
Persistent data structures, third lecture

Reconciling amortization and persistence:
why laziness matters

Xavier Leroy
2023-03-23

Collège de France, chair of Software sciences
xavier.leroy@college-de-france.fr

Amortization

Analyzing sequences of operations

A program =
abstract algorithms

+ appropriate, efficient data structures

An abstract algorithm executes several operations in sequence
on a given data structure.

What matters is not that each operation runs fast, but that the
whole sequence of operation runs fast.

Example
n operations in time log n each → total time O(n log n)

n − 1 operations in constant time, 1 operation in linear time
→ total time O(n)

2

A stack implemented as an extensible array

class Stack {

private int[] stk; private int sp;

Stack () { stk = new int[1]; sp = 0; }

void push(int v) {

if (sp >= stk.length) {

int[] newstk = new int[2 * stk.length];

System.arraycopy(stk, 0, newstk, 0, stk.length);

stk = newstk;

}

stk[sp] = v; sp++;

}

int top() { return stk[sp - 1]; }

void pop() { sp--; }

}

When the stack is full, we reallocate an array twice as large, and
copy the old array in the new array. 3

Analysis of a sequence of push operations

Consider a sequence of n push, where 2k−1 < n ≤ 2k.

We performed n assignments stk[sp] = v, total time n.

We resized the array k − 1 times:
from size 1 to size 2, . . . , from size 2k−1 to size 2k.

Each resizing p → 2p takes time p.

Total resizing time:
∑k−1

i=0 2i = 2k − 1.

Total time for n push: 2k − 1 + n ≤ 2n + n = 3n.

We say that push executes in amortized constant time,
since any sequence of n push takes time kn at most, for some
constant k.

4

Analysis of a sequence of push operations

Consider a sequence of n push, where 2k−1 < n ≤ 2k.

We performed n assignments stk[sp] = v, total time n.

We resized the array k − 1 times:
from size 1 to size 2, . . . , from size 2k−1 to size 2k.

Each resizing p → 2p takes time p.

Total resizing time:
∑k−1

i=0 2i = 2k − 1.

Total time for n push: 2k − 1 + n ≤ 2n + n = 3n.

We say that push executes in amortized constant time,
since any sequence of n push takes time kn at most, for some
constant k.

4

A more local analysis

0
p/2

p

latest
resizing

next
resizing

at least p/2 push

Each resizing leaves the stack half empty.

If p is the new size, it will take at least p/2 push operations
before the stack needs resizing again (for a cost of p).

The 2 cost added to each of the p/2 push pre-pays the p cost of
the next resizing.

5

The banker’s method (a.k.a. the accounting method)

In financial words:

billed cost ≥ actual cost +∆cash reserve

In execution time words:

amortized time ≥ actual time +∆time credits

The “cash reserve” (the time credits) must always remain ≥ 0.

In the stack example:

Operation Amortized time Actual time ∆time credits
top, pop 1 1 0
push (no resizing) 3 1 +2
push (resizing) 3 p + 1 −p

At least p/2 push without resizing take place before a resizing
push. Therefore, time credits remain ≥ 0.

6

The physicist’s method (a.k.a. the potential method)

A potential function Φ : state of the structure → R+

Each operation must ensure that

amortized time ≥ actual time +∆Φ

For the stack example, we take Φ = max(2sp− p, 0)
with p = stk.length.

Operation Amortized time Real time ∆Φ

top 1 1 0
pop 1 1 0 or −2
push (no resizing) 3 1 0 or +2
push (resizing) 3 p + 1 p + 2

Just before resizing, Φ = 2p − p = p.
Just after, Φ = 0, and at the end of the push Φ = 2.

7

Soundness of amortized analysis

Consider a sequence of operations:∑
amortized times ≥

∑
actual times +

∑
∆Φ

If the structure is used in a single-threaded manner, and its
successive states are s0, . . . , sn,∑

∆Φ = (Φ(sn)−Φ(sn−1))+ · · ·+(Φ(s1)−Φ(s0)) = Φ(sn)−Φ(s0)

Since Φ ≥ 0 and Φ(s0) = 0 (in general), we have

time for the sequence =
∑

actual times ≤
∑

amortized times

The running time for the sequence is correctly bounded by the
result of amortized analysis.

8

The physicist’s method vs. the banker’s method

The physicist’s method is more systematic:

• Once the Φ function is defined, amortized costs can be
calculated almost automatically as max(actual time +∆Φ).

The banker’s method is more flexible:

• Credits can depend on the history of operations, not just the
current state of the structure.

• Credits can be split across multiple accounts attached to
different parts of the structure.

9

A persistent queue (FIFO)

rear front

Trivial implementation: a singly-linked list.

type ’a queue = ’a list

let empty = []

let isempty q = match q with [] -> true | _ -> false

let head q = match q with h :: t -> h | _ -> raise Empty

let tail q = match q with h :: t -> t | _ -> raise Empty

let add x q = q @ [x]

The add operation is inefficient: time O(n).

10

A persistent queue

f1 f2 fn

rkr2r1

front

rear

Implemented as two lists:

• the “front” list f (head of f is first element out);
• the “rear” list r (head of r is last element in).

When the front list is empty, it can be refilled by reversing the
rear list: ([], r) → (rev(r), []).

This takes linear time O(∥r∥), but this time is amortized!
(over the ∥r∥ insertions in the queue that created this list r).

11

Pure functional implementation of the queue

type ’a queue = ’a list * ’a list

let empty = ([], [])

let isempty (f, r) = (f = [])

let head = function

| ([], _) -> raise Empty

| (x :: f, _) -> x

let tail = function

| ([], _) -> raise Empty

| (_ :: [], r) -> (List.rev r, [])

| (_ :: f , r) -> (f, r)

let add x = function

| ([], _) -> ([x], [])

| (f, r) -> (f, x :: r)

Invariant: if the queue is not empty, f ̸= [].
In other words: if f = [] then r = [] and the queue is empty.

12

Amortized analysis

The potential is the length of the rear list:

Φ((f , r)) def
= ∥r∥

Operation Amortized time Actual time ∆Φ

add 2 1 +1
head 1 1 0
tail (no reverse) 1 1 0
tail (reverse) 1 1 + ∥r∥ −∥r∥

13

Extension: a double-ended queue (dequeue)

f1 f2 fn

rkr2r1

head

last

tail
cons

remove
add

We add operations to insert at head of queue (cons) and to
lookup and extract at tail of queue (last, remove).

Same implementation by two lists (f , r), but:

• ([], r) → (rev r2, r1) where (r1, r2) = r split in the middle.
• (f , []) → (f1, rev f2) where (f1, f2) = f split in the middle.

Potential function for amortized analysis: Φ((f , r)) =
∣∣ ∥f∥− ∥r∥

∣∣.
14

Problem with persistent uses

Our queue is implemented in pure functional style and can
therefore be used persistently, i.e. by reusing intermediate states
of the queue.

let q = add 3 (add 2 (add 1 empty)) in

let q1 = tail q and ... and qN = tail q in ...

The state q is represented as f = [1] and r = [3; 2].

Each of the N calls tail q must reverse list r, for a total
overhead of 2N.

This overhead cannot be amortized by the 3 add operations:
no matter their amortized cost, this cost cannot account for 2N
when N → ∞.

15

Amortization and persistence

∑
amortized times ≥

∑
actual times +

∑
∆Φ

If the structure is ephemeral, or persistent but used in a
single-threaded manner, each intermediate state is used only
once:

s0 s1 s2 · · · · · · sn
op1 op2 opn

In this case, we have
∑

∆Φ = Φ(sn)− Φ(s0) and the actual
running time is correctly bounded by

∑
amortized times.

16

Amortization and persistence

∑
amortized times ≥

∑
actual times +

∑
∆Φ

A persistent structure can also be used in a non-single-threaded
manner, with reuse of intermediate states:

s0
op1 op2 op3

op4 op6

op5

op7

We lose all guarantees that
∑

∆Φ ≥ 0, and the actual running
time of the sequence can exceed

∑
amortized times. 16

Lazy evaluation

Call by value, call by name

Call by value: the argument to a function call is evaluated before
entering the function.

(λx. x + x) (fib 11) ∗→ (λx. x + x) 89 ∗→ 89 + 89 ∗→ 178

Call by name: the argument is passed unevaluated to the
function; it is evaluated every time its value is needed.

(λx. x + x) (fib 11) ∗→ fib 11 + fib 11
∗→ 89 + fib 11 ∗→ 89 + 89 ∗→ 178

Call by name is normalizing, but not call by value:
(λxy. y) ω 0 → 0 in CBN, diverges in CBV.

Call by name duplicates a lot of computations.

17

Call by value, call by name

Call by value: the argument to a function call is evaluated before
entering the function.

(λx. x + x) (fib 11) ∗→ (λx. x + x) 89 ∗→ 89 + 89 ∗→ 178

Call by name: the argument is passed unevaluated to the
function; it is evaluated every time its value is needed.

(λx. x + x) (fib 11) ∗→ fib 11 + fib 11
∗→ 89 + fib 11 ∗→ 89 + 89 ∗→ 178

Call by name is normalizing, but not call by value:
(λxy. y) ω 0 → 0 in CBN, diverges in CBV.

Call by name duplicates a lot of computations.

17

Call by value, call by name

Call by value: the argument to a function call is evaluated before
entering the function.

(λx. x + x) (fib 11) ∗→ (λx. x + x) 89 ∗→ 89 + 89 ∗→ 178

Call by name: the argument is passed unevaluated to the
function; it is evaluated every time its value is needed.

(λx. x + x) (fib 11) ∗→ fib 11 + fib 11
∗→ 89 + fib 11 ∗→ 89 + 89 ∗→ 178

Call by name is normalizing, but not call by value:
(λxy. y) ω 0 → 0 in CBN, diverges in CBV.

Call by name duplicates a lot of computations.

17

Call by need and lazy evaluation

Call by need: the argument is passed unevaluated to the
function; it is evaluated the first time its value is needed, and the
resulting value is memoized for future uses.

+

fib 11

(λxy. y + y) ω (fib 11) ∗→ +

89

∗→ ∗→ 178

In a language like Haskell, this lazy evaluation also applies to
data constructors, resulting in potentially infinite data structures
that are evaluated on demand.

numbers = 1 : map (+1) numbers

primes = filter isprime numbers

18

Implementing lazy evaluation in a strict language

Using references (an imperative feature) for memoization.

type ’a susp = ’a status ref

and ’a status = Todo of unit -> ’a | Done of ’a

let force (s: ’a susp) : ’a =

match !s with

| Todo f -> let v = f () in s := Done v; v

| Done v -> v

To suspend the evaluation of expression e, we write
ref (Todo (fun () -> e))

19

Notations for lazy evaluation

Expressions: e ::= . . . | lazy e
Patterns: pat ::= . . . | lazy pat

lazy e suspends the evaluation of e
(like ref (Todo (fun () -> e)))

lazy pat forces a suspension and matches its value against pat
(like match force susp with pat)

Similar notations are used in Okasaki’s book and in OCaml:
This course OCaml Okasaki

Type of suspensions ’a susp ’a Lazy.t ’a susp

Suspend e lazy e lazy e $e
Force and match against p lazy p lazy p $p
Just force force Lazy.force force

20

Lazy lists

type ’a stream = ’a cell susp

and ’a cell = Nil | Cons of ’a * ’a stream

let head = function lazy (Cons(h, t)) -> h | _ -> assert false

let tail = function lazy (Cons(h, t)) -> t | _ -> assert false

let rec map f l =

lazy (match l with lazy Nil -> Nil

| lazy (Cons(h, t)) -> Cons(f h, map f t))

let rec numbers = lazy (Cons(1, map succ numbers))

Note: the map function is “incremental”, meaning that in order to
produce the first k elements of map f l, it suffices to evaluate the first
k elements of l.

21

Lazy merge sort

let rec merge (s1: ’a stream) (s2: ’a stream) : ’a stream =

lazy (match force s1, force s2 with

| Nil, c2 -> c2

| c1, Nil -> c1

| Cons(h1, t1), Cons(h2, t2) ->

if h1 <= h2

then Cons(h1, merge t1 s2)

else Cons(h2, merge s1 t2)

let rec mergesort (s: ’a stream) (len: int) : ’a stream =

if len <= 1 then s else

let (s1, s2) = split s (len/2) in

merge (mergesort s1 (len/2)) (mergesort s2 (len - len/2))

22

When laziness improves algorithmic efficiency

Sorting takes place on demand: in mergesort s n, with n = ∥s∥,

• the first element of the sorted list (= the minimum of s)
is produced in time O(n);

• the following elements are produced in time O(log n) each.

Hence, we can find the k smallest elements of list s
by taking the first k elements of mergesort s n,
in time O(n + k log n).

23

Lazy merging

let rec merge (s1: ’a stream) (s2: ’a stream) : ’a stream =

lazy (match force s1, force s2 with

| Nil, c2 -> c2

| c1, Nil -> c1

| Cons(h1, t1), Cons(h2, t2) ->

if h1 <= h2

then Cons(h1, merge t1 s2)

else Cons(h2, merge s1 t2)

To obtain the first element of merge s1 s2, we must evaluate
the first element of s1 and the first element of s2.

To obtain the next element of merge s1 s2, we only need to
evaluate the next element of one of the two inputs s1 and s2.
(The other next element has already been evaluated.)

24

The tree of merges

[55] [11] [97] [60] [53] [23] [83] [63]

merge merge merge merge

merge merge

merge

25

The tree of merges

[55] [11] [97] [60] [53] [23] [83] [63]

merge merge merge merge

merge merge

merge

25

The tree of merges

[55] [11] [97] [60] [53] [23] [83] [63]

11:merge 60:merge 23:merge 63:merge

11:merge 23:merge

11:merge

First result after evaluating all 7 merge.

25

The tree of merges

[55] [11] [97] [60] [53] [23] [83] [63]

11:merge 60:merge 23:merge 63:merge

11:merge 23:merge

11:merge

First result after evaluating all 7 merge.

25

The tree of merges

[55] [11] [97] [60] [53] [23] [83] [63]

11:55:merge 60:merge 23:merge 63:merge

11:55:merge 23:merge

11:23:merge

First result after evaluating all 7 merge.
Second result after evaluating 3 merge.

25

The tree of merges

[55] [11] [97] [60] [53] [23] [83] [63]

11:55:merge 60:merge 23:merge 63:merge

11:55:merge 23:merge

11:23:merge

First result after evaluating all 7 merge.
Second result after evaluating 3 merge.

25

The tree of merges

[55] [11] [97] [60] [53] [23] [83] [63]

11:55:merge 60:merge 23:53:merge 63:merge

11:55:merge 23:53:merge

11:23:53:merge

First result after evaluating all 7 merge.
Second result after evaluating 3 merge.
Third result after evaluating 3 merge.
Etc.

25

Concatenating or reversing lazy lists

let rec app (s1: ’a stream) (s2: ’a stream) : ’a stream =

lazy (match s1 with lazy Nil -> force s2

| lazy(Cons(h, t)) -> Cons(h, app t s2))

let rev (l: ’a list) : ’a stream =

lazy (List.fold_left (fun acc elt -> Cons(elt, lazy acc))

Nil l)

app is incremental: if each element of s1 or s2 is produced in
time O(1), so is each element of app s1 s2.

rev is not incremental: the first element of rev ℓ is produced in
time O(|ℓ|), the others in time O(1).

26

Reconciling amortization
and persistence

Reverse-then-concatenate lazy lists

Consider the lazy list app s (rev ℓ), where ∥s∥ = ∥ℓ∥ = n.

The evaluation (in full) of rev ℓ triggers when we access the
n + 1-th element of this list (of length 2n).

To evaluate (in full) the first i elements of this list takes timei if i ≤ n

n + i if n < i ≤ 2n

In both cases, the time is ≤ 2i.

We could therefore say that each element of the list app s (rev ℓ)

evaluates in amortized constant time (2 units).

27

Lazy reverse-then-concatenate

q0 q1 · · · qk

q1
k+1 · · · q1

n

qp
k+1 · · · qp

n

tail tail tail

tail tail

tail tail

tail

tail
tail

tail

...
...

Let q0 = app s (rev ℓ). Assume it is used non-linearly: after k
tail we duplicate the list p times.

Thanks to laziness, rev ℓ is evaluated only once, and so are the
n − k remainingsteps of app. Therefore, the amortized cost of
each tail remains constant.

(This would be false in call by name: rev ℓ would be evaluated p
times. If k = n − 1 for example, the total cost would be n + pn for
n + p tail operations, hence an amortized cost linear in p.)

28

The banker’s queue (C. Okasaki, 1995)

f1 f2 ffl

rrlr2r1

front

rear

type ’a queue = int * ’a stream * int * ’a list

let empty = (0, lazy Nil, 0, [])

let is_empty (fl, f, rl, r) = (fl = 0)

A queue = a quadruple (fl, f , rl, r) where

• the front list, f , is lazy (head of f is first element out);
• the rear list, r, is strict (head of r is last element in);
• fl = ∥f∥ and rl = ∥r∥.

Invariant: fl ≥ rl, therefore the queue is empty iff fl = 0.

29

The operations of the banker’s queue

let add x (fl, f, rl, r) =

check (fl, f, rl + 1, x :: r)

let head (fl, f, rl, r) =

match f with

| lazy Nil -> raise Empty

| lazy (Cons(x, _)) -> x

let tail (fl, f, rl, r) =

match f with

| lazy Nil -> raise Empty

| lazy (Cons(_, f’)) -> check (fl - 1, f’, rl, r)

Almost the same operations as for the usual non-lazy queue,
except for the check function. . .

30

Normalization by rotation

The check function maintains the fl ≥ rl invariant, and makes
sure the rear list is reversed “long enough in advance”.

let check ((fl, f, rl, r) as q) =

if fl >= rl

then q

else (fl + rl, app f (rev r), 0, [])

The lazy computation app f (rev r) is set up when ∥r∥ = ∥f∥+ 1.

As outlined previously, the cost ∥r∥ it takes to evaluate rev r will
be amortized over the future operations required to trigger this
evaluation. The analysis is complicated by the fact that f could
still contain non-evaluated rev r′ coming from earlier rotations.

31

The 2.0 banker’s method

No more accounts containing time credits, but only debts
containing time debits.

To each suspension we associate a debt.

When evaluating lazy e, the initial debt must be ≥ actual
evaluation cost of e.

The debt can be repaid (reduced) at any time by transferring time
credits from the billed (amortized) cost.

amortized time ≥ actual time + repayments

When the debt drops to zero, we can force the suspension and
obtain its value, at no extra cost.

32

The debts of a lazy list

For a n-element list, we have n debts d1, . . . ,dn ≥ 0.

The cumulative debt is D(k) def
=

∑k
i=1 di.

We can access (at no cost) the first k elements of the list if and
only if D(k) = 0.

We can reduce a debt di by m, at an amortized cost of m:
d0 . . . di−1 di di+1 . . . dn

↓
d0 . . . di−1 di − m di+1 . . . dn

We can transfer a debt to an element farther to the left,
at zero amortized cost:

d0 . . . di−1 di di+1 . . . dj−1 dj dj+1 . . . dn

↓ ↓
d0 . . . di−1 di + m di+1 . . . dj−1 dj − m dj+1 . . . dn 33

The debts for the banker’s queue

For a queue (f , r), the lazy list f has debts

• 0 for the first element;
• 2 for the next ∥f∥ − ∥r∥ − 1 elements;
• 0 for the last ∥r∥ elements.

f0 2 2 . . . 2 2 0 . . . 0
0 1 ∥f∥ − ∥r∥ ∥f∥

r

Since the first element of f has debt 0, it can be freely accessible
at any time, notably by the head function.

34

Analysis of the check operation

Rotation takes place when ∥f∥ = m and ∥r∥ = m + 1.
All elements of f have 0 debt.

We create the list app f (rev r) with debt 1 for each of the m Cons

produced by app, debt M = m + 1 for the first element of rev r,
and debit 2 (overpriced!) for the remaining elements.

f1 1 . . . 1 1 M 2 2 . . . 2 2
0 m m + 1 2m + 1

We then spread m − 1 units from debt M over the beginning of
the list, and we pay 1 to unblock the first element.

f0 2 2 2 . . . 2 2
0 1 2m + 1

r
35

Analysis of the tail operation

f0 2 2 . . . 2 0 . . . 0
0 1 2 ∥f∥ − ∥r∥ ∥f∥

r

f ′
0 2 . . . 2 0 . . . 0

0 1 |f ′∥−∥r| |f ′|

If check triggers no rotation, we go from f to f ′ by removing the
first element of f . We need to unblock the second element of f ,
by paying 2.

If check triggers a rotation, we paid 1.

The actual time taken by check and tail is constant, hence tail

runs in constant amortized time.
36

Analysis of the add operation

f0 2 . . . 2 2 0 . . . 0
0 1 ∥f∥ − ∥r∥ ∥f∥

r

f0 2 . . . 2 0 0 . . . 0
0 1 ∥f∥ − |r′| ∥f∥

r′

We go from r to r′ by adding an element to r. We reduce the debt
of the element in position ∥f∥ − ∥r∥ − 1 in f , from debt 2 to debt
0, by paying 2.

If check triggers a rotation, we need to pay 1 more.

The actual time taken by check and add is constant, hence add

runs in constant amortized time.
37

Comparing the bankers

Classic banker Amortization banker

Maintains cash reserves debts

Reasons over time credits time debits

Amortizes over past operations future operations

Duplication? credits
not duplicable

residual debts
duplicables

Uses? single-threaded only persistent

38

The 2.0 physicist’s method

(A simplification of the 2.0 banker’s method, appropriate when the
persistent structure contains a single suspension.)

An anti-potential function Ψ : state of the structure → R+

It’s an upper bound of the sum of the debts from all the
suspensions contained in the structure.

We can access the values of these suspensions iff Ψ(s) = 0.

Each operation must satisfy

amortized time ≥ strict time −∆Ψ

Strict time is actual time + time to evaluate the newly-created
suspensions, or in other words the actual time if we were using
strict evaluation.

39

The physicist’s queue (C. Okasaki, 1996)

f1 f2 fk ffl

w1 w2 wk

rrlr2r1

front

rear

type ’a queue = ’a list * int * ’a list susp * int * ’a list

A queue = a 5-tuple (w,fl, f , rl, r) with

• w: output list (an already-evaluated prefix of f)
• f : the front list, as a suspension of a strict list
• r: the rear list
• fl = ∥f∥ et rl = ∥r∥.

Invariants: fl ≥ rl, and w ̸= [] unless the queue is empty.
40

The operations of the physicist’s queue

let add x (w, fl, f, rl, r) =

check (f, fl, rl + 1, x :: r)

let head (w, fl, f, rl, r) =

match w with

| [] -> raise Empty

| x :: _ -> x

let tail (w, fl, f, rl, r) =

match w with

| [] -> raise Empty

| _ :: w’ ->

check (w’, fl - 1, lazy(List.tl (force f)), rl, r)

Similar to the banker’s queue, except that tail extractions take
place in parallel on the prefix w and on the suspended front list f.

41

Normalizations for the physicist’s queue

First normalization: ensures that the prefix w is not empty if the
queue is not empty.

let check_w ((w, fl, f, rl, r) as q) =

if w = [] then (Lazy.force f, fl, f, rl, r) else q

Second normalization: maintains the fl ≥ rl invariant and makes
sure the rear list is reversed “long enough in advance”.

let check ((w, fl, f, rl, r) as q) =

if fl >= rl

then check_w q

else let f’ = Lazy.force f in

check_w (f’, fl + rl, lazy (f’ @ List.rev r), 0, [])

42

Amortized analysis

Define the anti-potential by Ψ(q) def
= min(2∥w∥, ∥f∥ − ∥r∥)

so that Ψ = 0 in the two cases where we need to force a
suspension.

let check_w ((w, fl, f, rl, r) as q) =

if w = [] then (Lazy.force f, fl, f, rl, r) else q

If w is empty, Ψ(q) = 0, we can force f, the strict cost is 1
(Lazy.force is free), and ∆Ψ ≥ 0 → amortized cost 1.

43

Amortized analysis

Ψ(q) def
= min(2∥w∥, ∥f∥ − ∥r∥)

let check ((w, fl, f, rl, r) as q) =

if fl >= rl

then check_w q

else let f’ = Lazy.force f in

check_w (f’, fl + rl, lazy (f’ @ List.rev r), 0, [])

If ∥f∥ < ∥r∥, we have ∥f∥ = m and ∥r∥ = m + 1 for some m.

Ψ(q) = 0, therefore we can force f, and the strict cost is 1 plus
that of evaluating f’ @ List.rev r, namely 2m + 1.

The anti-potential goes from 0 to min(2m, 2m + 1) = 2m.

The amortized cost is, therefore, (1 + 2m + 1)− (2m − 0) = 2.
44

Amortized analysis

Ψ(q) def
= min(2∥w∥, ∥f∥ − ∥r∥)

let add x (w, fl, f, rl, r) =

check (f, fl, rl + 1, x :: r)

∥r∥ increases by 1, hence Ψ decreases by 1 or remains unchanged.
The strict cost is constant → constant amortized cost.

let tail (w, fl, f, rl, r) =

match w with

| [] -> raise Empty

| _ :: w’ ->

check (w’, fl - 1, lazy(List.tl (force f)), rl, r)

∥w∥ decreases by 1 and ∥f∥ by 1 too, hence Ψ decreases by 1 or 2.
The strict cost is constant → constant amortized cost. 45

Eliminating amortization

“Real-time” applications

Some applications require bounds on the time taken by each
operation:

• Hard real-time systems: control & command, robotics, . . .
• Soft real-time systems: audio, video, games, GUIs, . . .

Example: a GUI where

100 operations take 20ms each

is more pleasant to use than a GUI where

99 operations take 1ms each and 1 operation takes 1s

even though the latter completes the 100 operations faster than
the former.

46

Eliminating amortization via scheduling

A general technique to transform an efficient amortized structure
into an efficient real-time structure: scheduling.

Idea: instead of performing an expensive operation O(n) after n
cheap operations O(1), we will

• incrementalize the expensive operation so that it can be
done in n steps taking O(1) time each;

• schedule a step of the expensive operation during each of
the n cheap operations.

Then, all operations take O(1) time in the worst-case, not just
amortized O(1) time.

47

Incrementalize reverse-then-concatenate

How can we compute app f (rev r) incrementally?

Let’s generalize: how can we compute incrementally

rotate f r a def
= app f (app (rev r) a) when ∥r∥ = ∥f∥+ 1

The following equalities hold:

rotate [] [r1] a = r1 :: a

rotate (f1 :: fs) (r1 :: rs) a = app (f1 :: fs) (app (rev(r1 :: rs)) a)

= f1 :: app fs (app(rev rs)(r1 :: a))

= f1 :: rotate fs rs (r1 :: a)

They show that the computation can be made incremental using
a lazy list of results: each element is produced in O(1) time.

48

Scheduling the evaluation of a lazy list

The amortized analysis for the banker’s queue shows that it’s not
enough to let tail trigger the evaluations of the elements of
app f (rev r). Every add as well as every tail must compute one
element.

It’s easy to schedule evaluations of the elements of a lazy list.
Just consider pairs (f , s) where s (the schedule) is f initially, then
later a suffix of f .

let exec = function (f, lazy (Cons(x, s))) -> (f, s)

| (f, lazy Nil) -> (f, lazy Nil)

Every call to exec forces the computation of one list element,
without changing the value of the list f .

49

Okasaki’s real-time queue (1995)

f1 f2 fn

r1 r2 rk

s1 sp

front

rear

schedule

type ’a queue = ’a stream * ’a list * ’a stream

A queue is a triple (f , r, s):

• the front list f : a lazy list;
• the rear list r: a strict list;
• the schedule s: a strict list, always a suffix of f ;
• ∥f∥ = ∥r∥+ ∥s∥, implying ∥f∥ ≥ ∥r∥.

50

Scheduling the rotations

If the schedule is empty, we set up a new rotation of f , r.
Otherwise, we compute one more element of f .
let rec rotate f r a = (* f fully evaluated , | r | = | f |+1 *)
lazy (match f, r with

| lazy Nil, [r1] -> Cons(r1, a)

| lazy (Cons(f1, f’)), r1 :: r’ ->

Cons(f1, rotate f’ r’ (lazy (Cons(r1, a))))

| _ -> assert false)

let exec = function (* | f |+1 = | r |+| s | on entry *)
| (f, r, lazy(Cons(_, s))) -> (f, r, s)

| (f, r, lazy Nil) -> let f’ = rotate f r (lazy Nil)

in (f’, [], f’)

All the suspensions built by rotate evaluate in constant time.
Hence, exec takes constant time. 51

The operations of the real-time queue

let add x (f, r, s) = exec (f, x :: r, s)

let head = function

| (lazy Nil, _, _) -> raise Empty

| (lazy (Cons(x, _)), _, _) -> x

let tail = function

| (lazy Nil, _, _) -> raise Empty

| (lazy (Cons(_, f)), r, s) -> exec (f, r, s)

All 3 operations run in constant time!

(It is possible to implement a purely functional, real-time queue
without using lazy evaluation: the Hood-Melville queue. See T. Nipkow’s
seminar.)

52

Summary

On amortization

An approach that leads to data structures that are quite simple
but remarkably efficient.

We saw this on the example of queues, but it’s also true for
structures based on balanced trees:

O(log n) worst-case O(log n) amortized

BST AVL, red-black splay trees

Heap leftist heaps skew heaps

For the amortized structures (right column), the trees carry no
rebalancing information (no heights, no colors, etc). Every
operation just tries to reduce imbalance locally.

53

On lazy evaluation

A very useful mechanism:

• to delay expensive computations until the cost is amortized
by enough operations;

• to share the results of the computations, thus avoiding
duplication in case of persistent, non-single-threaded use;

• to schedule a sequence of computation steps.

A conceptual question: are these lazy implementation still purely
functional, or somewhat imperative?

An observation: reasoning (functional correctness & complexity)
is much easier over lazy implementations than over imperative
implementations.

54

References

References

The main support for this lecture:

• Chris Okasaki, Purely Functional Data Structures,
chapters 5, 6, 7.

The seminal paper:

• Robert E. Tarjan, “Amortized Computational Complexity”,
SIAM Journal on Algebraic and Discrete Methods 6(2), 1985.

A verification of the banker’s queue in separation logic:

• F. Pottier, A. Guéneau, J.-H. Jourdan, G. Mével, Thunks and
debits in separation logic with time credits, march 2023.

55

https://www.cs.princeton.edu/courses/archive/spr09/cos423/Lectures/amortized-cc.pdf
https://cambium.inria.fr/~fpottier/publis/pottier-gueneau-jourdan-mevel-thunks-debits.pdf
https://cambium.inria.fr/~fpottier/publis/pottier-gueneau-jourdan-mevel-thunks-debits.pdf

	Amortization
	Lazy evaluation
	Reconciling amortization and persistence
	Eliminating amortization
	Summary
	References

