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In this lecture

The persistent data structure we’ve seen so far have purely
functional implementation + (possibly) suspensions for lazy
evaluation.

Today we’ll study persistent data structures with imperative
implementations. Moreover, the persistent structure is derived
semi-systematically from an ephemeral structure:

• Arrays → persistent arrays
• By recording the history of updates (Baker’s approach)
• Using “fat elements” (O’Neill and Burton)

• Mutable trees → persistent trees
• Using “fat nodes” (Driscoll, Sarnak, Sleator and Tarjan)
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Full persistence, partial persistence

Partial persistence:

• the most recent version of the structure is the only one that
can be modified; → a sequence of versions

• older versions are read-only.
(Note: this is less restrictive than single-threaded use as seen in the previous
lecture.)

Full persistence:

• any version can be modified to create a new version.
→ a tree of versions

Full persistence comes “for free” with purely functional
implementations. But partial persistence suffices for many
algorithms (e.g. geometric algorithms).
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Persistent arrays, take 1:
history of changes



Backtracking on a mutable array

a b c d

A mutable array A plus a stack S containing pairs
(index i, previous value of A[i]).

To write v in A[i]:
push (i, A[i]) on S
assign A[i] := v.

To backtrack:
while S is not empty:

pop (i, v) and assign A[i] := v.
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Backtracking on a mutable array

e b c d
(0, a)

A mutable array A plus a stack S containing pairs
(index i, previous value of A[i]).

To write v in A[i]:
push (i, A[i]) on S
assign A[i] := v.

To backtrack:
while S is not empty:

pop (i, v) and assign A[i] := v.
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e f c d
(0, a)
(1,b)
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Backtracking on a mutable array

e f g d
(0, a)
(1,b)
(2, c)

A mutable array A plus a stack S containing pairs
(index i, previous value of A[i]).

To write v in A[i]:
push (i, A[i]) on S
assign A[i] := v.

To backtrack:
while S is not empty:

pop (i, v) and assign A[i] := v.
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Backtracking on a mutable array

e f g h
(0, a)
(1,b)
(2, c)
(3,d)

A mutable array A plus a stack S containing pairs
(index i, previous value of A[i]).

To write v in A[i]:
push (i, A[i]) on S
assign A[i] := v.

To backtrack:
while S is not empty:

pop (i, v) and assign A[i] := v.
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Finding the initial value of an array element

No need to backtrack in full if all we need is to find the initial
value of A[i]:

for k = 0, . . . , |S| − 1:
if the k-th entry of S is of the form (i, v):

return v
return A[i].
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Finding the value of an array element at date t

To find the value of A[i] at date t (i.e. after t writes in the array),
it suffices to start the search at k = t instead of k = 0:

for k = t, . . . , |S| − 1:
if the k-th entry of S is of the form (i, v):

return v
return A[i].

Hence, we managed to make the array A partially persistent:

• we can query its state at any date t
• and modify its state from the newest date t, obtaining date
t+ 1.

6



A chained representation of the history

Using references (= indirection cells with in-place mutation).

type ’a parray = ’a cell ref

and ’a cell =

| Base of ’a array

| Diff of int * ’a * ’a parray

let make size init = ref (Base (Array.make size init))

let rec get p i =

match !p with

| Base a -> a.(i)

| Diff(j, v, q) -> if i = j then v else get q i

Note: get runs in time linear in the length of the chain of Diff.
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Modifying the base of the persistent array

a b c d2,a1,a0,a

abcdabcaabaaaaaa

We modify the array in place, and compensate by inserting a
Diff node in the history:

let set p i v =

match !p with

| Base a ->

let q = ref (Base a) in

p := Diff(i, a.(i), q); a.(i) <- v; q

| _ ->

raise (Failure "full persistence not supported")
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Modifying the base of the persistent array

a e c d2,a1,a0,a

abcdabcaabaaaaaa

1,b

aecd

We modify the array in place, and compensate by inserting a
Diff node in the history:

let set p i v =

match !p with

| Base a ->

let q = ref (Base a) in

p := Diff(i, a.(i), q); a.(i) <- v; q

| _ ->

raise (Failure "full persistence not supported")
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A partially persistent array

We obtain a partially persistent array, where

• set runs in time O(1) but applies only to the newest version
of the array;

• get on the newest version takes time O(1);
• get on any version takes time O(w),

where w is the total number of versions (= of writes);
• total space used is O(n+ w), where n is the array size.

Using a global rebuilding technique, we can improve these
numbers: get in O(n) worst-case time and set in O(1) amortized
time.
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Global rebuilding of an array

let rec to_array p =

match !p with

| Base a -> Array.copy a

| Diff(i, v, q) -> let a = to_array q in a.(i) <- v; a

let rebuild p =

p := Base (to_array p)

We get a new base array where all Diff have been applied.

After rebuild p, get operations on p take O(1) time, but the
rebuilding cost O(n+ ℓ) time and O(n) space.

(ℓ = length of the chain of Diff)
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Rebuilding during a get operation

ℓ

If a get operation traverses ℓ > n Diff nodes, it can rebuild
k = ⌈ℓ/n⌉ − 1 intermediate arrays, obtaining k+ 1 chains of Diff
of length ≤ n.

This rebuilding takes time O(kn) = O(ℓ), which is amortized over
the ℓ set operations required to create such a long chain of Diff.
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Rebuilding during a get operation

n n ≤ n

If a get operation traverses ℓ > n Diff nodes, it can rebuild
k = ⌈ℓ/n⌉ − 1 intermediate arrays, obtaining k+ 1 chains of Diff
of length ≤ n.

This rebuilding takes time O(kn) = O(ℓ), which is amortized over
the ℓ set operations required to create such a long chain of Diff.
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Towards full persistence

A Diff node can contain the old value of an array element, but
also its new value!

let set p i v =

match !p with

| Base a ->

let q = ref (Base a) in

p := Diff(i, a.(i), q); a.(i) <- v; q

| _ ->

ref (Diff(i, v, p))

The array is now fully persistent.

We lose the guarantee that get always runs in O(1) time on the
result of the last set performed.
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Re-rooting (H. Baker, 1991)

aaaa abaa abca abcd aecd

a e c d

1, a 2, a 3, a 1, b

By reversing Diff nodes, a persistent array can always be moved
to the Base state, without allocating a new array.
let rec reroot p =

match !p with

| Base a -> a

| Diff(i, v, q) ->

let a = reroot q in

p := Base a; q := Diff(i, a.(i), p); a.(i) <- v; a
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Re-rooting (H. Baker, 1991)

aaaa abaa abca abcd aecd

a b a a

1, a 3, c 4, d 2, e

By reversing Diff nodes, a persistent array can always be moved
to the Base state, without allocating a new array.
let rec reroot p =

match !p with

| Base a -> a

| Diff(i, v, q) ->

let a = reroot q in

p := Base a; q := Diff(i, a.(i), p); a.(i) <- v; a
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Full persistence by re-rooting

let set p i v =

let a = reroot p in

let q = ref (Base a) in

p := Diff(i, a.(i), q);

a.(i) <- v;

q

The get and set operations now run in O(1) time on the result of
the latest set, and in time O(w) on other versions of the array.
(w = total number of versions)
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Extension to other data structures

The “persistent structure = ephemeral structure + history”
approach is not specific to arrays.

It also applies to other ephemeral structures, provided their
operations are “reversible enough”. For example:

• Hash tables (add – remove)
• Double-ended queues (dequeues) (cons – tail, add – take)

Other structures are not reversible enough for this approach:

• Single-ended queues (tail – ?, add – ?)
• Heaps (delMin – add, add – ?)
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Persistent arrays, take 2:
using “fat elements”



Arrays of fat elements

(M. E. O’Neill and F. W. Burton, A new method for functional arrays, JFP, 1997.)

A variation on the “fat nodes” technique of Driscoll, Sarnak,
Sleator and Tarjan (see later).

Idea: instead of representing a persistent array by

a mutable array of values
+ a history of updates for all elements,

let’s represent it by

a mutable array of fat elements
where one fat elements = a history for one element.
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An array of fat elements

(0, a)
(0, a); (1,b); (4, e)
(0, a); (2, c)
(0, a); (3,d)

(0, •)
(1, •)
(2, •)
(3, •)
(4, •)

[a a a a]
[a b a a]
[a b c a]
[a b c d]
[a e c d]

A fat element = an ordered set of pairs
(date of update, new value at that date).

A persistent array = a pair
date t at which we observe the array,
shared mutable array A of fat elements.

The value v of index i at date t =
the element (t′, v) of A[i] such that t′ ≤ t and t′ maximal.
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An implementation in OCaml

module QSet = Set.Make(Q)

module QMap = Map.Make(Q)

type timestamp = Q.t

type ’a fat_element = ’a QMap.t

type ’a collection =

{ arr: ’a fat_element array;

mutable timestamps: QSet.t }

type ’a parray = timestamp * ’a collection

let make size init =

let t0 = Q.zero in

let c = { arr = Array.make size (QMap.singleton t0 init);

timestamps = QSet.singleton t0 } in

(t0, c)
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Reading an array element

let get_elt e t =

match QMap.find_last_opt (fun t’ -> Q.leq t’ t) e with

| None -> assert false

| Some(_, v) -> v

let get (t, c) i =

get_elt c.arr.(i) t

QMap is implemented by balanced binary search trees,
hence get p i runs in time O(logwi),
where wi is the number of writes at index i.

Contrast with Baker’s persistent arrays, where get takes time
O(w), where w is the total number of writes.
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Writing to the latest version

let set (t, c) i v =

match QSet.find_first_opt (fun t’ -> Q.gt t’ t) c.timestamps

with

| None ->

(* Updating the latest version of the array *)
let t’ = Q.(add t one) in

c.timestamps <- QSet.add t’ c.timestamps;

let e = c.arr.(i) in

let e’ = QMap.add t’ v e in

c.arr.(i) <- e’;

(t’, c)

| Some ->

raise (Failure "full persistence not supported yet")

We create a new version at date t+ 1, and add an entry (t+ 1, v)
to the i-th fat element. Time: O(logwi).
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Analysis in the partial persistence case

After n writes, we can rebuild a new array in time O(n log n)
(n get requests over the old array).

This time and this space are amortized over the n preceding
writes.

Then, each fat element has size ≤ n. Therefore:

• reads take O(log n) worst-case time
• writes take O(log n) amortized time
• the array uses O(n+ w) space if fat elements are

represented by ephemeral BSTs, updated in place.

Using splay trees, we obtain accesses in O(1) time for elements
that have been accessed recently.
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Writing to an arbitrary version

When writing to the version at date t, if versions at date > t
already exist, we pick a new date between t and the dates of
these later versions.

0 1 2 3 4

It’s a simple way to embed the partial order of versions in the
total order of dates.
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Writing to an arbitrary version

When writing to the version at date t, if versions at date > t
already exist, we pick a new date between t and the dates of
these later versions.

0 1 2 3 4

1.5

It’s a simple way to embed the partial order of versions in the
total order of dates.
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Writing to an arbitrary version

When writing to the version at date t, if versions at date > t
already exist, we pick a new date between t and the dates of
these later versions.

0 1 2 3 4

1.5 1.75

It’s a simple way to embed the partial order of versions in the
total order of dates.
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Writing to an arbitrary version

When writing to the version at date t, if versions at date > t
already exist, we pick a new date between t and the dates of
these later versions.

0 1 2 3 4

1.5 1.75

3.5

It’s a simple way to embed the partial order of versions in the
total order of dates.
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Writing to an arbitrary version

When writing to the version at date t, if versions at date > t
already exist, we pick a new date between t and the dates of
these later versions.

0 1 2 3 4

1.5 1.75

3.51.25

It’s a simple way to embed the partial order of versions in the
total order of dates.
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Intermediate dates

Given two dates t, t′′, we need to create a date in between, e.g.
t′ = (t+ t′′)/2.

• Simple solution: a date = a rational number
or at least a dyadic fraction p/2q.
→ Comparisons between dates are expensive

(O(w) in the worst case).
• Clever solution: solving the order maintenance problem

(see later).
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Writing to an arbitrary version

When writing value v at an intermediate date t′ = (t+ t′′)/2, it
may be necessary to add two entries to the fat element:

• one for date t′ with value v;
• aonther for date t′′ with the value of the element at date t.

Example: consider t = 1 and t′′ = 2:

Fat element Value at date
0 1 2 3

(0, a); (3,b) a a a b
(0, a); (1, 5, c); (3,b) a a c b ✘

(0, a); (1, 5, c); (2, a); (3,b) a a a b ✔
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Writing to an arbitrary version

let set (t, c) i v =

match QSet.find_first_opt (fun t’ -> Q.gt t’ t) c.timestamps with

| None ->

(* Updating the latest version of the array *)
...

| Some t’’ ->

(* Updating an earlier version *)
let t’ = Q.(div (add t t’’) (of_int 2)) in

c.timestamps <- QSet.add t’ c.timestamps;

let e = c.arr.(i) in

let e1 =

if QMap.mem t’’ e then e else QMap.add t’’ (get_elt t e) e in

let e’ = QMap.add t’ v e1 in

c.arr.(i) <- e’;

(t’, c)
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Analysis in the full persistence case

When the number of versions reach n, we can split the array in
two arrays containing ≈ n/2 versions each.
(See O’Neill and Burton for more details.)

The previous analysis still applies:

• reads take O(log n) worst-case time
• writes take O(log n) amortized time
• the array uses O(n+ w) space if fat elements are

represented by ephemeral BSTs, updated in place

. . . provided we have an efficient solution to the order
maintenance problem, that is, dates that fit in a fixed number of
machine words and that can be compared in constant time.
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Persistent binary trees
using fat nodes



Insertion in a BST: imperative version (from lecture 2)

d

b

a c

f

e h

1. Search for the element to be inserted (here, g).

2. When reaching a leaf, replace it by the node ⟨•, g, •⟩.

27



Insertion in a BST: imperative version (from lecture 2)

d

b

a c

f

e h

1. Search for the element to be inserted (here, g).

2. When reaching a leaf, replace it by the node ⟨•, g, •⟩.

27



Insertion in a BST: imperative version (from lecture 2)

d

b

a c

f

e h

g
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2. When reaching a leaf, replace it by the node ⟨•, g, •⟩.
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Insertion in a BST: persistent version (from lecture 2)

d

b

a c

f

e h

1. Search for the element to be inserted (here, g).

2. When reaching a leaf, copy the path from the root to this
leaf, sharing sub-trees with the initial tree.

3. At the end of the copied path, add the node ⟨•, g, •⟩.

28



Insertion in a BST: persistent version (from lecture 2)

d

b

a c

f

e h

1. Search for the element to be inserted (here, g).

2. When reaching a leaf, copy the path from the root to this
leaf, sharing sub-trees with the initial tree.

3. At the end of the copied path, add the node ⟨•, g, •⟩.

28



Insertion in a BST: persistent version (from lecture 2)

d

b

a c

f

e h

d

f

h

1. Search for the element to be inserted (here, g).
2. When reaching a leaf, copy the path from the root to this

leaf, sharing sub-trees with the initial tree.

3. At the end of the copied path, add the node ⟨•, g, •⟩.

28



Insertion in a BST: persistent version (from lecture 2)

d

b

a c

f

e h

d

f

h

g

1. Search for the element to be inserted (here, g).
2. When reaching a leaf, copy the path from the root to this

leaf, sharing sub-trees with the initial tree.
3. At the end of the copied path, add the node ⟨•, g, •⟩.
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Insertion in a BST

The purely functional implementation (using path copying) is as
fast as the imperative implementation but less space efficient:

Time Space

Purely functional O(log n) O(log n)

Imperative O(log n) O(1)

If we perform n insertions starting with an empty tree, the set of
all n versions of the tree uses O(n log n) space with the purely
functional implementation.

N. Sarnak and R. E. Tarjan (1986): we can get O(n) space by
making the imperative implementation persistent.
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A BST with fat nodes

A fat node = a record

• V field: a history (date, value)
• L field: a history (date, left sub-tree)
• R field: a history (date, right sub-tree)
• balancing information: height, red/black color, etc.

At first, we shoot for partial persistence, hence the balancing
information (which serves for updates only) does not need to be
versioned and applies to the latest version only.
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Example of a BST with fat nodes

V : (0,b)
L : (0, •); (1, ·); (3, •)
R : (0, •); (2, ·)

V : (1, a)
L : (1, •)
R : (1, •)

V : (2, c); (4,d)
L : (2, •)
R : (2, •)

(0, ·) (1, ·) (2, ·) (3, ·) (4, ·)

{b} {a,b} {a,b,c} {b,c} {b,d}
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Rebalancing via rotations after insertions

V : (0, a)
L : (0, •)
R : (0, •); (1, ·); (2, •)

V : (1,b)
L : (1, •); (2, ·)
R : (1, •); (2, ·)

V : (2, c)
L : (2, •)
R : (2, •)

(0, ·) (1, ·) (2, ·)

{a} {a,b} {a,b,c}

Corresponds to the rotation a
b

c

b
a c
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Analysis

After n insertions, starting with an empty tree:

Searching for an element: time O(log2 n)

(we traverse a branch of length log n; at each node, we search the
histories for the V/L/R fields, which are sets of size at most n).

Inserting an element: same time, O(1) space

(each insertion creates one node and updates one field,
then performs a small number of rotations:
at most 2 rotations for a red-black tree).

The n versions therefore fit in O(n) space.
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Bounding the sizes of fat elements

Assume that each history (for V, L, R fields) contains at most k
entries. Then, searching a history takes constant time, and
searching in the whole BST takes O(log n) time.

How to update a field V/L/R of a fat node?

• If the corresponding history is not full, we add one entry to it
(constant time).

• Otherwise, we create a copy of the node with one-entry
histories (the new values for V, L, R), and we recursively
update the L or R field of the parent node.
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Example of updates with histories of size k = 2

V : . . .

L : . . .

R : (0, ·)

; (2, ·)

V : (0, a)

; (1,b)

L : (0, •)
R : (0, •)

t = 0

, 1, 2, 3

Each update to the V field of the right child takes, on an average,
2 updates or block creations → time and space O(1) amortized.
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Example of updates with histories of size k = 2

V : . . .

L : . . .

R : (0, ·)

; (2, ·)

V : (0, a); (1,b)
L : (0, •)
R : (0, •)

t = 0, 1

, 2, 3

Each update to the V field of the right child takes, on an average,
2 updates or block creations → time and space O(1) amortized.
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Example of updates with histories of size k = 2

V : . . .

L : . . .

R : (0, ·); (2, ·)

V : (0, a); (1,b)
L : (0, •)
R : (0, •)

t = 0, 1, 2

, 3

V : (2, c)

; (3,d)

L : (2, •)
R : (2, •)

Each update to the V field of the right child takes, on an average,
2 updates or block creations → time and space O(1) amortized.
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L : (0, •)
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t = 0, 1, 2, 3
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L : (2, •)
R : (2, •)

Each update to the V field of the right child takes, on an average,
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L : (2, •)
R : (2, •)

V : . . .

L : . . .

R : (4, ·)

V : (4, e)

; (5, f)

L : (4, •)
R : (4, •)

t = 4

, 5

Each update to the V field of the right child takes, on an average,
2 updates or block creations → time and space O(1) amortized.
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Example of updates with histories of size k = 2

V : . . .

L : . . .

R : (0, ·); (2, ·)

V : (0, a); (1,b)
L : (0, •)
R : (0, •)

t = 0, 1, 2, 3

V : (2, c); (3,d)
L : (2, •)
R : (2, •)

V : . . .

L : . . .

R : (4, ·)

V : (4, e); (5, f)
L : (4, •)
R : (4, •)

t = 4, 5

Each update to the V field of the right child takes, on an average,
2 updates or block creations → time and space O(1) amortized.
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Amortized analysis (Sarnak and Tarjan, 1986)

In the Sarnak-Tarjan model, each fat node has 3 fields V, L, R
containing their most recent values, and k “generic” history slots
containing earlier values tagged V, L, R, along with their dates.

The potential for the data structure is

Φ = number of nodes − number of free history slots
k

Allocation of a new node or copy of an existing node:
number of nodes +1, number of slots +k, hence ∆Φ = 0.

Writing without node copying: ∆Φ = 1/k.

For each BST insertion, ∆Φ is bounded by a constant, and the
amortized space is O(1).
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Towards full persistence

Three main changes:

1. A field update can require two additions to its history,
as we saw for O’Neill and Burton’s arrays.

2. When the history is full, instead of creating a new, empty
node, we must split the node in two half-full nodes.

3. We also need to version the balancing information
(red/black colors). Up to log n colors can change at each
insertion.

(This bothers Driscoll, Sarnak, Sleator and Tarjan (1989) so much
that they outline a lazy recoloring algorithm that avoids this
problem.)
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Making Data Structures Persistent

A famous article by Driscoll, Sarnak, Sleator and Tarjan (1989)
that shows how to start from

an almost-arbitrary ephemeral data structure
(a directed graph with bounded-degree vertices)

and transform it into

a structure with the same operations,
but partially or fully persistent.

Same ingredients as for red-black trees:
fat nodes with fixed-size histories
+ node copying or node splitting.
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A node of the ephemeral structure

data

pointers
d

≤ p incoming pointers

Each node contains d fields.

Each field is either raw data or a pointer to another node.
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The corresponding fat nodes (partial persistence case)

back ptrs
date
•

data
pointers

history

p

d

e

date

data
pointers

history

date

data
pointers

history

Histories contain up to e entries. Each entry is a triple
(field name, date, new value).

Only the last fat node of the chain can be modified and contains
back pointers. 40



Writing to a field

Same approach as in the partially-persistent red-black tree
example:

• If the history is not full, add an entry to it.
• Otherwise, create a new node and write a new pointer in the

parent nodes.

Main difference: we must use back pointers (to locate the parent
nodes) and update them too.
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Writing to a field

Writing value v in field f of fat node x at date i:

• If x already contains a value for f at date i, update it.
• Otherwise, if the history is not full, add the entry (f , i, v).
• Otherwise, create a new node y, with empty history, field f

initialized to v, other fields initialized to the values they have
in x at date i− 1.

• In the latter case, use the back pointers of x to update
incoming pointers: if field g of node z points to x at date
i− 1, write to z.g a pointer to y at date i.

• In all cases, if f has pointer type, update the back pointers of
the blocks pointed by f at dates i− 1 and i.
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Amortized analysis

Each write takes amortized time O(1), and therefore amortized
space O(1), provided that the histories are large enough: e ≥ p.

Intuition: each time we copy a node, we gain e free history
entries, which compensate for the p updates of incoming
pointers that are required.
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Extension to full persistence

Three main changes:

1) Since we can write to any version, we need back pointers for all
versions, not just the latest.
→ Back pointers are “versioned” like any other pointer.

2) A write to a field can require two insertions in its history.

3) Instead of copying a full node, obtaining a full node + an empty
node, we split a full node, obtaining two half-full nodes.
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Chaining and splitting nodes

[0, i0] [i1+, i2]

i

[i0+, i1]

Each node of the ephemeral structure corresponds to a linked list
of fat nodes, each being valid for an interval of dates.

Splitting a node at date i inserts a new node containing the
history from date i+, leaving the history up to date i in the old
node.
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history from date i+, leaving the history up to date i in the old
node.
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Updating pointers

Splitting a node can invalidate both forward pointers and back
pointers! We need a rather complicated iterative algorithm:

• Identify pointers that have become incorrect
(≈ pointers whose validity interval is no longer included in the
validity interval of the pointed node).

• Rewrite these pointers so that they point to the correct
version of the node.

• These writes can trigger further node splits.

Writes still take O(1) amortized time and space,
provided that e ≥ d+ p.
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The order maintenance problem



The order maintenance problem

Consider an ordered list with two operations:

• Given two list elements, determine their relative poisition:
which element precedes the other in list order.

• Insert a new element just after a given element.

We’d like both operations to run in constant amortized time.
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A naive implementation

0 M/2

A circular, mutable, linked list of cells c with two fields:

• L(c): an integer label in [0,M) with M = 2128 for instance.
• S(c): pointer to the next cell.

Determine the relative position of cells c1 and c2:
Compare their labels L(c1), L(c2).

Insert a new element just after cell c:
If L(S(c)) ≥ L(c) + 2, label the new cell

with the average of L(c) and L(S(c)).
Otherwise, renumber cells in the neighborhood of c

and try again. 48
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A naive implementation

0 M/2M/4 3M/4

A circular, mutable, linked list of cells c with two fields:

• L(c): an integer label in [0,M) with M = 2128 for instance.
• S(c): pointer to the next cell.

Determine the relative position of cells c1 and c2:
Compare their labels L(c1), L(c2).

Insert a new element just after cell c:
If L(S(c)) ≥ L(c) + 2, label the new cell

with the average of L(c) and L(S(c)).
Otherwise, renumber cells in the neighborhood of c

and try again. 48



The renumbering criterion of Dietz and Sleator (1987)

Define the gap between two cells c1, c2 as

g(c1, c2)
def
= (L(c2)− L(c1)) mod M

If we need to insert after c and g(c, S(c)) = 1 :

Search the list ahead of c to find an interval of (minimal) width j
such that g(c, S j(c)) > j 2.

(It’s always possible if the list contains at most
√
M = 264 elements.)

Renumber the j cells in the interval, spacing them equally:

L(Sk(c)) :=
(
L(c) +

⌊
k
j
× g(c, Sj(c))

⌋)
mod M
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An example of renumbering

We take M = 16, and we insert after element 14.

0 8 12 14 15
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An example of renumbering

We take M = 16, and we insert after element 14.

4 8 12 14 1

For j = 1, the gap is 1, too small.
For j = 2, the gap is 2, too small.
For j = 3, the gap is 10, that’s enough!
Renumbering: 14 + 3 = 1, 14 + 2 × 3 = 4.
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Renumbering and relative cell positions

Renumberning can “wrap around” the list and change the labels
of the first elements. Hence, we need a different way to order
cells.

Determine the relative position of cells c1 and c2:
Compare g(base, c1) with g(base, c2) (the gaps with the base).

Renumbering preserves relative positions!

Labels Gaps with the base
Before renumbering 0 8 12 14 15 0 8 12 14 15
After renumbering 4 8 12 14 1 0 4 8 10 13
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Amortized analysis; a two-level representation

(P. F. Dietz, D. Sleator, Two Algorithms for Maintaining Order in a List, STOC 1987).

A complicated analysis shows that insertion takes time O(log n),
where n is the size of the list.

We can achieve O(1) amortized using a two-level representation:

• Each element of the circular list points to a sub-list of integers
with at least ⌈log n⌉ bits, e.g. 64 bits, containing at most log n
elements.

• Insertion in sub-lists does not renumber, it just takes the average
of the two labels.

• When insertion in a sub-list is not possible, we split it in two
halves, renumber these halves, and insert the second half in the
main list.
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Summary



Making an ephemeral structure persistent

An approach initiated by seminal work of the 1980’s.

It lacks the algebraic elegance of the purely functional approach
to persistence, but can be more efficient in specific use cases:

• partial persistence;
• semi-persistence; (→ J. C. Filliâtre’s seminar)
• quasi-linear use.

Full persistence is (excessively?) complicated to obtain.

The approach is interesting not so much to reduce time but to
reduce space (O(n log n) → O(n)).
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