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In this lecture. . .

Earlier, we saw that run-time safety is necessary for software
security.

In this lecture, we study strong typing of programming languages

• as the primary mean to guarantee run-time safety;
• as a mean to obtain security guarantees that go beyond

safety.
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Typing in programming languages



Types

Folk wisdom:
Don’t compare apples and oranges.
On n’additionne pas des choux et des carottes.

Physicist’s wisdom: dimensional analysis.

d = v.t dist = dist homogeneous, possibly correct
d = v/t dist ̸= dist.temps−2 not homogeneous, must be wrong

3



Types to aid compilation

As early as FORTRAN I (1957), type declarations determine the
in-memory representation of data and guide machine code
generation.

float t[10][20]; int i,j; float x;

x = x + i * t[i][j];

In-memory representation of t: 200× 4 bytes

t[0][0] t[0][19]

t[1][0] t[1][19]

t[2][0]

Evaluation of x:

x+float (floatofint(i)×float load(float, t+ (i× 10 + j)× 4))
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Types as a modeling device

A method is proposed for the representation in a
computer of complex structured objects, and for their
manipulation by a program written in a general purpose
language, which is here assumed to be an extension of
ALGOL 60.

(C.A.R. Hoare, Record handling, 1965)

Introduces records with named, typed fields

coloredpoint = { x: float; y: float; c: color }

and references to point from one record to another

intlist = { head: int; tail: ↑ intlist }
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Modeling with records and references

Hoare’s example: representing a set of persons and their family
relationships.

record class person

begin

integer date of birth;

Boolean male;

reference father, mother,

youngest offspring, elder sibling (person)

end;
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Types to prevent programming errors

(C.A.R. Hoare, Notes on data structuring, 1970).

[T]he use of a high-level language [. . . ] significantly reduces the
scope for programming error.

In machine code programming it is all too easy to make stupid
mistakes, such as using fixed point addition on floating point
numbers, performing arithmetic operations on Boolean markers,
or allowing modified addresses to go out of range.
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Types to prevent programming errors

(C.A.R. Hoare, Notes on data structuring, 1970).

When using a high-level language, such errors may be prevented
by three means:

1. Errors involving the use of the wrong arithmetic instructions
are logically impossible; no program expressed, for example
in ALGOL, could ever cause such erroneous code to be
generated.

2. Errors like performing arithmetic operations on Boolean
markers will be immediately detected by a compiler, and can
never cause trouble in an executable program.

3. Errors like the use of a subscript out of range can be detected
by runtime checks on the ranges of array subscripts.
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Types to prevent programming errors

The view of typing as a program verification that avoids errors
appears in the PhD thesis of J. H. Morris (1968, MIT):

We shall now introduce a type system which, in effect,
singles out a decidable subset of those [expressions]
that are safe; i.e., cannot given rise to ERRORs.

This will disqualify certain [expressions] which do not, in
fact, cause ERRORs and thus reduce the expressive
power of the language.

Morris’ type system ≈ simple types for the λ-calculus.
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Typing and run-time safety



Types to guarantee run-time safety

In 1978, R. Milner, in his article A theory of type polymorphism in
programming, states an essential property of a type system:

an expression (or program) with a legal type assignment
cannot “go wrong”

Since then, this property has been used as the characterization of
a sound type system.
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What does going wrong means?

Milner (1978) gives his language a denotational semantics based
on Scott domains:

E : Expr → Env → V

where

V = (Int + · · ·+ (V → V) + {wrong})⊥

wrong is the denotation of nonsensical expressions such as

1 2 (the integer 1 used as if it were a function)

1 + (λx.x) (a function used as if it were an integer)
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An operational semantics based on reductions

Terms a ::= n | x | λx.a | a1 a2 | add
Values v ::= n | λx.v | add | add v

(λx.a) v → a[x← v]
n = n1 + n2

add n1 n2 → n

a→ a′

a b→ a′ b

b→ b′

v b→ v b′

Generally, terms that go wrong are those that “get stuck” during
reduction: they are not values yet they don’t reduce.

Example: 1 2 and add 1 (λx.x) don’t reduce and are not values.

(See my lecture of 6/2/2020, “Semantics of a functional language”)
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Type safety in a reduction semantics

An execution of the program a is viewed as a sequence of
reductions:

Termination: a→ · · · → v ∈ Val
Divergence: a→ · · · → a′ → · · ·

Going wrong: a→ · · · → b ̸→ with b /∈ Val

Type safety = if ∅ ⊢ a : τ , the “going wrong” case cannot occur.

The standard proof:

• Preservation: if a→ a′ and ∅ ⊢ a : τ then ∅ ⊢ a′ : τ .
• Progress: if ∅ ⊢ a : τ , then a ∈ Val or ∃a′. a→ a′.
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Run-time checks and “normal” errors

A simple type system cannot rule out all sources of run-time
errors, especially

• out-of-bounds array accesses;
• arithmetic errors: divide by zero, overflow.

These errors are detected at run-time (dynamic checking) and
reported

• either by aborting the program execution
• or by raising an exception, which can be handled by the

program.

In both cases, the program does not go wrong!
It just fails a run-time check.
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Reduction semantics with errors

div n 0→ err
n2 ̸= 0 n = n1/n2

div n1 n2 → n

Error propagation across execution:

err a→ err v err→ err

Handling the error:

handle v a→ v handle err a→ a

a→ a′

handle a b→ handle a′ b
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Type safety in a reduction semantics with errors

A fourth possible outcome for the execution of a program:

Normal termination: a→ · · · → v ∈ Val
Termination on error: a→ · · · → err

Divergence: a→ · · · → a′ → · · ·
Going wrong: a→ · · · → b ̸→ with b /∈ Val, b ̸= err

Same definition for type safety:
if ∅ ⊢ a : τ , the “going wrong” case cannot occur.

Similar proof, taking ∅ ⊢ err : τ

(err is a term that belongs to all types).
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What about dynamically-typed languages?

In a dynamic typing approach, there are no “going wrong”
situations at run-time, only normal errors.

We can model this by adding error generation rules:

x→ err add (λx.a) v → err

n v → err add n (λx.a)→ err

The “going wrong” case becomes impossible:

a→ · · · → b ̸→ with b /∈ Val, b ̸= err

since every term that is neither a value nor err can reduce.
Therefore, dynamic typing is type safe by construction. . .
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From “going wrong” to “undefined behavior”

The standard formalization of “going wrong” suggests an
execution that crashes and stops immediately:

E(η, a) = wrong or a ̸→, a /∈ Val, a ̸= err.

This is not a major security risk!
(No more than stopping on a normal error a→ err.)

The major risks are executing arbitrary code, producing a wrong
result, revealing a secret, etc.

The C and C++ standards use the notion of undefined behavior to
state that anything can happen when the program goes wrong.
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Modeling undefined behavior

First try: the problematic terms can reduce to any term a.

n v → a add (λx.b) v → a add n (λx.b)→ a

Limitation: some undefined behaviors cannot be expressed by a
term of the language.
(For instance: performing I/O in a pure language.)

Inconvenience: it’s hard to distinguish reduction sequences
a→ a1 → · · · → an → · · · where “everything is fine” from those
that trigger undefined behavior.
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Modeling undefined behavior

Alternative: problematic terms reduce to a special wrong term,
which then can reduce to any term a.

n v → wrong add (λx.b) v → wrong add n (λx.b)→ wrong

for all a, wrong→ a

Reduction sequences a→ a1 → · · · → an → · · · where
“everything is fine” are those that do not contain wrong.

The usual proof of type safety can be easily adapted:

• Preservation: if a→ a′ and ∅ ⊢ a : τ then a′ ̸= wrong and
∅ ⊢ a′ : τ .

• Progress: if ∅ ⊢ a : τ , then a ∈ Val or ∃a′. a→ a′, but a ̸= wrong.
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Type abstraction



Types for hiding representations

The meaning of a syntactically-valid program in a “type-
correct” language should never depend upon the particular
representation used to implement its primitive types.

J. C. Reynolds, Towards a theory of type structure, 1974.

The type system of a language distinguishes base types even
when they have same machine-level representation:

integer ̸= float ̸= reference (repr: 64-bit words)

string ̸= code of a function (repr: array of bytes)
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Functional encapsulation

let next =

let counter = ref 0 in

fun () -> incr counter; !counter

By lexical scoping, the counter reference is only accessible to
the next function.

In memory, next is represented by a function closure: a pair
(code pointer, free variable counter).

Without strong typing, anyone could access counter:

let extracted_counter = snd (next : unit * int ref)
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Type abstraction

The meaning of a syntactically-valid program in a “type-
correct” language should never depend upon the particular
representation used to implement its primitive types. [. . . ]
The main thesis of Morris (1971) is that this property of repre-
sentation independence should hold for user-defined types as
well as primitive types.

J. C. Reynolds, Towards a theory of type structure, 1974.

Type abstraction: a linguistic mechanism to hide the concrete
representation of a program-defined data type, forcing users of
this type to go through the operations provided over the type.
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Capabilities as an abstract type

module Capa:

: sig type t

val init: unit -> t

val allowed: permission -> t -> bool

val drop: permission -> t -> t

end

= struct type t = permission list ... end

The signature constraint “hides” the fact that Capa.t is
implemented as permission list.

For the clients of Capa, the type Capa.t is as “opaque” as float
or int→ int.

The only possible values of type Capa.t are those obtained by
applying Capa.init and Capa.drop.
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Type abstraction in object-oriented languages

In Java, similar guarantees can be achieved by hiding (with the
help of visibility modifiers) the internal state and the default
constructors of a class.

public final class Capa {

private T capa;

private Capa(T p) { this.capa = p; }

public static Capa init() { return new Capa(...); }

public bool allowed(int p) { ... }

public Capa drop(int p) { ... }

}
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Type abstraction and run-time safety

A type system can guarantee run-time safety
(in Milner’s sense, well-typed programs do not go wrong)
yet fail to enforce type abstraction. Example:

module Capa:

: sig type t ... end

= struct type t = permission list ... end

SML signature constraints have a different meaning than in
OCaml. In SML, the type-checker reveals to clients of Capa that
Capa.t = permission list.

The client can, therefore, construct a list [p1; p2] of permissions
and pass it to any function that expects a Capa.t.

This breaks security, but not run-time safety!
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Representation independence

(J. C. Reynolds, Types, abstraction and parametric polymorphism, 1983)

Respecting type abstraction is not a property of one run of a
client of the abstraction: it’s a hyperproperty of two runs of the
client, linked with two different implementations of the
abstraction.

This hyperproperty is called representation independence:
it must be possible to replace one implementation of an abstract
type (e.g. Capa.t = permission list) with another
implementation, without changing the behaviors of the clients of
the abstraction.
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Two implementations of the abstraction Capa

type permission = P0 | P1 | P2

module Capa1 = struct

type t = permission list

let init () = [P0;P1;P2]

let allowed = List.mem

let drop = List.remove

end

module Capa2 = struct

type t = int

let mask = function

P0 -> 1 | P1 -> 2 | P2 -> 4

let init () = 7

let allowed p c =

c land mask p <> 0

let drop p c =

c land lnot (mask p)

end
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A relation between the two implementations

Idea: let’s construct a relation between the two implementations,
telling when a permission list and an int represent the same
abstract set of permissions.

V(Capa.t) = { (L, n) : permission list× int |
(P0 ∈ L⇔ bit(n, 0) = 1)
∧ (P1 ∈ L⇔ bit(n, 1) = 1)
∧ (P2 ∈ L⇔ bit(n, 2) = 1) }
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A logical relation

We then extend this relation V(t) between values to all types t

V(int) = { (n, n) | n integer }
V(t→ s) = { (λx1. a1, λx2. a2) |

∀(v1, v2) ∈ V(t), (a1[x1 ← v1], a2[x2 ← v2]) ∈ E(s) }

We then extend it from values to terms (computations)

E(t) = { (a1, a2) | ∀b1, a1
∗→ b1 ∧ b1 irreducible⇒

∃b2, a2
∗→ b2 ∧ (b1, b2) ∈ V(t) }

Intuition: if (a1, a2) ∈ E(t), the computation a1 linked with the
first implementation of Capa behaves exactly like the
computation a2 linked with the second implementation.
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The fundamental theorem of logical relations

In a well-typed term a, free variables xi can be interpreted by
related values vi, v′i , and the two computations we obtain are
related.

Theorem (logical relations)
If x1 : τ1, . . . xn : τn ⊢ a : τ and (vi, v′i) ∈ V(τi) for every i, then

(a{xi ← vi}, a{xi ← v′i}) ∈ E(τ)

This result is strictly stronger than type soundness: it shows not
only run-time safety, but also representation independence.
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Relating the two implementations of Capa

We show that the operations of the two implementations are
related at their types:

((fun ()→ [P0;P1;P2]), fun ()→ 7)
∈ V(unit→ Capa.t)

(List.mem, fun p c→ c land mask p <> 0)

∈ V(permission→ Capa.t→ bool)

(List.remove, fun p c→ c land lnot (mask p))

∈ V(permission→ Capa.t→ Capa.t)

(Just observe that related arguments are mapped to related
results.)
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Representation independence for Capa

Assume a : int under the typing hypotheses

Capa.init : unit→ Capa.t

Capa.allowed : permission→ Capa.t→ bool

Capa.remove : permission→ Capa.t→ Capa.t

Let a1, a2 be the programs obtained by linking a with one of the
implementations of Capa:

a1 = a{Capa← Capa1} a2 = a{Capa← Capa2}

Then, (a1, a2) ∈ E(int).

This means that both programs evaluate to the same integer.
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Static typing of resources



Explicit memory management

Dynamic memory allocation + explicit deallocation under the
programmer’s control.

Example: malloc and free in C, new and delete in C++.
p = malloc(10);

/* use p */;
free(p);

A source of many programming errors!

Memory leak:

p = malloc(10);

if ... else return;

free(p);

Use after free:

p = malloc(10);

...

free(p);

/* use p */

Double free:

p = malloc(10);

...

free(p);

...

free(p);
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An attack on use-after-free

p

Allocate a large array p.
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An attack on use-after-free

p

Allocate a large array p.

Free it immediately.
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An attack on use-after-free

p

Allocate a large array p.

Free it immediately.

Wait for the memory area to be reused for other allocations
(of sensitive data).
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An attack on use-after-free

p p + 40

Allocate a large array p.

Free it immediately.

Wait for the memory area to be reused for other allocations
(of sensitive data).

Read or modify sensitive data from pointer p.

Note: this invalidates run-time safety, even if the language is
strongly typed!
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Automatic memory management

No explicit deallocation of memory by the program, but
automatic reclamation by the run-time system of the memory
blocks that are no longer reachable.

(Reference counting, garbage collection, etc.)

Ex: Lisp, functional languages, scripting languages, Java, Go, . . .

For a long time, automatic memory management was believed to
be necessary for type safety.

Limitations:

• Not always applicable
(e.g. in an OS or within the implementation of a memory manager).

• Other kinds of resources still need manual management.
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Example of resources: file descriptors

A familiar API to read files:

open : string → file

input_line : file → string

close : file → unit

A typical use:

let f = open "foo" in

let l = input_line f in

close f; l
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Incorrect handling of file descriptors

A possible leak of a file descriptor:

let f = open "foo" in let l = input_line f in close f; l

If file foo is empty, input_line f raises an exception and f is
not closed.

A read after close:

let f = open "foo" in ... close f; ...; input_line f

A double close:

let f = open "foo" in ... close f; ...; close f

Typically, these errors are detected at run-time.
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Aliasing and resource sharing

let interleave f1 f2 =

... input_line f1 ... input_line f2 ...;

close f1; close f2

If f1 and f2 are aliases on the same descriptor, we have a double
close.

let interleave flist =

... List.map input_line flist ...

List.iter close flist

in

let f = open "foo" in

let l1 = [f; open "gee"] and l2 = [f; open "buz"] in

interleave l1; interleave l2

f is shared between the two lists l1 and l2, causing a
read-after-close in interleave l2.

38



Controlling resources by static typing

An idea that appeared in the pure functional language
community, where (morally) we never modify a resource; instead,
we return a modified resource.

open : string → file

input_line : file → string * file

close : file → unit

A new problem appears: we must not use a file value twice!

let f1 = open "foo" in let f1 = open "foo" in

let (l1, f2) = let (l1, f2) =

input_line f1 in ✔ input_line f1 in ✔

let (l2, f3) = let (l2, f3) =

input_line f2 in ✔ input_line f1 in ✘

... ...
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Uniqueness types in the Clean language

The type unique τ of values of type τ that are reachable via one
reference only, and that can therefore be implemented using
in-place modification.

open : string → unique file

input_line : unique file → string * unique file

close : unique file → unit

Prevents incorrect reuse of values:

let f1 = open "foo" in

let (l1, f2) = input_line f1 in

let (l2, f3) = input_line f1 in

Two uses of f1 : unique file, rejected by type-checking.

Leaks are not prevented: we can still forget to close f3.
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Linear types

(Inspired by Girard’s linear logic.)

A type σ ⊸ τ of functions that use their σ argument exactly once.

open : ∀α. string → (file ⊸ α) → α

input_line : file ⊸ string * file

close : file ⊸ unit

Prohibits multiple uses of a file value and forces us to call
close at the end.

(This would not be the case for open : string→ file.)

41



Tracing resource ownership

Another approach to resource management, originating in
object-oriented languages, popularized by the Rust language.

open: string → file

close: file → unit

In the simplest case, a resource is owned by a variable and is
automatically freed at the end of the variable scope.

begin let f = open "foo" in

...

(* implicit call to close f *)

end

42



Tracing resource ownership

Another approach to resource management, originating in
object-oriented languages, popularized by the Rust language.

open: string → file

close: file → unit

The resource can also be explicitly transferred to a function, in
which case it is no longer owned by the variable.

begin let f = open "foo" in

...

close f

(* no implicit call to close f *)

end
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Tracing resource ownership

Another approach to resource management, originating in
object-oriented languages, popularized by the Rust language.

open: string → file

close: file → unit

After transfer, we cannot use the resource any longer, nor transfer
it again.

let f = open "foo" in

...

close f;

close f ✘
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Tracing resource ownership

Another approach to resource management, originating in
object-oriented languages, popularized by the Rust language.

open: string → file

close: file → unit

Taking an alias on a resource is treated like a transfer.

let f = open "foo" in

let g = f in

...

close f; ✘

close g

end
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Borrowing a resource

open: string → file

close: file → unit

input_line: &mut file → string

position: & file → int

A borrow gives temporary right to use the resource.

let f = open "foo" in

let l = input_line (&mut f) in

close f; l

The resource f is “lent” to input_line, then recovered when this
function returns.
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Borrowing a resource

open: string → file

close: file → unit

input_line: &mut file → string

position: & file → int

During a mutable borrow, the original owner cannot perform any
action on the resource.

let f = open "foo" in let f = open "foo" in

let b = &mut f in let b = &mut f in

close f; ✘ let l = input_line (&mut f) in ✘

input_line b input_line b
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Borrowing a resource

open: string → file

close: file → unit

input_line: &mut file → string

position: & file → int

Several immutable borrows can be ongoing at the same time.
(The “mutable XOR shared” policy.)

let f = open "foo" in

let b1 = & f in let b2 = & f in

position b1 + position b2
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Application: zero-copy message passing

send: buffer → unit

receive: unit → buffer

Passing messages between two threads running concurrently:

let b = new_buffer() in || let b = receive() in

fill(&mut b); || if check(& b)

send(b) || then use(&mut b)

|| else error()

After send(b), the left thread cannot operate on b

→ no Time Of Check To Time Of Use attack
where b would change between check(& b) and use(&mut b).
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Typing and verification
of mobile code



Mobile code

exchange
format

compilation
(optional)

source defensive
execution

static
verification

offensive
execution

producer consumer

Mobile code formats: source (JavaScript), intermediate (JVM
bytecode), native (x86 machine code).

What static verifications can we perform on machine codes,
either virtual machine(JVM) or hardware processors (x86)?
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Java bytecode verification

A static analysis on the JVM bytecode intermediate representation
that establishes many useful properties before execution:

• Code is well formed.
(E.g. no branch in the middle of another method.)

• Instructions receive arguments of the expected types.
(E.g. getfield C.f receives an object of class C or a sub-class.)

• The expression stack does not overflow.
(Within one method; dynamic check at method calls.)

• Local variables (registers) are initialized before use.
(No access to values that remain from an earlier call.)

• Objects (class instances) are initialized before use.
(I.e. new C, then call to a constructor, then use.)

• Visibility modifiers are respected.
(E.g. no access to a private member outside of the defining class.) 46



Java bytecode verification

A number of verifications that are crucial for run-time safety and
for security are still performed at run-time:

• bounds checks for array accesses;
• checks for null references;
• conversion to a sub-class (down-casting);
• typing stores into arrays of objects;
• stack inspection by the SecurityManager.
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Verifying branchless code

Executing the JVM code by a defensive abstract machine that uses
types in place of values.

• The machine maintains a stack of types and a set of registers
containing types.

• For each instruction, it checks the types of the arguments,
computes the type of the result, and updates the type of the
destination.

Example:
class C {

int x;

void move(int delta) {

int oldx = x; x += delta; D.draw(oldx, x);

}

} 48



ALOAD 0

DUP

GETFIELD C.x : int

DUP

ISTORE 2

ILOAD 1

IADD

SETFIELD C.x : int

ILOAD 2

ALOAD 0

GETFIELD C.x : int

INVOKESTATIC D.draw : void(int,int)

RETURN 49



r0: C, r1: int, r2: ⊤ [ ]
ALOAD 0

DUP

GETFIELD C.x : int

DUP

ISTORE 2

ILOAD 1

IADD

SETFIELD C.x : int

ILOAD 2

ALOAD 0

GETFIELD C.x : int

INVOKESTATIC D.draw : void(int,int)

RETURN 49



r0: C, r1: int, r2: ⊤ [ ]
ALOAD 0

r0: C, r1: int, r2: ⊤ [ C ]
DUP

GETFIELD C.x : int

DUP

ISTORE 2

ILOAD 1

IADD

SETFIELD C.x : int

ILOAD 2

ALOAD 0

GETFIELD C.x : int

INVOKESTATIC D.draw : void(int,int)

RETURN 49



r0: C, r1: int, r2: ⊤ [ ]
ALOAD 0

r0: C, r1: int, r2: ⊤ [ C ]
DUP

r0: C, r1: int, r2: ⊤ [ C; C ]
GETFIELD C.x : int

DUP

ISTORE 2

ILOAD 1

IADD

SETFIELD C.x : int

ILOAD 2

ALOAD 0

GETFIELD C.x : int

INVOKESTATIC D.draw : void(int,int)

RETURN 49



r0: C, r1: int, r2: ⊤ [ ]
ALOAD 0

r0: C, r1: int, r2: ⊤ [ C ]
DUP

r0: C, r1: int, r2: ⊤ [ C; C ]
GETFIELD C.x : int

r0: C, r1: int, r2: ⊤ [ C; int ]
DUP

ISTORE 2

ILOAD 1

IADD

SETFIELD C.x : int

ILOAD 2

ALOAD 0

GETFIELD C.x : int

INVOKESTATIC D.draw : void(int,int)

RETURN 49



r0: C, r1: int, r2: ⊤ [ ]
ALOAD 0

r0: C, r1: int, r2: ⊤ [ C ]
DUP

r0: C, r1: int, r2: ⊤ [ C; C ]
GETFIELD C.x : int

r0: C, r1: int, r2: ⊤ [ C; int ]
DUP

r0: C, r1: int, r2: ⊤ [ C; int; int ]
ISTORE 2

ILOAD 1

IADD

SETFIELD C.x : int

ILOAD 2

ALOAD 0

GETFIELD C.x : int

INVOKESTATIC D.draw : void(int,int)

RETURN 49



r0: C, r1: int, r2: ⊤ [ ]
ALOAD 0

r0: C, r1: int, r2: ⊤ [ C ]
DUP
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Verifying code containing branches

A

B

B B

C D

max(C,D)

A classic dataflow analysis:

Fork points:
propagate types to
all successors.

Join points:
take the least upper bound of
the types of all predecessors.

Iterate the analysis,
until a fixed point is reached.

(See lecture of 19/12/2019.)
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The lattice of JVM types (simplified)

⊤

Objectint float
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D E

Object[]

C[]

D[] E[]

int[] float[] Object[][]

C[][]

D[][] E[][]

null

⊥
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Delicate points

Several JVM features complicate bytecode verification beyond a
classic dataflow analysis:

• Interfaces:
the subtype relation is not a semi-lattice.

• The object initialization protocol:
requires a bit of must-alias analysis.

• Subroutines:
a code sharing mechanism, no longer in use, that required a
polyvariant analysis.
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Interfaces

interface I { ... } class C1 implements I, J { ... }

interface J { ... } class C2 implements I, J { ... }

Object

I J

C1 C2

A class can be subtype of several interfaces.
Thus, the subtyping order is not a semi-lattice:
C1 and C2 have two incomparable super-types, I and J.
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Interfaces

interface I { ... } class C1 implements I, J { ... }

interface J { ... } class C2 implements I, J { ... }

Object

I J

IandJ

C1 C2

Dedekind-MacNeille completion: adding points to recover a
semi-lattice.
Here, the pseudo-class IandJ was added as l.u.b. of C1 and C2.
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Interfaces

interface I { ... } class C1 implements I, J { ... }

interface J { ... } class C2 implements I, J { ... }

Object

C1 C2

Java’s original solution: the bytecode verifier ignores interfaces,
treating them all like Object.
A run-time check is performed by the invokeinterface I.m,
since the argument cannot be statically guaranteed to implement
interface I.
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A more modern approach: verification using certificates

(E. Rose, Lightweight Bytecode Verification, 2003. The KVM. The JVM since Java 7.)

The Java compiler annotates the produced JVM bytecode with
stack maps, i.e. types for the stack and the registers, at some
points in the bytecode:

• at the beginning of each basic block (Java 7);
• at each instruction where the types “before” differ from the

types “after” the preceding instruction (E. Rose).

Type checking can then be performed in a single linear pass,
without fixed-point iteration, and without computing least upper
bounds.
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Proof-Carrying Code

(G. Necula, P. Lee, et al, 1996-2000)

A general, ambitious approach to the security of mobile code:

• Much freedom to choose the language of the mobile code,
all the way to machine code (x86 or other) produced by an
optimizing compiler, or hand-written.

• Much freedom to choose a security policy, from type safety
to triples { P } c {Q } in a program logic.

• Verifying the code against the policy can be expensive, even
undecidable, and involve automated theorem proving.
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Proof-Carrying Code

Core idea: separate the verification of the code in two phases:

1. Certification (on the code producer side):
production of a “proof term” or “certificate”

2. Validation (on the code consumer side):
checking consistency between certificate, code, and
expected property.

Example: Java bytecode verification.

• Certification: producing stack maps for all basic blocks.
• Validation: type-checking every basic block.

Example: proving a theorem P : Prop in Coq.

• Certification: construction of a proof term p : P.
• Validation: type-checking to verify that p : P.
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The PCC architecture
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A fragment of a security policy

(G. Necula, Compiling with Proofs, 1998.)14 CHAPTER 2. OVERVIEW

Expressions: e ::= x | e1 + e2 | e1 & e2 | e1 | e2 | sel(m, e)
Memory: m ::= x | upd(m, e1, e2)
Types: ø ::= int | bool | array(ø, e)
Predicates: P ::= P1 ^ P2 | P1 æ P2 | 8x.Px

| e1 ∏ 0 | e : ø | saferd(e)
Rules:

e1 : bool e2 : bool
e1 & e2 : bool

e1 : bool e2 : bool
e1 | e2 : bool sizeof(bool) = 1

a : array(ø, len) i ∏ 0 i < len § sizeof(ø)
saferd(a + i)

a : array(ø, len) sizeof(ø) = 1 i ∏ 0 i < len

sel(m, a + i) : ø

Figure 2.2: Fragment of a logic used for type safety. Note how memory safety is enforced
through array bounds checking and how booleans are specified as values of an abstract type.

In addition to the description of the syntax, the logic contains a set of inference rules
that can be used by the proof producer to prove the verification condition. A fragment of the
set of inference rules are shown at the bottom of Figure 2.2. Because the agents are written
in a low-level language they must manipulate concrete representations of the source-level
abstract types. It is by means of the logic that the code receiver discloses the necessary
representation information to the producers. For example, the last two rules of Figure 2.2
say that the concrete representation of an array is the memory address of a sequence of
consecutive memory locations holding values of an appropriate type. In addition, these rules
establish the meaning of memory safety for our example: the only memory locations that
can be safely read are those within the boundaries of an array.

While the array rules reveal the concrete representation of arrays, the first three inference
rules manage to preserve an abstract view of booleans. From these rules, the agent-designer
knows only that a boolean value occupies one byte and that the bitwise “and” and “or”
operations on boolean values produce valid boolean values. As a consequence, a type-safe
agent cannot forge boolean values; it can only transform them by using the two bit operations
mentioned in the rules. If the agent code would attempt to create a boolean value using any
other method, it would not be able to prove that the result is a boolean. Note that this is so
even when the agent producer has prior knowledge of the actual representation of booleans.
Following the same recipe, other, more complex, abstract data types can be specified in
the logic so that the code receiver can enforce their abstraction boundaries. The interested

Array accesses are within bounds.
The representation of the bool type is kept abstract.
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Production of optimized machine code

2.1. THE BASIC PROOF-CARRYING CODE PROTOCOL 17

in that a high-level language is selected for the agents and a semantics is defined such that
no violations of the safety policy can occur. This semantics can be enforced through a
combination of static checks (performed by the compiler) and run-time checks (inserted by
the compiler in the agent code). So far, this is not diÆerent from what a traditional compiler
for a safe high-level language performs. The diÆerence is that a certifying compiler not only
produces safe target code, but also emits typing information and supporting annotations for
the optimizations that were performed. This information is easy to produce by the compiler
and it enables an external system (the PCC code receiver in conjunction with the proof
producer in this case) to verify that the result of compilation is indeed type safe. This is
explained in more detail next and is formalized completely in Chapter 6.

As a proof of the certifying compilation concept I have implemented a certifying compiler,
called Touchstone, for a type-safe subset of the C programming language. The implementa-
tion details of Touchstone are described in Chapter 6. In the rest of this section I show how
Touchstone operates in the context of a simple agent, whose source is shown in Figure 2.4.
Note that in the dialect of C compiled by Touchstone, arrays have both a base address and
a length, which is accessed using the built-in operation “length”. This is in contrast with
the common programming practice where the length of the array is manipulated directly by
the programmer.

bool main(bool A[], bool B) {
int I ;
bool R = B ;
for(I = 0; I < length(A); I++)

R = R && A[i];
return R;

}

Figure 2.4: Sample source code for a type-safe agent

The function main computes the conjunction of all the boolean values in the array A and
the boolean value B received on input. Touchstone parses the program and then translates
it to an intermediate form that is then optimized. To simplify the presentation, I will use
the same generic assembly language as the intermediate form and the target language.

Touchstone behaves mostly as a traditional optimizing compiler for a type-safe language.
The distinguishing aspect of compilation is the generation of annotations. In this section
I describe informally the generation of loop invariants for the agent of Figure 2.4. In the
context of the type-safety policy, there is only one kind of loop invariants that must be
produced, namely, typing loop invariants. A typing loop invariant is the conjunction of the
typing predicates for all variables that are live at the beginning of a loop and are modified
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indeed a correct invariant because I is initialized to 0 before the loop and is incremented
by 1 in every loop iteration. We will see in a moment the significance of this invariant for
array bounds-checking elimination; consider now how Touchstone discovers it. Of all of the
possible arithmetic invariants, Touchstone attempts to discover when an integer variable
is monotonically increasing or decreasing. In our example, I is monotonically increasing
because I + 1 ∏ I. To prove simple arithmetic facts like this, Touchstone uses a decision
procedure for linear arithmetic. The rest is simple; because I is a monotonically increasing
variable whose initial value is 0 Touchstone emits the invariant I ∏ 0.3

Returning to the intermediate code of Figure 2.5, the array bounds-checking optimization
is implemented as a more general conditional optimization that tries to eliminate conditionals
or to collapse several conditionals into fewer ones. In the case of our example, Touchstone
successfully eliminates the boxed conditionals because their guarding boolean expressions
are statically proved false; the expression “rI < 0” is falsified by the loop invariant and
the expression “rI ∏ rL” is falsified by the loop termination condition. Consequently, the
exception-raising operation at the end of the code becomes unreachable and is eliminated as
well. The resulting optimized code is shown in Figure 2.6.

rI = 0

rR = rB

L0: INV rI ∏ 0 ^ rI : int ^ rR : bool
if rI ∏ rL goto Lend

rT = §(rA + rI)
rR = rR & rT

goto L0

Lend: return rR

Figure 2.6: The agent code after bounds-checking optimization.

Even though Touchstone diÆers from other compilers in that it outputs invariants, I claim
that it does not do more work than other optimizing compilers for the purpose of discovering
the invariants. Take, for example, the typing invariants. The typing information is known
in the compiler front end; all Touchstone has to do is to preserve it from the front end of the
compiler all that way through the code generation phase. The same is true for the invariant
annotations. Any optimizing compiler that removes array bounds checks from a loop body
employs some static analysis to discover code properties that amount to loop invariants. On
top of that, Touchstone records these invariants and emits them together with the code.

3The Touchstone compiler described in this dissertation does not handle correctly arithmetic overflow.
While it is quite easy to arrange the logic inference rules for correct handling of arithmetic overflow (and thus
to plug the safety hole in the PCC infrastructure) it is significantly more di±cult to modify the certifying
compiler and the theorem prover to use the correct inference rules.

The compiler generated no run-time bounds check because it
detected that the access A[i] is always within A’s bounds.

The compiler annotated the generated code with a loop invariant.
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Production of the verification condition

Using a strongest postcondition calculus, with the specification

{ rB : bool ∧ rA : array(bool, rL) } c { rR : bool }
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1 8rA.8rB.8rL.8m.
2 rB : bool ^ rA : array(bool, rL) æ
3 (0 ∏ 0 ^ 0 : int ^ rB : bool) ^
4 8rI .8rR.
5 rI ∏ 0 ^ rI : int ^ rR : bool æ
6 (rI < rL æ rI + 1 : int ^ rR & sel(m, rA + rI) : bool ^
7 saferd(rA + rI)) ^
8 (rI ∏ rL æ rR : bool)

Figure 2.7: The verification condition for the agent of Figure 2.6. The scope of universal
quantification and implication operators extends to the end of the predicate or to a closing
parenthesis.

Because the code receiver does not have to trust the proof producer, any system can be the
proof producer; in particular the code producer can also act as a proof producer. For the
most part, the proof generator is a general-purpose theorem prover for first-order predicate
logic extended with special-purpose axioms, such as those presented in Figure 2.2.

. rI ∏ 0 ^ rR : bool
v

. rR : bool D
. rR & sel(m, rA + rI) : bool

D =
. rA : array(bool, rL)

u
. sizeof(bool) = 1

. rI ∏ 0 ^ rR : bool
v

. rI ∏ 0 . rI < rL
w

. sel(m, rA + rI) : bool

Figure 2.8: Fragment of the proof of the verification condition of Figure 2.7. For typographic
reasons, the subproof D is shown separately. In this proof, the following assumptions are
used: “rA : array(bool, rL)” (from line 2, referred to as u), “rI ∏ 0 ^ rR : bool” (from line
5, referred to as v), and “rI < rL” (from line 6, referred to as w).

For first-order logic, many theorem-proving systems have been implemented, most of
which are able to prove typical verification conditions, sometimes with the help of additional
tactics. To be usable as a PCC proof producer, a theorem prover must not only be able to
prove verification conditions but must be also capable of generating detailed proofs of them.
Furthermore these proofs must be expressed using the axioms and inference rules specified
as part of the safety policy. The major di±culty here is to make the theorem prover output
the proof in any convenient format, because once we have all the proof details, it is generally
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Representing and verifying the proof in LF

The Logical Framework: a dependently-typed lambda-calculus,
able to express propositions and proof terms.
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exp : Type

tp : Type

pred : Type

pf : pred! Type

true : pred

and : pred! pred! pred

imp : pred! pred! pred

int : tp

array : tp! exp! tp

of : exp! tp! pred

saferd : exp! exp! pred

truei : pf true

andi : ¶P :pred.¶R :pred.pf P ! pf R! pf (and P R)
andel : ¶P :pred.¶R :pred.pf (and P R)! pf P
szbool : pf (= (sizeof bool) 1)
rdarray : ¶M :exp.¶A :exp.¶I :exp.¶L :exp.¶T :tp.

pf (of A (array T L))!
pf (= (sizeof T ) 1)!
pf (>= I 0)!
pf (< I L)!
pf (of (sel M (plus A I)) T )

Figure 2.9: Fragment of the LF signature corresponding to the logic of Figure 2.2.

proof of some predicate P and a proof of R to obtain an LF expression that represents a
valid proof of “P ^ R”. Similarly, the last declaration shown in Figure 2.9 encodes the last
inference rule shown in Figure 2.2.

To illustrate the LF encoding of proofs, consider the subproof D from Figure 2.8. The
LF encoding of this fragment is shown in Figure 2.10. If we ignore the boxed components,
then the LF representation is a straightforward expression of the proof tree structure: use
the “rdarray” inference rule with the assumption u as the first hypothesis, followed by the
axiom “szbool”, then by the conjunction-elimination-left rule applied to the assumption v,
and finally by the assumption w. Furthermore, by using the declarations of Figure 2.9 and
appropriate types for the assumptions (i.e., u has type “pf (of A (array bool L)”, v has
type “pf (and (>= I 0) (of R bool))”, and w has type “pf (< I L)”) then we can verify
that the whole term of Figure 2.10 has type “pf (of (sel M (plus A I)) bool)”.

So far we considered the proof representation problem in isolation from the proof valida-
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So far we considered the proof representation problem in isolation from the proof valida-

Verifying that c is a valid proof of proposition P is easy:
it suffices to check that c : pf P.
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Some uses of PCC

The Touchstone compiler (Colby et al, 2000)

Compilation Java bytecode→ optimized x86 code,
producing certificates of type safety.

Native code injection for network packet filtering
(Necula & Lee, 1996)

Like BPF and eBPF, but the code injected in the kernel is native
code, and verifying the certificate is simpler than the safety
analysis done by eBPF.
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PCC limitations

Certificates are huge

• Much redundancy in LF terms, can be improved by using
implicit arguments.

• Alternate approach for validation: nondeterministic proof
search guided by an “oracle”, which is the certificate.

The security policy and the v.c.gen. are part of the trusted
computing base

• They must be verified independently.
• Foundational Proof-Carrying Code: (Appel et al, 1999-2005)

the typing rules and the program logic are derived from the
operational semantics of the machine code.
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Summary



What does typing contribute to security?

Strong typing (static or dynamic) provides basic guarantees that
are necessary for software security: integrity of executions, data
structures, and memory.

For instance, these guarantees would have prevented up to 70%
of the serious bugs in the Chrome browser.

https://www.chromium.org/Home/chromium-security/memory-safety/

Some type systems provide additional guarantees, such as:

• Type abstraction and representation independence.
• Control of the ownership and proper usage of resources.
• Control of information flow; non-interference (lecture #2).

Difficulties in combining these type-based approaches and to put
them into practice.

An ongoing transition from typing to program proof,
already anticipated in Proof Carrying Code.
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