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In this lecture...

Earlier, we saw that run-time safety is necessary for software
security.

In this lecture, we study strong typing of programming languages

+ as the primary mean to guarantee run-time safety;

- as a mean to obtain security guarantees that go beyond
safety.



Typing in programming languages



Folk wisdom:

Don’t compare apples and oranges.
On n’additionne pas des choux et des carottes.

Physicist's wisdom: dimensional analysis.

d=v.t dist=dist homogeneous, possibly correct

d=v/t dist+# disttemps™2 not homogeneous, must be wrong



Types to aid compilation

As early as FORTRAN 1 (1957), type declarations determine the
in-memory representation of data and guide machine code
generation.

float t[10] [20]; int i,j; float x;
x =x +1ix*x t[i]1[j];

In-memory representation of t: 200 x 4 bytes

efo1fo]  slolfe) e21f0]
I ) N
£ 1] [0] £ 1] [19]

Evaluation of x:

x 4Noat (floatofint(i) x float load(float, t + (1 x 10+ j) x 4))



Types as a modeling device

A method is proposed for the representation in a
computer of complex structured objects, and for their
manipulation by a program written in a general purpose

language, which is here assumed to be an extension of
ALGOL 60.

(C.A.R. Hoare, Record handling, 1965)

Introduces records with named, typed fields
coloredpoint = { x: float; y: float; c: color }
and references to point from one record to another

intlist = { head: int; tail: Tintlist }



Modeling with records and references

Hoare's example: representing a set of persons and their family

relationships.

record class person
begin
integer date of birth;
Boolean male;
reference father, mother,
youngest offspring, elder sibling (person)

end;



Types to prevent programming errors

(C.A.R. Hoare, Notes on data structuring, 1970).

[T]he use of a high-level language [...] significantly reduces the
scope for programming error.

In machine code programming it is all too easy to make stupid
mistakes, such as using fixed point addition on floating point
numbers, performing arithmetic operations on Boolean markers,
or allowing modified addresses to go out of range.



Types to prevent programming errors

(C.A.R. Hoare, Notes on data structuring, 1970).

When using a high-level language, such errors may be prevented
by three means:

1. Errors involving the use of the wrong arithmetic instructions
are logically impossible; no program expressed, for example
in ALGOL, could ever cause such erroneous code to be
generated.

2. Errors like performing arithmetic operations on Boolean
markers will be immediately detected by a compiler, and can
never cause trouble in an executable program.

3. Errors like the use of a subscript out of range can be detected
by runtime checks on the ranges of array subscripts.



Types to prevent programming errors

The view of typing as a program verification that avoids errors
appears in the PhD thesis of ). H. Morris (1968, MIT):

We shall now introduce a type system which, in effect,
singles out a decidable subset of those [expressions]
that are safe; i.e., cannot given rise to ERRORSs.

This will disqualify certain [expressions] which do not, in
fact, cause ERRORs and thus reduce the expressive
power of the language.

Morris’ type system = simple types for the A-calculus.



Typing and run-time safety



Types to guarantee run-time safety

In 1978, R. Milner, in his article A theory of type polymorphism in
programming, states an essential property of a type system:

an expression (or program) with a legal type assignment
cannot “go wrong”

Since then, this property has been used as the characterization of
a sound type system.



What does going wrong means?

Milner (1978) gives his language a denotational semantics based
on Scott domains:

& : Expr — Env — V
where
V=(Int+---4+(V— V) + {wrong}),

wrong is the denotation of nonsensical expressions such as
12 (the integer 1 used as if it were a function)

1+ (Ax.x) (afunction used as if it were an integer)

10



An operational semantics based on reductions

Terms a:=n|x|Ax.a|aja;|add
Values v :=n|Ax.v|add|addv

n=ny+n;
(Ax.a) v — a[x < V]
add nqyh, —n

a—a b—b
ab—adb vb —vb

Generally, terms that go wrong are those that “get stuck” during
reduction: they are not values yet they don’t reduce.

Example: 12 and add 1 (A\x.x) don't reduce and are not values.

(See my lecture of 6/2/2020, “Semantics of a functional language”)
1



Type safety in a reduction semantics

An execution of the program a is viewed as a sequence of
reductions:

Termination: a — --- — v € Val
Divergence: a— ---—a — ---
Goingwrong: a — --- — b /4 with b ¢ Val

Type safety = if ) - a : 7, the “going wrong” case cannot occur.

The standard proof:

« Preservation: ifa—ad’ and@Fa:rthen@Fa : .

* Progress: if ) -a: 7,thena € ValorJda’. a — a'.

12



Run-time checks and “normal” errors

A simple type system cannot rule out all sources of run-time
errors, especially

« out-of-bounds array accesses;
- arithmetic errors: divide by zero, overflow.

These errors are detected at run-time (dynamic checking) and
reported
- either by aborting the program execution
- or by raising an exception, which can be handled by the
program.
In both cases, the program does not go wrong!

It just fails a run-time check.

13



Reduction semantics with errors

n,#0 n=n/n,

divn 0 — err
divniny, —n

Error propagation across execution:
err a — err Verr — err
Handling the error:

handleva — v handleerra — a

a—ad

handle a b — handle a’ b

14



Type safety in a reduction semantics with errors

A fourth possible outcome for the execution of a program:

Normal termination: a — --- — v € Val
Termination on error: a — --- — err
Divergence: a —---—a — ---
Goingwrong: a — --- — b /4 with b ¢ Val,b # err

Same definition for type safety:
if - a: 7, the “going wrong” case cannot occur.

Similar proof, taking ) - err : 7
(err is a term that belongs to all types).

15



What about dynamically-typed languages?

In a dynamic typing approach, there are no “going wrong”
situations at run-time, only normal errors.

We can model this by adding error generation rules:

X — err add (Ax.a) v — err

nv — err add n (Ax.a) — err
The “going wrong” case becomes impossible:
a—---— b+ withb ¢ Val,b # err

since every term that is neither a value nor err can reduce.
Therefore, dynamic typing is type safe by construction...

16



From “going wrong” to “undefined behavior”

The standard formalization of “going wrong” suggests an
execution that crashes and stops immediately:

E(n,a) =wrong or a-s,a¢Val,a+#err.

This is not a major security risk!
(No more than stopping on a normal error a — err.)

The major risks are executing arbitrary code, producing a wrong
result, revealing a secret, etc.

The C and C++ standards use the notion of undefined behavior to
state that anything can happen when the program goes wrong.

17



Modeling undefined behavior

First try: the problematic terms can reduce to any term a.

nv—a add (Ax.b) v — a add n (Ax.b) — a

Limitation: some undefined behaviors cannot be expressed by a
term of the language.
(For instance: performing 1/0 in a pure language.)

Inconvenience: it's hard to distinguish reduction sequences
a—a; — - — ap — --- where “everything is fine” from those
that trigger undefined behavior.

18



Modeling undefined behavior

Alternative: problematic terms reduce to a special wrong term,
which then can reduce to any term a.

nv — wrong  add (Ax.b)v — wrong  addn (Ax.b) — wrong
for all a, wrong — a

Reduction sequencesa — a; — -+ — ap, — --- where
“everything is fine” are those that do not contain wrong.

The usual proof of type safety can be easily adapted:

« Preservation: ifa — a’and ) - a : 7 then @’ # wrong and
OFa :r.

+ Progress: if ) - a: ,thena € Valor 3a’. a — a’, but a +# wrong.



Type abstraction



Types for hiding representations

The meaning of a syntactically-valid program in a “type-
correct” language should never depend upon the particular
representation used to implement its primitive types.

J. C. Reynolds, Towards a theory of type structure, 1974.

The type system of a language distinguishes base types even
when they have same machine-level representation:

integer # float # reference  (repr: 64-bit words)

string # code of a function (repr: array of bytes)

20



Functional encapsulation

let next =
let counter = ref O in
fun () -> incr counter; !counter

By lexical scoping, the counter reference is only accessible to
the next function.

In memory, next is represented by a function closure: a pair
(code pointer, free variable counter).

Without strong typing, anyone could access counter:

let extracted_counter = snd (next : unit * int ref)

21



Type abstraction

The meaning of a syntactically-valid program in a “type-
correct” language should never depend upon the particular
representation used to implement its primitive types. [...]

The main thesis of Morris (1971) is that this property of repre-
sentation independence should hold for user-defined types as
well as primitive types.

J. C. Reynolds, Towards a theory of type structure, 1974.

Type abstraction: a linguistic mechanism to hide the concrete
representation of a program-defined data type, forcing users of
this type to go through the operations provided over the type.

22



Capabilities as an abstract type

module Capa:
: sig type t
val init: unit -> t
val allowed: permission -> t -> bool
val drop: permission -> t -> t
end

= struct type t = permission list ... end

The signature constraint “hides” the fact that Capa.t is
implemented as permission list.

For the clients of Capa, the type Capa.t is as “opaque” as float
or int — int.

The only possible values of type Capa.t are those obtained by
applying Capa.init and Capa.drop.

23



Type abstraction in object-oriented languages

In Java, similar guarantees can be achieved by hiding (with the
help of visibility modifiers) the internal state and the default
constructors of a class.

public final class Capa {
private T capa;
private Capa(T p) { this.capa = p; }
public static Capa init() { return new Capa(...); }
public bool allowed(int p) { ... }
public Capa drop(int p) { ... }

24



Type abstraction and run-time safety

A type system can guarantee run-time safety
(in Milner’s sense, well-typed programs do not go wrong)
yet fail to enforce type abstraction. Example:

module Capa:

: sig type t ... end
= struct type t = permission list ... end

SML signature constraints have a different meaning than in
OCaml. In SML, the type-checker reveals to clients of Capa that

Capa.t = permission list.

The client can, therefore, construct a list [p1; p2] of permissions
and pass it to any function that expects a Capa. t.

This breaks security, but not run-time safety!

23]



Representation independence

(). C. Reynolds, Types, abstraction and parametric polymorphism, 1983)

Respecting type abstraction is not a property of one run of a
client of the abstraction: it's a hyperproperty of two runs of the
client, linked with two different implementations of the
abstraction.

This hyperproperty is called representation independence:

it must be possible to replace one implementation of an abstract
type (e.g. Capa.t = permission list)with another
implementation, without changing the behaviors of the clients of
the abstraction.

26



Two implementations of the abstraction Capa

type permission

module Capal = struct

type t = permission list
let init () = [PO;P1;P2]
let allowed

let drop = List.remove

List.mem

end

PO | P1 | P2

module Capa2 = struct

type t = int
let mask = function
PO ->1 | PL->2 | P2 ->4
let init () =7
let allowed p c =
¢ land mask p <> 0
let drop p ¢ =
¢ land lnot (mask p)

end

27



A relation between the two implementations

Idea: let's construct a relation between the two implementations,
telling when a permission list and an int represent the same
abstract set of permissions.

V(Capa.t) = { (L,n) : permission list X int |
(PO € L < bit(n,0)=1)
A (P1 €L < bit(n,1) =1)
A(P2 €L < bit(n,2)=1) }

28



A logical relation

We then extend this relation V(t) between values to all types t
V(int) = { (n,n) | n integer }
V(t — s) = { (M. a1, Axp. a7) |
V(V‘],Vz) S V(t), (01[X1 — V1]702[X2 — Vz]) € E(S) }

We then extend it from values to terms (computations)

E(t) = { (a1,a) | Vb1, a1 = by A by irreducible =
E|b2, ar i) b2 N (b1, bz) € V(t) }
Intuition: if (a4, a;) € E(t), the computation a; linked with the

first implementation of Capa behaves exactly like the
computation a, linked with the second implementation.

29



The fundamental theorem of logical relations

In a well-typed term aq, free variables x; can be interpreted by
related values v;, v}, and the two computations we obtain are
related.

Theorem (logical relations)
IfX1:7,... Xy 1 Ty =@ : 7 and (v, v}) € V(7;) for every i, then

(a{xj < vi},a{x; < vj}) € E(7)

This result is strictly stronger than type soundness: it shows not
only run-time safety, but also representation independence.

30



Relating the two implementations of Capa

We show that the operations of the two implementations are
related at their types:

((fun (O — [PO;P1;P2]),fun () —7)

€ V(unit — Capa.t)
(List.mem,fun p ¢ — ¢ land mask p <> 0)

€ V(permission — Capa.t — bool)
(List.remove,fun p ¢ — ¢ land lnot (mask p))

€ V(permission — Capa.t — Capa.t)

(Just observe that related arguments are mapped to related
results.)

31



Representation independence for Capa

Assume a : int under the typing hypotheses

Capa.init: unit — Capa.t
Capa.allowed: permission — Capa.t — bool

Capa.remove : permission — Capa.t — Capa.t

Let aq, a; be the programs obtained by linking a with one of the
implementations of Capa:

a, = a{Capa + Capal}  a, = a{Capa «+ Capa2}

Then, (a1, a;) € E(int).

This means that both programs evaluate to the same integer.

32



Static typing of resources




Explicit memory management

Dynamic memory allocation + explicit deallocation under the

programmer’s control.

Example: malloc and free in C, new and delete in C++.

p = malloc(10);
/* use p */;
free(p);

A source of many programming errors!

Memory leak: Use after free:
p = malloc(10); p = malloc(10);
if ... else return; ..
free(p); free(p);
[* use p */

Double free:

p = malloc(10);
free(p);

free(p);
P 33



An attack on use-after-free

p

Allocate a large array p.

34



An attack on use-after-free

1
s

p

Allocate a large array p.

Free it immediately.

34



An attack on use-after-free

1
s

p

Allocate a large array p.
Free it immediately.

Wait for the memory area to be reused for other allocations
(of sensitive data).

34



An attack on use-after-free

z :
7 7

p p + 40

Allocate a large array p.
Free it immediately.

Wait for the memory area to be reused for other allocations
(of sensitive data).

Read or modify sensitive data from pointer p.

Note: this invalidates run-time safety, even if the language is
strongly typed!

34



Automatic memory management

No explicit deallocation of memory by the program, but
automatic reclamation by the run-time system of the memory
blocks that are no longer reachable.

(Reference counting, garbage collection, etc.)

Ex: Lisp, functional languages, scripting languages, Java, Go, ...

For a long time, automatic memory management was believed to
be necessary for type safety.

Limitations:

+ Not always applicable
(e.g. in an OS or within the implementation of a memory manager).

« Other kinds of resources still need manual management.

85



Example of resources: file descriptors

A familiar API to read files:

open : string — file
input_line : file — string
close : file — unit

A typical use:

let £ = open "foo" in
let 1 = input_line f in

close £f; 1

36



Incorrect handling of file descriptors

A possible leak of a file descriptor:

let £ = open "foo" in let 1 = input_line f in close f; 1

If file foo is empty, input_line f raises an exception and f is
not closed.

A read after close:

let £ = open "foo" in ... close f; ...; input_line f

A double close:

let £ = open "foo" in ... close f; ...; close f

Typically, these errors are detected at run-time.

37



Aliasing and resource sharing

let interleave f1 f2 =
. input_line f1 ... input_line £f2 ...;
close f1; close £f2

If £1 and £2 are aliases on the same descriptor, we have a double
close.

let interleave flist =
. List.map input_line flist ...
List.iter close flist
in
let £ = open "foo" in
let 11 = [f; open "gee"] and 12 = [f; open "buz"] in

interleave 11; interleave 12

f is shared between the two lists 11 and 12, causing a

read-after-close in interleave 12. i



Controlling resources by static typing

An idea that appeared in the pure functional language
community, where (morally) we never modify a resource; instead,
we return a modified resource.

open : string — file
input_line : file — string * file
close : file — unit

A new problem appears: we must not use a file value twice!

let f1 = open "foo" in let f1 = open "foo" in
let (11, £2) = let (11, £2) =

input_line f1 in input_line f1 in
let (12, £3) = let (12, £3) =

input_line f2 in ¢ input_line f1 in X

39



Uniqueness types in the Clean language

The type unique 7 of values of type 7 that are reachable via one
reference only, and that can therefore be implemented using
in-place modification.

open : string — unique file
input_line : unique file — string * unique file

close : unique file — unit
Prevents incorrect reuse of values:

let f1 = open "foo" in
let (11, £f2) = input_line f1 in
let (12, £3) = input_line f1 in

Two uses of £1 : unique file, rejected by type-checking.

Leaks are not prevented: we can still forget to close £3.
40



Linear types

(Inspired by Girard’s linear logic.)

A type o —o 7 of functions that use their o argument exactly once.

open : Va. string — (file — a) — «
input_line : file -o string * file

close : file — unit

Prohibits multiple uses of a file value and forces us to call
close at the end.

(This would not be the case for open : string — file.)

A



Tracing resource ownership

Another approach to resource management, originating in
object-oriented languages, popularized by the Rust language.

open: string — file
close: file — unit

In the simplest case, a resource is owned by a variable and is
automatically freed at the end of the variable scope.

begin let f = open "foo" in

(* implicit call to close f *)
end

42



Tracing resource ownership

Another approach to resource management, originating in
object-oriented languages, popularized by the Rust language.

open: string — file
close: file — unit

The resource can also be explicitly transferred to a function, in
which case it is no longer owned by the variable.

begin let f = open "foo" in
close £

(* no implicit call to close f *)
end

42



Tracing resource ownership

Another approach to resource management, originating in
object-oriented languages, popularized by the Rust language.

open: string — file
close: file — unit

After transfer, we cannot use the resource any longer, nor transfer
it again.

let £ = open "foo" in

close f;
close f X

42



Tracing resource ownership

Another approach to resource management, originating in
object-oriented languages, popularized by the Rust language.

open: string — file

close: file — unit

Taking an alias on a resource is treated like a transfer.

let £ = open "foo" in
let g = f in

close f; X

close g

end

42



Borrowing a resource

open:
close:
input_line:
position:

string — file

file — unit

&mut file — string
& file — int

A borrow gives temporary right to use the resource.

let £
let 1

close

= open "foo" in
= input_line (&mut f) in
f; 1

The resource £ is “lent” to input_line, then recovered when this

function returns.

43



Borrowing a resource

open: string — file
close: file — unit
input_line: &mut file — string
position: & file — int

During a mutable borrow, the original owner cannot perform any
action on the resource.

let £ = open "foo" in let £ = open "foo" in
let b = &mut f in let b = &mut f in
close f; X let 1 = input_line (&mut f) in X

input_line b input_line b

43



Borrowing a resource

open:
close:
input_line:
position:

string — file

file — unit

&mut file — string
& file — int

Several immutable borrows can be ongoing at the same time.
(The “mutable XOR shared” policy.)

let £ =

open "foo" in

let bl = & £ in let b2 = & f in
position bl + position b2

43



Application: zero-copy message passing

send: buffer — unit
receive: unit — buffer

Passing messages between two threads running concurrently:

let b = new_buffer() in | let b = receive() in
£ill (&mut b); [ if check(& b)
send (b) | then use(&mut b)

[ else error()

After send (b), the left thread cannot operate on b
— no Time Of Check To Time Of Use attack
where b would change between check (& b) and use (&mut b).

A



Typing and verification
of mobile code




Mobile code

producer . , consumer
/

defensive
execution

source ;

!
1
I
I
|
|

compilation
(optional)

\

|

| exch

; exchange
I format

offensive
execution

static
verification

Mobile code formats: source (JavaScript), intermediate (JVM
bytecode), native (x86 machine code).

What static verifications can we perform on machine codes,
either virtual machine(JVM) or hardware processors (x86)?
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Java bytecode verification

A static analysis on the JVM bytecode intermediate representation
that establishes many useful properties before execution:

 Code is well formed.
(E.g. no branch in the middle of another method.)

- Instructions receive arguments of the expected types.
(E.g. getfield C.f receives an object of class C or a sub-class.)

+ The expression stack does not overflow.
(Within one method; dynamic check at method calls.)

+ Local variables (registers) are initialized before use.
(No access to values that remain from an earlier call.)

+ Objects (class instances) are initialized before use.
(l.e. new C, then call to a constructor, then use.)

- Visibility modifiers are respected.

(E.g. no access to a private member outside of the defining class.) 46



Java bytecode verification

A number of verifications that are crucial for run-time safety and
for security are still performed at run-time:

» bounds checks for array accesses;

» checks for null references;

+ conversion to a sub-class (down-casting);
- typing stores into arrays of objects;

+ stack inspection by the SecurityManager.

47



Verifying branchless code

Executing the JVM code by a defensive abstract machine that uses
types in place of values.

« The machine maintains a stack of types and a set of registers
containing types.

« For each instruction, it checks the types of the arguments,
computes the type of the result, and updates the type of the
destination.

Example:

class C {
int x;
void move(int delta) {

int oldx = x; x += delta; D.draw(oldx, x);

48



ALOAD O

DUP

GETFIELD C.x : int

DUP

ISTORE 2

ILOAD 1

IADD

SETFIELD C.x : int

ILOAD 2

ALOAD O

GETFIELD C.x : int

INVOKESTATIC D.draw :

RETURN

void(int,int)

49



r0: C, rl: int, r2: T
ALOAD O

DUP

GETFIELD C.x : int
DUP

ISTORE 2

ILOAD 1

IADD

SETFIELD C.x : int
ILOAD 2

ALOAD O

GETFIELD C.x : int
INVOKESTATIC D.draw : void(int,int)

RETURN

[1]
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r0: C, rl: int, r2: T
ALOAD O
r0: C, rl: int, r2: T
DUP
GETFIELD C.x : int
DUP
ISTORE 2
ILOAD 1
IADD
SETFIELD C.x : int
ILOAD 2
ALOAD O
GETFIELD C.x : int

INVOKESTATIC D.draw : void(int,int)

RETURN

[1]
[c]
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ALOAD O

DUP

GETFIELD C.x : int

DUP

ISTORE 2

ILOAD 1

IADD

SETFIELD C.x : int

ILOAD 2

ALOAD O

GETFIELD C.x : int

INVOKESTATIC D.draw :

RETURN

r0: C, rl: int, r2: T
r0: C, rl: int, r2: T

r0: C, rl: int, r2: T

void(int,int)

[1]
[c]

[@ @1
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ALOAD O

DUP

GETFIELD C.x : int

DUP

ISTORE 2

ILOAD 1

IADD

SETFIELD C.x : int

ILOAD 2

ALOAD O

GETFIELD C.x : int

INVOKESTATIC D.draw :

RETURN

r0:

r0:

r0:

r0:

rl:

rl:

rl:

rl:

int,
int,
int,

int,

void(int,int)

r2:

r2:

r2:

r2:

4 4 4 A

[]
[c]
[@ @1

[ C; int ]
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ALOAD O

DUP

GETFIELD C.x :

DUP

ISTORE 2

ILOAD 1

IADD

SETFIELD C.x :

ILOAD 2

ALOAD O

GETFIELD C.x :

INVOKESTATIC D.draw :

RETURN

int

int

int

r0:

r0:

r0:

r0:

r0:

rl:

rl:

rl:

rl:

rl:

int,
int,
int,
int,

int,

void(int,int)

r2:

r2:

r2:

r2:

r2:

4 4 4 4 A

[1]
[C]

[C; €1
[ C; int ]

[ C; int; int ]
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r0: C, rl: int, r2: T [1]
ALOAD O

r0: C, rl: int, r2: T [C]
DUP

r0: C, rl: int, r2: T [NCEECHI
GETFIELD C.x : int

r0: C, rl: int, r2: T [ C; int ]
DUP

r0: C, rl: int, r2: T [ C; int; int ]
ISTORE 2

r0: C, rl: int, r2: int [ C; int ]
ILOAD 1
IADD

SETFIELD C.x : int

ILOAD 2

ALOAD O

GETFIELD C.x : int

INVOKESTATIC D.draw : void(int,int)

RETURN



r0:
ALOAD O

r0:
DUP

r0:
GETFIELD C.x : int

r0:
DUP

r0:
ISTORE 2

r0:
ILOAD 1

r0:
IADD

SETFIELD C.x : int

ILOAD 2

ALOAD O

GETFIELD C.x : int

rl:

rl:

rl:

rl:

rl:

rl:

rl:

int,
int,
int,
int,
int,
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Verifying code containing branches

A A classic dataflow analysis:
B Fork points:
propagate types to
all successors.
B B

Join points:
take the least upper bound of

the types of all predecessors.
\ / Iterate the analysis,

max(C, D) until a fixed point is reached.

(See lecture of 19/12/2019.)
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The lattice of JVM types (simplified)

P

int Object float
int[]~ float[] C Object [] Object[]1[]
/A T T
D E C[] cr1l
\ / /N /N
%DD [0 EO(

L7

L
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Delicate points

Several JVM features complicate bytecode verification beyond a
classic dataflow analysis:

« Interfaces:
the subtype relation is not a semi-lattice.

- The object initialization protocol:
requires a bit of must-alias analysis.

« Subroutines:
a code sharing mechanism, no longer in use, that required a
polyvariant analysis.
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interface I { ... } class C1 implements I, J { ... }
interface J { ... } class C2 implements I, J { ... }
Object
I t::::><i:::j J
C1 C2

A class can be subtype of several interfaces.
Thus, the subtyping order is not a semi-lattice:
C1 and C2 have two incomparable super-types, I and J.
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interface I { ... } class C1 implements I, J { ... }
interface J { ... } class C2 implements I, J { ... }
Object
At
TandJ
Cl////’ ‘\\\\CQ

Dedekind-MacNeille completion: adding points to recover a
semi-lattice.
Here, the pseudo-class IandJ was added as l.u.b. of C1 and C2.
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IIIHHHHi%HEHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

interface I { ... } class C1 implements I, J { ... }
interface J { ... } class C2 implements I, J { ... }
Object
C1 C2

Java’s original solution: the bytecode verifier ignores interfaces,
treating them all like Object.

A run-time check is performed by the invokeinterface I.m,
since the argument cannot be statically guaranteed to implement

interface I.
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A more modern approach: verification using certificates

(E. Rose, Lightweight Bytecode Verification, 2003. The KVM. The JVM since Java 7.)

The Java compiler annotates the produced JVM bytecode with
stack maps, i.e. types for the stack and the registers, at some
points in the bytecode:

+ at the beginning of each basic block (Java 7);

- at each instruction where the types “before” differ from the
types “after” the preceding instruction (E. Rose).

Type checking can then be performed in a single linear pass,
without fixed-point iteration, and without computing least upper
bounds.
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Proof-Carrying Code

(G. Necula, P. Lee, et al, 1996-2000)

A general, ambitious approach to the security of mobile code:

» Much freedom to choose the language of the mobile code,
all the way to machine code (x86 or other) produced by an
optimizing compiler, or hand-written.

« Much freedom to choose a security policy, from type safety
to triples { P} c {Q} in a program logic.

- Verifying the code against the policy can be expensive, even
undecidable, and involve automated theorem proving.
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Proof-Carrying Code

Core idea: separate the verification of the code in two phases:

1. Certification (on the code producer side):
production of a “proof term” or “certificate”

2. Validation (on the code consumer side):
checking consistency between certificate, code, and
expected property.

Example: Java bytecode verification.

« Certification: producing stack maps for all basic blocks.
« Validation: type-checking every basic block.

Example: proving a theorem P : Prop in Coq.

« Certification: construction of a proof term p : P.
« Validation: type-checking to verify that p : P.
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The PCC architecture

SOURCE PROGRAM

COMPILATION
&

CERTIFICATION

SAFETY

PROOF

CODE PRODUCER
USER PROCESS

CODE CONSUMER
RUNTIME SYSTEM
OS KERNEL

ENABLE

PROOF
VALIDATION

SAFETY POLICY
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A fragment of a security policy

(G. Necula, Compiling with Proofs, 1998.)

Expressions: e == x | ei+e | es&es | er|ex | sel(m,e)
Memory: m == x | upd(m,ey,es)
Types: 7 == int | bool | array(re)
Predicates: P = PANP | P DR | Vz.P,
| ee>0 | e:7 | saferd(e)
Rules:
e1 : bool ey : bool €7 :bool €9 : bool
e; & ey : bool e1 | e2 : bool sizeof(bool) =1

a : array(T,len)

>0 i < len * sizeof(T)

a : array(r,len)

saferd(a + 1)

sizeof(r) =1 i>0 i<len

sel(m,a+1):7

Array accesses are within bounds.
The representation of the bool type is kept abstract.
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Production of optimized machine code

bool main(bool A[],bool B) { rp=0
int [; rp=rg
bool B = B: Lo: INVr; >0Ar;:int Arg:bool
for(I = 0;1 < length(A); [++) if r; > 1 goto Leng
R = R Ali]; rp = #(ra+r;)
bl — &
return R; TR =TR&TT
goto Ly
} Lena:  returnrp

The compiler generated no run-time bounds check because it
detected that the access A[i] is always within A’s bounds.

The compiler annotated the generated code with a loop invariant.
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Production of the verification condition

Using a strongest postcondition calculus, with the specification

{rg : ool Ara: array(bool,r;)} c {rg:bool}

1 Vry  Nrg.Vrp.Vm.
rp :bool A ry:array(bool,r;) D
(0>0 A 0:int A rp:bool) A
VI‘].\V/I‘R.
r; >0 A ry:int A rp:bool D
(ry<rpDr;+1:int A rg & sel(m,ra+r17):bool A
saferd(ra +r7)) A
(ry >rp Drg:bool)

SRS TS TR O
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Representing and verifying the proof in LF

The Logical Framework: a dependently-typed lambda-calculus,
able to express propositions and proof terms.

exp . Type

tp : Type truei : pf true

pred : Type andi : IIP:pred.IlR:pred.pf P — pf R — pf (and P R)

pf : pred — Type andel : IIP:pred.IIR:pred.pf (and P R) — pf P
szbool : pf (= (sizeof bool) 1)

e 3 il rdarray : IIM:exp.llA:exp.Il/:exp.IIL:exp.IIT : tp.

and : pred — pred — pred

) pf (of A(array T L)) —

imp : pred — pred — pred

- : pf (= (sizeof T) 1) —

array @ tp —exp — tp pf (>=10)—

of : exp — tp — pred pf (<IL)—

saferd : exp — exp — pred pf (of (sel M (plus AI))T)

Verifying that c is a valid proof of proposition P is easy:
it suffices to check that c : pf P.
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Some uses of PCC

The Touchstone compiler (Colby et al, 2000)

Compilation Java bytecode — optimized x86 code,
producing certificates of type safety.

Native code injection for network packet filtering
(Necula & Lee, 1996)

Like BPF and eBPF, but the code injected in the kernel is native
code, and verifying the certificate is simpler than the safety
analysis done by eBPF.
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PCC limitations

Certificates are huge

+ Much redundancy in LF terms, can be improved by using
implicit arguments.

« Alternate approach for validation: nondeterministic proof
search guided by an “oracle”, which is the certificate.

The security policy and the v.c.gen. are part of the trusted
computing base

« They must be verified independently.

 Foundational Proof-Carrying Code: (Appel et al, 1999-2005)
the typing rules and the program logic are derived from the
operational semantics of the machine code.
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Summary




What does typing contribute to security?

Strong typing (static or dynamic) provides basic guarantees that
are necessary for software security: integrity of executions, data
structures, and memory.

For instance, these guarantees would have prevented up to 70%
of the serious bugs in the Chrome browser.

High+, impacting stable

Security-related assert

-after-f
other Uss-atterfroe

Other memory unsafety

https://www.chromium.org/Home/chromium-security/memory-safety/ 64
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What does typing contribute to security?

Strong typing (static or dynamic) provides basic guarantees that
are necessary for software security: integrity of executions, data
structures, and memory.

Some type systems provide additional guarantees, such as:

- Type abstraction and representation independence.
- Control of the ownership and proper usage of resources.
« Control of information flow; non-interference (lecture #2).
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structures, and memory.

Some type systems provide additional guarantees, such as:
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Difficulties in combining these type-based approaches and to put
them into practice.
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What does typing contribute to security?

Strong typing (static or dynamic) provides basic guarantees that
are necessary for software security: integrity of executions, data
structures, and memory.

Some type systems provide additional guarantees, such as:

- Type abstraction and representation independence.
- Control of the ownership and proper usage of resources.
« Control of information flow; non-interference (lecture #2).

Difficulties in combining these type-based approaches and to put
them into practice.

An ongoing transition from typing to program proof,
already anticipated in Proof Carrying Code.
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