OLLEGE
E FRANCE
1530

C
D

Nothing is lost, everything is created:
introduction to persistent data structures

Xavier Leroy
2023-03-09

College de France, chair of Software sciences
xavier.leroy@college-de-france.fr

An algorithm is like a recipe!

Obvious consequence: input data and intermediate results are
not preserved during computation.

Fundamental formalism: Turing machines.

An algorithm is like a mathematical definition

Computation is seen as a succession of steps that build the final
result, without destroying input data nor intermediate results.

Fundamental formalisms: general recursive functions,
lambda-calculus, rewriting systems, formal semantics.

“Declarative” (as opposed to “imperative”) programming:
functional programming, logic programming, constraint
programming, ...

Which algorithms for declarative programming?

Declarative programming is often said to be inefficient because it
cannot use ephemeral data structures (with in-place updates),
such as arrays.

The persistent data structures that we will study in this course
address this criticism:

« Their interfaces expose only operations that do not update
structures in place, but return new, updated structures.

+ Their implementations match (or get close to) the
complexity of the best known ephemeral structures.

Persistence matters for imperative programming too!

Even for imperative programs and classical algorithms, persistent
data structures are useful:

- They make it easy to checkpoint and backtrack
computations.

+ We can keep the full history of the data structure.

- The lack of in-place updates enables memory sharing among
the various versions of the structure, hence a compact
representation of its history.

First example:
stacks

- —

“Last-in first-out” operations:

init empty the stack
push(v) push v on top of the stack
top return the top value

pop pop the top value.

An ephemeral stack implemented as an array

int stk[SIZE];
int sp;

void init(void) { sp = 0; }

void push(int v) {

SP“’lffﬁﬁ;—— assert (sp < SIZE);
******** stklsp] = v; sp = sp + 1;
L ¥

bottom int top(void) {
stk

assert (sp > 0); return stk[sp - 1];
}
void pop(void) {

assert (sp > 0); sp = sp - 1;
}

Checkpointing and backtracking

Cheap but incomplete approach:

- Setting a checkpoint: oldsp = sp; (save sp)
« Backtracking: sp = oldsp; (restore sp)

push(3); backtrack v
push(4)

Checkpointing and backtracking

Cheap but incomplete approach:

- Setting a checkpoint: oldsp = sp; (save sp)
« Backtracking: sp = oldsp; (restore sp)

Pop; backtrack X
push(3);
push(4)

Checkpointing and backtracking

Cheap but incomplete approach:

- Setting a checkpoint: oldsp = sp; (save sp)
« Backtracking: sp = oldsp; (restore sp)

Pop; backtrack X
push(3);
push(4)

Correct but expensive approach:
copy stk|[0...sp[to/from another array.

A persistent stack implemented by a linked list

stk —= top _I—m 7_I—><

bott
7_f~ o.om

class Stack {
private int hd; private Stack tl;
static Stack empty = null;
static Stack push(int v, Stack s)
{ Stack t = new Stack(); t.hd = v; t.tl = s; return t; }
static int top(Stack s) { return s.hd; }
static Stack pop(Stack s) { return s.tl; }
}

Change of interface: now, push, pop return the new stack as a result
instead of modifying the stack given as argument.

We rely on garbage collection to reclaim list cells that become
unreachable after pop.

Persistent stacks and backtracking

stk —»{ 2 _I_H 1
— []

stk = Stack.push(2, Stack.push(l, Stack.empty));

10

Persistent stacks and backtracking

oldstk — 2 1

stkw4f3

stk = Stack.push(2, Stack.push(l, Stack.empty));
/| Checkpoint

oldstk = stk;

/1 Work

stk = Stack.push(4, Stack.push(3, Stack.pop(stk)));

10

Persistent stacks and backtracking

stk —»{ 2 1

4 _IH 3

stk = Stack.push(2, Stack.push(l, Stack.empty));

/| Checkpoint

oldstk = stk;

/1 Work

stk = Stack.push(4, Stack.push(3, Stack.pop(stk)));
/1 Backtrack

stk = oldstk;

10

Pure functional implementation of persistent stacks

In Lisp, Scheme, etc: using primitive operations over lists.

empty = nil push = cons top = car pop = cdr

In OCaml, Haskell, etc: using an algebraic type.

type ’a stack = Empty | Stack of ’a * ’a stack

let empty = Empty

let push v s = Stack(v,s)

let top = function Stack(v,_) -> v | -> assert false

let pop = function Stack(_,s) -> s | _ -> assert false

1

Persistent stacks and memory sharing

A stack produced by push or pop shares all memory blocks
except one with the previous stack. This makes it possible to
keep all successive states of the stack in a memory-efficient way:
N blocks for any sequence of N push and M pop.

ts to
t; = push(1, empty) i i
tz = push(2, t1) t4 4 6
t; = push(3,tz) - - =

t, = push(4,t3)
ts = pop(ts) t3,ts—{ 3 _ [5 [=t7,t9,tn

te = pop(ts)
t; = push(5, t6) \/

ts = push(6, t;) trle— 2

ty = pop(ts)

tio = push(7, to) ti—e 1
_———

ty = pOp(tm) []

12

Application: annotating an AST with environments

A Annotate each node of an abstract
X ,"((‘p syntax tree with its environment,
that is, the set of variables in scope
K=)““'"'X at this point.
XY ---\z. @---x,u .
| / \ Environment ~ stack
XY,z---y u x Entering a variable scope ~ push
| | Leaving a variable scope ~ pop
X, u Xx,u
‘ Arrays ‘ Lists ‘ BSTs (— 2nd lecture)
Sharing none maximal high

Total space O(n?) O(n) | O(nlogn)
Lookup time | O(logn) O(n) O(logn)

13

Algebraic specifications

In mathematics, an algebraic structure is a set equipped with
operations that satisfy identities (equations).

Example: a group is a set G with three operations:
a constant 1, a binary operation -, a unary operation 7,
verifying the identities

(x-y)-z=x-(y-2)
1. Xx=x=x-1

= 1

X-X '=1=x""-X

14

Algebraic specifications

(Guttag and Horning, The Algebraic Specification of Abstract Data Types, 1978.)

In computer science, an algebraic abstract type is an abstract
type (= type name + operations) specified by equations involving
the operations.

Example: stacks (operations empty, push, pop, top)
top (push(v,s)) =v
pop (push(v,s)) =s
If we add the enqueue operation (insertion at the bottom of the
stack):
enqueue(V, empty) = push(v, empty)

enqueue(v, push(V/,s)) = push(V/, enqueue(v, s)) 5

Algebraic specifications and persistence

top (push(v,s)) =v
pop (push(v,s)) =s

This equational specification style assumes a persistent interface
for the abstract type: the push, pop operations produce new
stacks, they do not modify (observably) any existing stack.

16

Algebraic specifications and persistence

top (push(v,s)) =v
pop (push(v,s)) =s

For an ephemeral structure (such as the array-based stack),
we lose equations. At best we have program equivalences:

push(v); pop() ~ skip
push(v); x :=top() ~ X :=v; push(v)

plus commutation rules with commands that do not depend on
the state of the stack.

16

Algebraic specifications and functional implementations

top (push(v,s)) =
pop (push(v,s)) =
enqueue(V, empty) = push(v empty)
enqueue(v, push(V',s)) = push(V/, enqueue(v, s))
It is easy to check that a pure functional implementation satisfies

these equations. Taking the OCaml implementation as example,
once definitions are expanded, it remains to show

(match Stack(v,s) with Stack(v,_) -> v | _ -> assert false)
(match Stack(v,s) with Stack(_,s) -> s | _ -> assert false)

1]
n <

This follows from the operational semantics of match. . .with.

17

Algebraic specifications and functional implementations

top (push(v,s)) =
pop (push(v,s)) =
enqueue(V, empty)-—-push(v empty)
enqueue(v, push(V',s)) = push(V/, enqueue(v, s))
Symmetrically, we can often derive a functional implementation

from the equations. Taking enqueue as an example: P.ex. pour

enqueue:

let rec enqueue v s =
match s with
| Empty -> Stack(v, Empty)
| Stack(v’, s) -> Stack(v’, enqueue v s)

17

The emergence of
persistent data structures

Data structures = data + structural relationships

Computer programs usually operate on tables of infor-
mation. In most cases these tables are not simply amor-
phous masses of numerical values; they involve impor-
tant structural relationships between the data elements.

In order to use a computer properly, we need to under-
stand the structural relationships present within data, as
well as the basic techniques for representing and manip-
ulating such structure within a computer.

D. E. Knuth, The Art of Computer Programming,
vol 1, chap 2, “Information structures”, 1968.

18

1945-1960: The prehistory of data structures

Data stored in arrays, either as “amorphous masses of numerical
value”, or with a bit of structure:

- sorted array + binary search; (Mauchly, 1946)
 hash table; (A. Dumey et al, 1956-)

- “pointers” from one array to another
(in early databases and knowledge bases).

1960-1970: a concept emerges; first breakthroughs

A data structure = an interface (set of operations)
with several implementations possible.

« Stacks, queues.

- Dictionaries, implemented using search trees:
not balanced, (windley et al, 1960; many others)
self-balancing. (Adelson-Velskii et Landis, 1962; many others)

* Priority queues, implemented as heaps (Williams, 1964)

A program =
abstract algorithms
+ appropriate, efficient data structures

(that can involve subtle algorithms themselves)

20

An abstract algorithm: Dijkstra’s shortest path algorithm

In the course of the solution the nodes are subdivided
into three sets [...] Consider all branches connecting the
node just transferred to set A with nodes R in sets B or
C[...] the node with minimum distance from P is trans-
ferred from set Bto setA[...]

(E.W. Dijkstra, A note on two problems in connexion with graphs, 1959.)

The concrete implementation of those sets is left to the reader,
as well as the efficient way to find “the node with minimal
distance from P” among the nodes in B.

This efficient way came 4 years later: the heap data structure,
invented by Williams in 1962.

21

Since 1970: the modern times of data structures

Systematic exploration guided by new needs and by new
approaches to algorithm design:

- multi-dimensional structures: geometric algorithms,
databases, ...

« strings and pattern search;

+ lock-free data structures for concurrency;

- randomized data structures.

Major developments in analysis of algorithms: worst case,
average analysis, amortized analysis, expected-time analysis, ...

(See also: the lectures by B. Chazelle,).-D. Boissonnat, C. Mathieu, R. Guerraoui
and F. Magniez on the “chaire annuelle d’informatique et de sciences
numériques”.)

22

Ephemeral structures and imperative programming

Just like most algorithms are presented like recipes, and most
programs are written in imperative style, most data structures
are ephemeral:

Operations on the structure (e.g. insertion in a dictionary)
can modify in place the state of the structure, rendering
unavailable the state of the structure before the opera-
tion.

23

Handbook of Data Structures and Applications (CRC, 2005, 2018)

Out of 64 chapters, only 2 discuss

Handbook of data structures that are not
Data Structures
and Applicati

Second Edition

ephemeral:
31. Persistent data structures
(Haim Kaplan)

40. Functional data structures
(Chris Okasaki)

24

Persistent data structures

All operations preserve the current state of the structure.
If the structure needs updating, a “new” structure is pro-
duced and returned by the update operation.

In other words: operations are presented like pure, side
effect-free functions.

Note: the implementation of the operations can use imperative
features (e.g. mutable arrays).

Persistent data structures emerged in the 1980’s in the context of
computer graphics, where it is often convenient to have access to
the full history of a data structure.

(Often called “searching in the past” or “in-the-past queries”.)

23]

Purely functional data structures

These are persistent structures whose implementation uses no
imperative features (no in-place updates) and can be written in a
pure functional language.

Emerged in the 1990's to enable the use of efficient algorithms in
purely functional programming.

26

Advanced example:
planar point location

The planar point location problem

Given line segments defining
polygons, and k points Py, ..., Py,
find quickly which polygon contains
each point.

(Gfonsecabr, English Wikipedia)

27

The planar point location problem

Given line segments defining
polygons, and k points Py, ..., Py,
find quickly which polygon contains
each point.

(Gfonsecabr, English Wikipedia)

27

The planar point location problem

Given line segments defining
polygons, and k points Py, ..., Py,
find quickly which polygon contains
each point.

(Gfonsecabr, English Wikipedia)

27

Partitioning in slabs

(Dobkin et Lipton, 1976)

We sort the x coordinates of the
segment endpoints.

This partitions the plane in vertical
slabs.

Within a slab, the number of
segments is constant.

Segments “enter” and “leave” at the
frontier between two slabs.

28

Binary search within a slab

Inside a slab, segments do not intersect
each other.

We can therefore sort the segments by
vertical position, from lowest to highest.

Given a point P, binary search determines
quickly the two segments S;, S; just above
and just below P.

This suffices to identify the polygon that
contains P.

29

Dobkin and Lipton’s algorithm

Preprocessing of the n segments:

1. Sort the x coordinates of the segment endpoints — O(n)
slabs.

2. For each slab, build an array with the O(n) segments
contained in the slab, and sort them by vertical position.

Space: O(n?).

For each point P = (x,y):

1. Find the slab containing P by binary search over x. sur x.
2. Find the two segments above and below P by binary search
in the slab.

Time: O(logn).

30

Reducing time and space for preprocessing

Each of the n segments “enters” and “leaves” a slab exactly once.

Therefore, two successive slabs share most of their segments,
with the same relative vertical positions.

Idea: represent each slab no longer as a sorted array, but as a
persistent structure with lookups in O(log n) and memory sharing
between successive versions.

An appropriate data structure: a persistent balanced binary
search tree (AVL tree, red-black tree, etc) (— 2nd lecture)

31

Persistent insertion in a binary search tree (BST)

d

N
N

e

f

1. Search for the element to be inserted (here, g).

32

Persistent insertion in a binary search tree (BST)

N
NN

1. Search for the element to be inserted (here, g).

32

Persistent insertion in a binary search tree (BST)

X\
A=

a C

1. Search for the element to be inserted (here, g).
2. When reaching a leaf, copy the path from the root to this
leaf, sharing sub-trees with the original tree.

32

Persistent insertion in a binary search tree (BST)

X\
AN

a C

1. Search for the element to be inserted (here, g).

2. When reaching a leaf, copy the path from the root to this
leaf, sharing sub-trees with the original tree.

3. At the end of the copied path, add the node (e, g, o).

4. If needed, rebalance the tree, preserving sharing as much as
possible.

Time: O(log n), space: O(logn).

32

Improved algorithm for planar point location

Preprocessing of the n segments:

1. Scan segment endpoints by increasing x coordinates.
2. Enter / remove the segments in a persistent balanced BST,
sorting segments by increasing vertical position.

3. Keep the intermediate states of the BST (= the slabs) in an
array.

Time and space: O(nlogn).
(Each of the n segments enters and leaves the BST once, in time O(logn).)
For each point P = (x,y), binary search in the array of slabs, then

in the BST corresponding to the slab.
Time: O(logn).

38)

Sarnak and Tarjan'’s algorithm

Sarnak and Tarjan (Planar Point Location using Persistent Search
Trees, CACM, 1986) show how to reduce the space used by
preprocessing from O(nlogn) to O(n) by using a different
implementation of persistent BSTs.

This implementation uses in-place mutations and relies on the
fat nodes technique of Driscoll, Sarnak, Sleator, et Tarjan (1989).

It's a general technique to transform an ephemeral structure into
a persistent structure: replace each field of each node by a
journal of modifications of this field, i.e. a set of (modification
date, new value) pairs.

— 4th lecture

34

Example of a BST with fat nodes

Ephemeral BST:
to
b

Persistent BST:

V: (to, b)

85

Example of a BST with fat nodes

Ephemeral BST:

Persistent BST:

V: (to, b)
L: (t1v)
R/
L:

85

Example of a BST with fat nodes

Ephemeral BST:

t t t
° ins(a) l: ins(c) ?

Persistent BST:

V: (to, b)
L: (t1,)
'//R = ')\\
V: (t1, a) V: (tz, C)
L L:

85

Example of a BST with fat nodes

Ephemeral BST:

Persistent BST:

V: (to, b)
Le (t1, '); (t3, 0)
'//R = ')\\
V: (t1, a) V: (tz, C)
L: L:

R: R:

85

Each update of a field consumes O(1) space (to add an entry to
the corresponding journal).

After ¢ node creations and m field updates, the persistent data
structure has size O(c + m).

For in-place insertion in a balanced AST, we have:

+ one node creation and one field update in its parent;
+ plus a small number of updates for rebalancing:
O(1) amortized. (— 3rd lecture)

Same analysis for deletion.

After n insertions and n deletions, we therefore have a data
structure of size O(n) instead of O(nlogn) in the previous

approach.
36

In a simple implementation of fat nodes, accessing the value of a
field at date t takes time O(log w) where w is the number of
modifications of the field.

This translates to O(log? n) lookup time for each point in the
planar point location problem.

Sarnak and Tarjan show how to keep O(log n) lookup time using
a combination of fat node updates and of node copying: it
suffices to bound the size of journals, and to create a new fat
node when the journal overflows. (— 4th lecture)

The result is an optimal data structure for the planar point
location problem: space O(n) and lookup time O(logn).

37

The emergence of
purely functional programming

Lambda-calculus and general recursive functions

The pure lambda-calculus: (Church, 1935)

M,N ::=X| AX.M|MN
Everything is encoded as functions: data structures (integers,
Booleans, lists, ...) and control structures (conditional,
fixed-point operators for recursion).
General recursive functions: (Kleene, 1936)

One data type (tuples of integers) + operators that build
functions NP — N9 (succ, pred, projections, composition,
primitive recursion, minimization).

Initially studied as computability formalisms (they are equivalent
to Turing machines), not as programming languages.

38

Lisp (). McCarthy et al, 1960)

Initially: a FORTRAN library for symbolic computation,
manipulating S-expressions:

sexp ::= atom | (sexp . sexp)
atom ::= number | symbol | nil

Quickly evolved into an applicative programming language to
define recursive functions over S-expressions, these functions
being represented as S-expressions themselves.

39

Lisp: the first applicative language

(define mapcar (fun 1st)
(if (null 1st)
nil
(cons (fun (car 1st)) (mapcar fun (cdr 1st)))))
No expression/statement distinction; everything is an expression.
Execution (of an expression) = evaluation (computing its value).

Recursion s preferred over iteration.

No (or few) in-place updates: cons always returns a fresh list cell;
memory is reclaimed by automatic garbage collection.

The beginning of a rich lineage of languages: Common Lisp,
Scheme, Racket, Clojure, ...

40

In classic Lisp, which programming style, which algorithms?

Quite naturally: purely functional programming using lists as the
main data structure.

+ Code readability, code reusability.
« Suboptimal complexity (lists — O(n)).
- But n is often small, especially in the 1960’s!

« Symbolic computation algorithms are expensive anyway.

As an attempt to increase performance: a few imperative
features.

+ setq to change the value of a symbol (assignment);
- rplaca, rplacd to update a list cell in place (mutation);
+ arrays (with in-place updates).

A

ML and its offsprings (Milner et al, 1978-)

Initially: Lisp + static typing and type abstraction

absrectype * tree = * + * tree # * tree
with leaf n = abstree(inl n)
and node (tl1, t2) = abstree(inr(tl, t2))
and isleaf t = isl(reptree t)
and leafval t = outl(reptree t) 7 failwith ‘leafval’
and leftchild t = fst(outr(reptree t) 7 failwith ‘leftchild®
and rightchild t = snd(outr(reptree t) 7 failwith ‘leftchild’

Later extended with algebraic types and pattern matching
(HOPE, Prolog).

type ’a tree = Leaf of ’a | Node of ’a tree * ’a tree

let rec sum = function Leaf n -> n | Node(l, r) -> sum 1 + sum r

Many offsprings: Standard ML, Caml, OCaml, F#, etc.

42

Imperative features in ML

Same trade-off as in Lisp: pure functional programming by
default + imperative features when needed.

At the same time, imperative features were important for
practical reasons; no-one had experience of large useful
programs written in a pure functional style. In particular,
an exception-raising mechanism was highly desirable for
the natural presentation of tactics.

(Milner et al, The Definition of Standard ML)

Not just exceptions, but also mutable state presented as
references (indirection cells with in-place updates) and arrays.

let x = ref 0 in x := Ix + 2

43

Haskell (Hudak, Peyton Jones, Wadler, et al, 1992-)

Haskell ~ ML + lazy evaluation + type classes + much more.

A convergence of 1980's research work on lazy evaluation
(on-demand evaluation) of expressions, as opposed to the strict
evaluation used in Lisp and ML.

 Supports defining more code fragments as function. E.g. the
ifthenelse function:

ifthenelse True a b

a

ifthenelse False a b b

« Facilitates the definition and handling of infinite data
structures such as streams (= infinite lists).

44

Haskell: the triumph of purely functional programming?

Laziness prevented us from sinning.
(attributed to S. Peyton jones)

Lazy evaluation makes it nearly impossible to guess when an
expression is evaluated. This makes side effects unusable,
including 1/0 and assignments.

Hence, a return to the roots of Lisp 1960:

- Purely functional programming.
+ Equational reasoning.

+ Program derivation via calculation.

45

Haskell: the return of imperative programming

In short, Haskell is the world’s finest
imperative programming language
(S. Peyton Jones, 2000)

Very pressing needs: input/output, interfacing with other

languages, mutable arrays (for numerical codes), references (for
fast unification algorithms), ...

— Imperative features come back in controlled ways that remain
compatible with lazy, non-strict evaluation:

» Haskell: monads

+ Clean, Linear Haskell: linear types.

46

The emergence of purely functional algorithms

In the 1990’s, a realization came (at long last): a purely functional
program can be algorithmically efficient provided it uses
appropriate purely functional or persistent data structures.

Early users: proof assistants and other verification tools:

- for stronger correctness guarantees (no interferences);

- to reduce memory requirements (data sharing).

47

Chris Okasaki’s PhD work

e s Purely Functional
s Data Structures

Chris Dl

Submitted in partial fulfllment of the requirements
Jor the degree of Doctor of Philosophy.

Systematic reformulation of advanced data structures and
algorithms in purely functional style.

Novel uses of lazy evaluation, with matching novel techniques for
amortized analysis.

48

Journal of Functional Programming

1993-2008

FUNCTIONAL PEARLS
Efficient sets—a balancing act

STEPHEN ADAMS

Electronics and Computer Science Department, University of Southampton, UK

FUNCTIONAL PEARL
The Zipper

GERARD HUET
INRIA Rocquencour, France

FUNCTIONAL PEARLS
Diets for fat sets

MARTIN ERWIG
FernUniversitit Hagen, Prabaische Informatik 1V, 55084 Hagen, Germany
(e-mail: eruigoternuni-hagen.do)

FUNCTIONAL PEARL
Red-black trees in a functional setting

CHRIS OKASAKI*
School of Computer Science, Carnegie Mellon Universiy, 5000 Forbes Avenue, Pitishurgh.
Pennsylvania 15213, USA

FUNCTIONAL PEARL
A fresh look at binary search trees

RALF HINZE
Insitute of Information and Computing Si echt University
0.50x 80089, 3508 T8 Uinect, Th Netherlands

(e-mai: ra1socs.w.nl)

Simple and efficient purely functional queues

and deques
CHRIS OKASAKI
School of Computer Sciene, Carnegie Mellon Universiy,

5000 Forbes Avene, Pitisburgh, PA 15213, USA
(e-mail: cokasakites. cuy. odu)

FUNCTIONAL PEARL
Three algorithms on Braun trees

CHRIS OKASAKI*

Skl of Computer Sk, Cavege Mol sty
orbes Auenue, Pittsburgh, PA 15213, USA
(e-mail cokasaiciacs. cau.edu)

FUNCTIONAL PEARL

Explaining binomial heaps

RALF HINZE
I

Red-black trees with types

STEFAN KAHRS
University of Kent at Canterbury, Canterbury, Kent, UK

Finger trees:
a simple general-purpose data structure

RALF HINZE
Insitut fir Informatik 11, Universicat Bonn, Rimerstrafe 164, 53117 Bonn, Germany
(e-mail: ralf@infornatik.uni-bonn. de)

ROSS PATERSON

. City University, London EC1V OHB, UK
ross@sot..city.ac.uk)

Department of C

49

Course outline

1. Introduction.

2. Balanced trees + path copying = persistent dictionaries.

3. Laziness matters! Reconciling amortization and persistence.
4. How to make an ephemeral data structure persistent?

5. Numerical representations and non-regular types.

6. From formal derivation to navigation in a structure:
contexts, zippers, fingers.

7. In search of the lost array: theoretical limits and conclusions.

50

1.

Tobias Nipkow (T.U. Miinchen)
Verification of functional data structures:
Correctness and complexity.

Jean-Christophe Filliatre (CNRS)
Structures de données semi-persistantes.

KC Sivaramakrishnan (IIT Madras et Tarides)
Mergeable replicated data types.

Arthur Charguéraud (Inria)
Transience : comment allier persistance et performance.

Pierre-Etienne Meunier (Coturnix)
Une algebre de modifications, ou: le controle de versions
pour tous.

51

References

References

Two reference texts, useful for the whole course:

« Chris Okasaki, Purely Functional Data Structures,
Cambridge University Press, 1998, 2009.

« Haim Kaplan, Persistent Data Structures,
chap. 31 of Handbook of data structures and applications,
Chapman&Hall / CRC Press, 2005,

http://www.cs.tau.ac.il/~haimk/papers/persistent-survey.ps

52

http://www.cs.tau.ac.il/~haimk/papers/persistent-survey.ps

	First example: stacks
	The emergence of persistent data structures
	Advanced example: planar point location
	The emergence of purely functional programming
	Course outline
	References

