Program logics, third lecture

Pointers and data structures: separation logic

Xavier Leroy
2021-03-18

Collège de France, chair of software sciences
xavier.leroy@college-de-france.fr
Prologue: arrays in Hoare logic
Adding arrays to IMP

| Expressions: | $a ::= \ldots \mid T[a]$ | reading from array T |
| Commands: | $c ::= \ldots \mid T[a] := a'$ | writing to array T |

Convention: uppercase variables T, U, are arrays.
A Hoare logic for arrays

Which rule for array writes?

Wrong: \[\{ Q[T[a] \leftarrow a'] \} \ T[a] := a' \{ Q \} \]

It’s not just \(T[a] \) that is modified, but also \(T[a_1] \) for every expression \(a_1 \) that has the same value as \(a \). Example:

\[\{ 0 = 0 \land T[i] = 1 \} \ T[0] := 0 \{ T[0] = 0 \land T[i] = 1 \} \]

is false if \(i = 0 \).

Correct: \[\{ Q[T \leftarrow (T + a \mapsto a')] \} \ T[a] := a' \{ Q \} \]

The expression \(T + a \mapsto a' \) denotes a functional update: an array equal to \(T \) except that index \(a \) has value \(a' \).
We reason about these functional updates with the equation:

\[(T + a \mapsto a')[i] = \begin{cases}
 a' & \text{if } i = a \\
 T[i] & \text{if } i \neq a
\end{cases}\]

Example (verifying a write to \(T[0]\))

\[
\{ i \neq 0 \land T[i] = 1 \} \iff \{ 0 = 0 \land (i = 0 \ ? \ 0 : T[i]) = 1 \} \iff \{ (T + 0 \mapsto 0)[0] = 0 \land (T + 0 \mapsto 0)[i] = 1 \}
\]

\[T[0] := 0\]

\[\{ T[0] = 0 \land T[i] = 1 \}\]
Example: array initialization

\[
i := 0;\\
\{ i = 0 \}\]

while \(i < N \) do

\[
\{ \forall j, 0 \leq j < i \Rightarrow T[j] = j \times 2 \} \Rightarrow\\
\{ \forall j, 0 \leq j < i + 1 \Rightarrow (T + i \mapsto i \times 2)[j] = j \times 2 \}\\
\]

\[
T[i] := i \times 2;\\
\{ \forall j, 0 \leq j < i + 1 \Rightarrow T[j] = j \times 2 \}\]

\[
i := i + 1\\
\{ \forall j, 0 \leq j < i \Rightarrow T[j] = j \times 2 \}\]

done
Example: insertion sort

\[i := 1; \]
while \(i < N \) do
\[
\{ 0 < i < N \land \forall p, q, 0 \leq p \leq q < i \Rightarrow T[p] \leq T[q] \} \]
\[j := i; \]
while \(j > 0 \land T[j - 1] > T[j] \)
\[
\{ 0 \leq j \leq i \land \forall p, q, 0 \leq p \leq q \leq i \land q \neq j \Rightarrow T[p] \leq T[q] \} \]
\[\text{swap}(T, j, j - 1); \]
\[j := j - 1 \]
done
\[i := i + 1 \]
done

Plus an invariant: \(T \) is a permutation of the initial array \(T_0 \)
Pointers and the Burstall-Bornat model
Pointers: explicit (Algol-W, Pascal, C, C++) or implicit via objects passed by reference (Java, Lisp, Python, OCaml, ...).

Used to represent and operate on graphs and linked data structures (lists, trees, ...).
Example: singly-linked lists

class List {
 typedef struct cell * list;
 int head;
 struct cell {
 int head;
 list tail;
 };
 List tail;
}

The lists [1; 2; 3] and [4; 5]:

In-place concatenation of lists l1 and l2:

```cpp
p = l1;
while (p->tail != NULL) p = p->tail;
p->tail = l2;
```
Example: singly-linked lists

class List {
 typedef struct cell * list;
 int head;
 struct cell {
 int head;
 list tail;
 } tail;
}

The lists [1; 2; 3] and [4; 5]:

```
1 —→ 2 —→ 3 —→ 4 —→ 5
```

In-place concatenation of lists l1 and l2:

```c
p = l1;
while (p->tail != NULL) p = p->tail;
p->tail = l2;
```
Sharing memory cells

Sharing (having several pointers to the same cell) is essential to represent graphs, but problematic for simpler data structures.

Left: 11 is a cyclic (infinite) list 1, 2, 3, 1, 2, 3, …

Right: 12 and 13 share a suffix “4, 5”.
Problem with sharing

```c
p = l1;
while (p->tail != NULL) p = p->tail;
p->tail = l2;
```

If \(l_1 \) is cyclic, concatenation does not terminate.

If \(l_1 \) and \(l_2 \) share cells, a cyclic list is created.

Any list \(l_3 \) that shares cells with \(l_1 \) is modified as a side effect.
Modeling pointers and the memory heap

Naive model:

• The memory heap = one big global array M.
• A pointer $p =$ an index in M.
• An access $p \rightarrow f =$ an access $M[p + \text{offset}(f)]$.

The Burstall-Bornat model:

• The memory heap = one global array per field F_1, F_2, \ldots
• A pointer $p =$ an index in the arrays F_i.
• An access $p \rightarrow f =$ an access $F[p]$.
• A write $p \rightarrow f := a$ modifies $F[p]$ but the other arrays $F' \neq F$ are unchanged.
Graphs in the Burstall-Bornat model

```c
struct node {
    bool mark;
    int arity;
    struct node * child[arity];
}
```


The **reachability relation** `path(p, q)`,

"node q is reachable from node p".

\[
\begin{align*}
\text{path}(p, p) & \quad p \neq 0 \quad 0 \leq i < \text{ARITY}[p] \quad \text{path}(\text{CHILD}[p][i], q) \\
\hline
\text{path}(p, q)
\end{align*}
\]
A generic algorithm for graph traversals

Mark all nodes reachable from a root \(r \).

\[
\{ \forall x, \text{MARK}[x] = 0 \}
\]

\(W := \{ r \} \)

while \(W \neq \emptyset \) do

\[
\{ \forall x, \text{path}(r, x) \iff \text{MARK}[x] = 1 \lor \exists p \in W, \text{path}(p, x) \}
\]

pick \(p \in W; \quad W := W \setminus \{ p \}; \)

if \(\text{MARK}[p] = 0 \) then begin

\(\text{MARK}[p] := 1; \)

\(W := W \cup \{ \text{CHILD}[p][i] \mid 0 \leq i < \text{ARITY}[p] \} \)

end

done

\[
\{ \forall x, \text{path}(r, x) \iff \text{MARK}[x] = 1 \}
\]

(Note: the write \(\text{MARK}[p] := 1 \) leaves unchanged the arrays \(\text{CHILD} \) and \(\text{ARITY} \), and therefore preserves the relation \(\text{path} \).)
Singly-linked lists in the Burstall-Bornat model

Two global arrays \texttt{HEAD} and \texttt{TAIL}.

A representation predicate: \texttt{lseg}(w, p, q),
“between pointers \(p \) and \(q \) lies the representation of the
(mathematical) list \(w \).”

\[
\begin{align*}
\text{lseg}(\varepsilon, p, p) \quad & p \neq 0 \quad \text{\texttt{HEAD}[p] = n} \quad \text{lseg}(w, \text{\texttt{TAIL}[p]}, q) \\
\end{align*}
\]
\[
\text{lseg}(n \cdot w, p, q)
\]

\(p \) points to a well-formed list (without cycles) =
\[
\exists w, \text{\texttt{lseg}}(w, p, \texttt{NULL}).
\]

\(p \) and \(q \) point to disjoint lists (no sharing) =
\[
\forall r, w, w', \text{\texttt{lseg}}(w, p, r) \land \text{\texttt{lseg}}(w', q, r) \Rightarrow r = \texttt{NULL}
\]
A specification for list concatenation

Define \(\text{list}(w, p) \overset{\text{def}}{=} \text{lseg}(w, p, \text{NULL}) \), “pointer \(p \) represents list \(w \).”

\[
\{ w \neq \varepsilon \land \text{list}(w, l1) \land \text{list}(w', l2) \land \text{disjoint}(l1, l2) \} \\
\text{concat}(l1, l2) \\
\{ \text{list}(w \cdot w', l1) \land \text{list}(w', l2) \}
\]

A reasonable specification, but still incomplete: we miss the fact that any list \(l3 \) initially disjoint from \(l1 \) is not modified.

The verification proofs are quite long for such a simple matter and very boring. We will not weary the reader with them; instead we will try to do better.

(R. M. Burstall, 1972)
Local reasoning and memory footprints
Local reasoning

A common-sense principle:

Everything that is not explicitly mentioned in \(\{ P \} \; c \; \{ Q \} \)*

is preserved during the execution of \(c \).*

In Hoare logic, this principle is expressed by the **frame rule**:

\[
\begin{align*}
\{ P \} \; c \; \{ Q \} \\
\text{no variable modified by} \; c \; \text{appears in} \; R
\end{align*}
\]

\[
\{ P \land R \} \; c \; \{ Q \land R \}
\]

Example: \(\{ x = 0 \} \; x := x + 1 \; \{ x = 1 \} \), therefore \(\{ x = 0 \land y = 8 \} \; x := x + 1 \; \{ x = 1 \land y = 8 \} \).
Consider

\[P = \text{list}(1.2.3.\varepsilon, 11) \land \text{list}(4.5.\varepsilon, 12) \land \text{disjoint}(11, 12) \]

\[Q = \text{list}(1.2.3.4.5.\varepsilon, 11) \]

\[R = \text{list}(6.3.\varepsilon, 13) \]

We do have \(\{ P \} \text{ concat}(11, 12) \{ Q \} \)

but not \(\{ P \land R \} \text{ concat}(11, 12) \{ Q \land R \} \quad (R \text{ is false “after”}). \]
Towards a better frame rule

\[
\{ P \} \ c \ \{ Q \}
\]

no variable modified by \(c\) appears in \(R\)
no memory location modified by \(c\) is mentioned in \(R\)

\[
\{ P \land R \} \ c \ \{ Q \land R \}
\]

This rule is plausible, but the condition “no memory location modified by \(c\) is mentioned in \(R\)” is not syntactic.

It would be great if the program logic itself was able to verify this condition!
Memory footprints

To a logical assertion P, Q we associate a memory footprint: the set of memory locations (pointers) whose contents are described by the assertion.

Example

The assertion $p \mapsto 0$, “location p contains value 0”, has footprint \{p\}.

The assertion $p \mapsto 0 \land q \mapsto 1$ has footprint \{p, q\}.

The assertion $(b \land p \mapsto 0) \lor (\neg b \land q \mapsto 1)$ has footprint \{p\} if b is true, \{q\} if b is false.
Intuition (almost true): if \{ P \} c \{ Q \}, the memory locations modified during the execution of c are mentioned in P or in Q, and therefore belong to their footprints.

\[
\{ P \} c \{ Q \}
\]

no variable modified by c appears in R

\[
\text{footprint}(P) \cap \text{footprint}(R) = \emptyset
\]
\[
\text{footprint}(Q) \cap \text{footprint}(R) = \emptyset
\]

\[
\{ P \land R \} c \{ Q \land R \}
\]
The statement “P and R are true and their footprints are disjoint” occurs so often that we give it a name: *separating conjunction*, written $P \star R$.

Formally: (assertions = predicates on the heap h)

$$(P \star R) \overset{\text{def}}{=} \exists h_1, h_2, \ P h_1 \land R h_2 \land h = h_1 \uplus h_2 \text{ (disjoint union)}$$

Example

<table>
<thead>
<tr>
<th>$p \mapsto 0 \star p \mapsto 0$</th>
<th>is always false.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p \mapsto 0 \star q \mapsto 0$</td>
<td>implies $p \neq q$.</td>
</tr>
</tbody>
</table>
Separating conjunction and the frame rule

The frame rule from separation logic:

\[
\{ P \} c \{ Q \}
\]

no variable modified by \(c \) appears in \(R \)

\[
\{ P \star R \} c \{ Q \star R \}
\]

Captures elegantly the notion of local reasoning:

\(P, Q \) describe the parts of memory relevant for the execution of \(c \);
\(R \) describes other parts of memory.
Separation logic
The path to separation logic

Burstall (1972): Distinct Nonrepeating List Systems
≈ singly-linked structures without any sharing
+ ad-hoc reasoning rules.

Reynolds (1999), Intuitionistic Reasoning about Shared Mutable Data Structures. Introduces the notion of separating conjunction.

O’Hearn and Pym (1999), The Logic of Bunched Implications. Reasoning about resources that are used linearly.

O’Hearn, Reynolds, Yang (2001), Local Reasoning about Programs that Alter Data Structures. The modern presentation of separation logic.

Reynolds (2002), Separation Logic: A Logic for Shared Mutable Data Structures. The paper that gave separation logic its name.
Which language with pointers?

Classic approach: IMP + operations alloc, get, set, free.

Two degrees of mutability: variables and memory locations.

Assertions = predicates on the state of variables (the store s) and on the memory state (the heap h).

In this lecture: mini-ML + references

in other words: lambda-calculus + state monad.

Immutable variables that contain references (pointers) to mutable memory locations.

Assertions = predicates on the memory state (the heap h).
The PTR language

Commands (expressions with effects):

\[c ::= \]

\[a \quad \text{pure expression} \]

\[
\text{let } x = c \text{ in } c' \quad \text{sequencing and binding}
\]

\[
\text{if } b \text{ then } c_1 \text{ else } c_2 \quad \text{conditional}
\]

\[
\text{choose}(N) \quad \text{nondeterministic choice}
\]

\[
\text{alloc}(N) \quad \text{allocate } N \text{ memory locations}
\]

\[
\text{get}(a) \quad \text{read from location } a
\]

\[
\text{set}(a,a') \quad \text{write to location } a
\]

\[
\text{free}(a) \quad \text{free location } a
\]

In examples, we will also use recursive functions

\[
def f \ x_1 \cdots \ x_n = c.
\]
Examples of PTR programs

Allocation and initialization of a list cell:

```python
def cons hd tl =
    let a = alloc(2) in
    let _ = set(a, hd) in
    let _ = set(a + 1, tl) in a
```

Note: locations are integers; pointer arithmetic is supported.

In-place concatenation of two lists:

```python
def concat_rec l1 l2 =
    let tl = get(l1 + 1) in
    if tl = 0 then set(l1 + 1, l2) else concat_rec tl l2

def concat l1 l2 =
    if l1 = 0 then l2 else let _ = concat_rec l1 l2 in l1
```
Assertions are predicates on the heap h.

Pure assertions (P is a proposition):

$$\langle P \rangle \overset{\text{def}}{=} \lambda h. P \land \text{Dom}(h) = \emptyset$$

“The memory is empty”

$$\text{emp} \overset{\text{def}}{=} \langle \top \rangle = \lambda h. \text{Dom}(h) = \emptyset$$

“Location ℓ contains value v”

$$\ell \mapsto v \overset{\text{def}}{=} \lambda h. \text{Dom}(h) = \{\ell\} \land h(\ell) = v$$

“Location ℓ is valid”

$$\ell \mapsto _ \overset{\text{def}}{=} \exists v, \ell \mapsto v = \lambda h. \text{Dom}(h) = \{\ell\}$$
The separating conjunction $P \star Q$ says that we can split the heap in two parts, one satisfying P and the other satisfying Q.

$$ P \star Q \overset{\text{def}}{=} \lambda h. \exists h_1, h_2, P h_1 \land Q h_2 \land h = h_1 \sqcup h_2 $$

Some properties:

$$ P \star Q = Q \star P \quad (P \star Q) \star R = P \star (Q \star R) $$

$$ \text{emp} \star P = P \star \text{emp} = P \quad \langle A \rangle \star \langle B \rangle = \langle A \land B \rangle $$
The rules define triples \(\{ P \} c \{ Q \} \).

Since commands return values, the postcondition is a function \(\lambda v \ldots \) from values to assertions.

\[
\begin{align*}
P \Rightarrow Q [a] & \quad \forall n \in [0, N), \quad P \Rightarrow Q n \\
\{ P \} a \{ Q \} & \quad \{ P \} \text{choose}(N) \{ Q \} \\
\{ P \} c \{ R \} & \quad \forall v, \quad \{ R v \} c'[x \leftarrow v] \{ Q \} \\
\{ P \} \text{let } x = c \text{ in } c' \{ Q \} \\
\{ \langle b \rangle \ast P \} c_1 \{ Q \} & \quad \{ \langle \neg b \rangle \ast P \} c_2 \{ Q \} \\
\{ P \} \text{if } b \text{ then } c_1 \text{ else } c_2 \{ Q \}
\end{align*}
\]
Structural rules

\[
\begin{align*}
\{ P \} & \text{ c } \{ Q \} \\
\{ P \ast R \} & \text{ c } \{ \lambda v. Q \ast v \ast R \}
\end{align*}
\]

\[
\begin{align*}
P & \Rightarrow P' \quad \{ P' \} & \text{ c } \{ Q' \} \quad \forall v, Q' v & \Rightarrow Q v \\
& \quad \{ P \} & \text{ c } \{ Q \}
\end{align*}
\]

\[
\begin{align*}
A & \Rightarrow \{ P \} \text{ c } \{ Q \} & \forall x. \{ P \} & \text{ c } \{ Q \} \\
\{ \langle A \rangle \ast P \} & \text{ c } \{ Q \} & \{ \exists x. P \} & \text{ c } \{ Q \} \quad (\exists\text{-elim})
\end{align*}
\]
The “small rules” for heap operations

“Small” means “with the smallest footprint”.

\[
\begin{align*}
\{ \text{emp} \} & \quad \text{alloc}(N) & \quad \{ \lambda \ell. \ell \mapsto _\ast \cdots \ast \ell + N - 1 \mapsto _\ast \} \\
\{ [a] \mapsto x \} & \quad \text{get}(a) & \quad \{ \lambda v. \langle v = x \rangle \ast [a] \mapsto x \} \\
\{ [a] \mapsto _\ast \} & \quad \text{set}(a, a') & \quad \{ \lambda v. [a] \mapsto [a'] \} \\
\{ [a] \mapsto _\ast \} & \quad \text{free}(a) & \quad \{ \lambda v. \text{emp} \}
\end{align*}
\]

“Large” rules are obtained by framing, e.g.

\[
\{ P \} \quad \text{alloc}(2) \quad \{ \lambda \ell. P \ast \ell \mapsto _\ast \ell + 1 \mapsto _\ast \}
\]
Data structures and representation predicates
Singly-linked lists

Representation predicates:

\[
\begin{align*}
l\text{seg}(\varepsilon, p, q) &= \langle p = q \rangle \\
l\text{seg}(x \cdot w, p, q) &= \exists p', p \mapsto x \star p + 1 \mapsto p' \star l\text{seg}(w, p', q) \\
l\text{list}(w, p) &= l\text{seg}(w, p, \text{NULL})
\end{align*}
\]

Example

\[
p : \begin{array}{c}
1 \rightarrow 2 \rightarrow 3 \mid q
\end{array} \quad q : \begin{array}{c}
4 \rightarrow 5 \times
\end{array}
\]

We have \(l\text{seg}(1.2.3.\varepsilon, p, q) \star l\text{list}(4.5.\varepsilon, q) \) or, equivalently, \(l\text{list}(1.2.3.4.5.\varepsilon, p) \).
Specifying functions on singly-liked lists

\[
\begin{align*}
\{ \text{list}(w, p) \} \quad & \text{length}(p) \quad \{ \lambda r. \langle r = |w| \rangle \star \text{list}(w, p) \} \\
\{ \text{list}(w, p) \} \quad & \text{copy}(p) \quad \{ \lambda r. \text{list}(w, r) \star \text{list}(w, p) \} \\
\{ \text{list}(w, p) \} \quad & \text{dispose}(p) \quad \{ \lambda r. \text{emp} \} \\
\{ \text{list}(w, p) \star \text{list}(w', q) \} \quad & \text{concat}(p, q) \quad \{ \lambda r. \text{list}(w \cdot w', r) \} \\
\{ \text{list}(w, p) \} \quad & \text{reverse}(p) \quad \{ \lambda r. \text{list}(\text{rev}(w), r) \}
\end{align*}
\]
Specifying functions on singly-liked lists

\[
\begin{align*}
\{ \text{list}(w, p) \} & \quad \text{length}(p) & \{ \lambda r. \langle r = \text{size}(w) \rangle \star \text{list}(w, p) \} \\
\{ \text{list}(w, p) \} & \quad \text{copy}(p) & \{ \lambda r. \text{list}(w, r) \star \text{list}(w, p) \} \\
\{ \text{list}(w, p) \} & \quad \text{dispose}(p) & \{ \lambda r. \text{emp} \} \\
\{ \text{list}(w, p) \star \text{list}(w', q) \} & \quad \text{concat}(p, q) & \{ \lambda r. \text{list}(w \cdot w', r) \} \\
\{ \text{list}(w, p) \} & \quad \text{reverse}(p) & \{ \lambda r. \text{list}(\text{rev}(w), r) \}
\end{align*}
\]

Control of sharing:

- For \text{copy}(p), the postcondition \text{list}(w, r) \star \text{list}(w, p) guarantees that the result and the argument are disjoint.

- For \text{concat}(p, q), the precondition \text{list}(w, p) \star \text{list}(w', q) requires that the two arguments are disjoint.
Specifying functions on singly-liked lists

\[
\begin{align*}
\{ \text{list}(w, p) \} & \quad \text{length}(p) & \{ \lambda r. \langle r = |w| \rangle \star \text{list}(w, p) \} \\
\{ \text{list}(w, p) \} & \quad \text{copy}(p) & \{ \lambda r. \text{list}(w, r) \star \text{list}(w, p) \} \\
\{ \text{list}(w, p) \} & \quad \text{dispose}(p) & \{ \lambda r. \text{emp} \} \\
\{ \text{list}(w, p) \star \text{list}(w', q) \} & \quad \text{concat}(p, q) & \{ \lambda r. \text{list}(w \cdot w', r) \} \\
\{ \text{list}(w, p) \} & \quad \text{reverse}(p) & \{ \lambda r. \text{list}(\text{rev}(w), r) \}
\end{align*}
\]

Resource management:

- Some lists are preserved (length, copy)
- Some lists are allocated (copy) or destroyed (dispose)
- Some lists are recycled into new lists (concat)
Specifying functions on singly-liked lists

\[
\begin{align*}
\{ \text{list}(w, p) \} & \quad \text{length}(p) & \{ \lambda r. \langle r = |w| \rangle \star \text{list}(w, p) \} \\
\{ \text{list}(w, p) \} & \quad \text{copy}(p) & \{ \lambda r. \text{list}(w, r) \star \text{list}(w, p) \} \\
\{ \text{list}(w, p) \} & \quad \text{dispose}(p) & \{ \lambda r. \text{emp} \} \\
\{ \text{list}(w, p) \} & \star \{ \text{list}(w', q) \} & \text{concat}(p, q) & \{ \lambda r. \text{list}(w \cdot w', r) \} \\
\{ \text{list}(w, p) \} & \quad \text{reverse}(p) & \{ \lambda r. \text{list}(\text{rev}(w), r) \}
\end{align*}
\]

Permissions:

- After \(\text{dispose}(p) \) or \(\text{concat}(p, q) \), we lose the right to access \(p \) and \(q \) as well-formed lists.
- After \(\text{concat}(p, q) \), we gain the right to access the result value as a well-formed list.
An example of verification

\[
\{ \text{list}(w, p) \succ \text{list}(w', q) \}\]

def rev_append p q =
 if p = NULL then // w = \varepsilon
 q
 else // w = x \cdot w_1 for some x and w_1
 let t = get(p + 1) in
 let _ = set(p + 1, q) in
 rev_append t p

\{ \lambda r. \text{list}(\text{rev}(w) \cdot w', r) \}\}
An example of verification

\[
\{ \text{list}(w, p) \star \text{list}(w', q) \}
\]

```python
def rev_append(p, q):
    if p == NULL then  // \( w = \varepsilon \)
        \{ \langle p = NULL \rangle \star \text{list}(w', q) \}
        q
    else  // \( w = x \cdot w_1 \) for some \( x \) and \( w_1 \)
        \{ \exists p', p \mapsto x \star p + 1 \mapsto p' \star \text{list}(w_1, p') \star \text{list}(w', q) \}
    let t = get(p + 1) in
    \{ p \mapsto x \star p + 1 \mapsto t \star \text{list}(w_1, t) \star \text{list}(w', q) \}
    let _ = set(p + 1, q) in
    \{ \text{list}(w_1, t) \star p \mapsto x \star p + 1 \mapsto q \star \text{list}(w', q) \}
    rev_append(t, p)
        \{ \lambda r. \text{list}(\text{rev}(w_1) \cdot x \cdot w', r) \}
        \{ \lambda r. \text{list}(\text{rev}(w) \cdot w', r) \}
```
Circular lists

Representation predicates:

\[circlist(w, p) = \langle w \neq \varepsilon \rangle \star lseg(w, p, p) \]

In-place concatenation:

\[
\{ \text{circlist}(w, p) \star \text{circlist}(w', q) \}
\]

\[
\text{swap}(p, q); \text{swap}(p + 1, q + 1)
\]

\[
\{ \text{circlist}(w \cdot w', q) \}
\]
Circular lists

Representation predicates:

\[
\text{circlist}(w, p) = \langle w \neq \varepsilon \rangle \ast \text{lseg}(w, p, p)
\]

In-place concatenation:

\[
\{ \text{circlist}(w, p) \ast \text{circlist}(w', q) \}
\]

\[
\text{swap}(p, q); \text{swap}(p + 1, q + 1)
\]

\[
\{ \text{circlist}(w \cdot w', q) \}\]
Doubly-linked lists

Forward chaining from p to a + backward chaining from q to b.

\[
dlseg(\varepsilon, p, a, q, b) = \langle p = a \land q = b \rangle
\]
\[
dlseg(x \cdot w, p, a, q, b) = \exists p', p \leftrightarrow x \star p + 1 \leftrightarrow p' \star p + 2 \leftrightarrow b
\]
\[
\quad \star dlseg(w, p', a, q, p')
\]
\[
dlist(w, p, q) = dlseg(w, p, \text{NULL}, q, \text{NULL})
\]
The “xor” trick

\[p : \begin{array}{c} 1 \ b \oplus q \\ \end{array} \quad q : \begin{array}{c} 2 \ p \oplus r \\ \end{array} \quad r : \begin{array}{c} 3 \ q \oplus a \\ \end{array} \]

In each cell we store the “exclusive or” of the forward pointer and the backward pointer.

Forward traversal: we have \(p \) and \(q \), we recover \(r = (p \oplus r) \oplus p \).

Backward traversal: we have \(r \) and \(q \), we recover \(p = (p \oplus r) \oplus r \).

\[
\begin{align*}
\text{dlseg}(\varepsilon, p, a, q, b) &= \langle p = a \land q = b \rangle \\
\text{dlseg}(x \cdot w, p, a, q, b) &= \exists p', p \mapsto x \ast p + 1 \mapsto b \oplus p' \ast \text{dlseg}(w, p', a, q, p') \\
\text{dlist}(w, p, q) &= \text{dlseg}(w, p, \text{NULL}, q, \text{NULL})
\end{align*}
\]
Binary trees

Representation predicate:

\[\text{tree(Leaf, } p) = \langle p = \text{NULL} \rangle \]
\[\text{tree(Node}(t_1, x, t_2), p) = \exists p_1, p_2, p \mapsto p_1 \star p + 1 \mapsto x \star p + 2 \mapsto p_2 \]
\[\star \text{tree}(t_1, p_1) \star \text{tree}(t_2, p_2) \]

Note: no internal sharing is allowed, the subtrees must be disjoint.
Binary trees with internal sharing (\approx dags)

Possible if we use an *overlapping conjunction*: (Hobor and Villard, 2013)

\[(P \mathbin{\oplus} Q) \ h = \exists h_1, h_2, h_3, h = h_1 \uplus h_2 \uplus h_3 \land P (h_1 \uplus h_2) \land Q (h_1 \uplus h_3)\]

\[
\begin{align*}
\text{tree(Leaf, } p\text{)} &= \langle p = \text{NULL} \rangle \\
\text{tree(Node}(t_1, x, t_2), p) &= \exists p_1, p_2, p \mapsto p_1 \star p + 1 \mapsto x \star p + 2 \mapsto p_2 \\
&\quad \star (\text{tree}(t_1, p_1) \star \text{tree}(t_2, p_2))
\end{align*}
\]
Semantic soundness of separation logic
We gave rules that define triples $\{ P \} c \{ Q \}$.

If $\{ P \} c \{ Q \}$ can be derived by these rules, does all possible executions of c respect the contract stated by this triple?
Reduction semantics for PTR

We reduce configurations c/h where $h : \text{locations} \xrightarrow{\text{fin}} \text{values}$ is the current heap.

The rules for the pure constructs:

$$(\text{let } x = a \text{ in } c)/h \rightarrow c[x \leftarrow [a]]/h$$

$$(\text{let } x = c_1 \text{ in } c_2)/h \rightarrow (\text{let } x = c'_1 \text{ in } c_2)/h' \quad \text{if } c_1/h \rightarrow c'_1/h'$$

$$(\text{let } x = c_1 \text{ in } c_2)/h \rightarrow \text{err} \quad \text{if } c_1/h \rightarrow \text{err}$$

$$(\text{if } b \text{ then } c_1 \text{ else } c_2)/h \rightarrow c_1/h \quad \text{if } [b] \text{ is true}$$

$$(\text{if } b \text{ then } c_1 \text{ else } c_2)/h \rightarrow c_2/h \quad \text{if } [b] \text{ is false}$$

$${\text{choose}}(N)/h \rightarrow n/h \quad \text{for any } n \in [0, N)$$
The rules for the imperative constructs:

\[
\text{alloc}(N)/h \rightarrow \ell/h[\ell \leftarrow 0, \ell + 1 \leftarrow 0, \ldots, \ell + N - 1 \leftarrow 0]
\]

for any \(\ell \) such that \(\{\ell, \ldots, \ell + N - 1\} \cap \text{Dom}(h) = \emptyset \)

\[
\text{get}(a)/h \rightarrow h([a])/h \quad \text{if} \ [a] \in \text{Dom}(h)
\]

\[
\text{set}(a, a')/h \rightarrow 0/h[[a] \leftarrow [a']] \quad \text{if} \ [a] \in \text{Dom}(h)
\]

\[
\text{free}(a)/h \rightarrow 0/(h \setminus [a]) \quad \text{if} \ [a] \in \text{Dom}(h)
\]

Error rules:

\[
\text{get}(a)/h \rightarrow \text{err} \quad \text{if} \ [a] \notin \text{Dom}(h)
\]

\[
\text{set}(a, a')/h \rightarrow \text{err} \quad \text{if} \ [a] \notin \text{Dom}(h)
\]

\[
\text{free}(a)/h \rightarrow \text{err} \quad \text{if} \ [a] \notin \text{Dom}(h)
\]
Statement of semantic soundness

Same approach as for strong Hoare logic.

We define the inductive predicate $\text{Term}_c h Q$, “command c started in state h always terminates without errors, in a state that satisfies Q”.

$$Q \llbracket a \rrbracket h \quad \text{Term}_a h Q$$

$$(\forall a, c \neq a) \quad c/h \not\rightarrow \text{err} \quad (\forall c', h', c/h \rightarrow c'/h' \Rightarrow \text{Term}_c h' Q)$$

$$\text{Term}_c h Q$$
Semantic soundness

The semantic tripe: “if the initial state satisfies P, command c terminates in a state that satisfies Q”

$$\{\{ P \}\} \ c \ \{\{ Q \}\} \overset{\text{def}}{=} \forall h, \ P h \Rightarrow \text{Term} \ c \ h \ Q$$

We show that this definition validates the axioms and the inference rules of separation logic:

- If $P \Rightarrow Q \ [a]$ then $\{\{ P \}\} \ a \ \{\{ Q \}\}$
- $\{\{ \ [a] \mapsto _ \}\} \ \text{set}(a, a') \ \{\{ \lambda v. \ [a] \mapsto \ [a'] \}\}$
- etc.

Theorem (Semantic soundness of separation logic)

If $\{ P \} \ c \ \{ Q \}$ is derivable, then $\{\{ P \}\} \ c \ \{\{ Q \}\}$ holds.
The main difficulty is to show that the frame rule is semantically valid:

\[
\text{If } \{\{ P \}\} c \{\{ Q \}\} \text{ then } \{\{ P \star R \}\} c \{\{ \lambda v. Q v \star R \}\}.
\]

To this end, we need a frame lemma for the \texttt{Term} predicate:

\[
\text{If } \texttt{Term} c h_1 Q \text{ and } R h_2 \text{ then } \texttt{Term} c (h_1 \uplus h_2) (\lambda v. Q v \star R).
\]

This holds because of a nice property of the operational semantics: if a command runs without errors in a “small” heap, every reduction step in a larger heap is simulated by a reduction step in the small heap.
Framing reductions

If $c/h_1 \not\rightarrow \text{err}$, then $c/h_1 \uplus h_2 \not\rightarrow \text{err}$. If, moreover, $c/h_1 \uplus h_2 \rightarrow c'/h'$, there exists h'_1 such that $h' = h'_1 \uplus h_2$ and $c/h_1 \rightarrow c'/h'_1$.
If $c/h_1 \not\rightarrow \text{err}$, then $c/h_1 \cup h_2 \not\rightarrow \text{err}$. If, moreover, $c/h_1 \cup h_2 \rightarrow c'/h'$, there exists h'_1 such that $h' = h'_1 \cup h_2$ and $c/h_1 \rightarrow c'/h'_1$.
If $c/h_1 \not\rightarrow \text{err}$, then $c/h_1 \cup h_2 \not\rightarrow \text{err}$. If, moreover, $c/h_1 \cup h_2 \rightarrow c'/h'$, there exists h'_1 such that $h' = h'_1 \cup h_2$ and $c/h_1 \rightarrow c'/h'_1$.
Framing reductions

This property holds in our PTR language because the reduction rule for allocations is **nondeterministic**: the allocated location ℓ can be chosen among all free locations.

\[
\text{alloc}(N)/h \rightarrow \ell/h[\ell \leftarrow 0, \ell + 1 \leftarrow 0, \ldots, \ell + N - 1 \leftarrow 0]
\]

for any ℓ such that \(\{\ell, \ldots, \ell + N - 1\} \cap \text{Dom}(h) = \emptyset\)

This would not be the case if ℓ was a function of the heap:

\[
\text{alloc}(N)/h \rightarrow \ell/h[\ell \leftarrow 0, \ell + 1 \leftarrow 0, \ldots, \ell + N - 1 \leftarrow 0]
\]

with $\ell = \text{firstfree}(h, N)$

because, in general, $\text{firstfree}(h_1 \uplus h_2, N) \neq \text{firstfree}(h_1, N)$.
Plan B: validate the frame rule by construction

If allocation is deterministic, or if we would rather not prove the frame property for reductions, here is an alternative.

1. Define the usual semantic Hoare triple:

\[
\begin{align*}
\{ \{ P \} \} c \{ \{ Q \} \}_{\text{Hoare}} & \overset{\text{def}}{=} \forall h, \ P h \Rightarrow \text{Term} \ c \ h \ Q
\end{align*}
\]

2. Define the semantic separation triple by quantifying over all possible framings:

\[
\begin{align*}
\{ \{ P \} \} c \{ \{ Q \} \}_{\text{Sep}} & \overset{\text{def}}{=} \forall R, \ \{ \{ P \star R \} \} c \{ \{ \lambda v. \ Q v \star R \} \}_{\text{Hoare}}
\end{align*}
\]
3. Show that the semantic Hoare triple $\{\{ P \}\} c \{\{ Q \}\}$ validates

- the “large rules” for the imperative constructs

- the usual rules for the control structures:
 - if $P \Rightarrow Q [a]$ then $\{\{ P \}\} a \{\{ Q \}\}$
 - if $\{\{ P \}\} c \{\{ R \}\}$ and $\forall v, \{\{ Rv \}\}$ then $\{\{ P \}\} \text{let } x = c \text{ in } c' \{\{ Q \}\}$

- but not the frame rule.
Properties of the semantic separation triple

\[\{\{ P \}\} \ c \ \{\{ Q \}\} \overset{\text{def}}{=} \forall R, \ \{\{ P \ast R \}\} \ c \ \{\{ \lambda v. Q \ast v \ast R \}\}\overset{\text{Hoare}}{=}\]

4. Notice that the semantic separation triple validates

- the “small rules” for the imperative constructs;
- the usual rules for the control structures;
- the frame rule.

5. Conclude that \{\{ P \}\} \ c \ \{\{ Q \}\} entails \{\{ P \}\} \ c \ \{\{ Q \}\}_\text{Sep} and therefore \{\{ P \}\} \ c \ \{\{ Q \}\}_\text{Hoare}.
Summary
Summary so far

The emergence of separation logics in the early 2000’s renewed the field of program logics and deductive verification entirely.

A great many extensions, especially towards concurrency

Various implementations:

• deductive verification + automated theorem proving
 (Smallfoot, Infer, VeriFast)

• embeddings inside proof assistants
 (CFML, VST, Bedrock, IRIS)

• type systems such as that of the Rust language.
References
An overview of separation logic:

One of the seminal papers, still a great reference today:

Mechanizing separation logic:

- The companion Coq development for this lecture
 https://github.com/xavierleroy/cdf-program-logics
- A. Charguéraud, *Foundations of Separation Logic*, 2021,
 https://www.chargueraud.org/teach/verif/