
Nothing is lost, everything is created:
introduction to persistent data structures

Xavier Leroy
2023-03-09

Collège de France, chair of Software sciences
xavier.leroy@college-de-france.fr

An algorithm is like a recipe!

Obvious consequence: input data and intermediate results are
not preserved during computation.

Fundamental formalism: Turing machines.

2

An algorithm is like a mathematical definition

Computation is seen as a succession of steps that build the final
result, without destroying input data nor intermediate results.

Fundamental formalisms: general recursive functions,
lambda-calculus, rewriting systems, formal semantics.

“Declarative” (as opposed to “imperative”) programming:
functional programming, logic programming, constraint
programming, . . . 3

Which algorithms for declarative programming?

Declarative programming is often said to be inefficient because it
cannot use ephemeral data structures (with in-place updates),
such as arrays.

The persistent data structures that we will study in this course
address this criticism:

• Their interfaces expose only operations that do not update
structures in place, but return new, updated structures.

• Their implementations match (or get close to) the
complexity of the best known ephemeral structures.

4

Persistence matters for imperative programming too!

Even for imperative programs and classical algorithms, persistent
data structures are useful:

• They make it easy to checkpoint and backtrack
computations.

• We can keep the full history of the data structure.
• The lack of in-place updates enables memory sharing among

the various versions of the structure, hence a compact
representation of its history.

5

First example:
stacks

A stack

“Last-in first-out” operations:

init empty the stack
push(v) push v on top of the stack

top return the top value
pop pop the top value.

6

An ephemeral stack implemented as an array

bottom

top
sp

stk

int stk[SIZE];

int sp;

void init(void) { sp = 0; }

void push(int v) {

assert (sp < SIZE);

stk[sp] = v; sp = sp + 1;

}

int top(void) {

assert (sp > 0); return stk[sp - 1];

}

void pop(void) {

assert (sp > 0); sp = sp - 1;

}

7

Checkpointing and backtracking

Cheap but incomplete approach:

• Setting a checkpoint: oldsp = sp; (save sp)
• Backtracking: sp = oldsp; (restore sp)

1
2

1
2
3
4

1
2
3
4

oldspsp

sp

sp

push(3);
push(4)

backtrack ✔

Correct but expensive approach:
copy stk[0 . . . sp[to/from another array.

8

Checkpointing and backtracking

Cheap but incomplete approach:

• Setting a checkpoint: oldsp = sp; (save sp)
• Backtracking: sp = oldsp; (restore sp)

1
2

1
3
4

1
3
4 oldspsp

sp
sp

pop;
push(3);
push(4)

backtrack ✘

Correct but expensive approach:
copy stk[0 . . . sp[to/from another array.

8

Checkpointing and backtracking

Cheap but incomplete approach:

• Setting a checkpoint: oldsp = sp; (save sp)
• Backtracking: sp = oldsp; (restore sp)

1
2

1
3
4

1
3
4 oldspsp

sp
sp

pop;
push(3);
push(4)

backtrack ✘

Correct but expensive approach:
copy stk[0 . . . sp[to/from another array.

8

A persistent stack implemented by a linked list

top bottom
•

stk

class Stack {

private int hd; private Stack tl;

static Stack empty = null;

static Stack push(int v, Stack s)

{ Stack t = new Stack(); t.hd = v; t.tl = s; return t; }

static int top(Stack s) { return s.hd; }

static Stack pop(Stack s) { return s.tl; }

}

Change of interface: now, push, pop return the new stack as a result
instead of modifying the stack given as argument.

We rely on garbage collection to reclaim list cells that become
unreachable after pop.

9

Persistent stacks and backtracking

2 1
•

stk

stk = Stack.push(2, Stack.push(1, Stack.empty));

// Checkpoint
oldstk = stk;

// Work
stk = Stack.push(4, Stack.push(3, Stack.pop(stk)));

// Backtrack
stk = oldstk;

10

Persistent stacks and backtracking

2 1
•

oldstk

34stk

stk = Stack.push(2, Stack.push(1, Stack.empty));

// Checkpoint
oldstk = stk;

// Work
stk = Stack.push(4, Stack.push(3, Stack.pop(stk)));

// Backtrack
stk = oldstk;

10

Persistent stacks and backtracking

2 1
•

stk

34

stk = Stack.push(2, Stack.push(1, Stack.empty));

// Checkpoint
oldstk = stk;

// Work
stk = Stack.push(4, Stack.push(3, Stack.pop(stk)));

// Backtrack
stk = oldstk;

10

Pure functional implementation of persistent stacks

In Lisp, Scheme, etc: using primitive operations over lists.

empty ≡ nil push ≡ cons top ≡ car pop ≡ cdr

In OCaml, Haskell, etc: using an algebraic type.

type ’a stack = Empty | Stack of ’a * ’a stack

let empty = Empty

let push v s = Stack(v,s)

let top = function Stack(v,_) -> v | _ -> assert false

let pop = function Stack(_,s) -> s | _ -> assert false

11

Persistent stacks and memory sharing

A stack produced by push or pop shares all memory blocks
except one with the previous stack. This makes it possible to
keep all successive states of the stack in a memory-efficient way:
N blocks for any sequence of N push and M pop.

t1 = push(1, empty)
t2 = push(2, t1)

t3 = push(3, t2)

t4 = push(4, t3)

t5 = pop(t4)

t6 = pop(t5)

t7 = push(5, t6)

t8 = push(6, t7)

t9 = pop(t8)

t10 = push(7, t9)

t11 = pop(t10)
1
•

2

3

4

5

6 7

t1

t2, t6

t3, t5

t4

t7, t9, t11

t8 t10

12

Application: annotating an AST with environments

λx.

@

λy.

λz.

y

λu.

@

u x

x

x

x, y

x, y, z

x

x, u

x, u x, u

Annotate each node of an abstract
syntax tree with its environment,
that is, the set of variables in scope
at this point.

Environment ≈ stack
Entering a variable scope ≈ push
Leaving a variable scope ≈ pop

Arrays Lists BSTs (→ 2nd lecture)
Sharing none maximal high
Total space O(n2) O(n) O(n log n)
Lookup time O(log n) O(n) O(log n)

13

Algebraic specifications

In mathematics, an algebraic structure is a set equipped with
operations that satisfy identities (equations).

Example: a group is a set G with three operations:
a constant 1, a binary operation ·, a unary operation −1,
verifying the identities

(x · y) · z = x · (y · z)

1 · x = x = x · 1
x · x−1 = 1 = x−1 · x

14

Algebraic specifications

(Guttag and Horning, The Algebraic Specification of Abstract Data Types, 1978.)

In computer science, an algebraic abstract type is an abstract
type (= type name + operations) specified by equations involving
the operations.

Example: stacks (operations empty, push, pop, top)

top (push(v, s)) = v

pop (push(v, s)) = s

If we add the enqueue operation (insertion at the bottom of the
stack):

enqueue(v, empty) = push(v, empty)

enqueue(v, push(v′, s)) = push(v′, enqueue(v, s)) 15

Algebraic specifications and persistence

top (push(v, s)) = v

pop (push(v, s)) = s

This equational specification style assumes a persistent interface
for the abstract type: the push, pop operations produce new
stacks, they do not modify (observably) any existing stack.

16

Algebraic specifications and persistence

top (push(v, s)) = v

pop (push(v, s)) = s

For an ephemeral structure (such as the array-based stack),
we lose equations. At best we have program equivalences:

push(v); pop() ≈ skip

push(v); x := top() ≈ x := v; push(v)

plus commutation rules with commands that do not depend on
the state of the stack.

16

Algebraic specifications and functional implementations

top (push(v, s)) = v

pop (push(v, s)) = s

enqueue(v, empty) = push(v, empty)

enqueue(v, push(v′, s)) = push(v′, enqueue(v, s))

It is easy to check that a pure functional implementation satisfies
these equations. Taking the OCaml implementation as example,
once definitions are expanded, it remains to show
(match Stack(v,s) with Stack(v,_) -> v | _ -> assert false) = v

(match Stack(v,s) with Stack(_,s) -> s | _ -> assert false) = s

This follows from the operational semantics of match...with.

17

Algebraic specifications and functional implementations

top (push(v, s)) = v

pop (push(v, s)) = s

enqueue(v, empty) = push(v, empty)

enqueue(v, push(v′, s)) = push(v′, enqueue(v, s))

Symmetrically, we can often derive a functional implementation
from the equations. Taking enqueue as an example: P.ex. pour
enqueue:

let rec enqueue v s =

match s with

| Empty -> Stack(v, Empty)

| Stack(v’, s) -> Stack(v’, enqueue v s)

17

The emergence of
persistent data structures

Data structures = data + structural relationships

Computer programs usually operate on tables of infor-
mation. In most cases these tables are not simply amor-
phous masses of numerical values; they involve impor-
tant structural relationships between the data elements.

In order to use a computer properly, we need to under-
stand the structural relationships present within data, as
well as the basic techniques for representing and manip-
ulating such structure within a computer.

D. E. Knuth, The Art of Computer Programming,
vol 1, chap 2, “Information structures”, 1968.

18

1945–1960: The prehistory of data structures

Data stored in arrays, either as “amorphous masses of numerical
value”, or with a bit of structure:

• sorted array + binary search; (Mauchly, 1946)

• hash table; (A. Dumey et al, 1956–)

• “pointers” from one array to another
(in early databases and knowledge bases).

19

1960–1970: a concept emerges; first breakthroughs

A data structure = an interface (set of operations)
with several implementations possible.

• Stacks, queues.
• Dictionaries, implemented using search trees:

not balanced, (Windley et al, 1960; many others)
self-balancing. (Adelson-Velskii et Landis, 1962; many others)

• Priority queues, implemented as heaps (Williams, 1964)

A program =
abstract algorithms

+ appropriate, efficient data structures
(that can involve subtle algorithms themselves)

20

An abstract algorithm: Dijkstra’s shortest path algorithm

In the course of the solution the nodes are subdivided
into three sets [. . .] Consider all branches connecting the
node just transferred to set A with nodes R in sets B or
C [. . .] the node with minimum distance from P is trans-
ferred from set B to set A [. . .]

(E.W. Dijkstra, A note on two problems in connexion with graphs, 1959.)

The concrete implementation of those sets is left to the reader,
as well as the efficient way to find “the node with minimal
distance from P” among the nodes in B.

This efficient way came 4 years later: the heap data structure,
invented by Williams in 1962.

21

Since 1970: the modern times of data structures

Systematic exploration guided by new needs and by new
approaches to algorithm design:

• multi-dimensional structures: geometric algorithms,
databases, . . .

• strings and pattern search;
• lock-free data structures for concurrency;
• randomized data structures.

Major developments in analysis of algorithms: worst case,
average analysis, amortized analysis, expected-time analysis, . . .

(See also: the lectures by B. Chazelle, J.-D. Boissonnat, C. Mathieu, R. Guerraoui
and F. Magniez on the “chaire annuelle d’informatique et de sciences
numériques”.)

22

Ephemeral structures and imperative programming

Just like most algorithms are presented like recipes, and most
programs are written in imperative style, most data structures
are ephemeral:

Operations on the structure (e.g. insertion in a dictionary)
can modify in place the state of the structure, rendering
unavailable the state of the structure before the opera-
tion.

23

Handbook of Data Structures and Applications (CRC, 2005, 2018)

Out of 64 chapters, only 2 discuss
data structures that are not
ephemeral:

31. Persistent data structures
(Haim Kaplan)

40. Functional data structures
(Chris Okasaki)

24

Persistent data structures

All operations preserve the current state of the structure.
If the structure needs updating, a “new” structure is pro-
duced and returned by the update operation.
In other words: operations are presented like pure, side
effect-free functions.

Note: the implementation of the operations can use imperative
features (e.g. mutable arrays).

Persistent data structures emerged in the 1980’s in the context of
computer graphics, where it is often convenient to have access to
the full history of a data structure.
(Often called “searching in the past” or “in-the-past queries”.)

25

Purely functional data structures

These are persistent structures whose implementation uses no
imperative features (no in-place updates) and can be written in a
pure functional language.

Emerged in the 1990’s to enable the use of efficient algorithms in
purely functional programming.

26

Advanced example:
planar point location

The planar point location problem

(Gfonsecabr, English Wikipedia)

Given line segments defining
polygons, and k points P1, . . . , Pk,
find quickly which polygon contains
each point.

27

The planar point location problem

(Gfonsecabr, English Wikipedia)

Given line segments defining
polygons, and k points P1, . . . , Pk,
find quickly which polygon contains
each point.

27

The planar point location problem

(Gfonsecabr, English Wikipedia)

Given line segments defining
polygons, and k points P1, . . . , Pk,
find quickly which polygon contains
each point.

27

Partitioning in slabs (Dobkin et Lipton, 1976)

We sort the x coordinates of the
segment endpoints.
This partitions the plane in vertical
slabs.
Within a slab, the number of
segments is constant.
Segments “enter” and “leave” at the
frontier between two slabs.

28

Binary search within a slab

Inside a slab, segments do not intersect
each other.
We can therefore sort the segments by
vertical position, from lowest to highest.

Given a point P, binary search determines
quickly the two segments Si, Sj just above
and just below P.

This suffices to identify the polygon that
contains P.

29

Dobkin and Lipton’s algorithm

Preprocessing of the n segments:

1. Sort the x coordinates of the segment endpoints → O(n)
slabs.

2. For each slab, build an array with the O(n) segments
contained in the slab, and sort them by vertical position.

Space: O(n2).

For each point P = (x, y):

1. Find the slab containing P by binary search over x. sur x.
2. Find the two segments above and below P by binary search

in the slab.

Time: O(log n).

30

Reducing time and space for preprocessing

Each of the n segments “enters” and “leaves” a slab exactly once.

Therefore, two successive slabs share most of their segments,
with the same relative vertical positions.

Idea: represent each slab no longer as a sorted array, but as a
persistent structure with lookups in O(log n) and memory sharing
between successive versions.

An appropriate data structure: a persistent balanced binary
search tree (AVL tree, red-black tree, etc) (→ 2nd lecture)

31

Persistent insertion in a binary search tree (BST)

d

b

a c

f

e

1. Search for the element to be inserted (here, g).

2. When reaching a leaf, copy the path from the root to this
leaf, sharing sub-trees with the original tree.

3. At the end of the copied path, add the node ⟨•, g, •⟩.
4. If needed, rebalance the tree, preserving sharing as much as

possible.

Time: O(log n), space: O(log n).

32

Persistent insertion in a binary search tree (BST)

d

b

a c

f

e

1. Search for the element to be inserted (here, g).

2. When reaching a leaf, copy the path from the root to this
leaf, sharing sub-trees with the original tree.

3. At the end of the copied path, add the node ⟨•, g, •⟩.
4. If needed, rebalance the tree, preserving sharing as much as

possible.

Time: O(log n), space: O(log n).

32

Persistent insertion in a binary search tree (BST)

d

b

a c

f

e

d

f

1. Search for the element to be inserted (here, g).
2. When reaching a leaf, copy the path from the root to this

leaf, sharing sub-trees with the original tree.

3. At the end of the copied path, add the node ⟨•, g, •⟩.
4. If needed, rebalance the tree, preserving sharing as much as

possible.

Time: O(log n), space: O(log n).

32

Persistent insertion in a binary search tree (BST)

d

b

a c

f

e

d

f

g

1. Search for the element to be inserted (here, g).
2. When reaching a leaf, copy the path from the root to this

leaf, sharing sub-trees with the original tree.
3. At the end of the copied path, add the node ⟨•, g, •⟩.
4. If needed, rebalance the tree, preserving sharing as much as

possible.

Time: O(log n), space: O(log n).

32

Improved algorithm for planar point location

Preprocessing of the n segments:

1. Scan segment endpoints by increasing x coordinates.
2. Enter / remove the segments in a persistent balanced BST,

sorting segments by increasing vertical position.
3. Keep the intermediate states of the BST (= the slabs) in an

array.

Time and space: O(n log n).

(Each of the n segments enters and leaves the BST once, in time O(log n).)

For each point P = (x, y), binary search in the array of slabs, then
in the BST corresponding to the slab.
Time: O(log n).

33

Sarnak and Tarjan’s algorithm

Sarnak and Tarjan (Planar Point Location using Persistent Search
Trees, CACM, 1986) show how to reduce the space used by
preprocessing from O(n log n) to O(n) by using a different
implementation of persistent BSTs.

This implementation uses in-place mutations and relies on the
fat nodes technique of Driscoll, Sarnak, Sleator, et Tarjan (1989).

It’s a general technique to transform an ephemeral structure into
a persistent structure: replace each field of each node by a
journal of modifications of this field, i.e. a set of (modification
date, new value) pairs.

→ 4th lecture

34

Example of a BST with fat nodes

Ephemeral BST:

b

b

a

t0

Persistent BST:
V: (t0,b)

L:

(t1, ·); (t3, •)

R:

(t2, ·)

V: (t1, a)
L:
R:

V: (t2, c)
L:
R:

35

Example of a BST with fat nodes

Ephemeral BST:

b b

a

t0 t1
ins(a)

Persistent BST:
V: (t0,b)

L: (t1, ·)

; (t3, •)

R:

(t2, ·)

V: (t1, a)
L:
R:

V: (t2, c)
L:
R:

35

Example of a BST with fat nodes

Ephemeral BST:

b b

a

b

a c

t0 t1 t2
ins(a) ins(c)

Persistent BST:
V: (t0,b)

L: (t1, ·)

; (t3, •)

R: (t2, ·)

V: (t1, a)
L:
R:

V: (t2, c)
L:
R:

35

Example of a BST with fat nodes

Ephemeral BST:

b b

a

b

a c

b

c

t0 t1 t2 t3
ins(a) ins(c) del(a)

Persistent BST:
V: (t0,b)

L: (t1, ·); (t3, •)
R: (t2, ·)

V: (t1, a)
L:
R:

V: (t2, c)
L:
R:

35

Memory usage

Each update of a field consumes O(1) space (to add an entry to
the corresponding journal).

After c node creations and m field updates, the persistent data
structure has size O(c + m).

For in-place insertion in a balanced AST, we have:

• one node creation and one field update in its parent;
• plus a small number of updates for rebalancing:
O(1) amortized. (→ 3rd lecture)

Same analysis for deletion.

After n insertions and n deletions, we therefore have a data
structure of size O(n) instead of O(n log n) in the previous
approach.

36

Access time

In a simple implementation of fat nodes, accessing the value of a
field at date t takes time O(logw) where w is the number of
modifications of the field.

This translates to O(log2 n) lookup time for each point in the
planar point location problem.

Sarnak and Tarjan show how to keep O(log n) lookup time using
a combination of fat node updates and of node copying: it
suffices to bound the size of journals, and to create a new fat
node when the journal overflows. (→ 4th lecture)

The result is an optimal data structure for the planar point
location problem: space O(n) and lookup time O(log n).

37

The emergence of
purely functional programming

Lambda-calculus and general recursive functions

The pure lambda-calculus: (Church, 1935)

M,N ::= x | λx.M | M N

Everything is encoded as functions: data structures (integers,
Booleans, lists, . . .) and control structures (conditional,
fixed-point operators for recursion).

General recursive functions: (Kleene, 1936)

One data type (tuples of integers) + operators that build
functions Np → Nq (succ, pred, projections, composition,
primitive recursion, minimization).

Initially studied as computability formalisms (they are equivalent
to Turing machines), not as programming languages.

38

Lisp (J. McCarthy et al, 1960)

Initially: a FORTRAN library for symbolic computation,
manipulating S-expressions:

sexp ::= atom | (sexp . sexp)
atom ::= number | symbol | nil

Quickly evolved into an applicative programming language to
define recursive functions over S-expressions, these functions
being represented as S-expressions themselves.

39

Lisp: the first applicative language

(define mapcar (fun lst)

(if (null lst)

nil

(cons (fun (car lst)) (mapcar fun (cdr lst)))))

No expression/statement distinction; everything is an expression.

Execution (of an expression) = evaluation (computing its value).

Recursion s preferred over iteration.

No (or few) in-place updates: cons always returns a fresh list cell;
memory is reclaimed by automatic garbage collection.

The beginning of a rich lineage of languages: Common Lisp,
Scheme, Racket, Clojure, . . .

40

In classic Lisp, which programming style, which algorithms?

Quite naturally: purely functional programming using lists as the
main data structure.

• Code readability, code reusability.
• Suboptimal complexity (lists → O(n)).
• But n is often small, especially in the 1960’s!
• Symbolic computation algorithms are expensive anyway.

As an attempt to increase performance: a few imperative
features.

• setq to change the value of a symbol (assignment);
• rplaca, rplacd to update a list cell in place (mutation);
• arrays (with in-place updates).

41

ML and its offsprings (Milner et al, 1978–)

Initially: Lisp + static typing and type abstraction

absrectype * tree = * + * tree # * tree

with leaf n = abstree(inl n)

and node (t1, t2) = abstree(inr(t1, t2))

and isleaf t = isl(reptree t)

and leafval t = outl(reptree t) ? failwith ‘leafval‘

and leftchild t = fst(outr(reptree t) ? failwith ‘leftchild‘

and rightchild t = snd(outr(reptree t) ? failwith ‘leftchild‘

Later extended with algebraic types and pattern matching
(HOPE, Prolog).
type ’a tree = Leaf of ’a | Node of ’a tree * ’a tree

let rec sum = function Leaf n -> n | Node(l, r) -> sum l + sum r

Many offsprings: Standard ML, Caml, OCaml, F#, etc.

42

Imperative features in ML

Same trade-off as in Lisp: pure functional programming by
default + imperative features when needed.

At the same time, imperative features were important for
practical reasons; no-one had experience of large useful
programs written in a pure functional style. In particular,
an exception-raising mechanism was highly desirable for
the natural presentation of tactics.

(Milner et al, The Definition of Standard ML)

Not just exceptions, but also mutable state presented as
references (indirection cells with in-place updates) and arrays.

let x = ref 0 in x := !x + 2

43

Haskell (Hudak, Peyton Jones, Wadler, et al, 1992-)

Haskell ≈ ML + lazy evaluation + type classes + much more.

A convergence of 1980’s research work on lazy evaluation
(on-demand evaluation) of expressions, as opposed to the strict
evaluation used in Lisp and ML.

• Supports defining more code fragments as function. E.g. the
ifthenelse function:
ifthenelse True a b = a

ifthenelse False a b = b

• Facilitates the definition and handling of infinite data
structures such as streams (= infinite lists).

44

Haskell: the triumph of purely functional programming?

Laziness prevented us from sinning.
(attributed to S. Peyton Jones)

Lazy evaluation makes it nearly impossible to guess when an
expression is evaluated. This makes side effects unusable,
including I/O and assignments.

Hence, a return to the roots of Lisp 1960:

• Purely functional programming.
• Equational reasoning.
• Program derivation via calculation.

45

Haskell: the return of imperative programming

In short, Haskell is the world’s finest
imperative programming language

(S. Peyton Jones, 2000)

Very pressing needs: input/output, interfacing with other
languages, mutable arrays (for numerical codes), references (for
fast unification algorithms), . . .

→ Imperative features come back in controlled ways that remain
compatible with lazy, non-strict evaluation:

• Haskell: monads
• Clean, Linear Haskell: linear types.

46

The emergence of purely functional algorithms

In the 1990’s, a realization came (at long last): a purely functional
program can be algorithmically efficient provided it uses
appropriate purely functional or persistent data structures.

Early users: proof assistants and other verification tools:

• for stronger correctness guarantees (no interferences);
• to reduce memory requirements (data sharing).

47

Chris Okasaki’s PhD work

Systematic reformulation of advanced data structures and
algorithms in purely functional style.

Novel uses of lazy evaluation, with matching novel techniques for
amortized analysis.

48

Journal of Functional Programming, 1993-2008
J. Functional Programming 3 (4): 553-561, October 1993 © 1993 Cambridge University Press 553

FUNCTIONAL PEARLS
Efficient sets—a balancing act

STEPHEN ADAMS
Electronics and Computer Science Department, University of Southampton, UK

Capsule Review

In late 1991 I organized an international programming competition for the Standard ML
community. Each entrant implemented the 'set of integers' abstract data type, matching a
signature that I provided. Prizes (donated by MIT Press) were awarded in two categories:
fastest program (on a particular benchmark), and most elegant yet still efficient program.

More than a dozen entries were received; the top four entries in the speed category are
listed here:

1 Jon Freeman, U. of Pennsylvania
2 Stephen Adams, U. of Southampton
3 Thomas Yan & Sendhil Mullainathan, Cornell U.
4 Eugene Stark, State U. of New York at Stonybrook

The winner in the elegance category was Stephen Adams. His program was almost as fast
as Freeman's for very large sets, and was faster for smaller sets.

In this 'functional pearl', Adams describes a generalization of bis competition entry.

Andrew W. Appel

1 Introduction

We present an implementation of sets using balanced binary trees, written in Stan-
dard ML (SML). Binary trees are an important data structure, especially in the
functional world where mutable data structures are not available. Unfortunately, to
guarantee the nice properties of trees, like logarithmic lookup, it is necessary to keep
the trees balanced. Balancing algorithms are usually complicated. We demonstrate
that this need not be the case—the trick is to abstract away from the rebalancing
scheme to achieve a simple and efficient implementation.

2 Specification

A general purpose set package should implement a wide range of set operations
efficiently, including at least those listed in the signature SET in Fig. 1. This says that
we have a type Set which represents sets of the type Element. The operations are

N =
128
132
189
226

= 105

sec
N =
10.1
8.9
16.7
18.5

104

sec

���8:� /7��791 ������� ��
���
�	�����		��
�.��:�0/�76��60�.!���5.9�/10��6� 09:��!�
90::

J. Functional Programming 5 (4): 583-592, October 1995 © 1995 Cambridge University Press 583

Simple and efficient purely functional queues
and deques

CHRIS OKASAKI
School of Computer Science, Carnegie Mellon University,

5000 Forbes Avenue, Pittsburgh, PA 15213, USA
(e-mail: cokasakiQcs.cmu.edu,)

Abstract

We present purely functional implementations of queues and double-ended queues (deques)
requiring only 0(1) time per operation in the worst case. Our algorithms are considerably
simpler than previous designs with the same bounds. The inspiration for our approach is the
incremental behaviour of certain functions on lazy lists.

Capsule Review

This paper presents another example of the ability to write programs in functional languages
that satisfy our desire for clarity while satisfying our need for efficiency. In this case, the
subject (often-studied) is the implementation of queues and dequeues that are functional and
exhibit constant-time worst-case insertion and deletion operations. Although the problem has
been solved previously, this paper presents the simplest algorithm so far. As the author notes,
it has a strange feature of requiring some laziness - but not too much!

1 Introduction

Consider the related problems of implementing queues and double-ended queues
(deques) in a purely functional programming language. The standard solutions
require only 0(1) amortized time per operation, but might require 0(n) time for any
particular operation. Improved solutions, requiring 0(1) time per operation in the
worst case, have existed for well over a decade but have not seen widespread use,
perhaps due to their complexity. We present new implementations of queues and
deques, based on lazy lists, which also require 0(1) worst-case time per operation
but which are considerably simpler than previous solutions.

We begin by reviewing the standard paired-list implementation of queues. We
then introduce lazy lists and use them to reduce the worst-case time per operation
to O(logn). Next, by incrementally pre-evaluating the lazy lists, we reduce the worst-
case time to 0(1). Finally, we extend our approach to double-ended queues and
close with a discussion of related and future work.

SML source code for the algorithms described in this paper is available via
anonymous ftp at ftp.cs.cmu.edu in /afs/cs/project /fox/f tp/queue.tar. Z.

���9�� 084�8:� ������	 �����	��
������
��� /54��10�875471�/"�
.6/:40�1��74!1:�4�"��:1��

J. Functional Programming 7 (5): 549–554, September 1997. Printed in the United Kingdom

c� 1997 Cambridge University Press

549

FUNCTIONAL PEARL

The Zipper

GÉRARD HUET
INRIA Rocquencourt, France

Capsule Review

Almost every programmer has faced the problem of representing a tree together with a
subtree that is the focus of attention, where that focus may move left, right, up or down the
tree. The Zipper is Huet’s nifty name for a nifty data structure which fulfills this need. I wish
I had known of it when I faced this task, because the solution I came up with was not quite
so e�cient or elegant as the Zipper.

1 Introduction

The main drawback to the purely applicative paradigm of programming is that

many e�cient algorithms use destructive operations in data structures such as bit

vectors or character arrays or other mutable hierarchical classification structures,

which are not immediately modelled as purely applicative data structures. A well

known solution to this problem is called functional arrays (Paulson, 1991). For trees,

this amounts to modifying an occurrence in a tree non-destructively by copying its

path from the root of the tree. This is considered tolerable when the data structure

is just an object local to some algorithm, the cost being logarithmic compared to

the naive solution which copies all the tree. But when the data structure represents

some global context, such as the bu↵er of a text editor, or the database of axioms

and lemmas in a proof system, this technique is prohibitive. In this note, we explain

a simple solution where tree editing is completely local, the handle on the data not

being the original root of the tree, but rather the current position in the tree.

The basic idea is simple: the tree is turned inside-out like a returned glove,

pointers from the root to the current position being reversed in a path structure. The

current location holds both the downward current subtree and the upward path. All

navigation and modification primitives operate on the location structure. Going up

and down in the structure is analogous to closing and opening a zipper in a piece

of clothing, whence the name.

The author coined this data-type when designing the core of a structured editor

for use as a structure manager for a proof assistant. This simple idea must have been

invented on numerous occasions by creative programmers, and the only justification

for presenting what ought to be folklore is that it does not appear to have been

published, or even to be well-known.

4 :�
 195�9�� ������
 ����	
�	��
����	���!065�421�986582�0#��/70�51�2�.85"2��5 #���2��

J. Functional Programming 7 (6): 661–666, November 1997. Printed in the United Kingdom

c� 1997 Cambridge University Press

661

FUNCTIONAL PEARL

Three algorithms on Braun trees

CHRIS OKASAKI„
School of Computer Science, Carnegie Mellon University,

5000 Forbes Avenue, Pittsburgh, PA 15213, USA

(e-mail: cokasaki@cs.cmu.edu)

1 Introduction

Among the many flavours of balanced binary trees, Braun trees (Braun and Rem,

1983) are perhaps the most circumscribed. For any given node of a Braun tree,

the left subtree is either exactly the same size as the right subtree, or one element

larger. Braun trees always have minimum height, and the shape of each Braun

tree is completely determined by its size. In return for this rigor, algorithms that

manipulate Braun trees are often exceptionally simple and elegant, and need not

maintain any explicit balance information.

Braun trees have been used to implement both flexible arrays (Braun and Rem,

1983; Hoogerwoord, 1992; Paulson, 1996) and priority queues (Paulson, 1996; Bird,

1996). Most operations involving a single element (e.g. adding, removing, inspecting

or updating an element) take O(log n) time, since the trees are balanced. We consider

three algorithmically interesting operations that manipulate entire trees. First, we

give an O(log2
n) algorithm for calculating the size of a tree. Second, we show how

to create a tree containing n copies of some element x in O(log n) time. Finally, we

describe an order-preserving algorithm for converting a list to a tree in O(n) time.

This last operation is not nearly as straightforward as it sounds!

Notation

A tree is either empty, written hi, or a triple hx, s, ti, where x is an element and s

and t are trees. The subtrees s and t must satisfy the balance condition

|t| + 1 � |s| � |t|

We abbreviate the leaf hx, hi, hii as hxi.

„ This research was sponsored by the Advanced Research Projects Agency CSTO under the
title ‘The Fox Project: Advanced Languages for Systems Software’, ARPA Order No. C533,
issued by ESC/ENS under Contract No. F19628-95-C-0050.

���9�� 08��8:2 ������	 �����	��
�	���
	��� /5���10�875�71�/"�
.6/:�021��7�!1:���"��:1��

J. Functional Programming 8 (6): 627–632, November 1998. Printed in the United Kingdom

c� 1998 Cambridge University Press

627

FUNCTIONAL PEARLS

Diets for fat sets

MARTIN ERWIG
FernUniversität Hagen, Praktische Informatik IV. 58084 Hagen, Germany

(e-mail: erwig@fernuni-hagen.de)

1 Introduction

In this paper we describe the discrete interval encoding tree for storing subsets of

types having a total order and a predecessor and a successor function. In the

following, we consider for simplicity only the case for integer sets; the generalization

is not di�cult.

The discrete interval encoding tree is based on the observation that the set of

integers {i | a  i  b} can be perfectly represented by the closed interval [a, b].

The general idea is to represent a set by a binary search tree of integers in which

maximal adjacent subsets are each represented by an interval. For example, inserting

the sequence of numbers 6, 9, 2, 13, 8, 14, 10, 7, 5 into a binary search tree, respectively,

into a discrete interval encoding tree results in the tree structures shown in figure 1.

The e�ciency of the interval representation, both in terms of space and time,

improves with the density of the set, i.e. with the number of adjacencies between set

elements. So what we propose is a ‘diet’ (discrete interval encoding tree) for ‘fat’ sets

in the sense of ‘the same amount of information with less nodes’.

In the next section, we define the discrete interval encoding tree with operations for

inserting, deleting and searching for elements. An analysis is presented in section 3,

and we comment upon some applications and actual running times in section 4.

#
##

Q
QQ

bbbb
©©©©

∂
∂

Ø
ØØ

∑
∑∑

@
@

T
TT

J
J

[5,10]

9

5 8

7

6

13

1410

2 [2,2] [13,14]

Fig. 1. Binary tree and discrete interval encoding tree.

3��9�� 08��8:� ������	 �����	��
�
�������� /5��310�875�71�/"�
.6/:�0�1��7�!1:���"��:1��

J. Functional Programming 9 (1): 93–104, January 1999. Printed in the United Kingdom

c� 1999 Cambridge University Press

93

FUNCTIONAL PEARL

Explaining binomial heaps

RALF HINZE

Institut für Informatik III, Universität Bonn
Römerstraße 164, 53117 Bonn, Germany
(e-mail: ralf@informatik.uni-bonn.de)

1 Introduction

Functional programming languages are an excellent tool for teaching algorithms and

data structures. This paper explains binomial heaps, a beautiful data structure for

priority queues, using the functional programming language Haskell (Peterson and

Hammond, 1997). We largely follow a deductive approach: using the metaphor of a

tennis tournament we show that binomial heaps arise naturally through a number

of logical steps. Haskell supports the deductive style of presentation very well: new

types are introduced at ease, algorithms can be expressed clearly and succinctly,

and Haskell’s type classes allow to capture common algorithmic patterns. The paper

aims at the level of an undergraduate student who has experience in reading and

writing Haskell programs, and who is familiar with the concept of a priority queue.

2 Priority queues

The abstract data type ‘priority queue’ provides at least the following five operations:

; represents the empty queue; HaI denotes the queue, which contains a as the single

element; insert a q inserts a into queue q; q1] q2 denotes the union of queues

q1 and q2 (sometimes termed ‘meld’); and splitMin q extracts a minimal element

from q . The notation has been chosen to emphasize the fact that priority queues

are conceptually bags, i.e. unordered collections possibly with duplicates. Priority

queues are the data type of choice when an e�cient access to the smallest element

of a varying collection of elements is required. Applications include discrete event

simulation and job scheduling. Here is the class definition for priority queues.

data MinView q a = Min a (q a) | Infty

class PriorityQueue q where

; :: (Ord a)) q a

H·I :: (Ord a)) a ! q a

insert :: (Ord a)) a ! q a ! q a

(]) :: (Ord a)) q a ! q a ! q a

splitMin :: (Ord a)) q a ! MinView q a

insert a q = HaI] q

3��9�� 08��8:� ������	 �����	��
�������	�� /5��310�875�71�/"�
.6/:�0�1��7�!1:���"��:1��

J. Functional Programming 9 (4): 471–477, July 1999. Printed in the United Kingdom

c� 1999 Cambridge University Press

471

FUNCTIONAL PEARL

Red-black trees in a functional setting

CHRIS OKASAKI„
School of Computer Science, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh,

Pennsylvania 15213, USA

1 Introduction

Everybody learns about balanced binary search trees in their introductory computer

science classes, but even the stouthearted tremble at the thought of actually im-

plementing such a beast. The details surrounding rebalancing are usually just too

messy. To show that this need not be the case, we present an algorithm for insertion

into red-black trees (Guibas and Sedgewick, 1978) that any competent programmer

should be able to implement in fifteen minutes or less.

2 Red-black trees

A red-black tree is a binary tree where every node is colored either red or black. In

Haskell (Hudak et al., 1992), this might be represented as

data Color = R | B

data Tree elt = E | T Color (Tree elt) elt (Tree elt)

We will use this representation to implement sets. To implement other abstractions

(e.g. finite maps) or fancier operations (e.g. find the ith largest element), we would

augment the T constructor with extra fields.

As with all binary search trees, the elements in a red-black tree are stored in

symmetric order, so that for any node T color a x b, x is greater than any

element in a and less than any element in b. In addition, red-black trees satisfy two

balance invariants:

Invariant 1. No red node has a red parent.

Invariant 2. Every path from the root to an empty node contains the same number

of black nodes.

„ This research was sponsored by the Advanced Research Projects Agency CSTO under the title ‘The
Fox Project: Advanced Languages for Systems Software’, ARPA Order No. C533, issued by ESC/ENS
under Contract No. F19628-95-C-0050. Author’s current address and email: Department of Computer
Science, Columbia University, 1214 Amsterdam Avenue (MC 0401), New York, NY 10027, USA.
E-mail: cdo@cs.columbia.edu.

4 :�
 195�9�3 ������
 ����	
�	�����������!065�4�1�98658��0#��/70�513��.85"���5 #������

J. Functional Programming 11 (4): 425–432, July 2001. Printed in the United Kingdom

c� 2001 Cambridge University Press

425

Red-black trees with types

STEFAN KAHRS

University of Kent at Canterbury, Canterbury, Kent, UK

Abstract

Chris Okasaki showed how to implement red-black trees in a functional programming
language. Ralf Hinze incorporated even the invariants of such data structures into their
types, using higher-order nested datatypes. We show how one can achieve something very
similar without the usual performance penalty of such types, by combining the features of
nested datatypes, phantom types and existential type variables.

1 Introduction

Red-black trees are a well-known way of implementing balanced 2-3-4 trees as binary

trees. They were originally introduced (under a di↵erent name) in Bayer (1972) and

are nowadays extensively discussed in the standard literature on algorithms (Cormen

et al., 1990; Sedgewick, 1988).

Red-black trees are binary search trees with an additional ‘colour’ field which is

either red or black. In a proper red-black tree each red-coloured node is required

to have black subtrees and is also regarded as an intermediate auxiliary node.

Therefore, every black node has (possibly indirectly) either 2, 3 or 4 black-coloured

subtrees, depending on whether it has 0, 1 or 2 red-coloured direct subtrees. This is

the reason why red-black trees can be seen as implementation of 2-3-4 trees.

Red-black trees realise 3- and 4-nodes by connecting binary nodes. While this (at

worst) doubles the height of the tree, compared to the associated 2-3-4 tree, it does

not a↵ect the number of comparisons a search has to make, and it simplifies the

balancing process considerably.

Okasaki (1998, 1999) showed how this data structure can be implemented in a

functional setting. An earlier attempt at implementing the rather similar 2-3 trees was

made by Chris Reade (1992). Okasaki’s implementation is much more concise than

the known imperative implementations and consequently much easier to understand.

Figure 1 shows the definition of the type and Okasaki’s insertion1 function.

It is worth iterating the basic invariants of red-black trees:

• every red node has two black children, with E being regarded black as well;

1 This is the insertion operation when red-black trees are used to implement sets. For simplicity, we stick
with this particular application.

4 :�
 195�9�� ������
 ����	
�	��������	��!065�421�986582�0#��/70�51�2�.85"2��5 #���2��

JFP 12 (6): 601–607, November 2002. c� 2002 Cambridge University Press

DOI: 10.1017/S0956796801004269 Printed in the United Kingdom

601

FUNCTIONAL PEARL

A fresh look at binary search trees

RALF HINZE

Institute of Information and Computing Sciences, Utrecht University,
P.O.Box 80.089, 3508 TB Utrecht, The Netherlands

(e-mail: ralf@cs.uu.nl)

Alle Abstraktion ist anthropomorphes Zerdenken.

— Oswald Spengler, Urfragen

1 Introduction

Binary search trees are old hat, aren’t they? Search trees are routinely covered

in introductory computer science classes and they are widely used in functional

programming courses to illustrate the benefits of algebraic data types and pattern

matching. And indeed, the operation of insertion enjoys a succinct and elegant func-

tional formulation. Figure 1 contains the six-liner given in the language Haskell 98.

Alas, both succinctness and elegance are lost when it comes to implementing the

dual operation of deletion, also shown in figure 1. Two additional helper functions

are required causing the code size to double in comparison with insertion.

Why this discrepancy? The algorithmic explanation is that insertion always takes

place at an external node, that is, at a leaf whereas deletion always takes place at

an internal node and that manipulating internal nodes is notoriously more di�cult

than manipulating external nodes.

Our own stab at explaining this phenomenon is algebraic or, if you like, linguistic.

Arguably, the data type Tree with its two constructors, Leaf and Node, does not

constitute a particularly elegant algebra. If we use binary search trees for representing

sets, then Leaf denotes the empty set ; and Node l a r denotes the set sl] {a}] sr

where sl and sr are the denotations of l and r , respectively. One might reasonably

advance that Node mingles two abstract operations, namely, forming a singleton set

‘{·}’ and taking the disjoint union ‘]’ of two sets, and that it is preferable to consider

these two operations separately.

Of course, there is a good reason for using a ternary constructor: the second

argument of Node, the split key, is vital for steering the binary search. Thus, as

a replacement for the tree constructors the algebra ;, {·}, ‘]’ is inadequate; we

additionally need a substitute for the split key. Now, a search tree satisfies the

invariant that for each node the split key is greater than the elements in the left

subtree (and smaller than the ones in the right subtree). This suggests to augment

the algebra with an observer function max (or min , equivalently) that determines the

maximum (or the minimum) element of a set. We will see that all standard operations

4 :�
 195�9�� ������
 ����	
�	�������	���!065�421�986582�0#��/70�51�2�.85"2��5 #���2��

JFP 16 (2): 197–217, 2006. c© 2005 Cambridge University Press

doi:10.1017/S0956796805005769 First published online 16 November 2005 Printed in the United Kingdom

197

Finger trees:
a simple general-purpose data structure

RALF HINZE

Institut für Informatik III, Universität Bonn, Römerstraße 164, 53117 Bonn, Germany
(e-mail: ralf@informatik.uni-bonn.de)

ROSS PATERSON

Department of Computing, City University, London EC1V OHB, UK
(e-mail: ross@soi.city.ac.uk)

Abstract

We introduce 2-3 finger trees, a functional representation of persistent sequences supporting
access to the ends in amortized constant time, and concatenation and splitting in time
logarithmic in the size of the smaller piece. Representations achieving these bounds have
appeared previously, but 2-3 finger trees are much simpler, as are the operations on them.
Further, by defining the split operation in a general form, we obtain a general purpose data
structure that can serve as a sequence, priority queue, search tree, priority search queue and
more.

1 Introduction

Lists are the functional programmer’s favourite data type. They are well supported

by most if not all functional programming languages. However, one could argue

that this support sometimes leads programmers to use lists when a more general

sequence type would be more appropriate (Okasaki, 2000). The operations one

might expect from a sequence abstraction include adding and removing elements at

both ends (the deque operations), concatenation, insertion and deletion at arbitrary

points, finding an element satisfying some criterion, and splitting the sequence into

subsequences based on some property. Many efficient functional implementations of

subsets of these operations are known, but supporting more operations efficiently

is difficult. The best known general implementations are very complex, and little

used.

This paper introduces functional 2-3 finger trees, a general implementation that

performs well, but is much simpler than previous implementations with similar

bounds. The data structure and its many variations are simple enough that we

are able to give a concise yet complete executable description using the functional

programming language Haskell (Peyton Jones, 2003). The paper should be accessible

to anyone with a basic knowledge of Haskell and its widely used extension to

multiple-parameter type classes (Peyton Jones et al., 1997). Although the structure

���8:� /7��791 ������� ��
���
�	�������
�
�.��:�0/�76��60�.!���5.9�/10��6� 09:��!�
90::

49

Course outline

Lectures

1. Introduction.

2. Balanced trees + path copying = persistent dictionaries.

3. Laziness matters! Reconciling amortization and persistence.

4. How to make an ephemeral data structure persistent?

5. Numerical representations and non-regular types.

6. From formal derivation to navigation in a structure:
contexts, zippers, fingers.

7. In search of the lost array: theoretical limits and conclusions.

50

Seminar talks

1. Tobias Nipkow (T.U. München)
Verification of functional data structures:
Correctness and complexity.

2. Jean-Christophe Filliâtre (CNRS)
Structures de données semi-persistantes.

3. KC Sivaramakrishnan (IIT Madras et Tarides)
Mergeable replicated data types.

4. Arthur Charguéraud (Inria)
Transience : comment allier persistance et performance.

5. Pierre-Etienne Meunier (Coturnix)
Une algèbre de modifications, ou: le contrôle de versions
pour tous.

51

References

References

Two reference texts, useful for the whole course:

• Chris Okasaki, Purely Functional Data Structures,
Cambridge University Press, 1998, 2009.

• Haim Kaplan, Persistent Data Structures,
chap. 31 of Handbook of data structures and applications,
Chapman&Hall / CRC Press, 2005,
http://www.cs.tau.ac.il/~haimk/papers/persistent-survey.ps

52

http://www.cs.tau.ac.il/~haimk/papers/persistent-survey.ps

	First example: stacks
	The emergence of persistent data structures
	Advanced example: planar point location
	The emergence of purely functional programming
	Course outline
	References

