
Language-based software security, fourth lecture

Tempus fugit :
timing attacks and cache attacks

Xavier Leroy
2022-03-31

Collège de France, chair of software sciences
xavier.leroy@college-de-france.fr

Execution time
as an information channel

User experience with an old Unix system

login: dmr

password: *****

(two seconds later. . .)
Login incorrect

Second attempt:

login: foo

password: *****

(immediately)
Login incorrect

2

User experience with an old Unix system

login: dmr

password: *****

(two seconds later. . .)
Login incorrect

Second attempt:

login: foo

password: *****

(immediately)
Login incorrect

2

Why this difference in response time?

int check_login(char * username, char * password)

{

struct passwd * userinfo = getpwnam(username);

if (userinfo == NULL) return 0; // no user with this name
char * hash = crypt(password); // takes 2 seconds
return (strcmp(hash, userinfo->pw_password) == 0);

}

The function terminates faster if there is no account named
username than if there is one.

=⇒ Enables an attacker to easily check if a given account exists.

3

Checking a PIN

for (int i = 0; i < N; i++) {

if (input[i] != pin[i]) return false;

}

return true;

This loop takes time proportional to the number of correct digits
at the beginning of input.

=⇒ An attacker can find a N-digit PIN in time 10N instead of 10N.

4

Checking a PIN

An alternate implementation where the loop always runs for N
iterations:

valid = true;

for (int i = 0; i < N; i++) {

if (input[i] != pin[i]) valid = false;

}

return valid;

Now, the execution time is a+ bn, where n is the number of
wrong digits (= number of assignments valid = false).

=⇒ An efficient attack remains possible.

5

Checking a PIN

Let’s make the code more symmetrical by counting the number of
correct digits and the number of wrong digits.

valid = 0; invalid = 0;

for (int i = 0; i < N; i++) {

if (input[i] != pin[i]) ++invalid; else ++valid;

}

return (invalid == 0);

Branch prediction in the processor can still cause variations in
execution time, but it’s getting hard to exploit them.

6

Checking a PIN in constant time

The correct way to write this PIN-checking code is to use
constant-time operations only, that is, operations that run in
time independent of the values of their arguments.

d = 0;

for (int i = 0; i < N; i++) {

d = d | (input[i] ^ pin[i]);

}

return (d == 0);

(Variable d accumulates the bits that differ between input and
password; it remains 0 if and only if there are no differences.)

7

RSA encryption and signature

Based on modular exponentiation:

M
encryption−−−−−−−−−−→ C = Me mod N

decryption−−−−−−−−−−→ Cd mod N

M
signature−−−−−−−−−→ S = Md mod N verification−−−−−−−−−−→ Se mod N

A modulus N = pq product of two prime numbers p, q.

A secret exponent d and a public exponent e such that
de mod (p− 1)(q− 1) = 1.

The public key is (N, e).

The secret key is d or sometimes (p, q,d).

8

Computing modular exponentation

The “Russian peasant” algorithm for fast exponentiation:

Decompose d in bits dn, . . . ,d0 (d =
∑n

i=0 di2i)

C := 1; z := M;

for i = 0 to n do

if di then C := C · z mod N

z := z2 mod N

done

z takes successive values M, M2, M4, M8, . . . , M2n (mod N).

At the end we have C =
∏{M2i | di = 1} = M

∑{2i|di=1} = Md

9

Running time of modular exponentiation

for i = 0 to n do

if di then C := C · z mod N
z := z2 mod N

done

The running time of the loop depends on the di, obviously:
we perform w + n+ 1 modular multiplications,
where w is the Hamming weight (number of 1 bits) of the secret d.

However, knowing w doesn’t help to guess d.

Moreover, we can easily remove this dependence on w:

if di then C := C · z mod N else tmp := C · z mod N

10

Running time of modular exponentiation

for i = 0 to n do

if di then C := C · z mod N else tmp := C · z mod N
z := z2 mod N

done

The time it takes to compute C · z mod N depends significantly on
the value of C, even more so if clever algorithms are used.

This suffices to mount attacks on RSA by observing
execution times.

11

P. Kocher’s timing attack (1996)

Take k random messages M1, . . . ,Mk.

Have them signed: Si = Md
i mod N and measure the time Ti.

Guess the bits of d one after the other:

• d0 = 1 always.
• Assume d1 = 1. Then, the computation of Si would start by

computing Mi · M2
i mod N.

• Measure the times ti to compute Mi · M2
i mod N.

• If the ti are correlated with the Ti, we do have d1 = 1.
• If there’s no correlation, we have d1 = 0.

• Iterate for the following bits.

12

D. Brumley and D. Boneh’s timing attack on OpenSSL (2003)

OpenSSL has a more efficient implementation of RSA:

• Uses the Chinese remainder theorem:
compute Md mod p and Md mod q, then combine the results
to obtain Md mod N (with N = pq).

• Uses Montgomery’s representation to speed up modular
multiplications C · z mod q.

• Several multiplication algorithms, selected based on the
sizes of the arguments.

Each of these features contributes to leak more information
through execution times. . .

13

Execution time for Montgomery multiplication

Montgomery’s algorithm performs additional reduction steps
when the product g gets close to the modulus p or q.

inputs g the attacker can expose information about bits
of the factor q. We note that a timing attack on sliding
windows is much harder than a timing attack on square-
and-multiply since there are far fewer multiplications by
g in sliding windows. As we will see, we had to adapt
our techniques to handle sliding windows exponentia-
tion used in OpenSSL.

2.3 Montgomery Reduction

The sliding windows exponentiation algorithm performs
a modular multiplication at every step. Given two inte-
gers x, y, computing xy mod q is done by first multiply-
ing the integers x ∗ y and then reducing the result mod-
ulo q. Later we will see each reduction also requires a
few additional multiplications. We first briefly describe
OpenSSL’s modular reduction method and then describe
its integer multiplication algorithm.

Naively, a reduction modulo q is done via multi-
precision division and returning the remainder. This is
quite expensive. In 1985 Peter Montgomery discovered
a method for implementing a reduction modulo q us-
ing a series of operations efficient in hardware and soft-
ware [13].

Montgomery reduction transforms a reduction modulo
q into a reduction modulo some power of 2 denoted by
R. A reduction modulo a power of 2 is faster than a
reduction modulo q as many arithmetic operations can
be implemented directly in hardware. However, in order
to use Montgomery reduction all variables must first be
put into Montgomery form. The Montgomery form of
number x is simply xR mod q. To multiply two num-
bers a and b in Montgomery form we do the following.
First, compute their product as integers: aR∗bR = cR2.
Then, use the fast Montgomery reduction algorithm to
compute cR2 ∗ R−1 = cR mod q. Note that the result
cR mod q is in Montgomery form, and thus can be di-
rectly used in subsequent Montgomery operations. At
the end of the exponentiation algorithm the output is put
back into standard (non-Montgomery) form by multiply-
ing it by R−1 mod q. For our attack, it is equivalent to
use R and R−1 mod N , which are public.

Hence, for the small penalty of converting the input g to
Montgomery form, a large gain is achieved during mod-
ular reduction. With typical RSA parameters the gain
from Montgomery reduction outweighs the cost of ini-
tially putting numbers in Montgomery form and convert-
ing back at the end of the algorithm.

q 2q 3q p 4q 5q

of

 e
xt

ra
 re

du
ct

io
ns

 in
 M

on
tg

er
y’

s
al

go
rit

hm

values g between 0 and 6q

discontinuity when
g mod q = 0

discontinuity when
g mod p = 0

Figure 1: Number of extra reductions in a Montgomery
reduction as a function (equation 1) of the input g.

The key relevant fact about a Montgomery reduction is
at the end of the reduction one checks if the output cR
is greater than q. If so, one subtracts q from the out-
put, to ensure that the output cR is in the range [0, q).
This extra step is called an extra reduction and causes a
timing difference for different inputs. Schindler noticed
that the probability of an extra reduction during an ex-
ponentiation gd mod q is proportional to how close g is
to q [18]. Schindler showed that the probability for an
extra reduction is:

Pr[Extra Reduction] =
g mod q

2R
(1)

Consequently, as g approaches either factor p or q from
below, the number of extra reductions during the expo-
nentiation algorithm greatly increases. At exact mul-
tiples of p or q, the number of extra reductions drops
dramatically. Figure 1 shows this relationship, with the
discontinuities appearing at multiples of p and q. By de-
tecting timing differences that result from extra reduc-
tions we can tell how close g is to a multiple of one of
the factors.

2.4 Multiplication Routines

RSA operations, including those using Montgomery’s
method, must make use of a multi-precision integer mul-
tiplication routine. OpenSSL implements two multipli-
cation routines: Karatsuba (sometimes called recursive)
and “normal”. Multi-precision libraries represent large
integers as a sequence of words. OpenSSL uses Karat-
suba multiplication when multiplying two numbers with
an equal number of words. Karatsuba multiplication
takes time O(nlog2 3) which is O(n1.58). OpenSSL uses

(Brumley & Boneh, 2003)
14

D. Brumley and D. Boneh’s timing attack

A binary search that identifies the most significant bits of the q
factor. Once half the bits are known, Coppersmith’s algorithm
recovers the whole secret key.

-1.5e+07

-1e+07

-5e+06

 0

 5e+06

 1e+07

 1.5e+07

 0 50 100 150 200 250

Ti
m

e
di

ffe
re

nc
e

in
 C

PU
 c

yc
le

s

Bits guessed of factor q

key 1
key 2
key 3

(a) The zero-one gap Tg − Tghi indicates that we can distin-
guish between bits that are 0 and 1 of the RSA factor q for 3
different randomly-generated keys. For clarity, bits of q that
are 1 are omitted, as the x-axis can be used for reference for
this case.

-5e+06

-4e+06

-3e+06

-2e+06

-1e+06

 0

 1e+06

 2e+06

 190 195 200 205 210 215 220

Ti
m

e
di

ffe
re

nc
e

in
 C

PU
 c

yc
le

s

Bits guessed of factor q

increasing neigh. = larger zero-one gap

Neighborhood=800
Neighborhood=400

(b) When the neighborhood is 400, the zero-one gap is small
for some bits in key 3, making it diffi cult to distinguish be-
tween the 0 and 1 bits of q. By increasing the neighborhood
size to 800, the zero-one gap is increased and we can launch
a successful attack.

Figure 3: Breaking 3 RSA Keys by looking at the zero-one gap time difference

As discussed previously we can increase the size of the
neighborhood to increase |Tg − Tghi

|, giving a stronger
indicator. Figure 3(b) shows the effects of increasing the
neighborhood size from 400 to 800 to increase the zero-
one gap, resulting in a strong enough indicator to mount
a successful attack on bits 190-220 of q in key 3.

The results of this experiment show that the factorization
of each key is exposed by our timing attack by the zero-
one gap created by the difference when a bit of q is 0 or
1. The zero-one gap can be increased by increasing the
neighborhood size if hard-to-guess bits are encountered.

5.4 Experiment 3 - Architecture and Compile-
Time Effects

In this experiment we show how the computer archi-
tecture and common compile-time optimizations can af-
fect the zero-one gap in our attack. Previously, we have
shown how algorithmically the number of extra Mont-
gomery reductions and whether normal or Karatsuba
multiplication is used results in a timing attack. How-
ever, the exact architecture on which decryption is per-
formed can change the zero-one gap.

To show the effect of architecture on the timing at-
tack, we begin by showing the total number of instruc-
tions retired agrees with our algorithmic analysis of
OpenSSL’s decryption routines. An instruction is re-
tired when it completes and the results are written to the

destination [8]. However, programs with similar retire-
ment counts may have different execution profiles due
to different run-time factors such as branch predictions,
pipeline throughput, and the L1 and L2 cache behavior.

We show that minor changes in the code can change the
timing attack in two programs: “regular” and “extra-
inst”. Both programs time local calls to the OpenSSL
decryption routine, i.e. unlike other programs presented
“regular” and “extra-inst” are not network clients at-
tacking a network server. The “extra-inst” is identi-
cal to “regular” except 6 additional nop instructions in-
serted before timing decryptions. The nop’s only change
subsequent code offsets, including those in the linked
OpenSSL library.

Table 1 shows the timing attack with both programs for
two bits of q. Montgomery reductions cause a positive
instruction retired difference for bit 30, as expected. The
difference between Karatsuba and normal multiplication
cause a negative instruction retired difference for bit 32,
again as expected. However, the difference Tg − Tghi

does not follow the instructions retired difference. On
bit 30, there is about a 4 million extra cycles difference
between the “regular” and “extra-inst” programs, even
though the instruction retired count decreases. For bit
32, the change is even more pronounced: the zero-one
gap changes sign between the “normal” and “extra-inst”
programs while the instructions retired are similar!

The attack can be conducted across a network connection!
15

Cache memory
as an information channel

Cache memory

Speed up accesses to a memory location that has been accessed
recently (temporal locality), or that is near a recently-accessed
location (spatial locality).

16

Cache attacks

The time taken by a memory read varies greatly whether a data at
a nearby location has been accessed recently.

Overall structure of a cache attach:

1. Flush the cache (L1 or more) (clflush instruction, etc)

2. Execute privileged code that manipulates secret data.
3. Measure access times for several memory locations.
4. Infer which locations were accessed by the privileged code.
5. Deduce information on the secret data.

(In step 1-, instead of emptying the cache, we can also pre-fill it with locations
that conflict with the locations we want to observe.)

(2- and 3- can take place concurrently.)

17

Cache attacks

Note: it is not necessary to have read and write permissions on
the memory area we want to observe. We can use any memory
area that shares the same cache entries.

18

Example: normalizing a character string

Put letters in uppercase and normalize non-printable characters.

void normalize(unsigned char * s, size_t len)

{

static const unsigned char tbl[256] = "\

\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\

\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\

!\"#$%&’()*+,-./0123456789:;<=>?\
@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_\

‘ABCDEFGHIJKLMNOPQRSTUVWXYZ{|}~";

for (size_t i = 0; i < len; i++) s[i] = tbl[s[i]];

}

19

An example of a cache attack

get_hashed_password: a protected function that reads a
password from the keyboard, normalizes it with normalize, and
hashes it.

1. Flush the cache.
2. Call get_hashed_password.
3. Measure the time taken by normalize on inputs

"a", "b", "c", etc.
4. Infer the elements of the tbl array accessed by normalize

when called from get_hash_password.
(Assuming cache lines of size 1 byte.)

5. Deduce which letters a, b, c, etc, appear in the password.

20

The AES-128 symmetric cipher

(A. G. Wadday et al, 2018) 21

The AES-128 symmetric cipher

Software implementations of AES usually tabulate the
subst/shift/mix steps.

T0, T1, T2, T3: tables of 256 32-bit constants.

x0, . . . , x15: the 16 bytes of the current state.

(x′0, x
′
1, x

′
2, x

′
3) = T0[x0]⊕ T1[x5]⊕ T2[x10]⊕ T3[x15]⊕ K0

(x′4, x
′
5, x

′
6, x

′
7) = T0[x4]⊕ T1[x9]⊕ T2[x14]⊕ T3[x3]⊕ K1

(x′8, x
′
9, x

′
10, x

′
11) = T0[x8]⊕ T1[x13]⊕ T2[x2]⊕ T3[x7]⊕ K2

(x′12, x
′
13, x

′
14, x

′
15) = T0[x12]⊕ T1[x1]⊕ T2[x6]⊕ T3[x11]⊕ K3

22

Cache attack on AES

(Osvik, Shamir, Tromer, Cache attacks and countermeasures: the case of AES,
2005. Ashokummar, Giri, Menezes, Highly efficient algorithms for AES key
retrieval in cache access attacks, 2016.)

(x′0, x
′
1, x

′
2, x

′
3) = T0[x0]⊕ T1[x5]⊕ T2[x10]⊕ T3[x15]⊕ K0

(x′4, x
′
5, x

′
6, x

′
7) = T0[x4]⊕ T1[x9]⊕ T2[x14]⊕ T3[x3]⊕ K1

(x′8, x
′
9, x

′
10, x

′
11) = T0[x8]⊕ T1[x13]⊕ T2[x2]⊕ T3[x7]⊕ K2

(x′12, x
′
13, x

′
14, x

′
15) = T0[x12]⊕ T1[x1]⊕ T2[x6]⊕ T3[x11]⊕ K3

Assuming cache lines are 4 32-bit words, each access Ti[xj] “leaks”
the 4 most significant bits of xj.

First round: x = chosen text⊕ key, hence we can recover the 4
most significant bits of each byte of the key.

23

Cache attack on AES

(Osvik, Shamir, Tromer, Cache attacks and countermeasures: the case of AES,
2005. Ashokummar, Giri, Menezes, Highly efficient algorithms for AES key
retrieval in cache access attacks, 2016.)

(x′0, x
′
1, x

′
2, x

′
3) = T0[x0]⊕ T1[x5]⊕ T2[x10]⊕ T3[x15]⊕ K0

(x′4, x
′
5, x

′
6, x

′
7) = T0[x4]⊕ T1[x9]⊕ T2[x14]⊕ T3[x3]⊕ K1

(x′8, x
′
9, x

′
10, x

′
11) = T0[x8]⊕ T1[x13]⊕ T2[x2]⊕ T3[x7]⊕ K2

(x′12, x
′
13, x

′
14, x

′
15) = T0[x12]⊕ T1[x1]⊕ T2[x6]⊕ T3[x11]⊕ K3

Assuming cache lines are 4 32-bit words, each access Ti[xj] “leaks”
the 4 most significant bits of xj.

Finer analysis of the second round lets us recover the whole key
using a small number of encryptions (10 to 1000).

23

Protections against
timing attacks

Protections against timing attacks

How can we avoid leaking information through execution time?

Various approaches:

• “Constant-time” programming.

• Prevent precise time measurements.

• Quantize execution or communication times.

• Blinding secrets with random noise.

24

Precise time measurements

Many timing attacks cannot be conducted remotely: the attacker
must run on the same machine as the attacked code.

To measure elapsed time precisely, the attacker needs

• access to a high-resolution hardware clock
(e.g. the Time Stamp Counter register on x86 processors);

• or parallel execution of two threads.

while true do T0 := time;

time := time+ 1 computation to be timed;
done T1 := time

25

Prevent precise time measurements

The operating system or the execution environment can:

• Prohibit access to high-resolution clocks
(e.g. block the rdtsc x86 instruction).

• Force the threads of the attacker to run on the same
processor core as the attacked code, by interleaving.

• Schedule threads independently from execution time.

26

Scheduling based on instruction counts

(Stefan et al, Eliminating cache-based timing attacks with instruction-based
scheduling, 2013.)

fillArray(L);

if secret then for i = 1 to n for i = 1 to n+m
fillArray(H) do skip done; do skip done;

else readArray(L); x := 0
skip x := 1

With a schedule based on time slices (preemption after a fixed
time T), we terminate with x = 0 or x = 1 depending on the
running time of readArray(L), which depends on the state of the
cache.

27

Scheduling based on instruction counts

(Stefan et al, Eliminating cache-based timing attacks with instruction-based
scheduling, 2013.)

fillArray(L);

if secret then for i = 1 to n for i = 1 to n+m
fillArray(H) do skip done; do skip done;

else readArray(L); x := 0
skip x := 1

With a schedule based on instruction counts (preemption after N
instructions were executed), the final value of x is independent
from the cache state.

27

Time quantization

Add a delay at the end of computation to guarantee that it runs
in constant time Dmax.

T0 := now;
for i = 0 to n do

if di then C := C · z mod N else tmp := C · z mod N
z := z2 mod N

done

D = now− T0;
sleep(Dmax − D)

No more temporal leaks!
. . . at the cost of slowing down all computations.

Dmax can be hard to determine a priori.
28

Time quantization

Variation: adjust running time to an integer multiple of ∆.
(E.g. ∆ = 107 cycles for the Brumley-Boney attack.)

T0 := now;
. . .
D = now− T0;
sleep(ceil(D/∆)×∆− D)

29

Time Quantization

(Askarov, Zhang, Myers, Predictive black-box mitigation of timing channels, 2010.)

Variation: adjust Dmax on the fly, following an exponential law.

T0 := now;
. . .
D = now− T0;
if D > Dmax then Dmax := Dmax × (1 + ε)

else sleep(Dmax − D)

The attacker gains one bit of information each time D > Dmax.
This happens at most one by time slice of duration (1 + ε)k.
Hence, information leakage is O(log2 t).

More subtle laws can be used, see Askarov et al.

30

Blinding

Inject randomness in the computation so that running time is no
longer correlated with the value of the secret.

Artificial example:
checking a PIN code using a random permutation.

// draw a random permutation S of {0, . . . , n− 1}
for (int i = 0; i < N; i++) {

if (input[S[i]] != pin[S[i]]) return false;

}

return true;

The running time for one execution only gives a lower bound on
the number of correct digits.

31

RSA with message blinding

If M is the message to be signed, we can blind it using a random
number R before modular exponentation.

C def
= (Re · M)d = (Re)d · Md = Red · Md = R · Md (mod N)

since ed mod φ(N) = 1 and Rφ(N) = 1 (mod N) (Euler’s theorem).

Then, we can un-blind, obtaining the correct result:

S def
= R−1 · C (mod N)

The time it takes to compute (Re ·M)d gives no information to the
attackers, since they choose M but not R.

32

Constant-time programming

Constant-time programming

A programming discipline to write programs that run in time
independent from secret data.

Relies on a classification of the base operations of the
programming language / of the instructions of the processor:

• Constant-time operations: same execution time regardless
of the values of the arguments of the operation and of the
state of the processor.

• Variable-time operations: timing is sensitive to the values of
the arguments or to the processor state
(caches, branch predictors, etc).

33

A standard classification

Constant time Variable time

Integer
arithmetic (1)

+ - * & | ^

shifts, comparisons
division, modulus

Memory reads
and writes (2)

x[i] *p

Conditional
branches

if while

&& ||

(1) Some processors have variable-time integer multiplication.

(2) For writes x[i] = v and *p = v, execution time depends on x, i, p
(the accessed address) but not on v (the stored value).

34

The “constant-time” criterion

An information flow property:

A value at level H (secret) must not be used
as argument to a non-constant-time operation.

Examples:

✔ zH := xH + yH ✘ zH := xH / yH

✘ if xH < yH then zH := 1

✘ xH := tL[iH]

35

Typing rules for constant time

In the style of the type systems for information flow of lecture #2.

⊢ a1 : ℓ a2 : ℓ

⊢ a1 + a2 : ℓ

⊢ a1 : L a2 : L

⊢ a1/a2 : ℓ

⊢ b : L ⊢ c1 : ∗ ⊢ c2 : ∗

⊢ if b then c1 else c2 : ∗

⊢ b : L ⊢ c : ∗

⊢ while b do c

Note: indirect flows (if bH then xL := 1 else xL := 0) are
automatically excluded; no need to trace the pc level any longer.

36

A semantics for timing leaks

We can materialize information leaks caused by
non-constant-time operations by a program transformation:

[[z := x + y]] = z := x + y

[[z := x/y]] = out(x); out(y); z := x/y

[[if x < y then c1 else c2]] = out(x); out(y);

if x < y then [[c1]] else [[c2]]

[[while x < y do c done]] = out(x); out(y);

while x < y do

[[c]]; out(x); out(y)

done

37

Non-interference in the presence of timing leaks

initial state 1 initial state 2

final state 1 final state 2

same values
for the xL

same values for the xL
and same traces T1 = T2

program
execution
(trace T1)

program
execution
(trace T2)

38

Programming in “constant-time” style

On secret data: no conditionals, no array indexing,
just arithmetic and bitwise operations ≈ combinatorial circuits.

Example (reminder):

d = 0;

for (int i = 0; i < N; i++) {
if (input[i] != pin[i]) d = 1; ✘

}
return (d == 0);

39

Programming in “constant-time” style

On secret data: no conditionals, no array indexing,
just arithmetic and bitwise operations ≈ combinatorial circuits.

Example (reminder):

d = 0;

for (int i = 0; i < N; i++) {
d = d | (input[i] ^ pin[i]); ✔

}
return (d == 0);

39

Avoiding arrays and indexing

N-bit integers can replace arrays of N Booleans.

Example: a DES S-box = a function 6 bits→ 4 bits.

The usual tabulated implementation:
int tbl[64] = { /* 64 4−bit integers */ };

int sbox(int x) { return tbl[x]; }

Tabulation using 4 64-bit integers:
uint64_t tbl0 = ..., tbl1 = ..., tbl2 = ..., tbl3 = ...;

int sbox(int x) {

return (tbl0 >> x & 1) << 0 | (tbl1 >> x & 1) << 1 |

(tbl2 >> x & 1) << 2 | (tbl3 >> x & 1) << 3;

}

(Constant-time. . . but much slower!)
40

IF-conversion: turning conditionals into selections

Base case:

if b then x := a1 else x := a2 =⇒ x := sel(b, a1, a2)

if b then x := a1 =⇒ x := sel(b, a1, x)

The sel(b, a1, a2) operator

• evaluates b, a1 et a2;
• returns the value of a1 if b is true;
• returns the value of a2 if b is false;

in time independent from the value of b (“constant time”).

41

IF-conversion: turning conditionals into selections

More generally:

• Execute both then and else branches, renaming the
variables that are assigned.

• Select the final values for the variables using operator sel.

Example:

if b then (x := a1; y := a2) else (y := a3; z := a4)

=⇒ x1 := a1; y1 := a2[x← x1];

y2 := a3; z2 := a4[y ← y2];

x := sel(b, x1, x); y := sel(b, y1, y2); z := sel(b, z, z2)

42

Limits of IF-conversion

This transformation applies only if the then and else branches

• always terminate;
• never trigger run-time errors;
• have no effects observable by the remainder of the program.

Problematic example:

if y ̸= 0 then z := x/y else abort()

̸=⇒ z1 := x/y; abort(); z := sel(y ̸= 0, z1, z)

43

Implementing the selection operator

Using specific processor instructions
(conditional move, predicated instructions, etc).

Portably, when b, a1 and a2 have type bool:

sel(b, a1, a2) = b ∧ a1 ∨ ¬b ∧ a2

Portably, when a1 and a2 are integers and b = 0 or 1:

sel(b, a1, a2) = b× a1 + (1− b)× a2

sel(b, a1, a2) = a2 + b× (a1 − a2)

sel(b, a1, a2) = (−b) ∧ a1 ∨ (b− 1) ∧ a2

(If b = 0, we have b− 1 = 11 . . . 11 and −b = 00 . . . 00.
If b = 1, we have b− 1 = 00 . . . 00 and −b = 11 . . . 11.)

44

Resisting compiler optimizations

An optimizing compiler can perform “IF-conversion” itself, thus
making certain conditionals constant-time:

if b then x := a1 else x := a2 → x := sel(b, a1, a2)

But it can also introduce conditional branches to compute
arithmetic or logical expressions, such as our sel
implementations!

x := b× a1 + (1− b)× a2 → if b then x := a1 else x := a2

45

Resisting compiler optimizations

(Simon, Chisnall, Anderson, What you get is what you C: controlling side effects
in mainstream C compilers, 2018).

Experiment: 4 implementations of sel in portable C, compiled
for x86-32 by various versions of Clang.

1 u i n t 3 2 t s e l e c t u 3 2 (boo l b , u i n t 3 2 t x , u i n t 3 2 t
y)

2 {
3 r e t u r n b ? x : y ;
4 }

Listing 1: Naive selection of x or y.

for any key used by a cryptographic algorithm. Failure to
maintain time indistuishability has led to key or plaintext
recovery time and time again. This may be exploited not
just by malicious code running on the same machine as the
sensitive code, whether in smartphones [21] or virtualized
cloud environments [22–26]; but also sometimes remotely,
by protocol counterparties or by wiretappers [27–29]. Yet
it is still not possible to control such side effects in modern
C compilers today. So it is particularly difficult to control
them at the source code level, as we describe next.

2.2.1. Constant-Time Selection. Something as simple as
selecting between two variables x and y, based on a secret
selection bit b in constant time, is rigged with pitfalls.
Naively, the selection function could be written as in List-
ing 1. But we risk the generated code containing a jump. In
fact, if we compile this code for x86 with gcc and Clang
with options -m32 -march=i386, the generated code
contains a jump regardless of the optimization used. Be-
cause of branch prediction, pipeline stalls and/or attacker-
controlled cache evictions, the execution time may depend
on whether x or y is returned, leaking the secret bit b:
this is called a timing side channel vulnerability. Cryptog-
raphers must therefore come up with ingenious ways to get
a compiler to respect implicit invariants. The usual idea is
to write obfuscated code to outwit the compiler, hoping it
will not spot the trick and optimize it away. Unfortunately
this is not always reliable in practice.

TABLE 1: Constant-timeness of generated code for
ct_select_u32 with boolean condition bool b for
different Clang versions. 3indicates the code generated is
branchless; 7indicates the opposite.

VERSION 1 VERSION 2 VERSION 3 VERSION 4
inlined library inlined library inlined library inlined library

C
la

ng
3
.0 -O0 3 3 3 3 3 3 3 3

-O1 3 3 3 3 3 3 3 7
-O2 3 3 3 7 7 3 3 7
-O3 3 3 3 7 7 3 3 7

C
la

ng
3
.3 -O0 3 3 3 3 3 3 3 3

-O1 3 3 3 3 3 7 3 7
-O2 3 3 7 7 7 7 7 7
-O3 3 3 7 7 7 7 7 7

C
la

ng
3
.9 -O0 3 3 3 3 3 3 3 3

-O1 3 3 3 3 3 7 3 7
-O2 3 3 7 7 7 7 7 7
-O3 3 3 7 7 7 7 7 7

Attempts at constant-time coding are presented in List-
ing 2. The source code of ct_select_u32() is care-
fully designed to contain no branch. This sort of obfuscated
code is used in smartcard implementations and in widely-
used cryptographic libraries. We tested each of the four ver-
sions (annotated VERSION 1 to VERSION 4 in Listing 2)
by compiling them with options -m32 -march=i386 for
clang-3.0, clang-3.3, clang-3.9 and for different
optimization levels -O1, -O2, -O3. We then looked at

1 i n t c t i s n o n z e r o u 3 2 (u i n t 3 2 t x) {
2 r e t u r n (x|�x) >>31;
3 }
4 u i n t 3 2 t c t mask u32 (u i n t 3 2 t b i t) {
5 r e t u r n �(u i n t 3 2 t) c t i s n o n z e r o u 3 2 (b i t) ;
6 }
7 u i n t 3 2 t c t s e l e c t u 3 2 (u i n t 3 2 t x , u i n t 3 2 t y ,

boo l b i t /⇤ ={0 ,1} ⇤ /) {
8 / / VERSION 1
9 u i n t 3 2 t m = ct mask u32 (b i t) ;

10 r e t u r n (x&m) | (y&˜m) ;
11

12 / / VERSION 2 . Same as VERSION 1 b u t w i t h o u t
13 / / u s i n g m u l t i p l e f u n c t i o n s
14 u i n t 3 2 t m = �(u i n t 3 2 t) ((x|�x)>>31) ;
15 r e t u r n (x&m) | (y&˜m) ;
16

17 / / VERSION 3
18 s i g n e d b = 1� b i t ;
19 r e t u r n (x⇤ b i t) | (y⇤b) ;
20

21 / / VERSION 4
22 s i g n e d b = 0 � b i t ;
23 r e t u r n (x&b) | (y&˜b) ;
24

25 }
Listing 2: Constant-time selection of x or y.

TABLE 2: Constant-timeness of generated code for
ct_select_u32 with integer condition uint32_t b
for different Clang versions. 3indicates the code generated is
branchless; 7indicates the opposite.

VERSION 1 VERSION 2 VERSION 3 VERSION 4
inlined library inlined library inlined library inlined library

C
la

ng
3
.0 -O0 3 3 3 3 3 3 3 3

-O1 3 3 3 3 3 3 3 3
-O2 3 3 3 3 7 3 3 3
-O3 3 3 3 3 7 3 3 3

C
la

ng
3
.3 -O0 3 3 3 3 3 3 3 3

-O1 3 3 3 3 3 3 3 3
-O2 3 3 7 3 7 3 7 3
-O3 3 3 7 3 7 3 7 3

C
la

ng
3
.9 -O0 3 3 3 3 3 3 3 3

-O1 3 3 3 3 3 3 3 3
-O2 3 3 7 3 7 3 7 3
-O3 3 3 7 3 7 3 7 3

the code generated for each version of the function 1) in
a shared library, and 2) when inlined in the caller (e.g.
typically the case if the function is defined and called in
the same module).

We present the findings in TABLE 1. First, not all
optimization levels generate constant-time code: the com-
piler sometimes introduces a jump (refer to Listing 3 on
the following page for output). We also note that as the
compiler version increases (Clang 3.0, 3.3 and 3.9), more
implementations become insecure (i.e. non-constant time):
this is because compilers become better at spotting and
optimizing new idioms. This is a real problem because
code that is secure today may acquire a timing channel
tomorrow. More interestingly, we observe differences if we
use a single function (VERSION 2) or split its code into
several smaller functions (VERSION 1). For more tradi-
tional C code, this is never a problem; but when considering
side effects, even the smallest of changes can matter. There
are also noticable differences in shared libraries vs. inlined
code. Again, this is highly unpredictable and hard for a

3

✔ = constant-time code is generated.
✘ = a conditional branch is generated.

46

Attacks on speculative execution

Speculative execution in processors

Example: branch prediction.

load x0, [x1]

branch if x0 = 0 to L1

mul x3, x2, x3

add x4, x3, x4

branch to L2

L1: ...

Memory loads take a lot of time.

47

Speculative execution in processors

Example: branch prediction.

load x0, [x1]

branch if x0 = 0 to L1

mul x3, x2, x3

add x4, x3, x4

branch to L2

L1: ...

The processor predicts (based on previous executions) that x0
will not be zero and the branch will not be taken.

47

Speculative execution in processors

Example: branch prediction.

load x0, [x1]

branch if x0 = 0 to L1

mul x3, x2, x3

add x4, x3, x4

branch to L2

L1: ...

The processor executes the following instructions speculatively,
in a way that can be reversed if needed.
(For example, the initial values of x3 and x4 are kept somewhere.)

47

Speculative execution in processors

Example: branch prediction.

load x0, [x1]

branch if x0 = 0 to L1

mul x3, x2, x3

add x4, x3, x4

branch to L2

L1: ...

When the load terminates, the conditional branch is resolved.
If x0 is 0, the prediction was wrong. The processor rolls back the
speculative execution: the effects of the speculated instructions
are ignored (e.g. registers x3, x4 are reset to their initial values),
and execution resumes at point L1.

47

Speculative execution in processors

Example: branch prediction.

load x0, [x1]

branch if x0 = 0 to L1

mul x3, x2, x3

add x4, x3, x4

branch to L2

L1: ...

If x0 is not zero, the prediction is confirmed, and the processor
commits the actions of the speculated instructions, then
continues execution.

47

Speculative execution in processors

Many instructions can be executed speculatively:

• arithmetic and logical operations
• branches
• memory reads
• memory writes (as long as they stay in the write buffer).

The processor can backtrack on these executions by rolling back
the modified registers and the memory stores.

However, the cache state is kept, not rolled back.

48

Speculative execution in processors

Many instructions can be executed speculatively:

• arithmetic and logical operations
• branches
• memory reads (incl. accessing and updating the caches)
• memory writes (as long as they stay in the write buffer).

The processor can backtrack on these executions by rolling back
the modified registers and the memory stores.
However, the cache state is kept, not rolled back.

48

The Spectre family of attacks

Principle:

A privileged piece of code, executed speculatively,
reads memory at an address that depends on a secret.

The attacker measures the state of the cache and infers part of
the secret.

49

Spectre v1: circumventing array bounds checks

const unsigned int len = ...;

unsigned char buf[len];

int f(unsigned int idx, int table[256 * CACHE_LINE_SIZE])

{

int i;

if (idx < len)

return table[buf[idx] * CACHE_LINE_SIZE];

else

return -1;

}

Function f runs in privileged mode, e.g. within the kernel.
Parameters idx and table are controlled by the attacker.

50

Spectre v1: circumventing array bounds checks

const unsigned int len = ...;

unsigned char buf[len];

int f(unsigned int idx, int table[256 * CACHE_LINE_SIZE])

{

int i;

if (idx < len)

return table[buf[idx] * CACHE_LINE_SIZE];

else

return -1;

}

The attacker calls f several times with valid idx values (to train
branch prediction), then prepares the cache and calls f with idx

too large.

50

Spectre v1: circumventing array bounds checks

const unsigned int len = ...;

unsigned char buf[len];

int f(unsigned int idx, int table[256 * CACHE_LINE_SIZE])

{

int i;

if (idx < len)

return table[buf[idx] * CACHE_LINE_SIZE];

else

return -1;

}

The then branch of the if is executed speculatively.
The value of the byte at buf + idx leaks via the cache.
This makes it possible to read a good chunk of the kernel
memory space. 50

Protections against Spectre v1

Harden array bounds checks against speculation
(macros _nospec in the Linux kerne).

The usual access with bounds checking:

T safe_read(T * tbl, unsigned len, unsigned idx)

{

if (idx >= len) abort();

return tbl[idx];

}

51

Protections against Spectre v1

Harden array bounds checks against speculation
(macros _nospec in the Linux kerne).

Access hardened against speculation:

T safe_read_nospec(T * tbl, unsigned len, unsigned idx)

{

if (idx >= len) abort();

return tbl[sel(idx < len, idx, 0)];

}

The effect of sel(idx < len, idx, 0) is to clip the idx value
so that it is never too big during speculative execution.
During normal execution, idx < len and access takes place at
index idx, as desired.

51

Variation: circumvent the BPF static code verifier

(Schlüter, Borkmann, Krysiuk, BPF and Spectre PRISC 2022.)

r1: valid pointer to a reachable variable.
r2: aribtrary integer, controlled by the attacker.

1: if r0 != 0 goto line 3

2: r1 = r2

3: if r0 != 1 goto line 5

4: r2 = load(r1)

5: // leak the value of r2

The verifier knows that r0 cannot be both 0 and 1. Therefore,
load(r1) at line 4 is a load from a valid address.

If both conditional branches (lines 1 and 3) are predicted as not
taken, the code speculatively reads address r2.

52

Generalization: attacks by transient executions

Many kinds of transient state in processors can leak data via
timing channels.

→ Seminar by F. Piessens on 21/04.

53

Summary

Summary on timing attacks and cache attacks

Execution time is a significant source of information leaks.

These leaks are amplified by features of modern processors:
caches, speculative execution, etc.

Some (mostly cryptographic) computations can be hardened
against these attacks via constant-time programming, or
blinding, or hardware assistance (crypto coprocessors).

Some (incomplete?) protections can be found in operating
systems and in Web browsers (JavaScript execution engines).

Intel SGX enclaves are being retired, in part because they are too
vulnerable to transient execution attacks.

54

Related attacks

By observation:

• Power consumption.
• Electromagnetic emission.
• And much more → Anderson, Security Engineering, chap. 19.

By perturbation:

• Fault injection → seminar by K. Heydemann on 07/04

55

	Execution time as an information channel
	Cache memory as an information channel
	Protections against timing attacks
	Constant-time programming
	Attacks on speculative execution
	Summary

