
Mechanized semantics, fifth lecture

Abstract art:
static analysis by abstract interpretation

Xavier Leroy
2020-01-17

Collège de France, chair of software sciences

Static analysis (as seen in the third lecture)

Infer (without help from the programmeur) statically (without
running the program) some properties that hold for all possible
executions of the program.

Main uses:

• To improve performance by guiding optimizations.
• To improve safety by showing the absence / detecting the

possible presence of programming errors.

2

Using static analyses for verification purposes

Use properties inferred by static analysis to show the absence of
run-time errors (such as division by zero, or out-of-bound array
accesses). aux tableaux hors bornes).

b ∈ [n1, n2] ∧ 0 /∈ [n1, n2] =⇒ a/b causes no error

valid(p[n1 . . . n2]) ∧ i ∈ [n1, n2] =⇒ p[i] causes no error

Raise an alarm where we cannot show the absence of errors.

3

Static analysis and verification, graphically

Paths = possible executions of the program.
(For example, value of a variable x as a function of time t.)

Red zone = run-time errors, behaviors we want to exclude.

4

Static analysis and verification, graphically

Paths = possible executions of the program.
(For example, value of a variable x as a function of time t.)

Red zone = run-time errors, behaviors we want to exclude.

Green zone = results of static analysis; over-approximation of the
possible executions of the program.

4

True alarms, false alarms

True alarm False alarm
(bad behavior) (imprecise analysis)

More precise analysis (e.g. polyhedra instead of intervals):
the false alarm goes away 5

Some properties verifiable by static analysis

Absence of run-time errors

• Arrays and pointers:
• No out-of-bounds array accesses.
• No dereferencing the null pointer.
• No accesses after explicit deallocation (free).
• Alignment constraints from the hardware.

• Integer arithmetic:
• No division by zero.
• No (signed) arithmetic overflows.

• Floating-point arithmetic:
• No overflows (producing infinities)
• No undefined operations (producing Not-a-Number)
• No catastrophic cancellation (major loss of precision).

6

Some properties verifiable by static analysis

Validating assertions and invariants:

• Variation intervals for numerical outputs.
• Preconditions for library functions.
• Shape analysis for linked data structures.

Verifying security policies:

• Information flow analyses; “tainting”.

Establishing “non-functional” properties:

• Bounding memory usage.
• Bounding worst-case execution time (WCET).

7

Which static analyses for verification purposes?

Dataflow analyses (3rd lecture):

• Fully automatic, algorithmically e�cient.
• Infer simple properties only, often insu�cient to show the

absence of run-time errors.

Deductive verification in Hoare logic / separation logic
(4th lecture):

• Can verify arbitrarily-complex properties.
• Not automatic (loop invariants).

Is there anything in between?

8

Classic abstract interpretation

Abstract interpretation

(POPL, 1977)

A very general formalism to describe and implement precise
static analyses.

9

Intuitions for abstract interpretation

Analyzing a program = executing it with a non-standard
semantics:

• Compute with the abstract domains of the desired
properties (e.g. “x ∈ [n1, n2]” for interval analysis) instead of
with concrete objects (numbers, values, stores).

• Guarantee that the abstract computation is always an
over-approximation of the concrete computation.

10

Examples of abstract domains

Properties of a single numerical variable:

x ∈ [a, b] (intervals) x mod a = b (congruences)

Relations between several numerical variables:

polyhedra octagons ellipses

∑
aixi ≤ c ±x1 ± x2 ≤ c ax2 + by2 + cxy

+ dx + ey ≤ f

Shape analysis for linked data structures:

Shape Analysis with Structural Invariant Checkers 391

to reflect updates and dereferences, but instead of weakening eagerly, we delay
weakening in order to use history information to guide the process.

Our shape analysis is a standard forward analysis that computes an abstract
state at each program point. In addition to the memory state (as described in
Sect. 3), the analysis also keeps track of a number of pure constraints P (pointer
equalities and disequalities). Furthermore, we maintain some disjunction, so our
analysis state has essentially the following form: hM1 ; P1i _ hM2 ; P2i _ · · · _
hMn ; Pni (for unfoldings and acyclic paths where needed). Additionally, we
keep the values of the program variables (i.e., the stack frame) in an abstract
environment E that maps program variables to symbolic values that denote
their contents.2

4.1 Abstract Transition and Checker Unfolding

Because each edge in the graph denotes a separate memory region, the atomic
operations (i.e., mutation, allocation, and deallocation) are straightforward and
only a↵ect graphs locally. As alluded to in Sect. 2, mutation reduces to the
flipping of an edge when each memory cell accessed in the statement exists in
the graph as a points-to edge. This strong update is sound because of separation
(that is, because each edge is a disjoint region).

When there is no points-to edge corresponding to a dereferenced location
because it is summarized as part of a checker edge, we first materialize points-to
edges by unfolding the checker definition (i.e., conceptually unfolding one-step
of the checker run). We unfold only as needed to expose the points-to edge that
corresponds to the dereferenced location. Unfolding generates one graph per
checker rule, obtained by replacing the checker edge with the points-to edges and
the recursive checker applications specified by the rule; the pure constraints in the
rule are also added to pure state. In case we derive a contradiction (in the pure
constraints), then those unfolded elements are dropped. Though, unfolding may
generate a disjunction of several graphs. A fundamental property of unfolding
is that the join of the concretizations of the resulting graphs is equal to the
concretization of the initial graph.

Example 3 (Unfolding a skip list). We exhibit an unfolding of the skip1 checker
from Example 2. The addition of the pure constraints are shown explicitly.!

"
#
$

P

α
skip1

unfold−−−−→
!
"

#
$

P ∧ α = null

emp

∨
!
"

#
$

P ∧ α "= null

α β γ
n

s

skip0(γ) skip1

4.2 History-Guided Folding

We need a strategy to identify sub-graphs that should be folded into complete
or partial checker edges. What kinds of sub-graphs can be summarized without
losing too much precision is highly dependent on the structures in question and
the code being analyzed. To see this, consider the fixed-point graph at program

2 In implementation, we instead include the stack frame in M to enable handling
address of local variable expressions (as in C) in a smooth manner.

11

Abstract interpretation using intervals

In the concrete In the abstract

{ x = 3, y = 1 } { x# = [0, 9], y# = [−1, 1] }

z = x + 2 * y;

{ z = 3 + 2× 1 = 5 } { z# = [0, 9] +# 2×# [−1, 1] = [−2, 11] }

(We write “#” for the abstractions of variables and operators.)

12

Abstract interpretation using intervals

x# = [0, 10]
if x < 0 then

s := -1 s# = ∅
else if x > 0 then

s := 1 s# = [1, 1]
else

s := 0 s# = [0, 0]

s# = ∅ ∪ [1, 1] ∪ [0, 0] = [0, 1]

In general, Boolean conditions cannot be resolved statically
→ execution of all branches + union of the abstractions.

Some conditions are statically resolved
→ we mark ∅ or ⊥ the branch not taken.

13

Abstract interpretation with intervals

In general, loops are assumed to run an arbitrary number of
times.

x := 0;

while condition do

x := x + 1

done x# = [0,+∞]

Counted loops can often be analyzed more precisely.

x := 0;

for i := 1 to 10 do

if condition then x := x + 1

done

x# = [0, 10]

14

Formalizing abstract domains

A lattice (A,≤) of abstract values and two functions:

• α, the abstraction function:
sets of concrete values→ abstract value

• γ , the concretization function:
abstract value→ set of concrete values.

(x, y) ∈ [1, 5]× [1, 3]

α γ

15

Properties of concretization and abstraction

(x, y) ∈ [1, 5]× [1, 3]

α γ

α

α et γ are increasing
∧ ∀X, X ⊆ γ(α(X)) (soundness)
∧ ∀a, α(γ(a)) ≤ a (optimality)

(P(C),⊆) −−→←−−α
γ

(A,≤) is an isotone Galois connection.

16

Calculating abstract operators

For any concrete operator F : C → C, we define its abstraction
F# : A→ A by

F#(a) def
= α{F(x) | x ∈ γ(a)}

This abstract operator is:

• Sound: if x ∈ γ(a), then F(x) ∈ γ(F#(a)).
• Optimally precise: F(a) is the smallest abstraction a′ such

that x ∈ γ(a)⇒ F(x) ∈ γ(a′).

Furthermore, an e�ective implementation of F# can be
calculated (derived by symbolic computation) from the definition.

17

Calculating +# for intervals

We have α(X) = [inf X, sup X] and γ([a, b]) = {n | a ≤ x ≤ b}.
Therefore:

[a1, b1] +
[a2, b2] = α{x1 + x2 | x1 ∈ γ[a1, b1], x2 ∈ γ[a2, b2]}

= [inf{x1 + x2 | a1 ≤ x1 ≤ b1, a2 ≤ x2 ≤ b2},
sup{x1 + x2 | a1 ≤ x1 ≤ b1, a2 ≤ x2 ≤ b2}]

= [+∞,−∞] if a1 > b1 or a2 > b2

= [a1 + b1, a2 + b2] otherwise

The “obvious” definition [a1, b1] +
[a2, b2] = [a1 + b1, a2 + b2]

is sound but not precise.

18

Abstract interpretation of commands

Consider an operational semantics c/s ⇓ s′

and an abstraction for stores (P(store),⊆) −−→←−−α
γ

(A,≤).
We define the abstract interpretation exec#(c) : A→ A
of a command c as a function from the abstract store “before” to
the abstract store “after”:

exec#(c) def
= λa. α{s′ | s ∈ γ(a), c/s ⇓ s′}

(Alternate, orthodox approach: use a collecting semantics
program point→ set of concrete stores.)

19

Abstract interpretation of commands

exec#(c) def
= λa. α{s′ | s ∈ γ(a), c/s ⇓ s′}

We can, then, calculate equations for exec#, such as

exec#(skip) = λa. a

exec#(c1; c2) = exec#(c2) ◦ exec#(c1)

exec#(while b do c) = exec#(if b

then c; while b do c

else skip)

20

Abstract interpretation and Hoare logic

exec#(c) def
= λa. α{s′ | s ∈ γ(a), c/s ⇓ s′}

We can read an abstract store a as an assertion in Hoare logic:
the assertion “the current store belongs to γ(a)”.

With this interpretation, exec# satisfies the Hoare triple

{ a } c { exec#(a) }

Moreover, exec#(a) is the strongest post-condition of c and a
that can be expressed in the abstract domain of stores.

21

Constructive abstract interpretation

Galois connections are problematic in type theory

Galois connections (P(C),⊆) −−→←−−α
γ

(A,≤) cannot, in general, be
defined in type theory.

Concretization γ is easily modeled as

γ : A→ (C → Prop) (a relation between A and C)

Abstraction α is generally not computable as soon as C is infinite:

α : (C → Prop)→ A constant functions only?
α : (C → bool)→ A can only depend on finitely many C’s

Example: α(S) = [inf S, sup S] is not computable, because inf and
sup are not computable for infinite sets of integers.

22

Galois connections are problematic in general

For some domains, the abstraction function α does not exist!
(The optimality condition a ≤ α(γ(a)) cannot be satisfied.)

Example 1: rational intervals.

α{x | x2 ≤ 2} = ???

There is no optimal rational
approximation of [−

√
2,
√

2].

Example 2: polyhedra.

α{(x, y) | x2+y2 ≤ 1} = ???

23

Galois connections are problematic in general

For some domains, the abstraction function α does not exist!
(The optimality condition a ≤ α(γ(a)) cannot be satisfied.)

Example 1: rational intervals.

α{x | x2 ≤ 2} = ???

There is no optimal rational
approximation of [−

√
2,
√

2].

Example 2: polyhedra.

α{(x, y) | x2+y2 ≤ 1} = ???

23

Galois connections are problematic in general

For some domains, the abstraction function α does not exist!
(The optimality condition a ≤ α(γ(a)) cannot be satisfied.)

Example 1: rational intervals.

α{x | x2 ≤ 2} = ???

There is no optimal rational
approximation of [−

√
2,
√

2].

Example 2: polyhedra.

α{(x, y) | x2+y2 ≤ 1} = ???

23

Galois connections are problematic in general

For some domains, the abstraction function α does not exist!
(The optimality condition a ≤ α(γ(a)) cannot be satisfied.)

Example 1: rational intervals.

α{x | x2 ≤ 2} = ???

There is no optimal rational
approximation of [−

√
2,
√

2].

Example 2: polyhedra.

α{(x, y) | x2+y2 ≤ 1} = ???

23

Abstract interpretation without abstraction functions

(P. Cousot et R. Cousot, Abstract interpretation frameworks, JLC, 1992.)
(D. Pichardie, Interprétation abstraite en logique intuitionniste : extraction
d’analyseurs Java certifiés, thèse, U. Rennes 1, 2005.)

The abstraction function α is required only to calculate abstract
operators. If we are gven an abstract operator F# pour
l’opérateur F, the concretization γ su�ces to prove

• the semantic soundness of F#:

x ∈ γ(a)⇒ F(x) ∈ γ(F#(a))

• optionally, the relative optimality of F#:

(∀x ∈ γ(a), F(x) ∈ γ(a′))⇒ F#(a) ≤ a′

This approach works perfectly in type theory.

24

Soundness is essential, optimality is optional

Optimality is not required to obtain a sound analyzer
(no alarms⇒ no run-time errors).

Making optimality optional enables us to simplify the abstract
interpreter and its soundness proof:

• Abstract operators that return over-approximations (or
just >) in uncommon or expensive cases.

• Join operators t that return an upper bound of their
arguments, but not always the least upper bound.

• Fixed-point iterations that produce a post-fixed point but
not necessarily the least fixed point.

• Approaches by validation a posteriori.

25

Validation a posteriori

Abstract operations can be implemented by an unverified
external “oracle”, provided we can easily validate the result a
posteriori. Only the validator algorithm needs to be proved
sound.

Example: the join t of two polyhedra.

Computing the join vs. Inclusion test
(convex hull) (Presburger formula)

26

Mechanizing an abstract interpreter
for IMP

Modeling abstract domains

As module interfaces:

• VALUE_ABSTRACTION: abstraction of integer values
• STORE_ABSTRACTION: abstraction of stores

Each interface declares:

• A type t of abstract “things”.
• A predicate In connecting concrete things and abstract things.

(In c a can be read as c ∈ γ(a))
• Abstract operations over type t

(arithmetic operations; get and set for stores).
• The statements of semantic soundness for these operations.

(See Coq file AbstrInterp.)

27

Abstract interpretation of arithmetic expressions

Let ST be a store abstraction and V the corresponding value
abstraction.

Fixpoint Aeval (a: aexp) (S: ST.t) : V.t :=

match a with

| CONST n => V.const n

| VAR x => ST.get x S

| PLUS a1 a2 => V.add (Aeval a1 S) (Aeval a2 S)

| MINUS a1 a2 => V.sub (Aeval a1 S) (Aeval a2 S)

end.

(What else could we possibly write?)

28

Abstract interpretation of commands

Compute the abstract store “after” executing command c as a
function of the abstract store “before” S.

Fixpoint Cexec (c: com) (S: ST.t) : ST.t :=

match c with

| SKIP => S

| ASSIGN x a => ST.set x (Aeval a S) S

| SEQ c1 c2 => Cexec c2 (Cexec c1 S)

| IFTHENELSE b c1 c2 => ST.join (Cexec c1 S) (Cexec c2 S)

| WHILE b c => postfixpoint (fun X => ST.join S (Cexec c X))

end.

29

Abstract interpretation of commands

Fixpoint Cexec (c: com) (S: ST.t) : ST.t :=

match c with

| SKIP => S

| ASSIGN x a => ST.set x (Aeval a S) S

| SEQ c1 c2 => Cexec c2 (Cexec c1 S)

| IFTHENELSE b c1 c2 => ST.join (Cexec c1 S) (Cexec c2 S)

| WHILE b c => postfixpoint (fun X => ST.join S (Cexec c X))

end.

For the time being, the analysis makes no attempt to determine
the value of a Boolean expression
→ we execute abstractly both branches then and else

→ we take the join of their final stores.

30

Abstract interpretation of commands

Fixpoint Cexec (c: com) (S: ST.t) : ST.t :=

match c with

| SKIP => S

| ASSIGN x a => ST.set x (Aeval a S) S

| SEQ c1 c2 => Cexec c2 (Cexec c1 S)

| IFTHENELSE b c1 c2 => ST.join (Cexec c1 S) (Cexec c2 S)

| WHILE b c => postfixpoint (fun X => ST.join S (Cexec c X))

end.

Let X be the abstract store “before” the loop body c.

• First iteration: the store is S, therefore S ≤ X.
• Next iterations: the store is Cexec c X, therefore
Cexec c X ≤ X.

We solve these two constraints by computing a post-fixed point.
31

Semantic soundness proof

We show easily that the result of a concrete execution belongs (in
the sense of the “In” predicates) to the result of the
corresponding abstract execution.

Lemma Aeval_sound:

forall s S a,

ST.In s S -> V.In (aeval a s) (Aeval a S).

Theorem Cexec_sound:

forall c s s’ S,

ST.In s S -> cexec s c s’ -> ST.In s’ (Cexec c S).

32

An example of a store abstraction

Parameterized by a value abstraction V.

Abstract stores = functions ident→ V.t

such that inclusion ∀x, V.le (f x) (g x) is decidable.

Representation: ⊥ or a finite function ident→ V.t

(default value: V.top)

Appropriate for all non-relational analyses.

33

An example of a value abstraction

Abstract domain = the flat lattice of integers:

> = Z

⊥ = ∅

{−1} {0} {1} {2} {3} . . .

Abstract operations are trivial:

⊥+#x = x+#⊥ = ⊥ {n1}+#{n2} = {n1+n2} >+#x = x+#> = >

34

Improving the analysis of conditionals

So far we do not analyze Boolean expressions
→ both then and else branches of an if are assumed taken.

We can do better if abstract information su�ces to statically
resolve the condition of an if. Example:

x := 0;

if x = 0 then y := 1 else y := 2

Our constant analysis infers y# = {1} t {2} = >.

Since x# = {0} before the if, the else branch is never executed,
and we should have y# = {1} in the end.

35

Improving the analysis of conditionals

Even when the Boolean expression cannot be resolved statically,
the analysis can learn interesting facts by considering which
branch of an if is taken.

x# = > initially
if x = 0 then

we learn that x# = {0}
y := x + 1

therefore y# = {1}
else

y := 1 here we also have y# = {1}

therefore y# = {1} and not >

36

Improving the analysis of loops

We can also learn something from the fact that a while loop
terminates:

x# = > initially
while not (x = 10) do

x := x + 1

done

we learn that x# = {10}

A more realistic example with intervals instead of constants:

x# = > = [−∞,+∞] initially
while x <= 1000 do

x := x + 1

done

we learn that x# = [1001,+∞]

37

Backward analysis of expressions

assume test b res S
returns an abstract store S′ ≤ S reflecting the fact that
b (a Boolean expression) evaluates to res (true or false).

assume eval a Res S
returns an abstract store S′ ≤ S reflecting the fact that
a (an arithmetic expression) evaluates to an integer
that belongs to Res (an abstract value).

Examples:
assume test (x = 0) true (x 7→ >) = (x 7→ {0})
assume test (x = 0) true (x 7→ {1}) = ⊥
assume eval (x + 1) {10} (x 7→ >) = (x 7→ {9})

38

Backward analysis of expressions

We enrich the abstract domain of values with inverse abstract
tests eq_inv, ne_inv, le_inv, gt_inv.

Formally:

le inv N1 N2 = (α{x | x ∈ γ(N1), y ∈ γ(N2), x ≤ y},
α{y | x ∈ γ(N1), y ∈ γ(N2), x ≤ y})

Examples using intervals:

eq_inv [0,5] [4,9] = ([4,5], [4,5])

le_inv [0,9] [2,5] = ([0,5], [2,5])

(See Coq file AbstrInterp2.)

39

Improved analysis of commands

Fixpoint Cexec (c: com) (S: ST.t) : ST.t :=

match c with

| SKIP => S

| ASSIGN x a => ST.set x (Aeval a S) S

| SEQ c1 c2 => Cexec c2 (Cexec c1 S)

| IFTHENELSE b c1 c2 =>

ST.join (Cexec c1 (assume_test b true S))

(Cexec c2 (assume_test b false S))

| WHILE b c =>

assume_test b false

(postfixpoint

(fun X => ST.join S (Cexec c (assume_test b true X))))

end.

40

Computing fixed points with
widening

Improving the computation of post-fixed points

Analyzing loops require a post-fixed point to be computed.

In the third lecture we saw two approaches:

1. An approach based on the Knaster-Tarski theorem:
an iteration that terminates provided there are no infinite,
strictly-increasing sequences of abstract values
N0 < N1 < N2 < · · ·

2. An approach using “fuel”:
we return > after N unsuccessful iterations.

Approach 1 does not always apply, or is too slow.

Approach 2 is too imprecise.

41

Non-well-founded abstract domains

Many interesting abstract domains have infinite,
strictly-increasing sequences. For example, intervals:

[0, 0] < [0, 1] < [0, 2] < · · · < [0, n] < · · ·

This is an issue when analyzing non-counted loops:

x := 0;

while cond do x := x + 1

x# is successively [0, 0], then [0, 1], then [0, 2], then . . .

42

Excessively slow convergence

In other cases, Knaster-Tarski iteration terminates but takes too
long.

x := 0;

while x <= 1000 do x := x + 1

Starting from x# = [0, 0], it takes 1000 iterations to reach the
fixed point x# = [0, 1000].

43

Excessively imprecise convergence

The fuel-based approach converges in at most N iterations. But in
the case where it returns > we lose too much information.

x := 0;

y := 0;

while x <= 1000 do x := x + 1

In the final abstract store, not only x# = > but also y# = >.

44

Widening

A widening operator ∇ : A→ A→ A computes an upper bound of
its two arguments, chosen big enough to ensure that the
following iteration converges always and quickly:

X0 = ⊥ Xi+1 =

Xi if F(Xi) ≤ Xi

Xi ∇ F(Xi) otherwise

The limit of this sequence is a post-fixed point of F.

Example: the classic widening for intervals

[l1, h1]∇ [l2, h2] = [if l2 < l1 then −∞ else l1,
if h2 > h1 then +∞ else h1]

45

Widening in action

X

F(X)

Knaster-Tarski iteration

iteration with widening

46

Static analysis with widening

x := 0;

while x <= 1000 do x := x + 1

The abstraction of x is a post fixed-point of the operator
F(X) = [0, 0] ∪ (X ∩ [−∞, 1000]) + 1.

X0 = ⊥
X1 = X0 ∇ F(X0) = ⊥∇ [0, 0] = [0, 0]
X2 = X1 ∇ F(X1) = [0, 0]∇ [0, 1] = [0,+∞]

X2 is a post fixed-point: F(X2) = [0, 1001] ≤ [0,+∞].

Final abstraction: x# = [0,+∞] ∩ [1001,+∞] = [1001,+∞].

47

Narrowing the post-fixed point

We can obtain a better post-fixed point by iterating a few more
rounds.

Y0 = a post fixed-point Yi+1 = F(Yi)

If F is increasing, every Yi is a post-fixed point: F(Yi) ≤ Yi.

Often, Yi < Y0, which gives a more precise post-fixed point.

We can stop iteration when Yi is a fixed point, or after a fixed
number of rounds. We can also use a narrowing operator to
accelerate convergence.

(P. Cousot et R. Cousot, Comparing the Galois connection and

widening/narrowing approaches to abstract interpretation, PLILP 1992)

48

Widening plus narrowing in action

X

F(X)

Knaster-Tarski iteration

Iteration with widening

Narrowing by iterating once more

49

Static analysis with widening and narrowing

x := 0;

while x <= 1000 do x := x + 1

The abstraction of x is a post-fixed point of the operator
F(X) = [0, 0] ∪ (X ∩ [−∞, 1000]) + 1.

The post-fixed point found by iteration with widening is [0,+∞].

Y0 = [0,+∞]

Y1 = F(Y0) = [0, 1001]
Y2 = F(Y1) = [0, 1001]

The final post-fixed point is Y1 = [0, 1001] (it’s a fixed point).

Final abstract result: x# = [0, 1001] ∩ [1001,+∞] = [1001, 1001].

50

Implementation in the Coq development

We enrich the VALUE_ABSTRACTION and STORE_ABSTRACTION

interfaces with a widen operator and the properties that
guarantee that the widened iteration order

Definition widen_order (S S1: t) :=

exists S2, S = widen S1 S2 /\ ble S2 S1 = false.

is well founded.

We implement the computation of post fixed-points by
Noetherian recursion on this order.

(See the Coq file AbstrInterp2.)

51

Summary

Summary

The abstract interpretation approach results in very modular
analyzers:

• One abstract interpreter for each programming language.
• Abstract domains that are independent of the language.
• Mechanisms to combine domains together.

Soundness w.r.t. the concrete semantics is obtained either by
construction (in the “calculational” approach), or by manual
proofs that are modular too.

Relational analyses are more di�cult (but more precise!) than
the non-relational analyses studied in this lecture.

To be continued in David Pichardie’s seminar of January 30th
2020.

52

References

References

Foundations of abstract interpretation:

• P. Cousot and R. Cousot, Basic Concepts of Abstract Interpretation, in
Building the Information Society, Kluwer, 2004.

• P. Cousot, Abstract Interpretation Based Formal Methods and Future
Challenges, LNCS(2000), 2001.

A few industrial applications:

• D. Kästner et al, Astrée: Proving the Absence of Runtime Errors, ERTS 2010.
• M. Fähndrich, F. Logozzo, Static Contract Checking with Abstract

Interpretation, FoVeOOS 2010.
• C. Ferdinand, R. Heckmann, R. Wilhelm, Analyzing the Worst-Case

Execution Time by Abstract Interpretation of Executable Code, ASWSD 2004.

Mechanizations of abstract interpreters:

• T. Nipkow, G. Klein, Concrete Semantics, chap. 13.
• J.-H. Jourdan, V. Laporte, S. Blazy, X. Leroy, D. Pichardie, A Formally-Verified

C Static Analyzer, POPL 2015. 53

	Classic abstract interpretation
	Constructive abstract interpretation
	Mechanizing an abstract interpreter for IMP
	Computing fixed points with widening
	Summary
	References

