Persistent data structures, fifth lecture

Numerical representations and non-regular data types

Xavier Leroy
2023-04-07

Collège de France, chair of Software sciences
xavier.leroy@college-de-france.fr

Numerical representations

Data structures and numerical representations

To better understand or to design a data structure, it can be helpful to reduce it to a number.

Typically: a collection \rightarrow the number of elements.
Operations on the structure correspond to arithmetic operations:

$$
\begin{aligned}
\text { insertion } & \rightarrow \text { increment } \\
\text { deletion } & \rightarrow \text { decrement } \\
\text { merge (disjoint union) } & \rightarrow \text { addition }
\end{aligned}
$$

The concrete representation of the data structure corresponds to a particular way to write the number, for instance:
singly-linked list \rightarrow Peano numbers

Lists and Peano numbers

$$
\begin{aligned}
& \text { type 'a list }= \\
& \text { | Nil } \\
& \text { | Cons of 'a * 'a list }
\end{aligned}
$$

$$
\begin{aligned}
& \text { type num = } \\
& \text { | Zero } \\
& \text { | Succ of num }
\end{aligned}
$$

Constant-time operations:

$$
\begin{aligned}
& \operatorname{cons}(\ell \rightarrow \operatorname{Cons}(x, \ell)) \\
& \text { tail }(\operatorname{Cons}(x, \ell) \rightarrow \ell)
\end{aligned}
$$

increment ($n \rightarrow$ Succ n) decrement (Succ $n \rightarrow n$)

Linear-time operations:
concatenation $\left(\ell_{1} @ \ell_{2}\right) \quad$ addition $\left(n_{1}+n_{2}\right)$
n-th element (List.nth ℓn) comparison ($>\mathrm{n}$)

Binary numbers

Number	Representation	Number	Representation
$0:$		$8:$	$\mathbf{0 0 0 1}$
1:	$\mathbf{1}$	$9:$	$\mathbf{1 0 0 1}$
2:	$\mathbf{0 1}$	$10:$	$\mathbf{0 1 0 1}$
3:	$\mathbf{1 1}$	$11:$	$\mathbf{1 1 0 1}$
4:	$\mathbf{0 0 1}$	$12:$	$\mathbf{0 0 1 1}$
5:	101	$13:$	1011
6:	$\mathbf{0 1 1}$	$14:$	$\mathbf{0 1 1 1}$
7:	111	$15:$	1111

Little-endian representation (least significant bit first):
a list of digits $d_{0}, d_{1}, \ldots, d_{p-1}$ with $d_{i} \in\{\mathbf{0}, \mathbf{1}\}$.
This list denotes the integer number $\sum_{i=0}^{p-1} d_{i} \cdot 2^{i}$.

Representation and basic operations

```
type digit = Zero | One
type num = digit list
let rec inc = function
    | [] -> [One]
    | Zero :: n -> One :: n
    | One :: n -> Zero :: inc n
let rec dec = function
    | [] -> raise Error
    | [One] -> []
    | One :: n -> Zero :: n
    | Zero :: n -> One :: dec n
```


Algorithmic complexity of increment

```
let rec inc = function
    | [] -> [One]
    | Zero :: n -> One :: n
    | One :: n -> Zero :: inc n
```

inc takes time proportional to $k+1$, where k is the number of $\mathbf{1}$ that precede the first $\mathbf{0}$:

If n is the number denoted by the list, we have $n \geq 2^{k}-1$.
Therefore, inc runs in worst-case time $\mathcal{O}(\log n)$.

Amortized analysis of increment

```
let rec inc = function
    | [] -> [One]
    | Zero :: n -> One :: n
    | One :: n -> Zero : : inc n
```

We say that a digit is dangerous if it can trigger a carry that needs to be propagated, and not dangerous if there is never a carry.

For inc, $\mathbf{1}$ is dangerous, $\mathbf{0}$ is not dangerous.
Take $\Phi(n)=$ number of dangerous digits in the list n.
If k is the number of 1 preceding the first $\mathbf{0}$,

- inc takes actual time $k+1$
- $\Delta \Phi=1-k$ (since one 1 appears and $k \mathbf{1}$ become $\mathbf{0}$)

Therefore, inc runs in constant amortized time.

Amortized analysis of increment and decrement

A similar analysis shows that dec runs in constant amortized time.
(Taking $\mathbf{0}$ as the dangerous digit.)
Yet, a sequence of n inc and dec can take time $n \log n \ldots$

We perform $n=2^{k}$ inc operations, going from 0 to 2^{k}, then n sequences dec; inc, each taking time $2 k$
$\rightarrow 3 n$ operations in time $2 n \log n$.
Why is this possible? We used different potentials Φ to analyze inc and dec!

A number system

To each position i, we associate
a weight $w_{i} \in \mathbb{N}+$;
a set of allowed digits $D_{i} \subseteq \mathbb{N}$.
The sequence d_{0}, d_{1}, \ldots with $d_{i} \in D_{i}$ denotes the number
$n=\sum_{i=0} d_{i} w_{i}$.
Examples of number systems:

- Binary (base 2) numbers: $D_{i}=\{\mathbf{0}, \mathbf{1}\}$ and $w_{i}=2^{i}$.
- Decimal (base 10) numbers: $D_{i}=\{\mathbf{0}, \ldots, \mathbf{9}\}$ and $w_{i}=10^{i}$.
- Days, hours, minutes, seconds:

$$
\begin{aligned}
& D_{0}=D_{1}=\{\mathbf{0}, \ldots, 59\}, D_{2}=\{\mathbf{0}, \ldots, \mathbf{2 3}\}, D_{3}=\mathbb{N} \\
& w_{0}=1, w_{1}=60, w_{2}=60 \times 60, w_{3}=60 \times 60 \times 24
\end{aligned}
$$

- Redundant binary numbers: $D_{i}=\{\mathbf{0}, \mathbf{1}, \mathbf{2}\}$ and $w_{i}=2^{i}$.

Redundant binary numbers

Using three digits $\mathbf{0 , 1}$ and 2.
A given number can have multiple representations.

0 :
1: 1
2: 01, 2
3: 11
4: 001, 02, 21
5: 101, 12
6: 011, 201, 22
7: 111
8: 0001, 002, 021, 211

9: 1001, 102, 121
10: 0101, 012, 2001, 202, 221
11: 1101, 112
12: 0011, 0201, 022, 2101, 212
13: 1011, 1201, 122
14: 0111, 2011, 2201, 222
15: 1111
16: 00001, 0002, 0021, 0211, 2111
17: 10001, 1002, 1021, 1211

Increment and decrement over the redundant representation

```
let rec inc = function
    | [] -> [One]
    | Zero :: n -> One :: n
    | One :: n -> Two : : n
    | Two :: n -> One :: inc n
```

The last case is justified by $(2+2 n)+1=1+2(n+1)$.
let rec dec $=$ function
| [] -> raise Error
| [One] -> []
| Two :: n -> One : : n
| One :: n -> Zero :: n
| Zero :: n -> One :: dec n
The last case is justified by $(0+2 n)-1=1+2(n-1)$.

Increment and decrement over the redundant representation

Decrement is not the inverse of increment!

Number	Increments \downarrow	Decrements \uparrow
1	1	1
2	2	01
3	11	11
4	21	001
5	12	101
6	22	011
7	111	111
8	211	0001
9	121	1001
10	221	0101
11	112	1101
12	212	0011
13	122	1011
14	222	0111
15	1111	1111

Amortized analysis

```
let rec inc = function ... | Two :: n -> One :: inc n
let rec dec = function ... | Zero :: n -> One :: dec n
```

We classify $\mathbf{0}$ and $\mathbf{2}$ as dangerous digits. Only $\mathbf{1}$ is not dangerous.
Take $\Phi(n)=$ number of dangerous digits in the list n.
Each time inc or dec calls itself recursively,
Φ decreases by 1 (a $\mathbf{2}$ or a $\mathbf{0}$ becomes a $\mathbf{1}$).
Therefore, inc and dec run in constant amortized time, even if we interleave calls to inc and dec.

Amortization and persistence

As in the 3rd lecture, this amortized complexity extends to persistent uses of numbers, provided we use lazy lists (streams) of digits instead of lists of digits.

```
type digit = Zero | One | Two
type num = digit stream
let rec inc n =
lazy (match Lazy.force n with
    | Nil -> Cons(One, lazy Nil)
    | Cons(Zero, n) -> Cons(One, n)
    | Cons(One, n) -> Cons(Two, n)
    | Cons(Two, n) -> Cons(One, inc n))
```

To show the $\mathcal{O}(1)$ amortized time bound, we use the 2.0 banker's method, putting two time debits on each 1 digit and one debit on 0 and 2.

A problem with the zero digit

We can have arbitrarily-many zero digits at the end of a number: $1=10=100000000000000000000$.

This does not change the complexity of inc and dec, but makes comparison against zero arbitrarily slow.
let rec iszero $=$ function
| [] -> true
| One :: _ -> false
| Zero :: n -> iszero n
The time taken by iszero n is not bounded by a function of the number denoted by the list...

Solution 1: ensure that a list of digits never ends in $\mathbf{0}$. (Complicates the computations a bit.)

Solution 2: represent numbers without using zero digits!

Zero-less binary representation

For example, using the digits 1, 2, $\mathbf{3}$.

0	
1	1
2	2
3	11,3
4	21
5	12,31
6	22
7	$111,13,32$
8	211,23

9 121, 311, 33
10221
11 112, 131, 321
12 212, 231
13 122, 312, 331
14222
15 1111, 113, 132, 322
16 2111, 213, 232
17 1211, 123, 3111, 313, 332

Zero-less operations

```
type digit = One | Two | Three
type num = digit list
let iszero = function [] -> true | _ -> false
let rec inc = function
    | [] -> [One]
    | One :: n -> Two :: n
    | Two :: n -> Three :: n
    | Three : : \(\mathrm{n} \rightarrow\) Two : : inc \(\mathrm{n}(*(3+2 n)+1=2+2(n+1) *)\)
let rec dec = function
    | [] -> raise Error
    | [One] -> []
    | Three :: n -> Two :: n
    | Two :: n -> One :: n
    | One :: n -> Two :: dec \(n\) (* \((1+2 n)-1=2+2(n-1)\) *)
```


Sparse representation

Instead of the dense positional representation
number $=$ list of digits
we can use a sparse representation
number $=$ list of (nonzero digit, weight) pairs
(in strictly increasing order of weights)
or, if the only digits are $\mathbf{0}$ and $\mathbf{1}$,
number $=$ list of weights \quad (strictly increasing)

Example: 13 is 1, 4, $\mathbf{8}$ in sparse repr. and 1011 in dense repr.

Increment and decrement in sparse binary representation

```
type num = int list (* powers of 2, in strictly increasing order *)
let iszero = function [] -> true | _ -> false
let rec carry c n =
    match n with
    | [] -> [c]
    | w :: n' -> if c < w then c :: n else carry (2 * c) n'
let rec borrow c n =
    match n with
    | [] -> raise Error
    | w :: n' -> if c = w then n' else c :: borrow (2 * c) n
let inc n = carry 1 n
let dec n = borrow 1 n

\title{
Data structures inspired by number systems
}

\section*{From a number system to a data structure}

General idea:
\[
\begin{aligned}
\text { A structure } & =\text { a list of digits } \\
\text { A digit } d \text { with rank } i & =d \text { subtrees of } w_{i} \text { elements each. }
\end{aligned}
\]

Example: in binary ( \(w_{i}=2^{i}\) ), using digits \(\mathbf{0}\) and \(\mathbf{1}\), a 13-element structure will have the following shape.


\section*{Which trees correspond to weights?}

For a binary representation, we need trees of size \(2^{i}\).
To "propagate carries" during insertion ( \(\approx\) increment), we need a simple way to combine two trees of size \(2^{i}\) into a tree of size \(2^{i+1}\).

Two examples used in the following:
- Perfect binary trees with values at leaves
(used for random-access lists).
- Binomial trees (used for priority queues).

\section*{Perfect binary trees (PBT) with values at leaves}

PBT of rank \(0=\) a single value \(x\).
PBT of rank \(i+1=\) two PBTs of rank \(i\), joined by a node.


A good match for implementing indexed sequences:
accessing the \(j\)-th value \(x_{j}\) takes time \(i=\log n\) (binary search).
To combine \(A_{1}\) and \(A_{2}\) of rank \(i\), just form \(\underset{A_{1}}{/ \backslash} A_{2}\) with ranki+1.

Binomial tree of rank \(i=\)
a value \(x\) and \(i\) binomial trees of ranks \(i-1, \ldots, 1,0\).


A binomial tree of rank \(i\) has \(2^{i}\) elements.
It has \(\binom{i}{d}\) elements at depth \(d\).

\section*{Binomial trees}

To combine two binomial trees of rank \(i\), add one of them as the first subtree of the other.


A good match for implementing heaps
(for each subtree, the smallest element is at the root).

\section*{Random-access list}

The operations of a singly-linked list:
cons, head, tail, isempty
plus direct ("random") access to the \(i\)-th element of the list:
\[
\text { get } i \ell \text {, set } i v \ell
\]

Complexity objective: \(\mathcal{O}(1)\) for head, \(\mathcal{O}(1)\) amortized for tail and cons, \(\mathcal{O}(\log n)\) for get and set.

\section*{A random-access list patterned after binary numbers}

The representation is structured like binary numbers, using \(\mathbf{0}\) and \(\mathbf{1}\) as digits, and perfect binary trees with values at leaves as weights.

Example: the 13 -element list \(\left[x_{0}, \ldots, x_{12}\right]\).


Remark: for \(n\) elements, we have \(\mathcal{O}(\log n)\) trees.

\section*{Insertion in the list: the cons operation}
```

type 'a tree = Leaf of 'a | Node of 'a tree * 'a tree
type 'a digit = Zero | One of 'a tree
type 'a seq = 'a digit list
let rec cons_tree t r =
match r with
| [] -> [One t]
| Zero :: r -> One t :: r
| One t' :: r -> Zero :: cons_tree (Node(t, t')) r
let cons x r = cons_tree (Leaf x) r

```
cons follows the same pattern as incrementing a binary number.

\section*{The head and tail operations}
```

let rec uncons_tree = function
| [] -> raise Empty
| [One t] -> (t, [])
| One t : : r \rightarrow (t, Zero : : r)
| Zero :: r ->
let (Node(t1, t2), r^{\prime}) = uncons_tree r in
(t1, One t2 : : r')
let head $\mathrm{r}=$
let (Leaf x, \quad) $=$ uncons_tree r in x
let tail $\mathrm{r}=$
let (_, r') = uncons_tree r in r '

```
uncons_tree follows the same pattern as decrementing a binary number, but returns the first tree as an extra result.

\section*{Random access: the get operation}
```

let rec get_tree i t w =
match t with
| Leaf x -> assert (i = 0 \&\& w = 1); x
| Node(t1, t2) ->
let w = w / 2 in
if i < w then get_tree i t1 w else get_tree (i - w) t2 w
let rec get_rec i r w =
match r with
| [] -> raise Out_of_bounds
| Zero :: r' -> get_rec i r' (w * 2)
| One t :: r' ->
if i < w then get_tree i t w
else get_rec (i - w) r' (w * 2)
let get i r = get_rec i r 1

Complexity analysis

Same analysis as for binary numbers:

Operation	Digits $\mathbf{0 , 1}$
head	$\mathcal{O}(\log n) \mathbf{x}$
cons, tail	$\mathcal{O}(\log n) \mathbf{x (*)}$
get, set	$\mathcal{O}(\log n) \checkmark$

(*) A sequence of n cons takes time $\mathcal{O}(n)$, as well as a sequence of n tail, but not a sequence of n cons-then-tail.

Complexity analysis

Same analysis as for binary numbers:

Operation	Digits 0, 1	Digits 1, 2, 3
head	$\mathcal{O}(\log n) \mathbf{x}$	$\mathcal{O}(1) \checkmark$
cons, tail	$\mathcal{O}(\log n) \mathbf{x}(*)$	$\mathcal{O}(1)$ amortized \checkmark
get, set	$\mathcal{O}(\log n) \checkmark$	$\mathcal{O}(\log n) \checkmark$

(*) A sequence of n cons takes time $\mathcal{O}(n)$, as well as a sequence of n tail, but not a sequence of n cons-then-tail.

We switch to a representation using three digits 1, 2, 3:

- zero-less representation \rightarrow head in $\mathcal{O}(1)$ worst-case;
- redundant representation \rightarrow cons, tail in $\mathcal{O}(1)$ amortized.

Redundant and zero-less: the cons operation

```
type 'a tree = Leaf of 'a | Node of 'a tree * 'a tree
type 'a digit =
    | One of 'a tree
    | Two of 'a tree * 'a tree
    | Three of 'a tree * 'a tree * 'a tree
type 'a seq = 'a digit list
let rec cons_tree t r =
    match r with
    | [] -> [One t]
    | One t1 :: r -> Two(t, t1) :: r
    | Two(t1, t2) :: r -> Three(t, t1, t2) :: r
    | Three(t1, t2, t3) :: r ->
        Two(t, t1) :: cons_tree (Node(t2, t3)) r
let cons x r = cons_tree (Leaf x) r
```


Redundant and zero-less: the head and tail operations

```
let head = function
    | [] -> raise Empty
    | One(Leaf x) :: _ -> x
    | Two(Leaf x, _) :: _ -> x
    | Three(Leaf x, _, _) -> x
    | _ -> assert false
let rec uncons_tree = function
    | [] -> raise Empty
    | [One t] -> (t, [])
    | Three(t1, t2, t3) :: r -> (t1, Two(t2, t3) :: r)
    | Two(t1, t2) :: r -> (t1, One t2 :: r)
    | One t :: r ->
        let (Node(t1, t2), r') = uncons_tree r in
        (t, Two(t1, t2) :: r')
let tail r =
    let (_, r') = uncons_tree r in r'
```


Priority queues

A multiset of elements, with operations

- insert $x h$: add element x
- find_min h : return the smallest element of h (more generally: the element with highest priority)
- remove_min h : remove the smallest element of h
- merge $h_{1} h_{2}$: return the union of h_{1} and h_{2}.

Applications: scheduling; graph algorithms (shortest paths); sorting (the famous heapsort algorithm).

Heaps

A tree carrying values at nodes.
Values increase along every branch.
Consequently, the smallest value is always at the root.

A sparse binary representation of the number of elements in the priority queue, using binomial trees of rank i for weights 2^{i}.

Example: a priority queue containing 13 elements.

The list is ordered by strictly increasing ranks of binomial trees.
Each tree is ordered like a heap.

An implementation of binomial trees

```
type 'a tree = \{ rank: int; value: 'a; children: 'a tree list \}
let link t1 t2 =
    assert (t1.rank = t2.rank);
    if t1.value <= t2.value then
        \{ t1 with rank = t1.rank +1 ; children \(=\) t2 : : t1.children \}
        else
        \{ t2 with rank \(=\) t2. rank +1 ; children \(=\) t1 : : t2.children \}
```

Combining two trees (using the link function) preserves the heap invariant.

Insertion

```
type 'a heap = 'a tree list
let rec insert_tree t h =
    match h with
    | [] -> [t]
    | t' :: h' ->
        if t.rank < t'.rank
        then t :: h
        else insert_tree (link t t') h'
let insert x h =
    insert_tree { rank = 0; value = x; children = [] } h
```

Same pattern as incrementing a sparse binary number.

Merging two binomial heaps

```
let rec merge h1 h2 =
    match h1, h2 with
    | [], _ -> h2
    | _, [] -> h1
    | t1 : : h1', t2 : : h2' ->
        if t1.rank < t2.rank then t1 : : merge h1' h2
        else if t2.rank < t1.rank then t2 : : merge h1 h2'
        else insert_tree (link t1 t2) (merge h1' h2')
```

Same pattern as adding two sparse binary numbers.

Extracting the smallest element

```
let rec extract_min = function
    | [] -> raise Empty
    | [t] -> (t, [])
    | t :: h ->
        let (t', h') = extract_min h in
        if t.value <= t'.value then (t, h) else (t', t :: h')
let find_min h =
    let (t, _) = extract_min h in t.value
let remove_min h =
    let (t, h') = extract_min h in
    merge (List.rev t.children) h'
If \(t\) is a well-formed binomial tree,
List.rev t.children is a well-formed binomial heap!
```


Complexity analysis

For a n-element heap, its representation is a list of at most $\log n$ binomial trees
\rightarrow all operations run in worst-case time $\mathcal{O}(\log n)$.

The insert operation runs in $\mathcal{O}(1)$ amortized time, like increment of a binary number.
(Potential $\Phi=$ length of the list = number of $\mathbf{1}$ bits in the binary representation of n.)

Note: we cannot have insert, find_min and remove_min in $\mathcal{O}(1)$ amortized time. Otherwise, we could sort in linear time!

Non-regular data types

Algebraic types: regular or not

An algebraic type with one or several type parameter is regular if all recursive occurrences of the type use the same type parameters.
type 'a list = Nil | Cons of 'a * 'a list

Algebraic types: regular or not

An algebraic type with one or several type parameter is regular if all recursive occurrences of the type use the same type parameters.

```
type 'a list = Nil | Cons of 'a * 'a list
```

It is non regular or nested if recursive occurrences use "bigger" type parameters, for example 'a * 'a instead of 'a.

$$
\text { type 'a nest }=\text { Nil | Cons of 'a } * \text { ('a } * \text { 'a) nest }
$$

Example of a value of type int nest:
Cons(1, Cons((2,3), Cons(((4,5),(6,7)), Nil))).

A non-regular type: perfect binary trees with values at leaves

type 'a ptree = Leaf of 'a | Node of ('a * 'a) ptree

A non-regular type: perfect binary trees with values at leaves

type 'a ptree = Leaf of 'a | Node of ('a * 'a) ptree
Some values of type int ptree :

Operations on perfect binary trees

```
let rec size : 'a. 'a ptree -> int = function
    | Leaf x -> 1
    | Node t -> 2 * size t
let rec leftmost : 'a. 'a ptree -> 'a = function
    | Leaf x -> x
    | Node t -> fst (leftmost t)
let rec rightmost : 'a. 'a ptree -> 'a = function
    | Leaf x -> x
    | Node t -> snd (rightmost t)
```

Note: we must annotate functions with their polymorphic types ($\forall \alpha, \alpha$ ptree $\rightarrow \ldots$) because this is polymorphic recursion, for which type inference is undecidable in general.

Comparison with the usual, regular type of binary trees

```
type 'a tree =
    | Leaf of 'a
    | Node of 'a tree * 'a tree
```

```
let rec size = function
    | Leaf x -> 1
    | Node(t1, t2) ->
        size t1 + size t2
```

let rec leftmost $=$ function
| Leaf x -> x
| Node(t1, t2) -> leftmost t1

```
type 'a ptree =
    | Leaf of 'a
    | Node of ('a * 'a) ptree
```

let rec size : ... = function
| Leaf x -> 1
| Node t -> 2 * size t
let rec leftmost : ... = function
| Leaf x -> x
| Node t -> fst (leftmost t)

A random-access list

Instead of a regular list of digits, each digit being a perfect binary tree, let's use a nest-like list with non-regular recursion
('a becomes 'a * 'a).
type 'a digit = Zero | One of 'a
type 'a seq = Nil | Cons of 'a digit * ('a * 'a) seq

Examples of sequences with 1 to 6 elements: (: : is infix Cons)

```
One 1 :: Nil
Zero :: One(2,1) :: Nil
One 3 :: One(2,1) :: Nil
Zero :: Zero :: One((4,3),(2,1)) :: Nil
One 5 :: Zero :: One((4,3),(2,1)) :: Nil
Zero :: One(6,5) :: One((4,3),(2,1)) :: Nil
```


The cons and uncons operations

```
let rec cons : 'a. 'a -> 'a seq -> 'a seq = fun x s ->
    match s with
    | Nil -> Cons(One x, Nil)
    | Cons(Zero, s) -> Cons(One x, s)
    | Cons(One y, s) -> Cons(Zero, cons (x, y) s)
let rec uncons : 'a. 'a seq -> 'a * 'a seq = function
    | Nil -> raise Empty
    | Cons(One x, s) -> (x, Cons(Zero, s))
    | Cons(Zero, s) ->
    let ((x, y), t) = uncons s in (x, Cons(One y, t))
```


Random access: for reading

```
let rec get : 'a. int -> 'a seq -> 'a = fun i s ->
    match s with
    | Nil -> raise Out_of_bounds
    | Cons(Zero, s) -> get2 i s
    | Cons(One x, s) -> if i = 0 then x else get2 (i - 1) s
and get2 : 'a. int -> ('a * 'a) seq -> 'a = fun i s ->
    let (x0, x1) = get (i / 2) s in
    if i mod 2 = 0 then x0 else x1
```


Random access: for writing and modification

To "cross the recursion", we need to generalize writing at index i to modification of the value at i by any function f : 'a -> 'a.

```
let rec update : 'a. int -> ('a -> 'a) -> 'a seq -> 'a seq
```

$=$ fun if s ->
match s with
| Nil -> raise Out_of_bounds
| Cons(Zero, s) -> Cons(Zero, update2 ifs)
| Cons(One x, s) ->
if $i=0$ then Cons(One (f x), s)
else Cons(One x, update2 (i - 1) f s)
and update2 : 'a. int \rightarrow ('a \rightarrow ' a) \rightarrow ('a * 'a) seq \rightarrow ('a * 'a) seq
$=$ fun i f s2 ->
let $f 2(x 0, x 1)=$ if $i \bmod 2=0$ then ($f x 0, x 1$) else ($x 0, f x 1$) in
update (i / 2) f2 s2
let set : 'a. int -> 'a -> 'a seq -> 'a seq = fun i v s ->
update i (fun _ -> v) s

Finger trees

A purely-functional data structure for sequences of elements, with many efficient operations:

- Lookup, insertion, deletion at both ends in amortized time $\mathcal{O}(1)$, worst-case time $\mathcal{O}(\log n)$. (dequeue)
- Concatenation of two sequences in time $\mathcal{O}(\log n)$. (rope)
- After annotation with a monoid (see next lecture): direct access to the i-th element in time $\mathcal{O}(\log n)$;
(functional array)
direct access to the smallest in time $\mathcal{O}(\log n)$.
(priority queue)
Finger trees combine the two techniques described in this lecture: numerical representations and non-regular data types.

Think of a list-like structure with direct access to the first and to the last element:

```
type 'a seq =
    | Nil
    | Unit of 'a
    | More of 'a * 'a seq * 'a
```

Operations head and last take constant time, but cons and add take linear time:

```
let rec cons x = function
```

| Nil -> Unit x
| Unit y -> More(x, Nil, y)
| More(y, s, z) -> More(x, cons y s, z)

Using a non-regular data type

Sub-sequences (s in More (x, s, y)) would be much shorter if they contained 'a * 'a pairs instead of mere 'a elements.
type 'a seq =
| Nil
| Unit of 'a
| More of 'a * ('a * 'a) seq * 'a
Problem: we're unable to represent a sequence of length $3 .$. .
More generally, representable sequences have lengths
$L=\{0,1\} \cup\{2+2 \ell \mid \ell \in L\}=\{0,1,2,4,6,10,14,22, \ldots\}$.

Using digits

To be able to represent all lengths, let's put a digit (= a small number of elements) on both sides of the sub-sequence.

```
type 'a digit =
    | One of 'a | Two of 'a * 'a | Three of 'a * 'a * 'a
type 'a seq =
    | Nil
    | Unit of 'a
    | More of 'a digit * ('a * 'a) seq * 'a digit
```

We recognize a binary number system, zero-less and with redundant digits.
\rightarrow Operations similar to increment and decrement (cons, tail, add, take) will run in $\mathcal{O}(1)$ amortized time.

An example of a finger tree

Each of the left and right fringes looks like a random-access list.

The cons operation

```
let rec cons : 'a. 'a -> 'a seq -> 'a seq = fun x t ->
    match t with
    | Nil -> Unit x
    | Unit y -> More(One x, Nil, One y)
    | More(One y, s, z) -> More(Two(x, y), s, z)
    | More(Two(y1, y2), s, z) -> More(Three(x, y1, y2), s, z)
    | More(Three(y1, y2, y3), s, z) ->
        More(Two(x, y1), cons (y2, y3) s, z)
```

Exercise: define add (insertion at end of sequence), in a completely symmetric manner.

The head and tail operations

```
let rec uncons : 'a. 'a seq -> 'a * 'a seq = fun t ->
    match t with
    | Nil -> raise Empty
    | Unit y -> (y, Nil)
    | More(Three(y1, y2, y3), s, z) -> (y1, More(Two(y2, y3), s, z))
    | More(Two(y1, y2), s, z) -> (y1, More(One y2, s, z))
    | More(One y, Nil, One z) -> (y, Unit z)
    | More(One y, Nil, Two(z1, z2)) -> (y, More(One z1, Nil, One z2))
    | More(One y, Nil, Three(z1, z2, z3)) ->
        (y, More(One z1, Nil, Two(z2, z3)))
    | More(One y, s, z) ->
        let ((y1, y2), s') = uncons s in (y, More(Two(y1, y2), s', z))
let head s = fst (uncons s)
let tail s = snd (uncons s)
```


Concatenating two sequences

The base cases are easy:

$$
\begin{aligned}
\text { concat Nil } s & =s & \text { concat } s \text { Nil } & =s \\
\text { concat }(\text { Unit } x) s & =\text { cons } x s & \text { concat } s(\text { Unit } x) & =\text { add } x s
\end{aligned}
$$

The recursive case is problematic:

$$
\operatorname{concat}\left(\operatorname{More}\left(x_{1}, s_{1}, y_{1}\right)\right)\left(\operatorname{More}\left(x_{2}, s_{2}, y_{2}\right)\right)=\operatorname{More}\left(x_{1}, ? ?, y_{2}\right)
$$

The sequence written ?? must be the concatenation of s_{1}, the elements of digit y_{1}, the elements of digit x_{2}, and s_{2}.

Concatenating two sequences

Let's generalize concatenation to a glue function
glue : 'a seq -> 'a list -> 'a seq -> 'a seq
glue $s_{1} \ell s_{2}$ is a sequence containing the elements of s_{1} followed by the (short) list of elements ℓ, followed by the elements of s_{2}.

Obviously, we have concat $s_{1} s_{2}=$ glue $s_{1}[] s_{2}$.
The recursive case for glue is of the following shape:

$$
\begin{aligned}
& \text { glue }\left(\operatorname{More}\left(x_{1}, s_{1}, y_{1}\right)\right) \ell\left(\operatorname{More}\left(x_{2}, s_{2}, y_{2}\right)\right) \\
& =\operatorname{More}\left(x_{1}, \text { glue } s_{1}\left(\text { elements } y_{1} @ \ell @ \text { elements } x_{1}\right) s_{2}, y_{2}\right)
\end{aligned}
$$

where @ is the usual concatenation over lists, and elements: 'a digit -> 'a list.

Gluing two sequences and a list

glue : 'a seq -> 'a list -> 'a seq -> 'a seq
glue $\left(\operatorname{More}\left(x_{1}, s_{1}, y_{1}\right)\right) \ell\left(\operatorname{More}\left(x_{2}, s_{2}, y_{2}\right)\right)=\operatorname{More}\left(x_{1}, \operatorname{glue} s_{1} \ell^{\prime} s_{2}, y_{2}\right)$
where $\ell^{\prime}=$ elements y_{1} @ ℓ @ elements x_{2}.

Type error! ℓ^{\prime} is a list of elements (type 'a list) while the recursive call to glue expects a list of pairs of elements (type ('a * 'a) list).

Design error! The length of ℓ^{\prime} can be odd. In this case, we cannot concatenate it with s_{1} and s_{2}, which are sequences of pairs of elements.

A more flexible non-regular recursion

Let's use sub-sequences that contain not just pairs 'a * 'a but also triples 'a * 'a * 'a.

```
type 'a node = Pair of 'a * 'a | Triple of 'a * 'a * 'a
type 'a seq =
    | Nil
    | Unit of 'a
    | More of 'a digit * 'a node seq * 'a digit
```

This is reminiscent of the 2-3 trees from the 2nd lecture: perfect trees with nodes of degree 2 or 3 .

The cons, uncons, add, unadd operations extend easily (exercice).

Gluing two sequences and a list

glue $\left(\operatorname{More}\left(x_{1}, s_{1}, y_{1}\right)\right) \ell\left(\operatorname{More}\left(x_{2}, s_{2}, y_{2}\right)\right)=\operatorname{More}\left(x_{1}, \operatorname{glue} s_{1} \ell^{\prime} s_{2}, y_{2}\right)$ where $\ell^{\prime}=$ to_nodes (elements $y_{1} @ \ell @$ elements x_{2}).
to_nodes takes a list of elements of length $\neq 1$ and turns it into a list of Pair and Triple nodes.

```
let rec to_nodes = function
    | [] -> []
    | [x] -> assert false
    | [x1; x2] -> [Pair(x1, x2)]
    | [x1; x2; x3; x4] -> [Pair(x1, x2); Pair(x3, x4)]
    | x1 :: x2 :: x3 :: xs -> Triple(x1, x2, x3) :: to_nodes xs
```

If ℓ has 0 to 3 elements, the argument of to_nodes has
2 to 9 elements, and ℓ^{\prime} has 1 to 3 elements.

The complete code for gluing and concatenation

```
let elements = function
    | One x -> [x]
    | Two(x1, x2) -> [x1; x2]
    | Three(x1, x2, x3) -> [x1; x2; x3]
let rec glue: 'a. 'a seq -> 'a list -> 'a seq -> 'a seq = fun s1 a s2 ->
    match s1, s2 with
    | Nil, _ -> List.fold_right cons a s2
    | _, Nil -> List.fold_left (Fun.flip add) s1 a
    | Unit x1, _ -> List.fold_right cons (x1 :: a) s2
    | _, Unit x2 -> List.fold_left (Fun.flip add) s1 (a @ [x2])
    | More(x1, s1, y1), More(x2, s2, y2) ->
            More(x1, glue s1 (to_nodes (elements y1 @ a @ elements x2)) s2, y2)
let concat s1 s2 = glue s1 [] s2
Running time is \(\mathcal{O}\left(\min \left(\log n_{1}, \log n_{2}\right)\right)\).
```


An example of concatenation

Summary

Summary

Number systems are "design patterns" for list-like data structures that are efficient because the sizes of list elements increase exponentially.
(This is called implicit recursive slowdown in Okasaki's book.)

Using non-regular data types, we can reflect invariants over sizes in the types, and be guided by types while writing the code.

Finger trees are versatile, efficient, and relatively simple, but better performance can be obtained with more complex structures.
(Kaplan \& Tarjan 1996, 1999: all operations in $\mathcal{O}(1)$ worst-case; see also Arthur Charguéraud's seminar talk.)

Going further: data structural bootstrapping

(A. Buchsbaum, PhD Princeton, 1995.)

A set of techniques to build efficient data structures from simpler structures, either less efficient or with limited functionalities.

In this lecture, we saw one kind of boostrapping:

- From fixed-size containers (pairs, digits) to arbitrary-size containers (sequences).

Okasaki (chap. 10) shows other examples:

- Adding missing operations
(e.g. queues \rightarrow lists with fast concatenation).
- Reducing the complexity of some operations
(e.g. heap with $\mathcal{O}(\log n)$ merge \rightarrow heap with $\mathcal{O}(1)$ merge).

References

References

The main support for this lecture:

- Chris Okasaki, Purely Functional Data Structures, chapters 9 and 11.

The original article on finger trees:

- Ralf Hinze et Ross Paterson, Finger trees: a simple general-purpose data structure, J. Funct. Program. 16(2), 2006.

A more accessible presentation:

- Koen Claessen, Finger trees explained anew, and slightly simplified, Haskell symposium 2020.

