

Example: a finger in a doubly-linked list

7 15 24 27 30 34 38 39 40 44 57

finger

From a pointer to element xi, we can

• delete or insert before or after this element in O(1) time;
• search for element xj in time O(d) where d = |j− i|.

We can reduce search time to O(log d) by replacing the list with a
skip list or by a balanced tree (a B-tree in Guibas et al 1977).

43

Zippers as purely-functional fingers

If we have only one finger per data structure, it can often be
represented as a (zipper, subtree) pair.

Example: a finger in a sorted list = a gap list (r, f)
with r sorted in increasing order and f in decreasing order.

34 38 39 40 44 57302724157

fr
finger

To search for an element x near the finger, we search
in f if f ̸= [] and x ≥ hd(f), or in r if r ̸= [] and x ≤ hd(r).
Time O(d).

44

A finger in a binary search tree

A finger to a subtree of a BST can also be represented as a pair
(t, z) where t is a subtree and z a tree zipper.

To search x near the finger, we need a fast (constant-time) test to
determine whether we should search in t or “move up” z to widen
the search.

Solution: annotate each subtree with the variation interval of
values it contains, as seen at the beginning of the lecture.

If x is in the interval of t, we must search in t (and nowhere else).
Otherwise, we must widen the search.

45

Searching from a finger in a BST

let rec finger_search x (t, z) =

if in_interval x (measure t)

then search x (t, z)

else

match z with

| Top -> search x (t, z) (* or: raise Not found *)
| Left_of(y, r, z) -> finger_search x (node t y r, z)

| Right_of(l, y, z) -> finger_search x (node l y t, z)

Generally more efficient than search x (app z t, Top)

but not in O(log d) worst-case time. . .

46

Searching from a finger in a BST

xm

x1 xd xm−1 xm+1 xn
min max

lo
g
n

lo
g
d

Best case: if (t, z) points to the smallest element x1 (or the
largest). Assuming the tree is balanced, the subtree containing
both x1 and xd contains O(d) elements and has height O(log d).

Worst case: the finger points to xm−1 (the largest element of the
left subtree) and we search for xm+1. The distance d is 2, but we
must move up all the way to the root, in time O(log n).

47

Two fingers in a structure

In general, zippers do not support multiple fingers in a structure.

An exception: two fingers in a BST, one to the smallest element,
the other to the largest element.

We represent the leftmost branch and the rightmost branch by
zippers, going from bottom to top.

e

c

a

[] B

D

g

F []

48

Min finger and max finger in a BST

type ’a left_zipper = (’a * ’a tree) list

type ’a right_zipper = (’a tree * ’a) list

type ’a min_max =

| Empty

| Topnode of ’a left_zipper * ’a * ’a right_zipper

let rebuild (mm: ’a min_max) : ’a tree =

match mm with

| Empty -> Leaf

| Topnode(lz, x, rz) ->

Node(List.fold_left (fun l (x, r) -> Node(l, x, r)) Leaf lz,

x,

List.fold_left (fun r (l, x) -> Node(l, x, r)) Leaf rz)

49

Searching from a min finger or a max finger

Searching is easier than from an arbitrary finger: no need for
variation intervals, and worst-case time O(log d) where d is the
distance to the min or to the max, whichever is smaller.
let rec mem_left v = function

| [] -> false

| [(x, r)] -> v = x || mem x r

| (x1, r1) :: ((x2, _) :: _) as lz ->

if v < x1 then false else

if v = x1 then true else

if v < x2 then mem v r1 else mem_left v lz

let rec mem_right v = function ...

let mem_min_max v = function

| Leaf -> false

| Topnode(lz, x, rz) ->

v = x || (if x < v then mem_left v lz else mem_right v rz) 50

Rebalancing a BST with min and max fingers

Local rebalancing in the left zipper or the right zipper is relatively
simple. Each rotation takes constant time.

Rotations that involve the top of the tree are more expensive
(time log n) because we need access to the last elements of the
zippers.

Example: rebalancing when the left zipper is empty.

e

[] g

F i

H []

g

e

[] F

i

H []

51

Min and max fingers on a perfect tree

If the binary tree is perfect, all branches have the same lengths,
including the left zipper and the right zipper.

We can, therefore, fuse the two zippers in one!

e

c

a

[] B

D

g

F i

H []

Unit(e)

More(c,D, F, g)

More(a,B,H, i)

[], []

type ’a minmax =

| Empty | Unit of ’a

| More of ’a * ’a tree * ’a minmax * ’a tree * ’a

52

Finger trees: min and max fingers on a 2-3 tree

A 2-3 tree with values at leaves: (Hinze and Paterson, 2006)

Finger trees: a simple general-purpose data structure 3

Skewed reductions are far more general than reductions: they not only take an

arbitrary binary operation and an arbitrary element, the arguments of the binary

operation may even have different types.

The order of reducer ’s parameters is arranged as to suggest an alternative reading:

reducer (⌃) lifts the operation ‘⌃’ to f -structures. As an example, if ‘⌃’ adds an

element to a container, then reducer (⌃) adds a complete f -structure.

Skewed reductions need not be written by hand; they can be defined generically

for arbitrary f -structures (Hinze & Jeuring, 2003). Nonetheless, we shall provide

all the necessary instances in order to keep the paper self-contained.

On lists, reductions specialize to folds.

instance Reduce [] where

reducer (⌃) x z = foldr (⌃) z x -- NB. x and z are swapped

reducel (⌥) x z = foldl (⌥) x z

Reductions are particularly useful for converting between structures.

toList :: (Reduce f) ⇒ f a → [a]

toList s = s :� [] where (:�) = reducer (:)

Think of the structure s as being cons’ed to the empty list.

3 Simple sequences

We first develop the definition of 2-3 finger trees, and then show how they efficiently

implement sequences. As a starting point, consider ordinary 2-3 trees, like the one

below:

t h i s i s n o t a t r e e

The structural constraint that all leaves occur at the same level may be expressed

by defining a non-regular or nested type (Bird & Meertens, 1998), as follows:

data Tree a = Zero a | Succ (Tree (Node a))

data Node a = Node2 a a | Node3 a a a

Values of type Tree a have the form Succn (Zero t) for some n, where t has type

Noden a, the type of well-formed 2-3 trees of depth n. Note that the internal nodes

of these trees contain no keys; in this section we shall store all data in the leaves of

our trees.

Operations on such trees typically take time logarithmic in the size of the tree,

but for a sequence implementation we would like to add and remove elements from

either end in constant time.

The same, held by the leftmost and the rightmost nodes:

4 R. Hinze and R. Paterson

3.1 Finger trees

A structure providing efficient access to nodes of a tree near a distinguished location

is called a finger (Guibas et al., 1977). In an imperative setting, this would be done

by reversing pointers. In a functional setting, we can transform the structure in a

manner reminiscent of Huet’s “zipper” structure (1997).

To provide efficient access to the ends of a sequence, we wish to place fingers at

the left and right ends of this tree. Imagine taking hold of the end nodes of the

example tree above and lifting them up together. We would obtain a tree that looks

like this:

t h

i s i s n o t a t

r e e

Because all leaves of the original 2-3 tree were at the same depth, the left and right

spines have the same length, and we can pair corresponding nodes on these spines

to make a single central spine. Hanging off the sides of these nodes are 2-3 trees,

whose depth increases as we descend the central spine. The first level contains two

or three elements on each side, while the others have one or two subtrees. At the

bottom of the spine, we have either a single 2-3 tree or none, depending on whether

the old root had a degree of 3 or 2. We can describe this structure as follows:

data FingerTree a = Empty

| Single a

| Deep (Digit a) (FingerTree (Node a)) (Digit a)

where a digit is a buffer of elements stored left to right (in the picture digits are

depicted by filled circles), here represented as a list to simplify the presentation:

type Digit a = [a]

As noted above, in transformed 2-3 trees these lists have length 2 or 3 at the top

level and 1 or 2 at lower levels. We shall relax this, allowing between one and four

subtrees at each level. As we shall see in the next subsection, this relaxation provides

just enough slack to buffer deque operations efficiently. By the way, the buffer type is

called Digit because finger trees are a so-called numerical representation (Okasaki,

1998), a data structure that is modelled after a number system.

The non-regular definition of the FingerTree type determines the unusual shape

of these trees, which is the key to their performance. The top level contains elements

of type a, the next of type Node a, and so on: the nth level contains elements of type

Noden a, namely 2-3 trees of depth n. Thus a sequence of n elements is represented

53

Finger trees: min and max fingers on a 2-3 tree

A non-regular type of 2-3 trees with values at leaves:

type ’a node = Pair of ’a * ’a | Triple of ’a * ’a * ’a

type ’a tree23 = Leaf of ’a | Node of ’a node tree23

Adding min and max fingers represented as a shared zipper:

type ’a digit =

| One of ’a | Two of ’a * ’a | Three of ’a * ’a * ’a

type ’a seq =

| Nil

| Unit of ’a

| More of ’a digit * ’a node seq * ’a digit

54

Summary

Summary

With the help of a bit of algebra, we can add new features to our
data structures:

• Annotation by measures ranging over monoids
→ access by rank, by min or max value, . . .

• Formal derivatives to define zippers
→ navigation, fingers, . . .

55

References

References

The original article on zippers:

• Gérard P. Huet, The Zipper, J. Funct. Program. 7(5), 1997.

The original article on finger trees, which also introduces
annotations using monoids:

• Ralf Hinze et Ross Paterson, Finger trees: a simple
general-purpose data structure, J. Funct. Program. 16(2),
2006.

56

	Prologue: structures annotated with a monoid
	Navigation in a structure
	Connections with formal derivatives
	Fingers
	Summary
	References

