OLLEGE
E FRANCE
1530

C
D

Language-based software security, third lecture

Software isolation

Xavier Leroy
2022-03-24

College de France, chair of software sciences
xavier.leroy@college-de-france.fr

A simple world...
<—— input
Program P
— output

Memory

Execution proceeds as described by the program code.
The code is not modified from the outside (integrity).

Data in memory are as written by the program (integrity) and not
accessible from the outside (confidentiality).

Interactions with the outside world take place only via explicit
input/output operations.

The real world...

App | | App

0S

Time sharing, multiprocessors, multicore processors:
several processes share memory and devices.

The real world...

App | | App App | | App

0S oS

] Hypervisor \

Time sharing, multiprocessors, multicore processors:
several processes share memory and devices.

Virtualization: several operating system share memory and
devices.

The real world...

App | | App App | | App

script
[script

0S oS

] Hypervisor \

Time sharing, multiprocessors, multicore processors:
several processes share memory and devices.

Virtualization: several operating system share memory and
devices.

Scripts, macros, extensions, plug-ins, applets: several programs
coming from different origins execute within the same process

(e.g. the Web browser).

The isolation problem

App =

App

<
Y

How to ensure that a program executes without interference from
other programs “at the same level” or “above”?

Without interference =~ integrity of the code and its execution;
integrity and confidentiality of data.

Sandboxing vs. Shielded execution

Sandboxing:

An untrusted program is isolated to prevent it from interfering
with other programs.

Shielded execution:

A trusted, critical program (OS, cryptographic library, ...)
is isolated to prevent interference from other programs.

Hardware isolation

Sharing memory between several programs

0S App 1 App 2

Time sharing, multiprocessors: memory is shared between
multiple programs and the OS.

How can we prevent a program from reading or writing in the
data or the code of another program? of the 0S?

Segmentation (Burroughs B5000, 1961)

App 1 App 2
\\ segment 1\\ /segment 2 /
1 AN 4 /4

A segment = a pair (base address, size).

Translation logical address (app) — physical adress (RAM):
if 0 < logical address < taille
then base adress + logical adress
else segmentation fault

One segment for each process. Segments are pairwise disjoint.
(+ For OS use, one segment that covers all of the RAM).

System mode, user mode

user
mode 4 system 4 ' clock
/ \ / \
SN call VBT _interrupt
sys'éem / 1 / 1
mode

The processor runs in one of two modes: system and user.

Privileged instructions, such as segment register updates, run
only in system mode.

Dedicated instructions enable user processes to enter system
mode by jumping to a fixed entry point within the system.

Several segments per program (Multics, 1969)

Each process can access several segments: code, data, stack, ...
A readonly code segment can be shared between processes
— shared libraries.

A writable data segment can be shared between processes

— interprocess communication.

Memory paging (IBM S/360-67, 1966)

App 1 App 2

page table page table

Memory is divided into pages (typically 4 kilobytes each).

For each process, a page table maps virtual memory pages to
physical memory pages.

The pages of a process may not be contiguous in physical
memory.

10

Memory paging

Each page has access rights: read, write, execution.
Code pages can be read on demand from an executable file.

Data pages can be swapped (written to disk and evicted) when we
run out of physical memory.

The instructions that control the page table are privileged.

Complex handling of page tables, involving hardware circuits,
microcode, and the OS.

1

Virtualization (1BM S/370, 1970; cloud computing, 2002)

App | | App App | | App

0S 0S

] Hyperviseur \

Run an OS not on real hardware, but on a virtual machine
emulated by a software system called an hypervisor:

« The OS runs in user mode.
« Its privileged instructions are intercepted by the hypervisor.

« The hypervisor emulates the components of a real machine
(page tables, buses, devices, ...).

12

Enclaves (Arm TrustZone, 2004; Intel SGX, 2015)

x

b
o
©

Enclave
» 4

)\

| B |

A process started by / communicating through an OS,
but protected against OS compromises using cryptographic
hardware mechanisms:

- Encrypted memory pages

« Well-delimited entry points

« Can only run signed executables
« Cryptographic attestation mechanisms.

13

Summary on hardware and OS isolation

Strengths:

+ Guarantees that memory spaces are separated.

- Applications cannot circumvent the access controls
implemented by the OS.

 Enables many forms of virtualization and resource control.

Weaknesses:

« High costs for inter-process communications, for starting a
process, for starting a virtual machine.

« Inflexible.

Can we think of lighter, more flexible mechanisms?
in particular to isolate scripts within one application?

14

Software fault isolation

Principle: Inline Reference Monitors

The reference monitor =
the software sub-system that implements access control.

Two typical implementations:

1. The monitor is separate and isolated,
typically in the kernel of the OS.

2. The monitor is inlined in the application code,
typically during compilation, or by machine code rewriting.

15

Application: data segmentation

We emulate a segmented architecture by transforming the code
for each data read or write.

In pseudocode:

X = *p; N if (p >= seg.size) abort();

x = *(seg.base + p);
In machine code:

cmp rl, rsize

load r0, [r1] — jae abort
add rtmp, rbase, rl
load r0, [rtmp]

(rbase, rsize, rtmp are reserved registers)

16

Remplacing bounds checks by masking

In the case of an out-of-bound access, instead of aborting, it is
safe to access a random address within the segment.

Typically, we access the address modulo the segment size:
X = *p; — x = *(seg.base + p % seg.size);

If the segment size is a power of 2, this is equivalent to masking

with seg.mask = seg.size — 1

X = *p; — x = *(seg.base + p & seg.mask);

and rtmp, rl, rmask
load r0, [ri] — add rtmp, rbase, rtmp
load r0, [rtmp]

17

When do we rewrite memory accesses?

During compilation from the source language or during machine
code generation from an intermediate representation (LLVM, etc).

Example: WebAssembly and its 4 Gb addressing space.

Problem: compilation is part of the Trusted Computing Base.

By rewriting machine code after compilation.

Problem: need to disassemble and reassemble the code;
need to find enough free registers.

18

Verifying the transformation a posteriori

Check the machine code to make sure the translation was
applied and all memory accesses are protected:

« disassembly, code analysis
+ but no need to rewrite nor to reassemble
« and no need to find free registers.

Example: Native Client (NaCl).

|

Compilation + | transformed . l
. f Execution | !
transformation x86 code | :
| Q |

! Verif |

| |

| |

| |

browser (TCB)

(Yee et al, Native Client: A sandbox for portable, untrusted x86 native code, 2009).

Verifying branches

AP| = TN ﬁ%»

| glue | transformed code |

N

Ensure that execution stays within the transformed code.

(Exception: we can call functions from the host application via “glue”
code residing at the beginning of the code segment.)

Branches with constant offsets: static verification.

Computed branches, function returns: run-time segmentation.

and rtmp, r0O, rcodemask
jump rO — add rtmp, rcodebase, rtmp
jump rO

20

Verifying branch targets

The target of a branch must not fall in the middle of an
instrumented sequence:

and rtmp,rl,rmask

add rtmp,rbase,rl

load r0, [rtmp]

v X

b 4

v

The target of a branch must not fall in the middle of a processor

instruction:

movabsq $0xf£000000e9, %rax

48 b8

e9 00 00 00 f££f| 00 00 00

/4 jmp pc - 0x1000000

v) 4

21

Verifying branch targets

Check that instructions (in blue) and instruction sequences
produced by the transformation (in red) are fully contained in
blocks of 2V bytes.

nop|nop nop
e]

b b b

(Can always be achieved by adding nop during code generation.)

Set the N low bits of rcodemask to 0 so that all computed
branches go to multiple of 2V,

and rtmp, r0O, rcodemask
jump r0 = add rtmp, rcodebase, rtmp
jump rO0

Summary on software fault isolation

An interesting example of isolation by code transformation,
requiring no hardware support.

Main use: sandboxing of complex libraries in sensitive
applications (the Firefox browser).

Decent performance: =~ +20% in running time
(=~ +10% if only memory writes are protected but not reads).

Security is hard to guarantee — formal verification of the verifier.
(Morrisset et al, Rocksalt: better, faster, stronger SFI for the x86, 2012).

23

Language-based isolation

Language-based isolation

An approach that emerged in the 1990’s in response to the needs
of mobile code:

« untrusted pieces of code,
- downloaded over the Internet,

+ automatically executed in a browser, a mail reader, a word
processor, etc.

Two components to this approach:

- a safe programming language and execution environment
(strong typing, either dynamically or statically enforced);

- restricted software interface (API), limiting the interactions
between mobile code and execution environment.

24

A precursor: Email with a mind of its own

(N. Borenstein, EMail With A Mind of Its Own: The Safe-Tcl Language for Enabled
Mail, 1991, 1997)

E-mail attachments that are programs (scripts): interactive form,
animated greetings card, etc.

rﬂ Safe—Tcl window .win1

»»> Untrusted program running in Safe-Tcl Interpreter <<<
Girl Scout Coockies For Sale!

Hello! My three daughters are ALL sslling Girl Scout Cookiss again this year. |4
You can use this message to find out shout each kind of cookie, using the arrows
to order as many boxes as you would Like.

L4

Juliettes Show description | Show picture | # of boxes ordered: 0 —
Samoas Show description| Show picture | # of hoxes ordered:
Thin_Mints Show description | Show picture | # of boxes ordered:
Do-3i-d Show iption| Show picture| # of boxes ordered:
Trefoils Show description | Show picture | # of boxes ordered:
Chalet_Cremes Show description | Show picture | # of boxes ordered:
Tagalongs Show description| Show picture | # of boxes ordered:

Click here to see and hear my Girl Scout daugmersl

o

]

Cl

]

Cl

\le\ll/\'l:l/\lLr\ll/\llf\

All Done - - Order cookies and exill Total cost: § 0 .00

Quit - - Exit without ordering cnnkiesl

23]

The Safe-TCL language and API

The TCL scripting language with a modified API:
« Interaction only via the TK graphical toolkit or the terminal.
» No access to files nor to system commands.

 Exception: can send e-mail or print a document, after
interactive confirmation by the user.

26

Java applets (1995)

Java programs compiled to JVM code, downloaded on the Web,
and executed in the browser.

ECULAR EXPRESSIONS™

nce, Optics & %;'ou 2

27

Java applets (1995)

Efficient execution thanks to JVM bytecode verification
(= static type-checking) followed by interpretation with few
run-time checks.

Same API for applets and for local applications.
(Write once, run anywhere.)

Access control integrated in the API:
permissions are determined by the code origin (local / applet)
and the cryptographic signatures it may carry.

28

JavaScript (1995)

Initially: yet another scripting language, dynamically typed,
interpreted, to make Web pages more interactive.

Since 2004: the implementation language for “AJAX” applications
running in the browser.

Today: one of the most widely used languages,

with excellent JIT compilers.

Security model: restricted APl + same-origin policy. i

Berkeley Packet Filter (BPF, 1992; eBPF, 2014)

A -Metiics
+ @, - Histograms eBPF
eBPF - Events

WNeBPE
v * L@J VFS chempr

Code for a register-based virtual machine that can be injected in
0S kernels (BSD, Linux) for network filtering, OS monitoring, etc.

Strongly controlled access to the data structures of the kernel.

Safe execution guaranteed by static analysis of the code:
value analysis, memory access safety, termination.

30

Two main approaches:

1. defensive execution (run-time tests) [JavaScript, TCL]

2. static verification (before execution) [Java, BPF]
+ “offensive” execution (fewer run-time tests)

Orthogonal to interpreted / compiled.

Orthogonal to the format of mobile code:
source code or compiled code for a virtual machine.

31

Securing an API

Restrict the functionalities available to mobile code:

- Expose only functions that are not dangerous.
+ Hide things using visibility modifiers
(in Java: private, protected, package-local).

+ Hide things using type abstraction. (— 5th lecture)

Add access control to API functions.

« Example: Java's SecurityManager.

32

Java API security

The Java capability model

Each method is associated with a set of capabilities, also called
permissions:

Files: read, write, execute, delete
(depending on the file path)

Network: opening an outgoing connection, accepting an
incoming connection
(depending on the name and port of the other host)

Runtime: stop the program, load native code, define a new
class loader, define a new security manager, ...

GUI: accessing the clipboard, the event queue, ...
(And much more).

38)

Associating capabilities with methods

The capabilities are set by the class loader that loaded the code
of the method prior to execution. Typically:

» Code loaded from local files: all permissions.

» Code loaded from the Web: no access to files or to the
runtime; network connections only with the host where the
code comes from.

- Additional capabilities can be granted to codes that carry a
trusted cryptographic signature.

34

Access control

Before performing a risky operation, APl methods call the
checkPermission method (or its variants checkFile,
checkAccept, etc) from the SecurityManager class.

If all calling methods have the requested permission,
checkPermission returns normally and access is granted.

If one of the calling methods lacks the requested permission,
checkPermission raises an exception and access is denied.

85

Stack inspection

This permission check is called (call) stack inspection.

It enables an API to behave differently depending on whether it
acts on behalf of trusted code (e.g. the browser) or of untrusted

code (an applet).

Browser

Applet

NI

API

i

accessing a local file

Browser — API:
access granted.

Applet — APL:
access denied.

Applet — Browser — API:
access denied.

36

Privilege amplification

An API may need to perform a dangerous operation regardless of
the context of the call.

Example: to display text in a GUI, we may need to load a font
from a local file, even if we're called from an applet.

37

Privilege amplification

The font loading code can use doPrivileged to execute with its
own permissions, even if it is called from less privileged code.

void loadFontFile(String name) {
/] validation of the parameter
AccessController.doPrivileged(new PrivilegedAction() {
public Object run() {
/| open and read the font file
return null;

B;

38

The access control algorithm

For each pending method call in the call stack,
from most recent to least recent:

Let M be the method being executed in this call.

Check if M has the requested permission.
If not, throw SecurityException

Check if M amplified its privileges.
If so, access is granted.

Check if current thread inherited the requested permission.
If not, throw SecurityException
If so, access is granted.

39

The “confused deputy” problem

An untrusted principal coaxes a trusted principal into performing
a sensitive operation on its behalf.

Stack inspection protects the callee from the caller.
But sometimes the caller is fooled by the callee...

Example: (Abadi & Fournet, 2003)
class Trusted { class Applet {
[/ all permissions [l no permissions
static void main() { static String tempfile() {
String s = return "/etc/passwd";
Applet.tempfile(); 3
File.delete(s); }
}
3

40

The “confused deputy” problem

Another example based on subclassing:

class

Trusted {

/] all permissions
String tempfile = "/tmp/file";
abstract void proceed();

static void main() {
File.create(tempfile);
try {

}

}

proceed();
finally {
File.delete(tempfile);

(Abadi & Fournet, 2003)

class Applet extends Trusted {
/! no permissions
void proceed() {
tempfile = "/etc/passwd";

}

41

From the call stack to execution history

(M. Abadi & C. Fournet, Access Control based on Execution History, 2003.)

Idea: base access control not on the methods currently being
called, but on all the methods that have been called so far.

The machine state is extended with C = the current permissions.

Method call obj.m(...)
C :=!CNpermissions(obj.m)
Privilege amplification grant(P) { B }

let Co=!C in C:=ICUP; B; C:=1CNCy

42

Access control policies based on execution history

Knowing the execution history enables finer security policies
such as

An applet can read a local file or open a network
connection, but not both.

Opening a file removes the “network” permission.
Opening a network connection removes the “files” permission.

43

Summary on the Java API

An interesting idea: access control based on the calling context.
An imperfect mechanism: stack inspection.
Alternatives to stack inspection, not used in practice.

No API for interacting between the applet and the Web
document...

A

JavaScript API security

The JavaScript security model

Dynamically-typed language + restricted APIs:

+ DOM: interaction with the document (displayed Web page)
« XmlHttpRequest: direct connection to HTTP servers
 Cookies, Web Storage: limited local data storage
. etc.
Protects rather well the browser and the OS from malicious pages
and scripts.

Little isolation between scripts and between scripts and pages.

45

Same-origin policy (SOP)

The origin of a page or an iframe =
the (protocol, host, port) part of its URL.

https :// www.example.com : 8443 /about/index.html
—— N~~~

protocol host port

A script or a DOM element has the same origin as the containing
page.

Same-origin policy: a script can only

« inspect or modify a DOM element with the same origin;

« open an XmlHttpRequest connection to the originating host

(other servers can be authorized via the CORS protocol);

- access Web cookies with same domain and same path.

46

SOP does not prevent CSRF (Cross-Site Request Forgery)

Hyperlinks <a>, HTML forms, included elements , <script>
are not restricted by the same-origin policy.

A malicious script can insert in the document an image loaded
from an arbitrary address:
<img width="0" height="0"
src="https://vulnerable.service.com/email/change

?newmail=attacker@evil.net">

If the user has an active session on vulnerable.service.com,
the authentication cookies are transmitted and the request to
change the e-mail address is honored.

47

Some other SOP vulnerabilities

Hosts are identified by name, not by IP addresses
— can be attacked by DNS manipulations.

A script can change the “host” part of the page origin
(but only to a super-domain).

/| Before: test.example.com

document .domain = "example.com";
/| After: example.com
If the attacker can access to the test site test.example. com,

they can now access the production site example.com...

48

JavaScript: a very dynamic language

A function can be redefined after the fact:

f = function(arg) { /*new body*/ };

The methods of an object can be changed after creation:

obj.meth = function(arg) { /*new body*/ };

Likewise for the prototype of an object and its methods:

obj.prototype = new MyClass();
Object.prototype.__defineSetter__(’x’, myfunc);

This enables attacks by one script on another.
This can also be used to add protections to the API or a script!

49

Adding security protections to API functions

(Phung, Sands, Chudnov, Lightweight Self-Protecting JavaScript, 2009).

Idea: early in the page, load a script that redefines API functions
to add access controls.

<html>
<head> <script src="./policy.js"></script> </head>
<body>
<!-- page contents, unchanged -->
</body>

</html>

50

Redefining API functions

Example: prevent windows . open from opening more than 5
pop-up windows.

function () {
var orig = windows.open;
var num_windows = 0;
var wrapped = function () {
if (++num_windows >= 5) abort();

orig();
X
windows.open = wrapped;
}O;

Note: orig and num_windows have scope the block of the
anonymous function; they are not accessible anywhere else.

51

Redefinition in aspect-oriented programming style

var wrap = function(pointcut, Policy) {
/| Override the prototype of the object if available
var source = (typeof(pointcut.target.prototype) != undefined)
7 pointcut.target.prototype : pointcut.target;
var method = pointcut.method;
/| Save reference to the original method
var original = source[method];
/| Weave the policy with the original method
var aspect = function() {
var invocation = {object:this, args:arguments};
return Policy.apply(invocation.object,
[{arguments:invocation.args, method:method,
proceed: function(){
return original.apply(invocation.object, invocation.args);}}1);
}
/I Redefine the method
source [method] = aspect;
return aspect;

52

s in the redefinition

(Magazinius, Phung, Sands, Safe wrappers and sane policies for self protecting
JavaScript, 2012.)

return Policy.apply(invocation.object,
[{arguments:invocation.args, method:method,
proceed:function(){
return original.apply(invocation.object, invocation.args);}}]1);

The attacker can recover the original non-secured method, e.g.
by redefining Function.apply or the setter for proceed.

var recover_builtin;
Object.prototype.__defineSetter__(’proceed’,
function(o) { recover_builtin = o });

(See Magazinius et al for possible counter-measures.)

53]

Protecting a script from the rest of the page

(K. Bhargavan, A. Delignat-Lavaud, S. Maffeis, Defensive JavaScript: building and
verifying secure Web components, 2014.)

<html><body>
<script src="attackl.js"></script>
<script src="sensitive.js"></script>
<script src="attack2.js"></script>
</body></html>

Context: a script implements a sensitive operation (end-to-end
encryption, signature, interaction with a password manager, etc).
It can coexist with malicious scripts in the same Web page.

54

Example: authenticated messaging

var f = function(msg) {

var key = "...";
var xhr = new XMLHttpRequest();

xhr.open("GET", "https://logging.example.com", false);
xhr.send(Crypto.HMAC(key, msg) + "," + msg);

The key signature key is included in the script.

It cannot be read by other scripts in the same page because the
scope of key is local to the api function.

However f.toSource () returns the text of the function (type
string), from which attackers can extract the key!

55)

Hiding the source of the function

var £ = (function () {
var g = function(msg) {

var key = "...";
/| send the message
}
return function(msg){ return g(msg); }
H 0O

Now, f.toSource () reveals only the wrapper
function(msg) {return g(msg);} but not function g.

56

Calls to external functions

var key 500" g
new XMLHttpRequest();
xhr.open("GET", "https://logging.example.com", false);

var xhr

xhr.send(Crypto.HMAC(key, msg) + "," + msg);

The attacking script can redefine Crypto.HMAC to leak the key:

var hmac = Crypto.HMAC; var leaked_key;
Crypto.HMAC =
function (k,m) { leaked_key = k; return hmac(k,m); };

— we must reimplement all the crypto locally in function g.

57

Calls to external functions

var

var

xhr.

xhr.

key = "...";

xhr = new XMLHttpRequest();

open("GET", "https://logging.example.com", false);
send(Crypto.HMAC(key, msg) + "," + msg);

The attacking script can redefine the open method of
XMLHttpRequest to inspect the call stack and recover the code
of function g:

stackwalk = function() {

var

}

apisource = stackwalk.caller.toSource();

58

A protected code

Separate the function that contains the keys and does the crypto
from the function that communicates.

var f_internal = (function (){
function(key,msg){ /* reimplementation of HMAC */ }

var hmac =
var g = function(msg){
var key = "...";
return (hmac(key,msg) + "," + msg);
I
return function(msg){return g(msg);}
»O;

var f = function (msg) {
var mac = f_internal (msg);
var xhr = new XMLHttpRequest();
xhr.open("GET", "https://logging.example.com", false);

xhr.send(mac) ;
59

Defensive JavaScript

(K. Bhargavan, A. Delignat-Lavaud, S. Maffeis, op. cit.)

A subset of JavaScript, verified by static type-checking:

- Strict lexical scoping.

« Strict static typing.
— Objects and arrays are initialized at creation-time.
+ No implicit coercions (toString), no getters/setters.

« Memory heap separation: no objects are shared between
defensive code and outside world.
— Entry points in defensive code use only base types

e.g. string — string.

60

Summary of JavaScript security

Not designed for security.
Ineffective same-origin policy.

One language feature (static scoping) gives isolation guarantees;
many other features destroy isolation.

61

Capability machines

Two converging visions

Fine-grained segmentation:
- Each array, record, etc, has its own memory segment.
- Areference = a segment; a pointer = a pair (segment, offset).

- Automatic bounds checking at every access
— no more buffer overflow problems!
Capabilities for accessing memory:

+ Reference / pointer = right to access a memory area.

+ No access (read, write, execute) possible
unless the program has the corresponding capability.

62

Abstract view of a memory capability

R, W, X, etc

capability = (permissions, base, size, offset)
Gives access rights to the adresses [base, base + size|

Reading a 32-bit word:

load32({p,b,t,d)) =
fREpAd+4&<t
then read 4 bytes at address b + d
else error

63

Abstract view of a memory capability

Pointer arithmetic:

offset((p,b,t,d), §) =
if {R,WX}Np#DAN0<d+d<t
then (p,b,t,d + ¢) else error

Restricting the size / the permissions of a capability:

subseg({p,b,t,d), p’, t') =
ifp CpAd+t <t
then (p’,b +d,t’, 0) else error

Decrease property: in user mode, a program cannot construct
capabilities that are stronger than the capabilities given in the
initial registers and memory state.

64

Concrete representation of a memory capability

Guarded pointers (Carter, Keckler, Dally, 1994):
Pointer Segment

Tag Length (L) Address
[1] 4vits | 6bits | 54 bits]
Permissi | 1
Bits i "
[54-Lbits ! Lbits |

Segment Offset

The CHERI architecture (U. Cambridge, 2016):

I

H_)
Bey

Aupiea
Ha-1

bounds compressed relative to address

2
3

bounds

perms ‘ ‘ otype

64-bit address

full-precision address

Aynqedes
ug-8zL

65

Ensuring the integrity of capabilities

Just like pointers, capabilities must be stored in memory, e.g. to
build linked lists:

0 1% |

Bl

What prevents the program to forge a capability by overwriting
bytes in memory?

| x1 [(RW,100, 16, 0)

overwriting a byte to increase the size

1
[[RW-i00:80.0] > [|

66

A tag for valid capabilities

CHERI-RISC-V core ‘

capability arithmetic

H H
L1 I-cache ‘ I L1 D-cache
H H

capability load/store

L2 cache

i
coherency network

H

i
off-chip DRAM ‘

CHERI-RISC-V core PTE tag extensions

new registers:
PCC, DDC, CSRs

merged integer &
capability registers

capability exceptions I

Add one bit (65th or 129th bit) to every register and every memory
word. This tag bit says whether a capability is valid.

- Tag set to 1 by the instructions that produce capabilities
(offset, subseg, etc).
 Tag set to 0 by all other instructions

(arithmetic, logical, memory writes to a sub-word, etc). o

Protecting data with capabilities

Each variable, each dynamically-allocated block (malloc) can be
placed in “its” memory area, disjoint from any other, with
automatic bounds checking at every access.

int £ {
char b[80]; // b = (RW,1000, 80, 0)
int ok = 0; // &ok = (RW,1080,4,0)
char * p = malloc(1024); // p = (RW,4000,1024,0)
gets(b);

}

In particular, no assignment b[i] = ... can modify ok, even if

the corresponding memory areas are adjacent
— the call to gets(b) is safe!

68

Programming one’s memory allocator

#define HEAPSIZE 1000000
static char heap[HEAPSIZE];

static int next = 0;

void * malloc(size_t sz) {
if (next + sz >= HEAPSIZE) return NULL;
void * p = subseg(heap + next, RW, sz);

next += sz;

return p;
}
The pointer returned by malloc only gives permission to access
elements next, ..., next + sz — 1 of array heap.

To make the allocated block inaccessible other than via this

pointer, it suffices to hide the heap array from clients of malloc.
69

Protecting code with capabilities

Using subseg, we can seal a code pointer, turning its access
rights from RX to E (as in Enter).

A sealed E pointer gives no access rights to the memory area. It
only enables a CALL instruction to jump to the corresponding
code address.

The code being called is granted RX permissions on the memory
area.

PC = <RX, bo,to, d0> RO = <E./ b1./ t1, 0>

v

Before CALL RO: | code |

70

Protecting code with capabilities

Using subseg, we can seal a code pointer, turning its access
rights from RX to E (as in Enter).

A sealed E pointer gives no access rights to the memory area. It
only enables a CALL instruction to jump to the corresponding
code address.

The code being called is granted RX permissions on the memory
area.

PC = (RX, by, t1,dq) RO =(E, bq,t;,0)

S

After CALL RO: | code |

70

Protecting code with capabilities

Using subseg, we can seal a code pointer, turning its access
rights from RX to E (as in Enter).

A sealed E pointer gives no access rights to the memory area. It
only enables a CALL instruction to jump to the corresponding
code address.

The code being called is granted RX permissions on the memory

area.
PC = <F\’X7 b17 tq, d1> RO = <E./ b1./ t1, 0>
After CALL RO: | code |

No pointer arithmetic on E capabilities
— no jumping “in the middle” of the code of a function!
70

Making data private to a piece of code

The sealed code area can contain a RW capability to a data area.
If this data area is not visible to the caller, it is private to the
sealed code.

E RW

code]

Making data private to a piece of code

Example: a monotonically increasing counter (in pseudo-asm).

// Code area RX // Data area RW
next: rl = load(data) counter: .word O
r0 = load(rl)
if rO = MAX_INT: abort
r0 =r0 + 1
store(rl, r0)
rl =0 // avoid leaking the data capability!
return r0

data: .word counter

A client having only an E capability on next cannot modify
counter directly, but only by calling the next function.

72

Procedural or object encapsulation

This kind of encapsulation of private data within code is
expressed in many high-level languages using lexical scoping of
variable bindings.

int next(void) { static int counter = 0; return ++counter; }

let next =

let counter = ref 0 in fun () -> incr counter; !counter

class Counter {
private int counter = O;

public int next() { return ++counter; }

}

Capability machines can enforce this encapsulation even if the
attacker does not respect lexical scoping.

73

Summary on capability machines

The hope: lightweight, fine-grained isolation (like software) but
100% reliable (like hardware).

A fairly old idea (Dennis & Van Horn, 1966).
A commercial failure (Intel iAPX 432, 1981).

Renewed interest with the CHERI architecture (U. Cambridge,
2016) and the ARM Morello processor (2022).

An open question: which capabilities are needed to achieve full
isolation for high-level programming languages?
(e.g. A. Lippeveldts (2019) proposes linear capabilities to isolate the stack.)

Interesting connections with separation logic.
(Georges et al, Cerise: program verification on a capability machine in the

presence of untrusted code, preprint, 2021.) 7

	Hardware isolation
	Software fault isolation
	Language-based isolation
	Java API security
	JavaScript API security
	Capability machines

