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Numerical representations



Data structures and numerical representations

To better understand or to design a data structure, it can be
helpful to reduce it to a number.

Typically: a collection → the number of elements.

Operations on the structure correspond to arithmetic operations:

insertion → increment
deletion → decrement

merge (disjoint union) → addition

The concrete representation of the data structure corresponds to
a particular way to write the number, for instance:

singly-linked list → Peano numbers
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Lists and Peano numbers

type ’a list = type num =

| Nil | Zero

| Cons of ’a * ’a list | Succ of num

Constant-time operations:

cons (ℓ → Cons(x, ℓ)) increment (n → Succ n)
tail (Cons(x, ℓ) → ℓ) decrement (Succ n → n)

Linear-time operations:

concatenation (ℓ1 @ ℓ2) addition (n1 + n2)
n-th element (List.nth ℓ n) comparison ( > n)
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Binary numbers

Number Representation Number Representation
0: 8: 0001
1: 1 9: 1001
2: 01 10: 0101
3: 11 11: 1101
4: 001 12: 0011
5: 101 13: 1011
6: 011 14: 0111
7: 111 15: 1111

Little-endian representation (least significant bit first):
a list of digits d0,d1, . . . ,dp−1 with di ∈ {0, 1}.

This list denotes the integer number
∑p−1

i=0 di · 2i.
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Representation and basic operations

type digit = Zero | One

type num = digit list

let rec inc = function

| [] -> [One]

| Zero :: n -> One :: n

| One :: n -> Zero :: inc n

let rec dec = function

| [] -> raise Error

| [One] -> []

| One :: n -> Zero :: n

| Zero :: n -> One :: dec n
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Algorithmic complexity of increment

let rec inc = function

| [] -> [One]

| Zero :: n -> One :: n

| One :: n -> Zero :: inc n

inc takes time proportional to k + 1,
where k is the number of 1 that precede the first 0:

1 1 1 1 1 1 0 dk+1 dk+2 · · ·

0 0 0 0 0 0 1 dk+1 dk+2 · · ·

k

inc

If n is the number denoted by the list, we have n ≥ 2k − 1.

Therefore, inc runs in worst-case time O(log n).
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Amortized analysis of increment

let rec inc = function

| [] -> [One]

| Zero :: n -> One :: n

| One :: n -> Zero :: inc n

We say that a digit is dangerous if it can trigger a carry that needs
to be propagated, and not dangerous if there is never a carry.

For inc, 1 is dangerous, 0 is not dangerous.

Take Φ(n) = number of dangerous digits in the list n.

If k is the number of 1 preceding the first 0,

• inc takes actual time k + 1
• ∆Φ = 1 − k (since one 1 appears and k 1 become 0)

Therefore, inc runs in constant amortized time.
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Amortized analysis of increment and decrement

A similar analysis shows that dec runs in constant amortized time.
(Taking 0 as the dangerous digit.)

Yet, a sequence of n inc and dec can take time n log n . . .

0 0 0 0 0 0 1 1 1 1 1 1 1

k kdec

inc

We perform n = 2k inc operations, going from 0 to 2k,
then n sequences dec; inc, each taking time 2k

→ 3n operations in time 2n log n.

Why is this possible? We used different potentials Φ to analyze
inc and dec !
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A number system

To each position i, we associate
a weight wi ∈ N+;
a set of allowed digits Di ⊆ N.

The sequence d0,d1, . . . with di ∈ Di denotes the number
n =

∑
i=0 diwi .

Examples of number systems:

• Binary (base 2) numbers: Di = {0, 1} and wi = 2i.
• Decimal (base 10) numbers: Di = {0, . . . , 9} and wi = 10i.
• Days, hours, minutes, seconds:

D0 = D1 = {0, . . . , 59}, D2 = {0, . . . , 23}, D3 = N
w0 = 1, w1 = 60, w2 = 60 × 60, w3 = 60 × 60 × 24.

• Redundant binary numbers: Di = {0, 1, 2} and wi = 2i.
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Redundant binary numbers

Using three digits 0, 1 and 2.

A given number can have multiple representations.

0: 9: 1001, 102, 121
1: 1 10: 0101, 012, 2001, 202, 221
2: 01, 2 11: 1101, 112
3: 11 12: 0011, 0201, 022, 2101, 212
4: 001, 02, 21 13: 1011, 1201, 122
5: 101, 12 14: 0111, 2011, 2201, 222
6: 011, 201, 22 15: 1111
7: 111 16: 00001, 0002, 0021, 0211, 2111
8: 0001, 002, 021, 211 17: 10001, 1002, 1021, 1211
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Increment and decrement over the redundant representation

let rec inc = function

| [] -> [One]

| Zero :: n -> One :: n

| One :: n -> Two :: n

| Two :: n -> One :: inc n

The last case is justified by (2 + 2n) + 1 = 1 + 2(n + 1).

let rec dec = function

| [] -> raise Error

| [One] -> []

| Two :: n -> One :: n

| One :: n -> Zero :: n

| Zero :: n -> One :: dec n

The last case is justified by (0 + 2n)− 1 = 1 + 2(n − 1).
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Increment and decrement over the redundant representation

Decrement is not the inverse of increment!

Number Increments ↓ Decrements ↑
1 1 1
2 2 01
3 11 11
4 21 001
5 12 101
6 22 011
7 111 111
8 211 0001
9 121 1001

10 221 0101
11 112 1101
12 212 0011
13 122 1011
14 222 0111
15 1111 1111 12



Amortized analysis

let rec inc = function ... | Two :: n -> One :: inc n

let rec dec = function ... | Zero :: n -> One :: dec n

We classify 0 and 2 as dangerous digits. Only 1 is not dangerous.

Take Φ(n) = number of dangerous digits in the list n.

Each time inc or dec calls itself recursively,
Φ decreases by 1 (a 2 or a 0 becomes a 1).

Therefore, inc and dec run in constant amortized time, even if we
interleave calls to inc and dec.
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Amortization and persistence

As in the 3rd lecture, this amortized complexity extends to
persistent uses of numbers, provided we use lazy lists (streams)
of digits instead of lists of digits.
type digit = Zero | One | Two

type num = digit stream

let rec inc n =

lazy (match Lazy.force n with

| Nil -> Cons(One, lazy Nil)

| Cons(Zero, n) -> Cons(One, n)

| Cons(One, n) -> Cons(Two, n)

| Cons(Two, n) -> Cons(One, inc n))

To show the O(1) amortized time bound, we use the 2.0 banker’s
method, putting two time debits on each 1 digit and one debit on
0 and 2.
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A problem with the zero digit

We can have arbitrarily-many zero digits at the end of a number:
1 = 10 = 100000000000000000000.

This does not change the complexity of inc and dec, but makes
comparison against zero arbitrarily slow.
let rec iszero = function

| [] -> true

| One :: _ -> false

| Zero :: n -> iszero n

The time taken by iszero n is not bounded by a function of the
number denoted by the list. . .

Solution 1: ensure that a list of digits never ends in 0.
(Complicates the computations a bit.)

Solution 2: represent numbers without using zero digits! 15



Zero-less binary representation

For example, using the digits 1, 2, 3.

0 9 121, 311, 33
1 1 10 221
2 2 11 112, 131, 321
3 11, 3 12 212, 231
4 21 13 122, 312, 331
5 12, 31 14 222
6 22 15 1111, 113, 132, 322
7 111, 13, 32 16 2111, 213, 232
8 211, 23 17 1211, 123, 3111, 313, 332
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Zero-less operations

type digit = One | Two | Three

type num = digit list

let iszero = function [] -> true | _ -> false

let rec inc = function

| [] -> [One]

| One :: n -> Two :: n

| Two :: n -> Three :: n

| Three :: n -> Two :: inc n (* (3 + 2n) + 1 = 2 + 2(n+1) *)

let rec dec = function

| [] -> raise Error

| [One] -> []

| Three :: n -> Two :: n

| Two :: n -> One :: n

| One :: n -> Two :: dec n (* (1 + 2n) − 1 = 2 + 2(n−1) *)
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Sparse representation

Instead of the dense positional representation

number = list of digits

we can use a sparse representation

number = list of (nonzero digit, weight) pairs
(in strictly increasing order of weights)

or, if the only digits are 0 and 1,

number = list of weights (strictly increasing)

Example: 13 is 1, 4, 8 in sparse repr. and 1011 in dense repr.
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Increment and decrement in sparse binary representation

type num = int list (* powers of 2, in strictly increasing order *)

let iszero = function [] -> true | _ -> false

let rec carry c n =

match n with

| [] -> [c]

| w :: n’ -> if c < w then c :: n else carry (2 * c) n’

let rec borrow c n =

match n with

| [] -> raise Error

| w :: n’ -> if c = w then n’ else c :: borrow (2 * c) n

let inc n = carry 1 n

let dec n = borrow 1 n
19



Data structures inspired by
number systems



From a number system to a data structure

General idea:

A structure = a list of digits
A digit d with rank i = d subtrees of wi elements each.

Example: in binary (wi = 2i), using digits 0 and 1,
a 13-element structure will have the following shape.

One Zero One One

1
4

8
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Which trees correspond to weights?

For a binary representation, we need trees of size 2i.

To “propagate carries” during insertion (≈ increment), we need a
simple way to combine two trees of size 2i into a tree of size 2i+1.

Two examples used in the following:

• Perfect binary trees with values at leaves
(used for random-access lists).

• Binomial trees (used for priority queues).
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Perfect binary trees (PBT) with values at leaves

PBT of rank 0 = a single value x.

PBT of rank i + 1 = two PBTs of rank i, joined by a node.

x0

rank 0

x0 x1

rank 1

x0 x1 x2 x3

rank 2

A good match for implementing indexed sequences:
accessing the j-th value xj takes time i = log n (binary search).

To combine A1 and A2 of rank i, just form
A1 A2

with rank i + 1.
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Binomial trees (J. Vuillemin, 1978)

Binomial tree of rank i =
a value x and i binomial trees of ranks i − 1, . . . , 1, 0.

x0

rank 0
x0

x1

rank 1
x0

x1

x2

x3

rank 2
x0

x1

x2

x3

x4

x5

x6

x7

rank 3

A binomial tree of rank i has 2i elements.

It has
(

i
d

)
elements at depth d.
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Binomial trees

To combine two binomial trees of rank i,
add one of them as the first subtree of the other.

x0

x1

x2

x3

+ y0

y1

y2

y3

= x0

y0

y1

y2

y3

x1

x2

x3

or y0

x0

x1

x2

x3

y1

y2

y3

A good match for implementing heaps
(for each subtree, the smallest element is at the root).
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Random-access list

The operations of a singly-linked list:

cons, head, tail, isempty

plus direct (“random”) access to the i-th element of the list:

get i ℓ, set i v ℓ

Complexity objective: O(1) for head, O(1) amortized
for tail and cons, O(log n) for get and set.
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A random-access list patterned after binary numbers

The representation is structured like binary numbers,
using 0 and 1 as digits, and perfect binary trees with values at
leaves as weights.

Example: the 13-element list [x0, . . . , x12].

One Zero One One

x0

x1x2x3x4

x5x6x7x8x9x10x11x12

Remark: for n elements, we have O(log n) trees.
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Insertion in the list: the cons operation

type ’a tree = Leaf of ’a | Node of ’a tree * ’a tree

type ’a digit = Zero | One of ’a tree

type ’a seq = ’a digit list

let rec cons_tree t r =

match r with

| [] -> [One t]

| Zero :: r -> One t :: r

| One t’ :: r -> Zero :: cons_tree (Node(t, t’)) r

let cons x r = cons_tree (Leaf x) r

cons follows the same pattern as incrementing a binary number.
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The head and tail operations

let rec uncons_tree = function

| [] -> raise Empty

| [One t] -> (t, [])

| One t :: r -> (t, Zero :: r)

| Zero :: r ->

let (Node(t1, t2), r’) = uncons_tree r in

(t1, One t2 :: r’)

let head r =

let (Leaf x, _) = uncons_tree r in x

let tail r =

let (_, r’) = uncons_tree r in r’

uncons_tree follows the same pattern as decrementing a binary
number, but returns the first tree as an extra result.
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Random access: the get operation

let rec get_tree i t w =

match t with

| Leaf x -> assert (i = 0 && w = 1); x

| Node(t1, t2) ->

let w = w / 2 in

if i < w then get_tree i t1 w else get_tree (i - w) t2 w

let rec get_rec i r w =

match r with

| [] -> raise Out_of_bounds

| Zero :: r’ -> get_rec i r’ (w * 2)

| One t :: r’ ->

if i < w then get_tree i t w

else get_rec (i - w) r’ (w * 2)

let get i r = get_rec i r 1
29



Complexity analysis

Same analysis as for binary numbers:

Operation Digits 0, 1

Digits 1, 2, 3

head O(log n) ✘

O(1) ✔

cons, tail O(log n) ✘ (*)

O(1) amortized ✔

get, set O(log n) ✔

O(log n) ✔

(*) A sequence of n cons takes time O(n), as well as a sequence of n tail, but

not a sequence of n cons-then-tail.

We switch to a representation using three digits 1, 2, 3:

• zero-less representation → head in O(1) worst-case;
• redundant representation → cons, tail in O(1) amortized.
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Redundant and zero-less: the cons operation

type ’a tree = Leaf of ’a | Node of ’a tree * ’a tree

type ’a digit =

| One of ’a tree

| Two of ’a tree * ’a tree

| Three of ’a tree * ’a tree * ’a tree

type ’a seq = ’a digit list

let rec cons_tree t r =

match r with

| [] -> [One t]

| One t1 :: r -> Two(t, t1) :: r

| Two(t1, t2) :: r -> Three(t, t1, t2) :: r

| Three(t1, t2, t3) :: r ->

Two(t, t1) :: cons_tree (Node(t2, t3)) r

let cons x r = cons_tree (Leaf x) r
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Redundant and zero-less: the head and tail operations

let head = function

| [] -> raise Empty

| One(Leaf x) :: _ -> x

| Two(Leaf x, _) :: _ -> x

| Three(Leaf x, _, _) -> x

| _ -> assert false

let rec uncons_tree = function

| [] -> raise Empty

| [One t] -> (t, [])

| Three(t1, t2, t3) :: r -> (t1, Two(t2, t3) :: r)

| Two(t1, t2) :: r -> (t1, One t2 :: r)

| One t :: r ->

let (Node(t1, t2), r’) = uncons_tree r in

(t, Two(t1, t2) :: r’)

let tail r =

let (_, r’) = uncons_tree r in r’ 32



Priority queues

A multiset of elements, with operations

• insert x h : add element x

• find_min h : return the smallest element of h
(more generally: the element with highest priority)

• remove_min h : remove the smallest element of h

• merge h1 h2 : return the union of h1 and h2.

Applications: scheduling; graph algorithms (shortest paths);
sorting (the famous heapsort algorithm).
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Heaps

1

7

7

19 17

23

25

36 99

1 7 25 7 23 36 99 19 17

A tree carrying values at nodes.

Values increase along every branch.

Consequently, the smallest value is always at the root.
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Binomial heaps (J. Vuillemin, 1978)

A sparse binary representation of the number of elements in the
priority queue, using binomial trees of rank i for weights 2i.

Example: a priority queue containing 13 elements.

5 2

25

36

15

7

7

17

28

54

29

44

19

; ;

The list is ordered by strictly increasing ranks of binomial trees.

Each tree is ordered like a heap.
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An implementation of binomial trees

type ’a tree = { rank: int; value: ’a; children: ’a tree list }

let link t1 t2 =

assert (t1.rank = t2.rank);

if t1.value <= t2.value then

{ t1 with rank = t1.rank + 1; children = t2 :: t1.children }

else

{ t2 with rank = t2.rank + 1; children = t1 :: t2.children }

Combining two trees (using the link function) preserves the
heap invariant.
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Insertion

type ’a heap = ’a tree list

let rec insert_tree t h =

match h with

| [] -> [t]

| t’ :: h’ ->

if t.rank < t’.rank

then t :: h

else insert_tree (link t t’) h’

let insert x h =

insert_tree { rank = 0; value = x; children = [] } h

Same pattern as incrementing a sparse binary number.
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Merging two binomial heaps

let rec merge h1 h2 =

match h1, h2 with

| [], _ -> h2

| _, [] -> h1

| t1 :: h1’, t2 :: h2’ ->

if t1.rank < t2.rank then t1 :: merge h1’ h2

else if t2.rank < t1.rank then t2 :: merge h1 h2’

else insert_tree (link t1 t2) (merge h1’ h2’)

Same pattern as adding two sparse binary numbers.
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Extracting the smallest element

let rec extract_min = function

| [] -> raise Empty

| [t] -> (t, [])

| t :: h ->

let (t’, h’) = extract_min h in

if t.value <= t’.value then (t, h) else (t’, t :: h’)

let find_min h =

let (t, _) = extract_min h in t.value

let remove_min h =

let (t, h’) = extract_min h in

merge (List.rev t.children) h’

If t is a well-formed binomial tree,
List.rev t.children is a well-formed binomial heap!
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Complexity analysis

For a n-element heap, its representation is a list of at most log n
binomial trees

→ all operations run in worst-case time O(log n).

The insert operation runs in O(1) amortized time, like
increment of a binary number.

(Potential Φ = length of the list = number of 1 bits in the binary
representation of n.)

Note: we cannot have insert, find_min and remove_min

in O(1) amortized time. Otherwise, we could sort in linear time!

40



Non-regular data types



Algebraic types: regular or not

An algebraic type with one or several type parameter is regular if
all recursive occurrences of the type use the same type
parameters.

type ’a list = Nil | Cons of ’a * ’a list

It is non regular or nested if recursive occurrences use “bigger”
type parameters, for example ’a * ’a instead of ’a.

type ’a nest = Nil | Cons of ’a * (’a * ’a) nest

Example of a value of type int nest:
Cons(1, Cons((2,3), Cons(((4,5),(6,7)), Nil))).
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A non-regular type: perfect binary trees with values at leaves

type ’a ptree = Leaf of ’a | Node of (’a * ’a) ptree

Some values of type int ptree :

Leaf

0

Node

Leaf

,

0 1

Node

Node

Leaf

,

,

0 1

,

2 3

Node

Node

Node

Leaf

,

,

,

0 1

,

2 3

,

,

4 5

,

6 7
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A non-regular type: perfect binary trees with values at leaves

type ’a ptree = Leaf of ’a | Node of (’a * ’a) ptree

Some values of type int ptree :

Leaf

0

Node

Leaf

,

0 1

Node

Node

Leaf

,

,

0 1

,

2 3

Node

Node

Node

Leaf

,

,

,

0 1

,

2 3

,

,

4 5

,

6 7
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Operations on perfect binary trees

let rec size : ’a. ’a ptree -> int = function

| Leaf x -> 1

| Node t -> 2 * size t

let rec leftmost : ’a. ’a ptree -> ’a = function

| Leaf x -> x

| Node t -> fst (leftmost t)

let rec rightmost : ’a. ’a ptree -> ’a = function

| Leaf x -> x

| Node t -> snd (rightmost t)

Note: we must annotate functions with their polymorphic types
(∀α, α ptree → . . .) because this is polymorphic recursion, for which
type inference is undecidable in general.
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Comparison with the usual, regular type of binary trees

type ’a tree =

| Leaf of ’a

| Node of ’a tree * ’a tree

let rec size = function

| Leaf x -> 1

| Node(t1, t2) ->

size t1 + size t2

let rec leftmost = function

| Leaf x -> x

| Node(t1, t2) -> leftmost t1

type ’a ptree =

| Leaf of ’a

| Node of (’a * ’a) ptree

let rec size : ... = function

| Leaf x -> 1

| Node t -> 2 * size t

let rec leftmost : ... = function

| Leaf x -> x

| Node t -> fst (leftmost t)
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A random-access list

Instead of a regular list of digits, each digit being a perfect binary
tree, let’s use a nest-like list with non-regular recursion
(’a becomes ’a * ’a).

type ’a digit = Zero | One of ’a

type ’a seq = Nil | Cons of ’a digit * (’a * ’a) seq

Examples of sequences with 1 to 6 elements: (:: is infix Cons)

One 1 :: Nil

Zero :: One(2,1) :: Nil

One 3 :: One(2,1) :: Nil

Zero :: Zero :: One((4,3),(2,1)) :: Nil

One 5 :: Zero :: One((4,3),(2,1)) :: Nil

Zero :: One(6,5) :: One((4,3),(2,1)) :: Nil
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The cons and uncons operations

let rec cons : ’a. ’a -> ’a seq -> ’a seq = fun x s ->

match s with

| Nil -> Cons(One x, Nil)

| Cons(Zero, s) -> Cons(One x, s)

| Cons(One y, s) -> Cons(Zero, cons (x, y) s)

let rec uncons : ’a. ’a seq -> ’a * ’a seq = function

| Nil -> raise Empty

| Cons(One x, s) -> (x, Cons(Zero, s))

| Cons(Zero, s) ->

let ((x, y), t) = uncons s in (x, Cons(One y, t))
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Random access: for reading

let rec get : ’a. int -> ’a seq -> ’a = fun i s ->

match s with

| Nil -> raise Out_of_bounds

| Cons(Zero, s) -> get2 i s

| Cons(One x, s) -> if i = 0 then x else get2 (i - 1) s

and get2 : ’a. int -> (’a * ’a) seq -> ’a = fun i s ->

let (x0, x1) = get (i / 2) s in

if i mod 2 = 0 then x0 else x1
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Random access: for writing and modification

To “cross the recursion”, we need to generalize writing at index i
to modification of the value at i by any function f: ’a -> ’a.
let rec update : ’a. int -> (’a -> ’a) -> ’a seq -> ’a seq

= fun i f s ->

match s with

| Nil -> raise Out_of_bounds

| Cons(Zero, s) -> Cons(Zero, update2 i f s)

| Cons(One x, s) ->

if i = 0 then Cons(One(f x), s)

else Cons(One x, update2 (i - 1) f s)

and update2 : ’a. int -> (’a -> ’a) -> (’a * ’a) seq -> (’a * ’a) seq

= fun i f s2 ->

let f2 (x0, x1) = if i mod 2 = 0 then (f x0, x1) else (x0, f x1) in

update (i / 2) f2 s2

let set : ’a. int -> ’a -> ’a seq -> ’a seq = fun i v s ->

update i (fun _ -> v) s 48



Finger trees



Finger trees (Hinze et Paterson, 2006)

A purely-functional data structure for sequences of elements,
with many efficient operations:

• Lookup, insertion, deletion at both ends in amortized time
O(1), worst-case time O(log n). (dequeue)

• Concatenation of two sequences in time O(log n). (rope)
• After annotation with a monoid (see next lecture):

direct access to the i-th element in time O(log n);
(functional array)

direct access to the smallest in time O(log n).
(priority queue)

Finger trees combine the two techniques described in this
lecture: numerical representations and non-regular data types.

49



Step-by-step construction of finger trees (Claessen, 2020)

Think of a list-like structure with direct access to the first and to
the last element:

type ’a seq =

| Nil

| Unit of ’a

| More of ’a * ’a seq * ’a

Operations head and last take constant time, but cons and add

take linear time:

let rec cons x = function

| Nil -> Unit x

| Unit y -> More(x, Nil, y)

| More(y, s, z) -> More(x, cons y s, z)
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Using a non-regular data type

Sub-sequences (s in More(x, s, y)) would be much shorter if
they contained ’a * ’a pairs instead of mere ’a elements.

type ’a seq =

| Nil

| Unit of ’a

| More of ’a * (’a * ’a) seq * ’a

Problem: we’re unable to represent a sequence of length 3. . .

More generally, representable sequences have lengths
L = {0, 1} ∪ {2 + 2ℓ | ℓ ∈ L} = {0, 1, 2, 4, 6, 10, 14, 22, . . .}.
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Using digits

To be able to represent all lengths, let’s put a digit (= a small
number of elements) on both sides of the sub-sequence.

type ’a digit =

| One of ’a | Two of ’a * ’a | Three of ’a * ’a * ’a

type ’a seq =

| Nil

| Unit of ’a

| More of ’a digit * (’a * ’a) seq * ’a digit

We recognize a binary number system, zero-less and with
redundant digits.
→ Operations similar to increment and decrement

(cons, tail, add, take) will run in O(1) amortized time.
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An example of a finger tree

More

More

Unit

Two Three

Two One

a b m n o

c d e f k l

g h i j

Each of the left and right fringes looks like a random-access list.
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The cons operation

let rec cons : ’a. ’a -> ’a seq -> ’a seq = fun x t ->

match t with

| Nil -> Unit x

| Unit y -> More(One x, Nil, One y)

| More(One y, s, z) -> More(Two(x, y), s, z)

| More(Two(y1, y2), s, z) -> More(Three(x, y1, y2), s, z)

| More(Three(y1, y2, y3), s, z) ->

More(Two(x, y1), cons (y2, y3) s, z)

Exercise: define add (insertion at end of sequence), in a
completely symmetric manner.

54



The head and tail operations

let rec uncons : ’a. ’a seq -> ’a * ’a seq = fun t ->

match t with

| Nil -> raise Empty

| Unit y -> (y, Nil)

| More(Three(y1, y2, y3), s, z) -> (y1, More(Two(y2, y3), s, z))

| More(Two(y1, y2), s, z) -> (y1, More(One y2, s, z))

| More(One y, Nil, One z) -> (y, Unit z)

| More(One y, Nil, Two(z1, z2)) -> (y, More(One z1, Nil, One z2))

| More(One y, Nil, Three(z1, z2, z3)) ->

(y, More(One z1, Nil, Two(z2, z3)))

| More(One y, s, z) ->

let ((y1, y2), s’) = uncons s in (y, More(Two(y1, y2), s’, z))

let head s = fst (uncons s)

let tail s = snd (uncons s)
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Concatenating two sequences

The base cases are easy:

concat Nil s = s concat s Nil = s

concat (Unit x) s = cons x s concat s (Unit x) = add x s

The recursive case is problematic:

concat (More(x1, s1, y1)) (More(x2, s2, y2)) = More(x1, ??, y2)

The sequence written ?? must be the concatenation of s1, the
elements of digit y1, the elements of digit x2, and s2.
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Concatenating two sequences

Let’s generalize concatenation to a glue function

glue : ’a seq -> ’a list -> ’a seq -> ’a seq

glue s1 ℓ s2 is a sequence containing the elements of s1 followed
by the (short) list of elements ℓ, followed by the elements of s2.

Obviously, we have concat s1 s2 = glue s1 [ ] s2.

The recursive case for glue is of the following shape:

glue (More(x1, s1, y1)) ℓ (More(x2, s2, y2))

= More(x1, glue s1 (elements y1 @ ℓ @ elements x1) s2, y2)

where @ is the usual concatenation over lists,
and elements: ’a digit -> ’a list.
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Gluing two sequences and a list

glue : ’a seq -> ’a list -> ’a seq -> ’a seq

glue (More(x1, s1, y1)) ℓ (More(x2, s2, y2)) = More(x1, glue s1 ℓ
′ s2, y2)

where ℓ′ = elements y1 @ ℓ @ elements x2.

Type error! ℓ′ is a list of elements (type ’a list) while the
recursive call to glue expects a list of pairs of elements
(type (’a * ’a) list).

Design error! The length of ℓ′ can be odd. In this case, we cannot
concatenate it with s1 and s2, which are sequences of pairs of
elements.
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A more flexible non-regular recursion

Let’s use sub-sequences that contain not just pairs ’a * ’a but
also triples ’a * ’a * ’a.

type ’a node = Pair of ’a * ’a | Triple of ’a * ’a * ’a

type ’a seq =

| Nil

| Unit of ’a

| More of ’a digit * ’a node seq * ’a digit

This is reminiscent of the 2-3 trees from the 2nd lecture:
perfect trees with nodes of degree 2 or 3.

The cons, uncons, add, unadd operations extend easily (exercice).
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Gluing two sequences and a list

glue (More(x1, s1, y1)) ℓ (More(x2, s2, y2)) = More(x1, glue s1 ℓ
′ s2, y2)

where ℓ′ = to_nodes (elements y1 @ ℓ @ elements x2).

to_nodes takes a list of elements of length ̸= 1 and turns it into a
list of Pair and Triple nodes.
let rec to_nodes = function

| [] -> []

| [x] -> assert false

| [x1; x2] -> [Pair(x1, x2)]

| [x1; x2; x3; x4] -> [Pair(x1, x2); Pair(x3, x4)]

| x1 :: x2 :: x3 :: xs -> Triple(x1, x2, x3) :: to_nodes xs

If ℓ has 0 to 3 elements, the argument of to_nodes has
2 to 9 elements, and ℓ′ has 1 to 3 elements.
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The complete code for gluing and concatenation

let elements = function

| One x -> [x]

| Two(x1, x2) -> [x1; x2]

| Three(x1, x2, x3) -> [x1; x2; x3]

let rec glue: ’a. ’a seq -> ’a list -> ’a seq -> ’a seq = fun s1 a s2 ->

match s1, s2 with

| Nil, _ -> List.fold_right cons a s2

| _, Nil -> List.fold_left (Fun.flip add) s1 a

| Unit x1, _ -> List.fold_right cons (x1 :: a) s2

| _, Unit x2 -> List.fold_left (Fun.flip add) s1 (a @ [x2])

| More(x1, s1, y1), More(x2, s2, y2) ->

More(x1, glue s1 (to_nodes (elements y1 @ a @ elements x2)) s2, y2)

let concat s1 s2 = glue s1 [] s2

Running time is O(min(log n1, log n2)).
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An example of concatenation

More

Unit

Three Two

a b c f g

d e

More

Nil

Three Two

h i j k l

More

More

Nil

Three Two

a b c k l

One Two

d e f g h i j

++ =
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Summary

Number systems are “design patterns” for list-like data structures
that are efficient because the sizes of list elements increase
exponentially.

(This is called implicit recursive slowdown in Okasaki’s book.)

Using non-regular data types, we can reflect invariants over sizes
in the types, and be guided by types while writing the code.

Finger trees are versatile, efficient, and relatively simple, but
better performance can be obtained with more complex
structures.
(Kaplan & Tarjan 1996, 1999: all operations in O(1) worst-case;
see also Arthur Charguéraud’s seminar talk.)
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Going further: data structural bootstrapping

(A. Buchsbaum, PhD Princeton, 1995.)

A set of techniques to build efficient data structures from simpler
structures, either less efficient or with limited functionalities.

In this lecture, we saw one kind of boostrapping:

• From fixed-size containers (pairs, digits)
to arbitrary-size containers (sequences).

Okasaki (chap. 10) shows other examples:

• Adding missing operations
(e.g. queues → lists with fast concatenation).

• Reducing the complexity of some operations
(e.g. heap with O(log n) merge → heap with O(1) merge).

64



References



References

The main support for this lecture:

• Chris Okasaki, Purely Functional Data Structures, chapters 9 and 11.

The original article on finger trees:

• Ralf Hinze et Ross Paterson, Finger trees: a simple general-purpose
data structure, J. Funct. Program. 16(2), 2006.

A more accessible presentation:

• Koen Claessen, Finger trees explained anew, and slightly
simplified, Haskell symposium 2020.

65


	Numerical representations
	Data structures inspired by   number systems
	Non-regular data types
	Finger trees
	Summary
	References

