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A simple world. . .

Memory

Program input
output

Execution proceeds as described by the program code.

The code is not modified from the outside (integrity).

Data in memory are as written by the program (integrity) and not
accessible from the outside (confidentiality).

Interactions with the outside world take place only via explicit
input/output operations.
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The real world. . .

OS

App App

Time sharing, multiprocessors, multicore processors:
several processes share memory and devices.

Virtualization: several operating system share memory and
devices.

Scripts, macros, extensions, plug-ins, applets: several programs
coming from different origins execute within the same process
(e.g. the Web browser).
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The real world. . .

OS

App App

OS

App App

Hypervisor

Time sharing, multiprocessors, multicore processors:
several processes share memory and devices.

Virtualization: several operating system share memory and
devices.

Scripts, macros, extensions, plug-ins, applets: several programs
coming from different origins execute within the same process
(e.g. the Web browser).
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The real world. . .
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Time sharing, multiprocessors, multicore processors:
several processes share memory and devices.

Virtualization: several operating system share memory and
devices.

Scripts, macros, extensions, plug-ins, applets: several programs
coming from different origins execute within the same process
(e.g. the Web browser). 3



The isolation problem

OS

App AppX

X X

How to ensure that a program executes without interference from
other programs “at the same level” or “above”?

Without interference ≈ integrity of the code and its execution;
integrity and confidentiality of data.
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Sandboxing vs. Shielded execution

Sandboxing:

An untrusted program is isolated to prevent it from interfering
with other programs.

Shielded execution:

A trusted, critical program (OS, cryptographic library, . . . )
is isolated to prevent interference from other programs.
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Hardware isolation



Sharing memory between several programs

OS App 1 App 2

Time sharing, multiprocessors: memory is shared between
multiple programs and the OS.

How can we prevent a program from reading or writing in the
data or the code of another program? of the OS?
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Segmentation (Burroughs B5000, 1961)

App 1

segment 1

App 2

segment 2

A segment = a pair (base address, size).

Translation logical address (app) → physical adress (RAM):
if 0 ≤ logical address < taille
then base adress + logical adress
else segmentation fault

One segment for each process. Segments are pairwise disjoint.
(+ For OS use, one segment that covers all of the RAM).
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System mode, user mode

start system
call return clock

interruptsystem
mode

user
mode

The processor runs in one of two modes: system and user.

Privileged instructions, such as segment register updates, run
only in system mode.

Dedicated instructions enable user processes to enter system
mode by jumping to a fixed entry point within the system.

8



Several segments per program (Multics, 1969)

Code Data Lib Code DataLib

App 1 App 2

Each process can access several segments: code, data, stack, . . .

A readonly code segment can be shared between processes
→ shared libraries.

A writable data segment can be shared between processes
→ interprocess communication.
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Memory paging (IBM S/360-67, 1966)

App 1 App 2

page table page table

Memory is divided into pages (typically 4 kilobytes each).

For each process, a page table maps virtual memory pages to
physical memory pages.

The pages of a process may not be contiguous in physical
memory.
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Memory paging

Each page has access rights: read, write, execution.

Code pages can be read on demand from an executable file.

Data pages can be swapped (written to disk and evicted) when we
run out of physical memory.

The instructions that control the page table are privileged.

Complex handling of page tables, involving hardware circuits,
microcode, and the OS.
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Virtualization (IBM S/370, 1970; cloud computing, 2002)

OS

App App

OS

App App

Hyperviseur

Run an OS not on real hardware, but on a virtual machine
emulated by a software system called an hypervisor:

• The OS runs in user mode.
• Its privileged instructions are intercepted by the hypervisor.
• The hypervisor emulates the components of a real machine

(page tables, buses, devices, . . . ).
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Enclaves (Arm TrustZone, 2004; Intel SGX, 2015)

OS

Enclave AppX

X X
x

A process started by / communicating through an OS,
but protected against OS compromises using cryptographic
hardware mechanisms:

• Encrypted memory pages
• Well-delimited entry points
• Can only run signed executables
• Cryptographic attestation mechanisms.
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Summary on hardware and OS isolation

Strengths:

• Guarantees that memory spaces are separated.
• Applications cannot circumvent the access controls

implemented by the OS.
• Enables many forms of virtualization and resource control.

Weaknesses:

• High costs for inter-process communications, for starting a
process, for starting a virtual machine.

• Inflexible.

Can we think of lighter, more flexible mechanisms?
in particular to isolate scripts within one application?
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Software fault isolation



Principle: Inline Reference Monitors

The reference monitor =
the software sub-system that implements access control.

Two typical implementations:

1. The monitor is separate and isolated,
typically in the kernel of the OS.

2. The monitor is inlined in the application code,
typically during compilation, or by machine code rewriting.
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Application: data segmentation

We emulate a segmented architecture by transforming the code
for each data read or write.

In pseudocode:

x = *p; → if (p >= seg.size) abort();

x = *(seg.base + p);

In machine code:

cmp r1, rsize

load r0, [r1] → jae abort

add rtmp, rbase, r1

load r0, [rtmp]

(rbase, rsize, rtmp are reserved registers)
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Remplacing bounds checks by masking

In the case of an out-of-bound access, instead of aborting, it is
safe to access a random address within the segment.

Typically, we access the address modulo the segment size:

x = *p; → x = *(seg.base + p % seg.size);

If the segment size is a power of 2, this is equivalent to masking
with seg.mask = seg.size− 1

x = *p; → x = *(seg.base + p & seg.mask);

and rtmp, r1, rmask

load r0, [r1] → add rtmp, rbase, rtmp

load r0, [rtmp]
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When do we rewrite memory accesses?

During compilation from the source language or during machine
code generation from an intermediate representation (LLVM, etc).

Example: WebAssembly and its 4 Gb addressing space.

Problem: compilation is part of the Trusted Computing Base.

By rewriting machine code after compilation.

Problem: need to disassemble and reassemble the code;
need to find enough free registers.
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Verifying the transformation a posteriori

Check the machine code to make sure the translation was
applied and all memory accesses are protected:

• disassembly, code analysis
• but no need to rewrite nor to reassemble
• and no need to find free registers.

Example: Native Client (NaCl).

Compilation +
transformation

transformed
x86 code

× Execution

Verif

browser (TCB)

(Yee et al, Native Client: A sandbox for portable, untrusted x86 native code, 2009).
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Verifying branches

glue transformed code

API X

Ensure that execution stays within the transformed code.

(Exception: we can call functions from the host application via “glue”
code residing at the beginning of the code segment.)

Branches with constant offsets: static verification.

Computed branches, function returns: run-time segmentation.

and rtmp, r0, rcodemask

jump r0 → add rtmp, rcodebase, rtmp

jump r0
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Verifying branch targets

The target of a branch must not fall in the middle of an
instrumented sequence:

and rtmp,r1,rmask add rtmp,rbase,r1 load r0,[rtmp]

✔ ✘ ✘ ✔

The target of a branch must not fall in the middle of a processor
instruction:

48 b8 e9 00 00 00 ff 00 00 00

movabsq $0xff000000e9,%rax

jmp pc - 0x1000000

✔ ✘
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Verifying branch targets

Check that instructions (in blue) and instruction sequences
produced by the transformation (in red) are fully contained in
blocks of 2N bytes.

nop nop nop

2N 2N 2N

(Can always be achieved by adding nop during code generation.)

Set the N low bits of rcodemask to 0 so that all computed
branches go to multiple of 2N.

and rtmp, r0, rcodemask

jump r0 → add rtmp, rcodebase, rtmp

jump r0
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Summary on software fault isolation

An interesting example of isolation by code transformation,
requiring no hardware support.

Main use: sandboxing of complex libraries in sensitive
applications (the Firefox browser).

Decent performance: ≈ +20% in running time
(≈ +10% if only memory writes are protected but not reads).

Security is hard to guarantee → formal verification of the verifier.
(Morrisset et al, Rocksalt: better, faster, stronger SFI for the x86, 2012).
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Language-based isolation



Language-based isolation

An approach that emerged in the 1990’s in response to the needs
of mobile code:

• untrusted pieces of code,
• downloaded over the Internet,
• automatically executed in a browser, a mail reader, a word

processor, etc.

Two components to this approach:

• a safe programming language and execution environment
(strong typing, either dynamically or statically enforced);

• restricted software interface (API), limiting the interactions
between mobile code and execution environment.
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A precursor: Email with a mind of its own

(N. Borenstein, EMail With A Mind of Its Own: The Safe-Tcl Language for Enabled
Mail, 1991, 1997)

E-mail attachments that are programs (scripts): interactive form,
animated greetings card, etc.
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The Safe-TCL language and API

The TCL scripting language with a modified API:

• Interaction only via the TK graphical toolkit or the terminal.

• No access to files nor to system commands.

• Exception: can send e-mail or print a document, after
interactive confirmation by the user.
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Java applets (1995)

Java programs compiled to JVM code, downloaded on the Web,
and executed in the browser.
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Java applets (1995)

Efficient execution thanks to JVM bytecode verification
(≈ static type-checking) followed by interpretation with few
run-time checks.

Same API for applets and for local applications.
(Write once, run anywhere.)

Access control integrated in the API:
permissions are determined by the code origin (local / applet)
and the cryptographic signatures it may carry.
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JavaScript (1995)

Initially: yet another scripting language, dynamically typed,
interpreted, to make Web pages more interactive.

Since 2004: the implementation language for “AJAX” applications
running in the browser.

Today: one of the most widely used languages,
with excellent JIT compilers.

Security model: restricted API + same-origin policy.
29



Berkeley Packet Filter (BPF, 1992; eBPF, 2014)

Code for a register-based virtual machine that can be injected in
OS kernels (BSD, Linux) for network filtering, OS monitoring, etc.

Strongly controlled access to the data structures of the kernel.

Safe execution guaranteed by static analysis of the code:
value analysis, memory access safety, termination.
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Safe execution

Two main approaches:

1. defensive execution (run-time tests) [JavaScript, TCL]

2. static verification (before execution) [Java, BPF]
+ “offensive” execution (fewer run-time tests)

Orthogonal to interpreted / compiled.

Orthogonal to the format of mobile code:
source code or compiled code for a virtual machine.
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Securing an API

Restrict the functionalities available to mobile code:

• Expose only functions that are not dangerous.
• Hide things using visibility modifiers

(in Java: private, protected, package-local).
• Hide things using type abstraction. (→ 5th lecture)

Add access control to API functions.

• Example: Java’s SecurityManager.
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Java API security



The Java capability model

Each method is associated with a set of capabilities, also called
permissions:

Files: read, write, execute, delete
(depending on the file path)

Network: opening an outgoing connection, accepting an
incoming connection
(depending on the name and port of the other host)

Runtime: stop the program, load native code, define a new
class loader, define a new security manager, . . .

GUI: accessing the clipboard, the event queue, . . .

(And much more).
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Associating capabilities with methods

The capabilities are set by the class loader that loaded the code
of the method prior to execution. Typically:

• Code loaded from local files: all permissions.

• Code loaded from the Web: no access to files or to the
runtime; network connections only with the host where the
code comes from.

• Additional capabilities can be granted to codes that carry a
trusted cryptographic signature.
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Access control

Before performing a risky operation, API methods call the
checkPermission method (or its variants checkFile,
checkAccept, etc) from the SecurityManager class.

If all calling methods have the requested permission,
checkPermission returns normally and access is granted.

If one of the calling methods lacks the requested permission,
checkPermission raises an exception and access is denied.
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Stack inspection

This permission check is called (call) stack inspection.

It enables an API to behave differently depending on whether it
acts on behalf of trusted code (e.g. the browser) or of untrusted
code (an applet).

Browser Applet

API

accessing a local file

Browser → API:
access granted.

Applet → API:
access denied.

Applet → Browser → API:
access denied.
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Privilege amplification

An API may need to perform a dangerous operation regardless of
the context of the call.

Example: to display text in a GUI, we may need to load a font
from a local file, even if we’re called from an applet.
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Privilege amplification

The font loading code can use doPrivileged to execute with its
own permissions, even if it is called from less privileged code.

void loadFontFile(String name) {

// validation of the parameter
AccessController.doPrivileged(new PrivilegedAction() {

public Object run() {

// open and read the font file
return null;

}

});

}
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The access control algorithm

For each pending method call in the call stack,
from most recent to least recent:

Let M be the method being executed in this call.

Check if M has the requested permission.
If not, throw SecurityException

Check if M amplified its privileges.
If so, access is granted.

Check if current thread inherited the requested permission.
If not, throw SecurityException

If so, access is granted.

39



The “confused deputy” problem

An untrusted principal coaxes a trusted principal into performing
a sensitive operation on its behalf.

Stack inspection protects the callee from the caller.
But sometimes the caller is fooled by the callee. . .

Example: (Abadi & Fournet, 2003)

class Trusted {

// all permissions
static void main() {

String s =

Applet.tempfile();

File.delete(s);

}

}

class Applet {

// no permissions
static String tempfile() {

return "/etc/passwd";

}

}
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The “confused deputy” problem

Another example based on subclassing:
(Abadi & Fournet, 2003)

class Trusted {

// all permissions
String tempfile = "/tmp/file";

abstract void proceed();

static void main() {

File.create(tempfile);

try {

proceed();

} finally {

File.delete(tempfile);

}

}

}

class Applet extends Trusted {

// no permissions
void proceed() {

tempfile = "/etc/passwd";

}

}
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From the call stack to execution history

(M. Abadi & C. Fournet, Access Control based on Execution History, 2003.)

Idea: base access control not on the methods currently being
called, but on all the methods that have been called so far.

The machine state is extended with C = the current permissions.

Method call obj.m(. . .)

C := !C ∩ permissions(obj.m)

Privilege amplification grant(P) { B }

let C0 = !C in C := !C ∪ P; B; C := !C ∩ C0
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Access control policies based on execution history

Knowing the execution history enables finer security policies
such as

An applet can read a local file or open a network
connection, but not both.

Opening a file removes the “network” permission.
Opening a network connection removes the “files” permission.
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Summary on the Java API

An interesting idea: access control based on the calling context.

An imperfect mechanism: stack inspection.

Alternatives to stack inspection, not used in practice.

No API for interacting between the applet and the Web
document. . .
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JavaScript API security



The JavaScript security model

Dynamically-typed language + restricted APIs:

• DOM: interaction with the document (displayed Web page)
• XmlHttpRequest: direct connection to HTTP servers
• Cookies, Web Storage: limited local data storage
• etc.

Protects rather well the browser and the OS from malicious pages
and scripts.

Little isolation between scripts and between scripts and pages.

45



Same-origin policy (SOP)

The origin of a page or an iframe =
the (protocol, host, port) part of its URL.

https︸ ︷︷ ︸
protocol

:// www.example.com︸ ︷︷ ︸
host

: 8443︸ ︷︷ ︸
port

/about/index.html

A script or a DOM element has the same origin as the containing
page.

Same-origin policy: a script can only

• inspect or modify a DOM element with the same origin;
• open an XmlHttpRequest connection to the originating host

(other servers can be authorized via the CORS protocol);
• access Web cookies with same domain and same path.
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SOP does not prevent CSRF (Cross-Site Request Forgery)

Hyperlinks <a>, HTML forms, included elements <img>, <script>
are not restricted by the same-origin policy.

A malicious script can insert in the document an image loaded
from an arbitrary address:

<img width="0" height="0"

src="https://vulnerable.service.com/email/change

?newmail=attacker@evil.net">

If the user has an active session on vulnerable.service.com,
the authentication cookies are transmitted and the request to
change the e-mail address is honored.
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Some other SOP vulnerabilities

Hosts are identified by name, not by IP addresses
→ can be attacked by DNS manipulations.

A script can change the “host” part of the page origin
(but only to a super-domain).

// Before : test .example.com
document.domain = "example.com";

// After : example.com

If the attacker can access to the test site test.example.com,
they can now access the production site example.com . . .
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JavaScript: a very dynamic language

A function can be redefined after the fact:

f = function(arg) { /* new body */ };

The methods of an object can be changed after creation:

obj.meth = function(arg) { /* new body */ };

Likewise for the prototype of an object and its methods:

obj.prototype = new MyClass();

Object.prototype.__defineSetter__(’x’, myfunc);

This enables attacks by one script on another.
This can also be used to add protections to the API or a script!
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Adding security protections to API functions

(Phung, Sands, Chudnov, Lightweight Self-Protecting JavaScript, 2009).

Idea: early in the page, load a script that redefines API functions
to add access controls.

<html>

<head> <script src="./policy.js"></script> </head>

<body>

<!−− page contents , unchanged −−>
</body>

</html>
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Redefining API functions

Example: prevent windows.open from opening more than 5
pop-up windows.

function () {

var orig = windows.open;

var num_windows = 0;

var wrapped = function () {

if (++num_windows >= 5) abort();

orig();

}

windows.open = wrapped;

} ();

Note: orig and num_windows have scope the block of the
anonymous function; they are not accessible anywhere else.

51



Redefinition in aspect-oriented programming style

var wrap = function(pointcut, Policy) {

// Override the prototype of the object if available
var source = (typeof(pointcut.target.prototype) != undefined)

? pointcut.target.prototype : pointcut.target;

var method = pointcut.method;

// Save reference to the original method
var original = source[method];

// Weave the policy with the original method
var aspect = function() {

var invocation = {object:this, args:arguments};

return Policy.apply(invocation.object,

[{arguments:invocation.args, method:method,

proceed:function(){

return original.apply(invocation.object, invocation.args);}}]);

}

// Redefine the method
source[method] = aspect;

return aspect;

}
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Vulnerabilities in the redefinition

(Magazinius, Phung, Sands, Safe wrappers and sane policies for self protecting
JavaScript, 2012.)

return Policy.apply(invocation.object,

[{arguments:invocation.args, method:method,

proceed:function(){

return original.apply(invocation.object, invocation.args);}}]);

The attacker can recover the original non-secured method, e.g.
by redefining Function.apply or the setter for proceed.

var recover_builtin;

Object.prototype.__defineSetter__(’proceed’,

function(o) { recover_builtin = o });

(See Magazinius et al for possible counter-measures.)
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Protecting a script from the rest of the page

(K. Bhargavan, A. Delignat-Lavaud, S. Maffeis, Defensive JavaScript: building and
verifying secure Web components, 2014.)

<html><body>

<script src="attack1.js"></script>

<script src="sensitive.js"></script>

<script src="attack2.js"></script>

</body></html>

Context: a script implements a sensitive operation (end-to-end
encryption, signature, interaction with a password manager, etc).
It can coexist with malicious scripts in the same Web page.
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Example: authenticated messaging

var f = function(msg) {

var key = "...";

var xhr = new XMLHttpRequest();

xhr.open("GET", "https://logging.example.com", false);

xhr.send(Crypto.HMAC(key, msg) + "," + msg);

}

The key signature key is included in the script.

It cannot be read by other scripts in the same page because the
scope of key is local to the api function.

However f.toSource() returns the text of the function (type
string), from which attackers can extract the key!
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Hiding the source of the function

var f = (function () {

var g = function(msg) {

var key = "...";

// send the message
}

return function(msg){ return g(msg); }

}) ();

Now, f.toSource() reveals only the wrapper
function(msg){return g(msg);} but not function g.
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Calls to external functions

...

var key = "...";

var xhr = new XMLHttpRequest();

xhr.open("GET", "https://logging.example.com", false);

xhr.send(Crypto.HMAC(key, msg) + "," + msg);

...

The attacking script can redefine Crypto.HMAC to leak the key:

var hmac = Crypto.HMAC; var leaked_key;

Crypto.HMAC =

function (k,m) { leaked_key = k; return hmac(k,m); };

→ we must reimplement all the crypto locally in function g.
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Calls to external functions

...

var key = "...";

var xhr = new XMLHttpRequest();

xhr.open("GET", "https://logging.example.com", false);

xhr.send(Crypto.HMAC(key, msg) + "," + msg);

...

The attacking script can redefine the open method of
XMLHttpRequest to inspect the call stack and recover the code
of function g:

stackwalk = function() {

var apisource = stackwalk.caller.toSource(); ...

}
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A protected code

Separate the function that contains the keys and does the crypto
from the function that communicates.
var f_internal = (function (){

var hmac = function(key,msg){ /* reimplementation of HMAC */ }

var g = function(msg){

var key = "...";

return (hmac(key,msg) + "," + msg);

}

return function(msg){return g(msg);}

})();

var f = function (msg) {

var mac = f_internal(msg);

var xhr = new XMLHttpRequest();

xhr.open("GET", "https://logging.example.com", false);

xhr.send(mac);

} 59



Defensive JavaScript

(K. Bhargavan, A. Delignat-Lavaud, S. Maffeis, op. cit.)

A subset of JavaScript, verified by static type-checking:

• Strict lexical scoping.
• Strict static typing.
→ Objects and arrays are initialized at creation-time.

• No implicit coercions (toString), no getters/setters.
• Memory heap separation: no objects are shared between

defensive code and outside world.
→ Entry points in defensive code use only base types

e.g. string → string.
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Summary of JavaScript security

Not designed for security.

Ineffective same-origin policy.

One language feature (static scoping) gives isolation guarantees;
many other features destroy isolation.
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Capability machines



Two converging visions

Fine-grained segmentation:

• Each array, record, etc, has its own memory segment.
• A reference = a segment; a pointer = a pair (segment, offset).
• Automatic bounds checking at every access
→ no more buffer overflow problems!

Capabilities for accessing memory:

• Reference / pointer = right to access a memory area.
• No access (read, write, execute) possible

unless the program has the corresponding capability.
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Abstract view of a memory capability

capability = ⟨
R, W, X, etc︷ ︸︸ ︷

permissions,base, size, offset ⟩

Gives access rights to the adresses [base,base + size[

Reading a 32-bit word:

load32(⟨p, b, t,d⟩) =
if R ∈ p ∧ d + 4 ≤ t
then read 4 bytes at address b + d
else error
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Abstract view of a memory capability

Pointer arithmetic:

offset(⟨p, b, t,d⟩, δ) =
if {R, W, X} ∩ p ̸= ∅ ∧ 0 ≤ d + δ ≤ t
then ⟨p, b, t,d + δ⟩ else error

Restricting the size / the permissions of a capability:

subseg(⟨p, b, t,d⟩, p′, t′ ) =
if p′ ⊆ p ∧ d + t′ ≤ t
then ⟨p′, b + d, t′, 0⟩ else error

Decrease property: in user mode, a program cannot construct
capabilities that are stronger than the capabilities given in the
initial registers and memory state.
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Concrete representation of a memory capability

Guarded pointers (Carter, Keckler, Dally, 1994):

Hardware Support for Fast Capability-based Addressing

Nicholas P. Carter Stephen W. Keckler William J. Dally
npcarter@ai .mit. edu skeckler@ai .mit.edu billdl?ai.mit.edu

Artificial Intelligence Laboratory
Laboratory for Computer Science

Massachusetts Institute of Technology
545 Technology Square
Cambridge, MA 02139

Abstract

Traditional methods ofproviding protection in memory systems
do so at the cost of increased context switch time anaYor increased
storage torecordaccessperrnissionsforprocesses. With theadvent
of computers that support cycle-by-cycle multithreading, protection
schemes that increase the time to pe~orm a context switch are
unacceptable, but protecting unrelated processes from each other
is still necessary l~such machines are to be used in non-,trush”ng
environments.

This paper examines guarded pointers, a hardware technique
which uses tagged 64-bit pointer objects to implement capabiliV-
based addressing. Guarded pointers encode a segment descriptor
into the upper bits of every pointe~ eliminating the indirection
andrelatedpe~ormance penalties associated with traditicmalim-
plementations of capabilities. Allprocesses share asingle54-bit
virtual address space, and access is limited to the data that can
be referenced through the pointers that a process has been issued.
Onlyonelevelofaddress translationisrequired toperjormamem-
ory reference. Sharing data between processes is ejlcient, and
protection states are de~ned to allow fast protected subsyst{?m calls
and create unforgeable data keys.

1 Introduction

Memory system designers must provide security without sacrificing
efficiency and flexibility. Objects must beprotected from modifi-
cation by unauthorized processes, and user programs must not be
allowed toaffect theexecution oftrusted system programs, It must
be possible to share data between processes in a safe and efficient
manne~ merely providing private data spaces or globally accessible
data spaces is insufficient. Inefficient mechanism must also be
provided to change protection domains (the set of objects that can
be referenced) when entering a subsystem.

The current trend towards the use of multithreading as a method
of increasing the utilization of execution units makes traditional

*‘the research described in this paper was supported by the AdvancedResearch
Projects Agency and monitored by the Air Force Elecrromc Sysrems Division under
contract F19628-92-C-0045.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
ASPLOS W 10/94 San Jose, California USA
0 1994 ACM 0-89791 -660-3/94/0010..$3.50
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~
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Figure 1: Format of a guarded pointer. A guarded pointer iden-
tities a byte in the virtual address space, the segment containing
that byte, and the set of operations permitted on the segment. The
permission field determines what operations may be performed us-
ing the pointer, and the segment length field separates the address
into a fixed segment field and a variable offset field by specifying
the base-2 logarithm of the length of the segment containing the
address.

security schemes undesirable, particularly if context switches may
occur on a cycle-by-cycle basis. Traditional security systems have
anon-zero context switch time as loading the protection domain for
the new context may require installing new address translations or
protection table entries.

A number of multithreaded systems such as Alewife [2], and
Tera [3] have avoided this problem by requiring that all threads
which are simultaneously loaded share the same address space and
protection domain. This is sufficient for simultaneous execution
of threads from a single user program, but precludes interleaving
threads from different protection domains, eliminating a potential
source of concurrency.

This paper presents guarded pointers, a mechanism that pro-
vides efficient protection and sharing of data. Guarded pointers
are an implementation of capabilities [12] that encode permission
and segmentation information within tagged pointer objects. A
guarded pointer may reside in a general purpose register or in mem-
ory, eliminating the need for special storage for capabilities. Be-
cause memory may be accessed directly using a guarded pointer,
higher performance may be achieved than with traditional imple-
mentations of capabilities, as table lookups to translate capabilities
to virtual addresses are not required.

Figure 1 shows the format of a guarded pointer. A single poinrer
bit is added to each 64-bit data word. Fifty-four bits contain an
address, while the remaining ten bits specify the set of operations
that may be performed using the pointer (4 bits) and the length of
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Figure 2.1: 128-bit CHERI Concentrate capability representation: 64-bit address and metadata
in addressable memory and 1-bit tag out of band.

2.2 Capabilities
CHERI capabilities are twice the width of the native integer pointer type of the baseline ar-
chitecture: there are 128-bit capabilities on 64-bit platforms, and 64-bit capabilities on 32-bit
platforms. Each capability consists of an integer address of the natural size for the architecture
(e.g., 32 or 64 bit), and also additional metadata that is compressed in order to fit in the remain-
ing 32 or 64 bits of the capability (Figure 2.1). In addition, they are associated with a 1-bit
validity “tag” whose value is maintained in registers and memory by the architecture. Each
element of the capability contributes to the protection model, and is enforced by hardware:

Validity tag The tag tracks the validity of a capability; if invalid, the capability cannot be
used for load, store, instruction fetch, or other operations. It is still possible to extract
fields from an invalid capability, including its address. Capability-aware instructions
maintain the tag (if desired) as capabilities are loaded and stored, and as capability fields
are accessed, manipulated, and used – as long as the rules described in Section 2.3 are
followed.

Bounds The lower and upper bounds describe the portion of the address space to which the
capability authorizes loads, stores, and/or instruction fetches.

Permissions The permissions mask controls how the capability can be used – for example,
by restricting loading and storing of data and/or capabilities or by prohibiting instruction
fetch.

Object type If this is not equal to �1, the capability is “sealed” (with this object type) and
cannot be modified or dereferenced. Sealed capabilities can be used to implement opaque
pointer types. This is the foundation on which controlled non-monotonicity can be used
to support fine-grained, in-address-space compartmentalization.

When stored in memory, valid capabilities must be naturally aligned – i.e., at 64-bit or 128-
bit boundaries, depending on capability size – as that is the granularity at which in-memory tags
are maintained (Section 3.1). Partial or complete overwrites with data, rather than a complete
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Ensuring the integrity of capabilities

Just like pointers, capabilities must be stored in memory, e.g. to
build linked lists:

x1 x2 x3

What prevents the program to forge a capability by overwriting
bytes in memory?

x1 ⟨RW, 100, 16, 0⟩ x2

x1 ⟨RW, 100, 80, 0⟩ x2

overwriting a byte to increase the size
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capability arithmetic
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DRAM controller tag cache

off-chip DRAM
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CHERI-RISC-V core

PTE tag extensions
coherency network

Figure 3.1: CHERI-RISC-V extensions to a processor core and memory hierarchy.

• DDC transformation of capability-unaware loads and stores implicitly introduces a fur-
ther addition in effective address calculation, which may impact the critical path.

• Some aspects of CHERI benefit from data-dependent exceptions or other behavior – for
example, in implementing a page-table capability dirty bit, or exceptions on an attempt to
store a tagged capability to a page not supporting capabilities – which may impact some
current microarchitectural design choices.

Overall, however, CHERI has been designed to avoid changing fundamental design choices
in current architectures and microarchitectures: essential elements such as pipeline structure,
memory subsystem designs including caches, MMUs, and so on, retain their current structure.

3.1 Tag Controllers and Tag Caches
Today, widely used DRAM and memory subsystems do not support additional out-of-band
metadata storage. While extending the pipeline, register files, and caches to include tags is
straightforward with CHERI, as we are careful to adopt the same cache consistency properties
for tags as for the data they protect, DRAM tag storage has an impact across the System-on-
Chip.

In early prototyping, we utilized a straightforward tag table: memory was partitioned, al-
lowing a small reserved (and protected) portion to be set aside to hold tags for the remainder. A
tag controller, affine to the memory controller, is responsible for presenting a tagged-memory
abstraction to the remainder of the memory subsystem, along with a tag cache to exploit spatial
locality to improve performance. Analysis showed that while this performed well, it introduced
substantial additional DRAM traffic due to notably different locality properties for tags and the
lines of data they protect.

We therefore proposed a hierarchical tag table able to exploit the variable density of as-
serted tags across pages of DRAM [7]. In this model, higher levels in the table now indicate
the presence of tags in contiguous regions of memory represented by lower levels of the table.
If no bit is present in a higher level of the table, then any corresponding regions in lower levels

Add one bit (65th or 129th bit) to every register and every memory
word. This tag bit says whether a capability is valid.

• Tag set to 1 by the instructions that produce capabilities
(offset, subseg, etc).

• Tag set to 0 by all other instructions
(arithmetic, logical, memory writes to a sub-word, etc).
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Protecting data with capabilities

Each variable, each dynamically-allocated block (malloc) can be
placed in “its” memory area, disjoint from any other, with
automatic bounds checking at every access.

int f() {
char b[80]; // b = ⟨RW, 1000, 80, 0⟩
int ok = 0; // &ok = ⟨RW, 1080, 4, 0⟩
char * p = malloc(1024); // p = ⟨RW, 4000, 1024, 0⟩
gets(b);

...

}

In particular, no assignment b[i] = . . . can modify ok, even if
the corresponding memory areas are adjacent
→ the call to gets(b) is safe!
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Programming one’s memory allocator

#define HEAPSIZE 1000000

static char heap[HEAPSIZE];

static int next = 0;

void * malloc(size_t sz) {
if (next + sz >= HEAPSIZE) return NULL;

void * p = subseg(heap + next, RW, sz);

next += sz;

return p;

}

The pointer returned by malloc only gives permission to access
elements next, . . . , next+ sz− 1 of array heap.

To make the allocated block inaccessible other than via this
pointer, it suffices to hide the heap array from clients of malloc.

69



Protecting code with capabilities

Using subseg, we can seal a code pointer, turning its access
rights from RX to E (as in Enter).

A sealed E pointer gives no access rights to the memory area. It
only enables a CALL instruction to jump to the corresponding
code address.

The code being called is granted RX permissions on the memory
area.

code

R0 = ⟨E, b1, t1, 0⟩

Before CALL R0:

PC = ⟨RX, b0, t0,d0⟩
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Protecting code with capabilities

Using subseg, we can seal a code pointer, turning its access
rights from RX to E (as in Enter).

A sealed E pointer gives no access rights to the memory area. It
only enables a CALL instruction to jump to the corresponding
code address.

The code being called is granted RX permissions on the memory
area.

code

R0 = ⟨E, b1, t1, 0⟩

After CALL R0:

PC = ⟨RX, b1, t1,d1⟩

No pointer arithmetic on E capabilities
→ no jumping “in the middle” of the code of a function!
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Making data private to a piece of code

The sealed code area can contain a RW capability to a data area.
If this data area is not visible to the caller, it is private to the
sealed code.

E
code

RW
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Making data private to a piece of code

Example: a monotonically increasing counter (in pseudo-asm).

// Code area RX // Data area RW

next: r1 = load(data) counter: .word 0

r0 = load(r1)

if r0 = MAX_INT: abort

r0 = r0 + 1

store(r1, r0)

r1 = 0 // avoid leaking the data capability!

return r0

data: .word counter

A client having only an E capability on next cannot modify
counter directly, but only by calling the next function.
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Procedural or object encapsulation

This kind of encapsulation of private data within code is
expressed in many high-level languages using lexical scoping of
variable bindings.
int next(void) { static int counter = 0; return ++counter; }

let next =

let counter = ref 0 in fun () -> incr counter; !counter

class Counter {

private int counter = 0;

public int next() { return ++counter; }

}

Capability machines can enforce this encapsulation even if the
attacker does not respect lexical scoping.
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Summary on capability machines

The hope: lightweight, fine-grained isolation (like software) but
100% reliable (like hardware).

A fairly old idea (Dennis & Van Horn, 1966).

A commercial failure (Intel iAPX 432, 1981).

Renewed interest with the CHERI architecture (U. Cambridge,
2016) and the ARM Morello processor (2022).

An open question: which capabilities are needed to achieve full
isolation for high-level programming languages?
(e.g. A. Lippeveldts (2019) proposes linear capabilities to isolate the stack.)

Interesting connections with separation logic.
(Georges et al, Cerise: program verification on a capability machine in the

presence of untrusted code, preprint, 2021.) 74
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