OLLEGE
E FRANCE
1530

Language-based software security, fourth lecture

Tempus fugit :
timing attacks and cache attacks

Xavier Leroy
2022-03-31

College de France, chair of software sciences
xavier.leroy@college-de-france.fr

Execution time
as an information channel

User experience with an old Unix system

login: dmr
password: F¥¥kxk

(two seconds later...)
Login incorrect

User experience with an old Unix system

login: dmr
password: F¥¥kxk

(two seconds later...)
Login incorrect

Second attempt:

login: foo
password: *¥kkk

(immediately)
Login incorrect

Why this difference in response time?

int check_login(char * username, char * password)

{
struct passwd * userinfo = getpwnam(username) ;
if (userinfo == NULL) return O; // no user with this name
char * hash = crypt(password); // takes 2 seconds
return (strcmp(hash, userinfo->pw_password) == 0);

}

The function terminates faster if there is no account named
username than if there is one.

— Enables an attacker to easily check if a given account exists.

Checking a PIN

for (int 1 = 0; i < N; i++) {
if (input[i] != pin[i]) return false;
}

return true;

This loop takes time proportional to the number of correct digits
at the beginning of input.

— An attacker can find a N-digit PIN in time 10 N instead of 10".

Checking a PIN

An alternate implementation where the loop always runs for N
iterations:

valid = true;
for (dnt i = 0; i < N; i++) {

if (input[i] != pin[i]) valid = false;
}

return valid;

Now, the execution time is a + bn, where n is the number of
wrong digits (= number of assignments valid = false).

— An efficient attack remains possible.

Checking a PIN

Let's make the code more symmetrical by counting the number of
correct digits and the number of wrong digits.

valid = 0; invalid = O;
for (dnt i = 0; i < N; i++) {

if (input[i] != pin[i]) ++invalid; else ++valid;
}

return (invalid == 0);

Branch prediction in the processor can still cause variations in
execution time, but it's getting hard to exploit them.

Checking a PIN in constant time

The correct way to write this PIN-checking code is to use
constant-time operations only, that is, operations that run in
time independent of the values of their arguments.

d = 0;
for (int i = 0; 1 < N; i++) {
d =d | (inputl[i] = pin[il);
}
return (d == 0);

(Variable d accumulates the bits that differ between input and
password; it remains 0 if and only if there are no differences.)

RSA encryption and signature

Based on modular exponentiation:

o encryption decryption
e e

C=Me mod N C? mod N

signature verification

M S=MImod N ———"—"" s S mod N

A modulus N = pg product of two prime numbers p, g.

A secret exponent d and a public exponent e such that
demod (p—1)(g—1) =1.

The public key is (N, e).

The secret key is d or sometimes (p, g, d).

Computing modular exponentation

The “Russian peasant” algorithm for fast exponentiation:

Decompose d in bits d, ..., do (d=>",d2)
C:=1 z:=M,
fori=0 to n do

if d; then C:=C-zmod N

z:=2>mod N

done

z takes successive values M, M2, M*, M8, ..., M*" (mod N).

At the end we have C = [[{M? | d; = 1} = ME2d=1} — pd

Running time of modular exponentiation

fori=0 to n do
if d;j then C:=C-zmod N
z: =2z’ mod N

done

The running time of the loop depends on the d;, obviously:
we perform w + n + 1 modular multiplications,
where w is the Hamming weight (number of 1 bits) of the secret d.

However, knowing w doesn’t help to guess d.

Moreover, we can easily remove this dependence on w:
if d; then C:=C-zmod N else tmp:=C-zmod N

10

Running time of modular exponentiation

fori=0 to n do
if d; then C:=C-zmod N else tmp:=C-zmod N
z:=7>mod N

done

The time it takes to compute C - z mod N depends significantly on
the value of C, even more so if clever algorithms are used.

This suffices to mount attacks on RSA by observing
execution times.

1

P. Kocher's timing attack (1996)

Take k random messages Mq, ..., Mp.
Have them signed: S; = M? mod N and measure the time T;.

Guess the bits of d one after the other:

« do = 1always.

« Assume di = 1. Then, the computation of S; would start by
computing M; - M? mod N.

« Measure the times t; to compute M; - M,? mod N.
« If the t; are correlated with the T;, we do have d; = 1.
+ If there’s no correlation, we have d; = 0.

- Iterate for the following bits.

12

D. Brumley and D. Boneh's timing attack on OpenSSL (2003)

OpenSSL has a more efficient implementation of RSA:

« Uses the Chinese remainder theorem:
compute MY mod p and MY mod g, then combine the results
to obtain MY mod N (with N = pq).

 Uses Montgomery'’s representation to speed up modular
multiplications C - z mod g.

« Several multiplication algorithms, selected based on the
sizes of the arguments.

Each of these features contributes to leak more information
through execution times...

13

Execution time for Montgomery multiplication

Montgomery’s algorithm performs additional reduction steps
when the product g gets close to the modulus p or g.

£

B discontinuity when

% gmodq=0

o

= . -

g discontinuity when

€ gmodp=0

(s}

=

£

12}

c

i)

°

=]

el

o

g

%

()

ks

& . . I . .
q 2q 3q p 4q 5q

values g between 0 and 6q

(Brumley & Boneh, 2003)
14

D. Brumley and D. Boneh’s timing attack

A binary search that identifies the most significant bits of the g
factor. Once half the bits are known, Coppersmith’s algorithm
recovers the whole secret key.

1.5e+07 -
key1 ——
key 2 -
1e+07 key 3

5e+06

0.‘ A

-5e+06 -

-1e+07

Time difference in CPU cycles

-1.5e+07 b : : : :
0 50 100 150 200 250
Bits guessed of factor q

The attack can be conducted across a network connection!
15

Cache memory
as an information channel

Processor package

Core 0

L1 i-cache and d-
cache:
32 KB, 8-way,
Access: 4 cycles

L2 unified cache:
256 KB, 8-way,
Access: 11 cycles

L3 unified cache:

L3 unified cache 8 MB, 16-way,
(shared by all cores) Access: 30-40
cycles

Block size: 64 bytes
for all caches.

’ Main memory

Speed up accesses to a memory location that has been accessed
recently (temporal locality), or that is near a recently-accessed
location (spatial locality).

16

Cache attacks

The time taken by a memory read varies greatly whether a data at
a nearby location has been accessed recently.

Overall structure of a cache attach:

. Flush the cache (L1 or more) (c1flush instruction, etc)

. Execute privileged code that manipulates secret data.

1

2

3. Measure access times for several memory locations.

4. Infer which locations were accessed by the privileged code.
5

. Deduce information on the secret data.

(In step 1-, instead of emptying the cache, we can also pre-fill it with locations
that conflict with the locations we want to observe.)

(2- and 3- can take place concurrently.)

17

Cache attacks

Main memory Cache way 0

0x0000.0000 |[| F———————

0x0000.0010

0x0000.0020

0x0000.0030

0x0000.0040 SN
AR
0x0000.0050 PN Cache way 1
AN
0x0000.0060 / N]
II 4”
0x0000.0070 PPl
/o
/-
0x0000.0080 £

0x0000.0090

Note: it is not necessary to have read and write permissions on
the memory area we want to observe. We can use any memory
area that shares the same cache entries.

18

Example: normalizing a character string

Put letters in uppercase and normalize non-printable characters.

void normalize(unsigned char * s, size_t len)
{
static const unsigned char tbl[256] = "\

\0\0\0\0\O\O\O\O\O\O\O\O\O\ON\ONO\
\0\0\0\0\0\0\0\0\0\0\0\O\O\O\O\O\

IN"#$3%&> () x+,-./0123456789: ; <=>7\
@ABCDEFGHIJKLMNOPQRSTUVWXYZ [\\]~_\
¢ ABCDEFGHIJKLMNOPQRSTUVWXYZ{|}~";

for (size_t i = 0; i < len; i++) s[i] = tbl[s[il];

An example of a cache attack

get_hashed_password: a protected function that reads a
password from the keyboard, normalizes it with normalize, and
hashes it.

1.
2.

Flush the cache.

Call get_hashed_password.

Measure the time taken by normalize on inputs

"a", "b", "c", etc.

Infer the elements of the tbl array accessed by normalize

when called from get_hash_password.
(Assuming cache lines of size 1 byte.)

Deduce which letters a, b, c, etc, appear in the password.

20

28 symmetric cipher

Key
Plaintext Plaintext
ﬁ A
Add round key |[€—— w(0,3) Add round key
v 2
|_Expand key : Inverse sub bytes
g
C :
E
5 +
4 I Inverse mix cols.
Add round key w(4.7) =——{ Add round key
(=
: : Inverse sub bytes
$ El
e —
Substitutive bytes L | Inverse shift row
A s
2
=
=
3 -
& Inverse mix cols.
Add round key (36,39) —— [Add round key
= Substitutive bytes _E Inverse sub bytes
* 3
2 & | | Inverse shift row
g v 4
LI [Addround key |—— W(40.43) Add round key
A4
Ciphertext Ciphertext

(A. G. Wadday et al, 2018)

21

The AES-128 symmetric cipher

Software implementations of AES usually tabulate the
subst/shift/mix steps.

To, T1, T, T3: tables of 256 32-bit constants.

Xo, - - - , X15: the 16 bytes of the current state.
(Xp, X1, X5, X5) = To[xo] @ T1[Xs] © Ta[x10] ® T3[x15] ® Ko
(X4, X5, X5, X5) = To[Xs] @ T1[Xo] ® T2[X14] @ T3[x3] B Ky

(X5 X9, X109, X11) = To[xs] ® Ta[x13] @ T2[x2] © T3[x7] ® Ky
(X125 X435 X145 X15) = To[X12] @ Ta[xq] @ Ta[xe] @ Ts[xn] & Ks

22

Cache attack on AES

(0svik, Shamir, Tromer, Cache attacks and countermeasures: the case of AES,
2005. Ashokummar, Giri, Menezes, Highly efficient algorithms for AES key
retrieval in cache access attacks, 2016.)

(Xgs X1, X5, X5) = To[Xo] @ T1[Xs] & Ta[X10] @ Ts[x15] © Ko
(X4 X5, X6, X7) = To[Xs] @ Ta[xe] @ Toxua] © Ts[x3] @ Ky
(Xg: X9, X10, X11) = TolXs] @ Ta[x13] ® To[xo] @ Ts[x7] @ Ky
(X12: X13: X14, X15) = To[X12] @ Ta[x1] @ To[xe] © Ts[xn1] © K3

Assuming cache lines are 4 32-bit words, each access Tj[x;] “leaks”
the 4 most significant bits of x;.

First round: x = chosen text & key, hence we can recover the 4
most significant bits of each byte of the key.

23

Cache attack on AES

(0svik, Shamir, Tromer, Cache attacks and countermeasures: the case of AES,
2005. Ashokummar, Giri, Menezes, Highly efficient algorithms for AES key
retrieval in cache access attacks, 2016.)

(Xgs X1, X5, X5) = To[Xo] @ T1[Xs] & Ta[X10] @ Ts[x15] © Ko
(X4 X5, X6, X7) = To[Xs] @ Ta[xe] @ Toxua] © Ts[x3] @ Ky
(Xg: X9, X10, X11) = TolXs] @ Ta[x13] ® To[xo] @ Ts[x7] @ Ky
(X12: X13: X14, X15) = To[X12] @ Ta[x1] @ To[xe] © Ts[xn1] © K3

Assuming cache lines are 4 32-bit words, each access Tj[x;] “leaks”
the 4 most significant bits of x;.

Finer analysis of the second round lets us recover the whole key
using a small number of encryptions (10 to 1000).

23

Protections against
timing attacks

Protections against timing attacks

How can we avoid leaking information through execution time?

Various approaches:
- “Constant-time” programming.
 Prevent precise time measurements.
« Quantize execution or communication times.

- Blinding secrets with random noise.

24

Precise time measurements

Many timing attacks cannot be conducted remotely: the attacker
must run on the same machine as the attacked code.

To measure elapsed time precisely, the attacker needs

« access to a high-resolution hardware clock
(e.g. the Time Stamp Counter register on x86 processors);

« or parallel execution of two threads.

while true do To := time;
time ;= time + 1 computation to be timed;

done T := time

23]

Prevent precise time measurements

The operating system or the execution environment can:

« Prohibit access to high-resolution clocks
(e.g. block the rdtsc x86 instruction).

 Force the threads of the attacker to run on the same
processor core as the attacked code, by interleaving.

+ Schedule threads independently from execution time.

26

Scheduling based on instruction counts

(Stefan et al, Eliminating cache-based timing attacks with instruction-based
scheduling, 2013.)

fillArray(L);
if secret then for i=1ton for i=1ton+m
fillArray(H) do skip done; do skip done;
else readArray(L); x:=0
skip x:=1

With a schedule based on time slices (preemption after a fixed
time T), we terminate with x = 0 or x = 1 depending on the
running time of readArray(L), which depends on the state of the
cache.

27

Scheduling based on instruction counts

(Stefan et al, Eliminating cache-based timing attacks with instruction-based
scheduling, 2013.)

fillArray(L);
if secret then for i=1ton for i=1ton+m
fillArray(H) do skip done; do skip done;
else readArray(L); x:=0
skip x:=1

With a schedule based on instruction counts (preemption after N
instructions were executed), the final value of x is independent
from the cache state.

27

Time quantization

Add a delay at the end of computation to guarantee that it runs
in constant time Dpqy.

To := now;

fori=0 to n do
if d; then C:=C-zmod N else tmp:=C-zmod N
z:=7Z"mod N

done

D = now — Tp;

sleep(Dmax — D)

No more temporal leaks!
... at the cost of slowing down all computations.

Dmax can be hard to determine a priori.
28

Time quantization

Variation: adjust running time to an integer multiple of A.
(E.g. A =107 cycles for the Brumley-Boney attack.)

To := now;

D = now — Tp;
sleep(ceil(D/A) x A — D)

29

Time Quantization

(Askarov, Zhang, Myers, Predictive black-box mitigation of timing channels, 2010.)

Variation: adjust Dyex on the fly, following an exponential law.

To := now;

D = now — Ty;
if D > Dmax then Dmax = Dmax X (1 + 5)
else sleep(Dmax — D)

The attacker gains one bit of information each time D > Dpqx.
This happens at most one by time slice of duration (1+).
Hence, information leakage is O(log?t).

More subtle laws can be used, see Askarov et al.

30

Inject randomness in the computation so that running time is no
longer correlated with the value of the secret.

Artificial example:
checking a PIN code using a random permutation.

/! draw a random permutation S of {0,...,n — 1}
for (dnt i = 0; 1 < N; i++) {

if (input[S[i]l] '= pin[S[i]]) return false;
}

return true;

The running time for one execution only gives a lower bound on
the number of correct digits.

31

RSA with message blinding

If M is the message to be signed, we can blind it using a random

number R before modular exponentation.
d
¢ (M) =(R)-MI =R M= R-M? (mod N)

since ed mod ¢(N) = 1and R¥™W) =1 (mod N) (Euler's theorem).
Then, we can un-blind, obtaining the correct result:
S = R'-C (modN)

The time it takes to compute (R - M)¢ gives no information to the
attackers, since they choose M but not R.

32

Constant-time programming

Constant-time programming

A programming discipline to write programs that run in time
independent from secret data.

Relies on a classification of the base operations of the
programming language / of the instructions of the processor:

- Constant-time operations: same execution time regardless
of the values of the arguments of the operation and of the
state of the processor.

+ Variable-time operations: timing is sensitive to the values of
the arguments or to the processor state
(caches, branch predictors, etc).

38)

A standard classification

Constant time

Variable time

Integer + - x & | - division, modulus
arithmetic (") shifts, comparisons

Memory reads x[i] *p

and writes (%)

Conditional if while
branches && ||

(1) Some processors have variable-time integer multiplication.

(2) For writes x[i] = vand *p = v, execution time depends on x, i, p
(the accessed address) but not on v (the stored value).

34

The “constant-time” criterion

An information flow property:

A value at level H (secret) must not be used
as argument to a non-constant-time operation.

Examples:
vzl = xM + yH X zH .= xH / yH
X if x" < yM then zM := 1

X xH .= tl[iH]

85

Typing rules for constant time

In the style of the type systems for information flow of lecture #2.

Fai: 0 ap: ¢ Fai:L ay:L
Faj+ay: ¢ Fai/a; : ¢
Fb:lL Focp:ox Fcp:x Fb:lL Fc:x
Fif b then cq else ¢ : % F while b do ¢

Note: indirect flows (if b" then xt:=1 else xt:=0)are
automatically excluded; no need to trace the pc level any longer.

36

A semantics for timing leaks

We can materialize information leaks caused by
non-constant-time operations by a program transformation:

[z:=x+y] = z:=x+y
[z:=x/y] = out(x);out(y);z:=x/y
[if x<y then ¢ else ¢;] = out(x);out(y);
if x <y then [¢1] else [c;]
[while x <y do ¢ done] = out(x);out(y);
while x <y do
[c]; out(x); out(y)

done

37

Non-interference in the presence of timing leaks

same values

initial state 1 i initial state 2
for the x
program program
execution execution
(trace T;) (trace T,)

same values for the xt
final state 1 final state 2
and same traces T4 =T,

38

Programming in “constant-time” style

On secret data: no conditionals, no array indexing,
just arithmetic and bitwise operations ~ combinatorial circuits.

Example (reminder):

d = 0;
for (int i = 0; 1 < N; i++) {

if (input([i] !'= pin[i]) d = 1; X
}

return (d == 0);

39

Programming in “constant-time” style

On secret data: no conditionals, no array indexing,
just arithmetic and bitwise operations ~ combinatorial circuits.

Example (reminder):

d = 0;
for (int i = 0; 1 < N; i++) {

d =d | (inputl[i] ~ pin[il); ¢
}

return (d == 0);

39

Avoiding arrays and indexing

N-bit integers can replace arrays of N Booleans.
Example: a DES S-box = a function 6 bits — 4 bits.

The usual tabulated implementation:

int tbl[64] = { /* 64 4-bit integers */ };
int sbox(int x) { return tbl([x]; }

Tabulation using 4 64-bit integers:

uint64_t tbl0 = ..., tbll = ..., tbl2 = ..., tbl3 = ...;

int sbox(int x) {
return (tbl0 >> x & 1) << 0 | (tbll >> x & 1) << 1 |
(tbl2 >> x & 1) << 2 | (tbl3 >> x & 1) << 3;

3

(Constant-time... but much slower!)
40

IF-conversion: turning conditionals into selections

Base case:
if b then x:=a; else x:=a; = x:=sel(b,a,a3)
if b then x:=a; = Xx:=sel(b,aq,x)
The sel(b, a1, a;) operator

- evaluates b, a; et ay;
* returns the value of a4 if b is true;

+ returns the value of a, if b is false;

in time independent from the value of b (“constant time”).

A

IF-conversion: turning conditionals into selections

More generally:

- Execute both then and else branches, renaming the
variables that are assigned.

- Select the final values for the variables using operator sel.

Example:

if b then (x:=ay;y :=ay) else (y:=0a3;Z:=ay)
= X1:=1;, V1= Gz[X(—X1];
Y2 :=Q3; Zp = au[y < Ya|;

X :=sel(b,x1,X); y :=sel(b,y1,y2); z:=sel(b,z,2,)

42

Limits of IF-conversion

This transformation applies only if the then and else branches
- always terminate;
- never trigger run-time errors;
+ have no effects observable by the remainder of the program.

Problematic example:

if y # 0 then z:=Xx/y else abort()
#= z:=x/y; abort(); z:=sel(y #0,z,2)

43

Implementing the selection operator

Using specific processor instructions
(conditional move, predicated instructions, etc).

Portably, when b, a; and a, have type bool:
sel(b,ai,a3) =bAa;V-bAa;
Portably, when a; and a, are integers and b =0 or 1:

(b G1,Gz)—b><a1+(1—)Xaz
sel(b a1,0;) = a; + b x (a1 — ay)

sel(b,a1,az) (b)/\a1 \/(b—1)/\02

(fb=0,wehaveb—-1=11...1and —b = 00...00.
Ifb=1,wehaveb—1=00...00and —b=11...11.)

44

Resisting compiler optimizations

An optimizing compiler can perform “IF-conversion” itself, thus
making certain conditionals constant-time:

if b then x:=a; else x:=a; — x:=sel(b,ay,a;)

But it can also introduce conditional branches to compute
arithmetic or logical expressions, such as our sel
implementations!

x:=bxa+(1—b)xa, — if b then x:=a; else X :=q

45

Resisting compiler optimizations

(Simon, Chisnall, Anderson, What you get is what you C: controlling side effects
in mainstream C compilers, 2018).

Experiment: 4 implementations of sel in portable C, compiled
for x86-32 by various versions of Clang.

VERSION_1 VERSION_2 VERSION_3 VERSION_4
inlined | library | inlined | library | inlined | library | inlined | library

-00
-01
-02
-03
-00
-01
-02

Clang 3.0

Clang 3.3

-00
-01
-02
-03

Clang 3.9

RRNNUXXNNNNANN

RXNUXXNUXXN\Y

B N A S AN RN
RXX IR XXX XX

SASYNNSNSNNNNAN
AN AN A NN
XN UXXNUXXN\Y
RXXNUXXXYNNANYN

v/ = constant-time code is generated.

X =a conditional branch is generated.
46

Attacks on speculative execution

Speculative execution in processors

Example: branch prediction.

load x0, [x1]
branch if x0 = 0 to L1
mul x3, x2, x3
add x4, x3, x4
branch to L2
L1:

Memory loads take a lot of time.

47

Speculative execution in processors

Example: branch prediction.

load x0, [x1]
branch if x0 = 0 to L1
mul x3, x2, x3
add x4, x3, x4
branch to L2
L1:

The processor predicts (based on previous executions) that x0
will not be zero and the branch will not be taken.

47

Speculative execution in processors

Example: branch prediction.

load x0, [x1]
branch if x0 = 0 to L1
mul x3, x2, x3
add x4, x3, x4
branch to L2
L1:

The processor executes the following instructions speculatively,

in a way that can be reversed if needed.

(For example, the initial values of x3 and x4 are kept somewhere.)

47

Speculative execution in processors

Example: branch prediction.

load x0, [x1]
branch if x0 = 0 to L1
mul x3, x2, x3
add x4, x3, x4
branch to L2
L1:

When the load terminates, the conditional branch is resolved.

If x0 is 0, the prediction was wrong. The processor rolls back the
speculative execution: the effects of the speculated instructions
are ignored (e.g. registers x3, x4 are reset to their initial values),
and execution resumes at point L1.
47

Speculative execution in processors

Example: branch prediction.

load x0, [x1]
branch if x0 = 0 to L1
mul x3, x2, x3
add x4, x3, x4
branch to L2
L1:

If x0 is not zero, the prediction is confirmed, and the processor

commits the actions of the speculated instructions, then
continues execution.

47

Speculative execution in processors

Many instructions can be executed speculatively:

- arithmetic and logical operations
 branches
* memory reads

« memory writes (as long as they stay in the write buffer).

The processor can backtrack on these executions by rolling back
the modified registers and the memory stores.

48

Speculative execution in processors

Many instructions can be executed speculatively:

- arithmetic and logical operations
« branches
« memory reads (incl. accessing and updating the caches)

« memory writes (as long as they stay in the write buffer).

The processor can backtrack on these executions by rolling back
the modified registers and the memory stores.
However, the cache state is kept, not rolled back.

48

The Spectre family of attacks

Principle:

A privileged piece of code, executed speculatively,
reads memory at an address that depends on a secret.

The attacker measures the state of the cache and infers part of
the secret.

49

Spectre v1: circumventing array bounds checks

const unsigned int len = ...;

unsigned char buf[len];

int f(unsigned int idx, int table[256 * CACHE_LINE_SIZE])

{
int 1i;
if (idx < len)
return table[buf[idx] * CACHE_LINE_SIZE];
else
return -1;
}

Function £ runs in privileged mode, e.g. within the kernel.

Parameters idx and table are controlled by the attacker.

50

Spectre v1: circumventing array bounds checks

const unsigned int len = ...;

unsigned char buf[len];

int f(unsigned int idx, int table[256 * CACHE_LINE_SIZE])

{
int 1i;
if (idx < len)
return table[buf[idx] * CACHE_LINE_SIZE];
else
return -1;
}

The attacker calls £ several times with valid idx values (to train
branch prediction), then prepares the cache and calls £ with idx
too large.

50

Spectre v1: circumventing array bounds checks

const unsigned int len = ...;

unsigned char buf[len];

int f(unsigned int idx, int table[256 * CACHE_LINE_SIZE])

{
int 1i;
if (idx < len)
return table[buf[idx] * CACHE_LINE_SIZE];
else
return -1;
}

The then branch of the if is executed speculatively.
The value of the byte at buf + idx leaks via the cache.

This makes it possible to read a good chunk of the kernel

memory space. %

Protections against Spectre v1

Harden array bounds checks against speculation
(macros _nospec in the Linux kerne).

The usual access with bounds checking:

T safe_read(T * tbl, unsigned len, unsigned idx)

{
if (idx >= len) abort();
return tbl[idx];

51

Protections against Spectre v1

Harden array bounds checks against speculation
(macros _nospec in the Linux kerne).

Access hardened against speculation:

T safe_read_nospec(T * tbl, unsigned len, unsigned idx)

{

if (idx >= len) abort();

return tbl[sel(idx < len, idx, 0)];
}

The effect of sel (idx < len, idx, 0) isto clip the idx value
so that it is never too big during speculative execution.

During normal execution, idx < len and access takes place at
index idx, as desired.
51

Variation: circumvent the BPF static code verifier

(Schliiter, Borkmann, Krysiuk, BPF and Spectre PRISC 2022.)

r1: valid pointer to a reachable variable.
r2: aribtrary integer, controlled by the attacker.

1
23
3:
4
5

if r0 !'= 0 goto line 3
rl = r2

if r0 !'= 1 goto line 5
r2 = load(rl)

// leak the value of r2

The verifier knows that r0 cannot be both 0 and 1. Therefore,
load(r1) atline 4 is a load from a valid address.

If both conditional branches (lines 1 and 3) are predicted as not
taken, the code speculatively reads address r2.

52

Generalization: attacks by transient executions

Many kinds of transient state in processors can leak data via
timing channels.
— Seminar by F. Piessens on 21/04.

Spectre v1 RIDL
2017-5753& 2018-12127%
Bounds Check Bypass Microarchitectural Load Port Data Sampling (MLPDS)
Spectre v2
5 § 2017-57152 G
Branch Target Injection i Data Sampling | Memory 2019-11091@
SpectreRSBI25)ret2spec!26] Return Mispredict 2018-15572& (MDSUM)
Meltdown Fallout
. 2018-12126@
Rogue Data Cache Load EIAAES Microarchitectural Store Buffer Data Sampling (MSBDS)
Spectre-NG v3a 2018-3640¢ Spectre SWAPGSI34I[35][36] 2019-1125¢
RIDL/ZombieLoad v2
Spectre-NG v4 2018-3639¢ § — 2019-11135¢
Speculative Store Bypass Transactional Asynchronous Abort (TAA)!
RIDL/CacheOut
Foreshadow ey . - (411421143) 2020-0549%
L1 Terminal Fault, LITF L1D Eviction Sampling (L1DES)
Spectre-NG RIDL
Y 2020-0548%
Lazy FP State Restore 2016:26002 Vector Register Sampling (VRS)[411142]
Spectre-NG v1.1 Load Value Injection (LVI)[44][45][46]47) 2020-0551%
2018-36932
Bounds Check Bypass Store Take a Wayl481149]
Spectre-NG v1.2 CROSSTalk
Read-only Protection Bypass{d (RPB) Special Register Buffer Data Sampling (SRBDS) 2020-0543¢%
Foreshadow-0S YRR [52](53](54]
L1 Terminal Fault (L1TF) Blindsidel%5)
Foreshadow-VMM 2018-3646 CVE-2022-0001%
i Branch History Injection (BHI)
L1 Terminal Fault (L1TF) vy Inj (BHY CVE-2022-0002¢
RIDL/ZombieLoad

i 2018-12130¢
Microarchitectural Fill Buffer Data Sampling (MFBDS)

53]

Summary

Summary on timing attacks and cache attacks

Execution time is a significant source of information leaks.

These leaks are amplified by features of modern processors:
caches, speculative execution, etc.

Some (mostly cryptographic) computations can be hardened
against these attacks via constant-time programming, or
blinding, or hardware assistance (crypto coprocessors).

Some (incomplete?) protections can be found in operating
systems and in Web browsers (JavaScript execution engines).

Intel SGX enclaves are being retired, in part because they are too
vulnerable to transient execution attacks.

54

Related attacks

By observation:

- Power consumption.
+ Electromagnetic emission.

« And much more — Anderson, Security Engineering, chap. 19.

By perturbation:

« Fault injection — seminar by K. Heydemann on 07/04

55)

	Execution time as an information channel
	Cache memory as an information channel
	Protections against timing attacks
	Constant-time programming
	Attacks on speculative execution
	Summary

